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ABSTRACT
A frequent problem in anomaly detection is to decide among
different feature sets to be used. For example, various fea-
tures are known in network intrusion detection based on
packet headers, content byte streams or application level
protocol parsing. A method for automatic feature selection
in anomaly detection is proposed which determines optimal
mixture coefficients for various sets of features. The method
generalizes the support vector data description (SVDD) and
can be expressed as a semi-infinite linear program that can
be solved with standard techniques. The case of a single fea-
ture set can be handled as a particular case of the proposed
method. The experimental evaluation of the new method
on unsanitized HTTP data demonstrates that detectors us-
ing automatically selected features attain competitive per-
formance, while sparing practitioners from a priori decisions
on feature sets to be used.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; I.2.6 [Artificial Intelligence]: Learn-
ing—Parameter learning ; I.5.2 [Pattern Recognition]: De-
sign Methodology—Classifier design and evaluation, Feature
evaluation and selection

General Terms
Algorithms, Experimentation, Security
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1. INTRODUCTION
The main merit of anomaly detection techniques is their
ability to detect previously unknown attacks. One might
think that the collective expertise amassed in the computer
security community rules out major outbreaks of “genuinely
novel” exploits. Unfortunately, a wide-scale deployment of
efficient tools for obfuscation, polymorphic mutation and en-
cryption results in an exploding variability of attacks. Al-
though being only“marginally novel”, such attacks quite suc-
cessfully defeat signature-based detection tools. This reality
brings anomaly detection back into the research focus of the
security community.
The majority of anomaly detection methods use some form
of machine learning techniques to devise a model of normal-
ity from observed normal traffic. They may vary in features
being used but share the general idea of measuring anomal-
ity of new objects by their distance (in some metric space)
from the learned model of normality, historically also known
as “the sense of self” [2]. Apart from this theoretical obser-
vation, in practice the effectiveness of anomaly detection
crucially depends on the choice of features. Various fea-
tures have been deployed for network intrusion detection,
such as raw values of IP and TCP protocol headers [6, 7],
time and connection windows [5], byte histograms and n-
grams [15, 14], and“bag-of-tokens” language models [10, 11].
While packet header based features have been shown to be
effective against probes and scans (which many practition-
ers consider uninteresting anyway), other kinds of attacks,
e.g. remote buffer overflows, require more advanced payload
processing techniques. The right kind of features for a par-
ticular application has always been considered as the matter
of a judicious choice (or trial and error).
But what if this decision is really difficult to make? Given
the choice of several kinds of features, a poor a priori deci-
sion would lead to an inappropriate model of normality being
learned. A better strategy is to have a learning algorithm
itself decide which set of features is the best. The reason



for that is that learning algorithms find models with opti-
mal generalization properties, i.e. the ones that are valid not
only for observed data but also for the data to be dealt with
in the future. The a priori choice of features may bias the
learning process and lead to worse detection performance.
By leaving this choice to the learning algorithm, the possi-
bility of such bias is eliminated.
The problem of automatic feature selection has been well
studied in the machine learning community in the context
of classification, i.e. choosing among two or more labels to
be assigned to events [4; 8; 16; 3, e.g.]. The classification
setup, however, is hardly appropriate for anomaly detection
since the training data contains examples of only one class,
the normal traffic. To enable automatic feature selection
for anomaly detection, we derive an appropriate formulation
for one-class-classification, a particular kind of anomaly de-
tection using support vector data description (SVDD) [13].
Our approach generalizes the vanilla SVDD that is contained
as a special case when only a single feature vector is used.
The solution to our feature selection problem is a sparse lin-
ear combination of features that realizes a minimal-volume
description of the data. The underlying optimization can
be phrased as a semi-infinite linear program and solved by
standard techniques. A further advantage of the proposed
method is that it allows training on contaminated data by
limiting the impact of single events on the learned model.
To emphasize this feature, we have carried out experiments
on unsanitized training data obtained “from the wire”.
Our paper is structured as follows. Section 2 reviews the
problem setting of classical one-class anomaly detection with
only a single feature mapping. We derive our feature selec-
tion SVDD in Section 3 where we also state the final op-
timization problem. Section 4 reports on empirical results
and Section 5 concludes.

