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Abstract. Data domain description techniques aim at deriving concise
descriptions of objects belonging to a category of interest. For instance,
the support vector domain description (SVDD) learns a hypersphere en-
closing the bulk of provided unlabeled data such that points lying out-
side of the ball are considered anomalous. However, relevant information
such as expert and background knowledge remain unused in the unsu-
pervised setting. In this paper, we rephrase data domain description as a
semi-supervised learning task, that is, we propose a semi-supervised gen-
eralization of data domain description (SSSVDD) to process unlabeled
and labeled examples. The corresponding optimization problem is non-
convex. We translate it into an unconstraint, continuous problem that
can be optimized accurately by gradient-based techniques. Furthermore,
we devise an effective active learning strategy to query low-confidence
observations. Our empirical evaluation on network intrusion detection
and object recognition tasks shows that our SSSVDDs consistently out-
perform baseline methods in relevant learning settings.

1 Introduction

Data domain description techniques aim to devise concise descriptions of ob-
served data. The task is to find minimal regions in feature space containing all
data points that belong to the category of the observed data. Observations that
do not fall into this region deviate from the normality and are rejected.

Data domain description techniques are therefore frequently being applied to
outlier and anomaly detection problems where a model of normality is devised
from available observations. Anomality of new objects is measured by their dis-
tance (in some metric space) from the learned model of normality, historically
also known as “the sense of self” [7].

In network intrusion detection, the main merit of anomaly detection tech-
niques is their ability to detect previously unknown attacks. One might think
that the collective expertise amassed in the computer security community rules
out major outbreaks of “genuinely novel” exploits. Unfortunately, a wide-scale de-
ployment of efficient tools for obfuscation, polymorphic mutation and encryption
results in an exploding variability of attacks. Although being only “marginally
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novel”, such attacks quite successfully defeat signature-based detection tools.
This reality brings one-class anomaly detection back into the research focus of
the security community [14,15,11,28,27,19,20]. Until now, anomaly detection is
usually being regarded as an unsupervised learning task for good reasons: Firstly,
the rejection class cannot be sampled per definition as it comprises rare and un-
likely events. Secondly, outliers are frequently too diverse to be modeled by only
a single rejection class.

Nevertheless, data domain description techniques exhibit appealing properties
for dealing with multiple, non-stationary class-distributions in settings where
shifting distributions can be modeled by all means. For instance, domain de-
scriptions have been successfully applied to multi-class classification problems
with temporally varying numbers of categories such as event detection tasks and
object recognition systems. Instead of maintaining expensive multi-class classi-
fiers that have to be retrained using all available data once a new category is
added, one simply learns a single domain description for every (new) category
of interest.

We claim that an unsupervised learning setting for data domain descrption
is often too restricted for practical applications. Firstly, these methods have
to be trained solely on normal data which is hardly possible without already
knowing the labelings. Although state-of-the-art techniques prove robust against
injecting a few instances of the rejection class into the training data [2,24],
knowing the class ratios is often crucial for accurate parameter adjustments.
Secondly, one often knows the categories of certain training instances, be it
manually labeled or recently seen instances. Such expert knowledge cannot be
exploited in unsupervised settings and the learned models are sub-optimal in the
sense that they leave out important information.

In this paper, we rephrase data domain description as a semi-supervised learn-
ing task, that is, we present semi-supervised data domain description (SSSVDD)
that allows for processing unlabeled as well as labeled data to include expert and
prior knowledge. Our model learns a minimal enclosing hypersphere in feature
space that contains the normal data where point-wise errors are relaxed by slack
variables. The inclusion of examples of the rejection class turns the optimiza-
tion problem non-convex. As a remedy, we translate the optimization into an
unconstraint, continuous problem with fewer parameters. It can therefore be op-
timized faster, and the retrieved local minima are substantially better on average
[3]. The SSSVDD contains the unsupervised data domain description [24] as a
special case that is obtained when no label information is used in the training
process.