2. ONE-CLASS ANOMALY DETECTION
In this section, we briefly review the classical support vec-
tor data description (SVDD) [13]. We are given a set of n
normal inputs x1, . . . ,xn ∈ X and a function φ : X → F
extracting features out of the inputs. For instance, xi may
refer to the i-th recorded request and φ(xi) may encode the
vector of bigrams occurring in xi.
The goal in anomaly detection is to find a description of the
normal data such that anomalous data can be easily identi-
fied as outliers. In our one-class scenario, this translates to
finding a minimal enclosing hypersphere (i.e., center ~w and
radius R) that contains the normal input data [13]. Given
the function

f(x) = ‖φ(x) − ~w‖2 −R
2
,

the boundary of the ball is described by the set {x : f(x) =
0 ∧ x ∈ X}. That is, the parameters of f are to be cho-
sen such that f(x) < 0 for normal data and f(x) > 0 for
anomalous points. The center ~w and the radius R can be
computed accordingly by solving the following optimization
problem [13]

min
~w,R,~ξ

R
2 + η

X

i

ξi

s.t. ∀n
i=1 : ‖φ(xi) − ~w‖2 ≤ R

2 + ξi

∀n
i=1 : ξi ≥ 0.

The trade-off parameter η > 0 adjusts point-wise violations

of the hypersphere. That is, a concise description of the
data might benefit from omitting some data points in the
computation of the solution. Discarded data points induce
slack that is absorbed by variables ξi. Thus, in the limit
η → ∞, the hypersphere will contain all input examples
irrespectively of their utility for the model and η → 0 implies
R → 0 and the center ~w reduces to the centroid of the data.
In general, model selection strategies such as cross-validation
are necessary not only to find optimal user-defined parame-
ters such as the trade-off η, but also to choose an appropriate
feature representation φ. In the next section, we detail an
approach to automatically select the optimal linear combi-
nation of several feature mappings.

3. AUTOMATIC FEATURE SELECTION
FOR ANOMALY DETECTION

In this section, we present our approach to automatic feature
selection for anomaly detection. Our approach generalizes
the support vector data description (SVDD) [13] that is ob-
tained as a special case when only a single feature mapping
is given. In contrast to the previous section we are now given
k feature mappings φ1, . . . , φk with φj : X → Fj , 1 ≤ j ≤ k,
in addition to the n input instances x1, . . . ,xn ∈ X . For in-
stance, xi may refer to the i-th recorded request and φj(xi)
may encode the j-gram feature vector of xi.
Besides finding a center and radius, the operational goal is
now to learn a linear combination of the given feature map-
pings to realize the minimal model. This can be expressed
equivalently as an embedding of φ1, . . . , φk with mixture co-
efficients β1, . . . , βk. That is, the model f is now given by

f(x) =
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and the above SVDD optimization problem can be general-
ized accordingly to multiple feature mappings. In the fol-
lowing we write ~w = (~w1, . . . , ~wk)T to avoid cluttering the
notation unnecessarily. We are now ready to state the pri-
mal optimization problem for one-class anomaly detection
with multiple feature mappings.

Optimization Problem 1 (primal). Given n instan-
ces x1, . . . ,xn ∈ X , k feature mappings φ1, . . . , φk with φj :
X → Fj , and η > 0. The primal feature selection SVDD
optimization problem is given by

min
~w,R,~ξ,~β

R
2 + η

n
X

i=1

ξi

s.t. ∀n
i=1 : ‖ψβ(xi) − ~w‖2 ≤ R

2 + ξi (1)

∀n
i=1 : ξi ≥ 0

∀k
j=1 : βj ≥ 0

k
X

i=1

βj = 1,

where ψβ(xi) = (
√
β1φ1(xi), . . . ,

√
βkφk(xi))

T.