Furthermore, we devise an active learning strategy to query low-confidence
decisions, hence guiding the user in the labeling process. Active learning selects
an instance to be labeled by the user from the pool of unlabeled data. The
selection process is designed to find unlabeled examples in the pool which –
once labeled – lead to the maximal improvement of the hypothesis. Thus, the
SSSVDD is initially trained solely on unlabeled examples and then subsequently
refined by incorporating labeled examples that have been queried by the active
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learning rule. The training process can be terminated at any time, for instance
when the desired predictive performance is obtained.

Empirical results on network intrusion detection and object recognition tasks
show the benefit of casting data domain description into a semi-supervised
learning framework: The SSSVDD significantly outperforms appropriate base-
line methods for all learning settings. This effect is significantly enhanced by
active learning. Our active learning strategy not only reduces the manual label-
ing effort for the practitioner, it also allows for automatically identifying novel
network attacks for the intrusion detection tasks.

Our paper is structured as follows. Section 2 reviews related work and Section
3 introduces the classical data domain description. We extend the latter to a
semi-supervised learning method in Section 4 where we also discuss optimization
issues. Section 5 introduces our active learning strategy and Section 6 reports
on empirical results. Section 7 concludes.

2 Related Work

Data domain description is usually regarded as an unsupervised or one-class
classification task. Prominent approaches comprise k-nearest neighbors [2] or
other distance based methods [9], quadratic programming [24], and statistical
methods [30,25]. In this paper, we rephrase data domain description as a semi-
supervised task (see [32] for an overview).

Active learning for anomaly detection has been studied by [22,17,1]. [1] take a
max-margin approach and propose to query points that lie close to the decision
hyperplane and violate the margin criterion in order to minimize the error rate.
By contrast, the approach by [17] aims at detecting rejection categories in the
data using as few queries as possible. Finally, the approach taken in [22] combines
the former two active learning strategies to find interesting regions in feature
space and to decrease the error-rate simultaneously.

Furthermore, there are several extensions of unsupervised data domain de-
scriptors allowing for the inclusion of labeled examples. For instance, [8,12,26,31]
present fully-supervised variants of the classical support vector data description
(SVDD) [24]. However, the objective functions are no longer convex and the pro-
posed optimizations in dual space may suffer from duality gaps. Another variant
proposed in [23] is trained on unlabeled and instances belonging to the rejection
class. Although this approach seems promising, it also suffers from non-convexity
of the objective.

3 Support Vector Data Description

In this section, we briefly review the classical support vector domain description
(SVDD) [24]. We are given a set of n normal inputs x1, . . . , xn ∈ X and a
function φ : X → F extracting features out of the inputs. For instance, xi may
refer to the i-th recorded request and φ(xi) may encode the vector of bigrams
occurring in xi.
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The goal of the SVDD is to find a concise description of the normal data such
that anomalous data can be easily identified as outliers. In the underlying one-
class scenario, this translates to finding a minimal enclosing hypersphere (i.e.,
center c and radius R) that contains the normal input data [24], see Figure 1
(left). Given the function

f(x) = ‖φ(x) − c‖2 − R2,

the boundary of the ball is described by the set {x : f(x) = 0 ∧ x ∈ X}. That
is, the parameters of f are to be chosen such that f(x) < 0 for normal data and
f(x) > 0 for anomalous points. The center c and the radius R can be computed
accordingly by solving the following optimization problem [24]

min
R,c,ξ

R2 + η

n∑

i=1

ξi

s.t. ∀n
i=1 : ‖φ(xi) − c‖2 ≤ R2 + ξi (1)

∀n
i=1 : ξi ≥ 0.

The trade-off parameter η adjusts point-wise violations of the hypersphere. That
is, a concise description of the data might benefit from omitting some data points
in the computation of the solution. Discarded data points induce slack that is
absorbed by variables ξi. Thus, in the limit η → ∞, the hypersphere will contain
all input examples irrespectively of their utility for the model and η → 0 implies
R → 0 and the center c reduces to the centroid of the data.