The last constraint in Optimization Problem 1 requires the
mixing coefficients to sum to one which corresponds to an L1

regularization. We thus promote sparsity and aim at select-
ing subsets of the k feature mappings. From a geometrical



point-of-view, Optimization Problem 1 can be understood
as follows: Redundant and deceptive feature mappings lead
to arbitrary and widespread data representations and thus
render concise spherical descriptions impossible. Such inap-
propriate embeddings will be penalized by vanishing mixing
coefficients βj . On the contrary, useful feature mappings are
promoted during the optimization, hence enforcing concise
data descriptions.
Unfortunately, we cannot solve Optimization Problem 1 di-
rectly since it is not convex due to non-linear dependencies

between ~β and ~w, which we see by expanding the term

‖ψβ(xi) − ~w‖2 =
k
X

j=1

βj〈φj(xi), φj(xi)〉 (2a)

− 2
k
X

j=1

〈
p

βjφj(xi), ~wj〉 + 〈~w, ~w〉. (2b)

Moreover, setting φj(x) = ~0 for 1 ≤ j ≤ k, Equation (1) can
be solved for the radius R which can be expressed in terms
of the center ~w and a non-negative offset ǫ2,

‖~0 − ~w‖2 ≤ R
2 + ξi ⇒ R

2 = 〈~w, ~w〉 + ǫ
2
. (3)

A remedy to the nonlinearity in ~w and ~β is a variable sub-
stitution by ~vj =

p

βj ~wj . Together with Equations (2) and
(3) we obtain a convex analogue of the optimization problem
(1) given by

min
~v,ǫ,~ξ,~β

ǫ
2 +

k
X

j=1

1

βj

〈~vj , ~vj〉 + η

n
X

i=1

ξi

s.t. ∀n
i=1 : ǫ

2 + ξi ≥
k
X

j=1

βj〈φj(xi), φj(xi)〉

− 2
k
X

j=1

〈φj(xi), ~vj〉

∀n
i=1 : ξi ≥ 0 ; ∀k

j=1 : βj ≥ 0 ;
k
X

j=1

βj = 1.

The above optimization problem is convex and has only lin-
ear constraints that can now be integrated into the objective

by the Lagrange Theorem. For any valid ~β ∈ {~β′ :
P

j β
′

j =

1 ∧ β′

j ≥ 0} we obtain a partial Lagrangian by introducing
nonnegative Lagrange multipliers ~α, ~µ ≥ 0, leading to the
Lagrangian L that needs to be minimized.

L(~v, ǫ, ~ξ, ~β, ~α, ~µ) = ǫ
2 +

k
X

j=1

1

βj

〈~vj , ~vj〉 + η

n
X

i=1

ξi −
n
X

i=1

µiξi

−
n
X

i=1

αi

 

−
k
X

j=1

βj〈φj(xi), φj(xi)〉

+ 2
k
X

j=1

〈φj(xi), ~vj〉 + ǫ
2 + ξi

!

.

The Lagrangian reaches its minimal value when it is min-

imized with respect to the primal variables ~v, ǫ, ~β, ~ξ and
maximized with respect to the Lagrange multipliers; hence,
the optimum is found at a saddle-point. Setting the partial

derivatives with respect to the primal variables ǫ,~v, and ~ξ

to zero yields

δL

δǫ

!
= 0 ⇒

n
X

i=1

αi = 1 (4a)

δL

δ~v

!
= 0 ⇒ ~vj = βj

n
X

i=1

αiφj(xi), 1 ≤ j ≤ k (4b)

δL

δ~ξ

!
= 0 ⇒ η − µi − αi = 0, 1 ≤ i ≤ n. (4c)

Equation (4c) together with the nonnegativity constraints
on αi and µi leads to the so-called box-constraints 0 ≤
αi ≤ η. Resubstitution of Equations (4) into the primal
Lagrangian removes its dependence on the primal variables:

L(α) =

n
X

i=1

αi

k
X

j=1

βjKj(xi,xi) −
n
X

i,ℓ=1

αiαℓ

k
X

j=1

βjKj(xi,xℓ).

Together with the minimization over ~β we resolve the fol-
lowing min-max problem

min
~β

max
~α

L(α) (5)

s.t. ∀n
i=1 : 0 ≤ αi ≤ η ;

n
X

i=1

αi = 1

∀k
j=1 : βj ≥ 0 ;

k
X

j=1

βj = 1,

where we introduce kernel Kj(x,x
′) = 〈φj(x), φj(x

′)〉 for
1 ≤ j ≤ k. To efficiently optimize the above optimization
problem, we translate it into an equivalent semi-linear infi-
nite program (SILP). The idea behind this transformation

is as follows: Let Ω(~α, ~β) be the objective function in Equa-
tion (5) and suppose ~α∗ is chosen optimally. Then it holds

Ω(~α∗, ~β) ≥ Ω(~α, ~β) for all ~α and ~β. Hence we can equiva-
lently minimize an upper bound θ on the optimal value and
by doing so we arrive at the final Optimization Problem 2.

Optimization Problem 2 (SILP). Given n instances
x1, . . . ,xn ∈ X , either k feature mappings φ1, . . . , φk or al-
ternatively k kernel functions K1, . . . ,Kk : X ×X → ℜ with
Kj(x,x

′) = 〈φj(x), φj(x
′)〉, and η > 0. The SILP formula-

tion of the feature selection SVDD is given by

min
~β,θ

θ

s.t. θ ≥
k
X

j=1

βj

0

@

n
X

i=1

αiKj(xi,xi) −
n
X

i,ℓ=1

αiαℓKj(xi,xℓ)

1

A

∀ ~α ∈ ℜn : 0 ≤ αi ≤ η ,

n
X

i=1

αi = 1;

∀k
j=1 : βj ≥ 0 ;

k
X

j=1

βj = 1.

Optimization Problem 2 is equivalent to the primal Opti-
mization Problem 1 and can be efficiently optimized by stan-
dard techniques [12].

4. EMPIRICAL EVALUATION
In this section we empirically evaluate the proposed feature
selection SVDD on real HTTP network traffic recorded at



GET /openworx.php?key=malware+behavior HTTP/1.1\r\n
Host: www.first.fraunhofer.de\r\n
Connection: keep-alive\r\n
Keep-alive: 300\r\n
User-Agent: Mozilla/5.0 (Windows; Windows NT 5.1;
en-US) Gecko/20070312 Firefox/1.5.0.11\r\n
Cookie: owx_ecrm_keks=b604613a489d40\r\n
Referer: http://www.first.fraunhofer.de/ida\r\n
Accept: image/png,*/*;q=0.5\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7\r\n
Accept-Encoding: gzip,deflate\r\n

Figure 1: An exemplary HTTP request.

the Fraunhofer FIRST institute. The unsanitized dataset
contains a sample of 2500 normal HTTP requests drawn
randomly from two months of incoming HTTP traffic. We
injected 30 instances of 10 different attacks taken from recent
exploits in the Metasploit framework1 and a Nessus HTTP
scan. All exploits (6 buffer overflow attacks and 4 PHP
vulnerabilities) were normalized to match the tokens and
frequent attributes of normal HTTP requests such that the
malicous payload provides the only indicator for identifying
the attacks.

4.1 Feature Extraction
We consider six different feature sets extracted from the raw
data. Three of these feature sets are based on a sequential
representation of byte streams comprising HTTP requests
as depicted in Figure 1. The remaining three feature sets
correspond to a token representation of the HTTP request.
The latter is obtained by running requests through an HTTP
protocol analyzer constructed with binpac [9], and collecting
the analysis results in a token-attribute sequence. The to-
kens in this sequence correspond to keywords of the HTTP
protocol whereas the attributes consist of byte sequences as-
sociated with these keywords. Figure 2 visualizes the corre-
sponding token-attribute structure of the request in Figure
1. For each of the two representations, we extract the fol-
lowing features from the HTTP requests:

3-gram occurrence features

The feature functions φseq
occ and φtok

occ register the occurrence
of particular byte 3-grams for the sequential and the token
representation, respectively. Each feature function is a bi-
nary vector where the elements equal 1 if a certain 3-gram
occurs in a sequence and 0 otherwise. For sequential repre-
sentations, this measure is evaluated for the complete byte
sequence of the requests. For the token representation, the
measure is evaluated separately for all attributes of match-
ing tokens and added up for all tokens.

3-gram frequency features

The computation of the frequency feature functions φseq
freq

and φtok
freq is analogous to the 3-gram occurrence features.

The only difference is that both vectors now contain the
frequencies of the occurring 3-grams.

Expert features

The feature functions φseq
exp and φtok

seq exploit the expert knowl-
edge about observed requests. We have chosen a somewhat

1http://www.metasploit.com/
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attribute pairs for each HTTP request.

eccentric set of features to show that even a wild guess may
be well-suited for the automatic feature selection approach.
Our feature set contains 16 features defined as follows.
Positions 1 to 11 represent a coarse string length histogram.
The range of observed string lengths up to lmax, the largest
string length in a training corpus, is divided in 10 equally
spaced bins. A binary feature is set, if the observed string
length falls into the respective bin. Position 11 is reserved
for strings exceeding the maximal training string length; this
position is always 0 for the training data but may be set to
one for the test data. Position 12 is set to one if the entropy
of a string lies in the interval [4.5, 5.5]. Positions 13–15 flag
the occurrence of the following character types in HTTP
requests:

• non-printable characters: ANSI numbers 127-255,

• control characters: ASCII numbers 0-31 except for 10
and 13, and

• uncommon characters: $, [, ], {, }, |, \.

Position 16 is set if blacklisted words that are not supposed
to appear in a request – in our case: exec, home, passthru,
root, CMD and SYSTEM – are found in a string. The dif-
ference between sequential and token representations is the
same as for the other feature sets.

4.2 Results
We compare the accuracy of the detector obtained by au-
tomatic feature selection using the proposed approach with
the accuracy of individual detectors using each of the six fea-
tures separately and a uniform mixture of the features. The
respective optimization problems are solved with CPLEX.
For the experiments, we randomly draw distinct training,
validation, and test sets from the normal pool. The valida-
tion and test sets are each augmented by 15 randomly drawn
attacks, where we make sure that attacks of the same class
occur only in one of the two sets. For every η ∈ [0, 250],
each model in our discourse area is adapted to the training
set and subsequently tested on the validation set for model
selection. Models realizing the largest area under the ROC
curve in the false-positive interval [0, 0.01] (AUC0.01) on the
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Figure 3: Average AUC0.01 performances for varying training set size.

validation set are then evaluated on the independent test
set.
We investigate the accuracy of learned detectors as a func-
tion of the training set size. The average AUC0.01 values are
reported in Figure 3 over n = 100 repetitions with randomly
drawn training, validation, and test sets. The standard er-
ror (standard deviation divided by

√
n = 10) was observed

to be less than 0.01 in our experiments and is not shown in
the plots.
It can be clearly seen from Figure 3 that the accuracy of
the detector with automatic feature selection dominates the
accuracy of all individual classifiers for all training data set
sizes (except the ridiculously small training set of size 2).
Towards larger training set sizes, some of the features yield
equally accurate detectors; the detector obtained by the pro-
posed method remains among the winners.
The behavior of the automatic feature selection becomes
clear from the analysis of the distribution of the mixture co-
efficients for different features shown in Figure 4. Recall that
by definition of our problem these features add up to one.
It can be seen that for smaller training set sizes, an optimal
feature selection is non-sparse, i.e. more than one feature
is needed for the best classification. This explains why a
strict improvement of the detection accuracy is attained by
our method. For larger training sets, the information con-
tained in the data alone becomes sufficient to determine a
“strict winner” among the features: in our case, the feature
set φseq

exp. Although some other feature sets also exhibit good
performance for these training set sizes, the choice is made
for the feature set with the best overall performance. As
a sanity check, we have repeated the experiment with the
best feature set replaced by random features and have ob-
served that the best alternative set of features is chosen by
automatic feature selection (results not shown in the plots).

5. CONCLUSION
We have presented a novel generalization of the support vec-
tor data description (SVDD) that automatically selects the
optimal feature combination. The optimization problem of
the feature selection SVDD can be formulated as a semi-
infinite linear program and solved with standard techniques.
The vanilla SVDD is obtained as a special case for only a
single feature function. Empirically, the automatic feature
selection proved robust against noise in the training data:
Fluctuations caused by small sample sizes are absorbed by
appropriately chosen mixtures. The feature selection SVDD
has consistently outperformed any baseline using only a sin-
gle feature set.
The proposed method for feature selection for anomaly de-
tection shows that multiple features sets, possibly resulting
from various characterizations of the normal traffic, can be
automatically combined to obtain optimal detectors. In this
way a practitioner faced with the choice of alternative fea-
ture sets need not make an a priori choice by hand but can
rely on the same learning algorithm used to derive the model
of normal data.
The future work will focus on optimizing the run-time of
the proposed method (currently our implementation uses
standard optimization software not suitable to more than a
few hundred examples, however for other types of machine
learning these kinds of methods have been shown to scale
to thousands of training examples [1, 12, 17]), as well as
to extend the proposed method to other anomaly detection
algorithms.
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