The above optimization problem can be translated into an equivalent dual
formulation by exploiting the identity c =

∑n
i=1 αiφ(xi). We arrive at the dual

SVDD optimization problem [24],

max
α

n∑

i=1

αik(xi, xi) −
n∑

i,j=1

αiαjk(xi, xj)

s.t.
n∑

i=1

αi = 1 and 0 ≤ αi ≤ η ∀i = 1, . . . , n.

Once optimal parameters α∗ are found these are used as plug-in estimates to
compute the anomaly score for new and unseen instances. A new observation x̄
is accepted if

k(x̄, x̄) − 2
n∑

i=1

α∗
i k(xi, x̄) +

n∑

i,j=1

α∗
i α

∗
jk(xi, xj) ≤ R2.

[8,12,26,23] propose extensions of the SVDD to incorporate labeled data into
the learning process. The corresponding optimization problems are however not
convex and the dual solution might suffer from a duality gap.
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Fig. 1. Left: An exemplary solution of the SVDD. Right: Illustration of SSSVDD that
incorporates unlabeled (green) as well as labeled data of the normal class (red) and
the rejection category (blue).

4 Semi-supervised Data Domain Description

In this section, we derive our semi-supervised data domain description. In addi-
tion to n normal observations x1, . . . , xn ∈ X we are also given m labeled pairs
(x∗

n+1, y
∗
n+1), . . . , (x

∗
n+m, y∗

n+m) ⊂ X × {+1,−1}, where we associate normal
data with the positive class and outliers as the negative class. As in the previous
section, we aim at finding a model f(x) = ||φ(x) − c||2 − R2 that generalizes
well on unseen data, however, the model is now devised on the basis of labeled
and unlabeled data. A straight-forward extension of the SVDD in Equation (1)
using both, labeled and unlabeled examples, is given by

min
R,γ,c,ξ

R2 − κγ + ηu

n∑

i=1

ξi + ηl

n+m∑

j=n+1

ξ∗j

s.t. ∀n
i=1 : ‖φ(xi) − c‖2 ≤ R2 + ξi

∀n+m
j=n+1 : y∗

j

(‖φ(x∗
j ) − c‖2 − R2

) ≤ −γ + ξ∗j (2)

∀n
i=1 : ξi ≥ 0,

∀n+m
j=n+1 : ξ∗j ≥ 0.

The optimization problem has additional constraints for the labeled examples
that have to fulfill the margin criterion with margin γ. Trade-off parameters
κ, ηu, and ηl balance margin-maximization and the impact of unlabeled and
labeled examples, respectively. To avoid cluttering the notation unnecessarily,
we omit the obvious generalization of allowing different trade-offs η+

l and η−
l for

positively and negatively labeled instances, respectively. The additional slack
variables ξ∗j are bound to labeled examples and allow for point-wise relaxations
of margin violations by labeled examples. The solution of the above optimization
problem is illustrated in Figure 1 (right).

The inclusion of negatively labeled data turns the above optimization problem
non-convex and optimization in the dual is prohibitive. As a remedy, we translate
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Equation (2) into an unconstraint, continuous problem [3,33]. For the above
problem, it is possible to resolve the slack terms:

ξi = �
(
R2 − ||φ(xi) − c||2)

ξ∗j = �
(
y∗

j

(
R2 − ||φ(x∗

j ) − c||2) − γ
)

where �(t) = max{−t, 0} is the common hinge loss where we explicitely deal with
the margin γ in the argument t because γ is part of the optimization. We can
now pose optimization problem (2) as a simple minimization problem without
constraints as follows,

min
R,γ,c

R2 − κγ + ηu

n∑

i=1

�
(
R2 − ||φ(xi) − c||2)

+ ηl

n+m∑

j=n+1

�
(
y∗

j

(
R2 − ||φ(x∗

j ) − c||2) − γ
)
. (3)

Note that the optimization problems in Equations (2) and (3) are equivalent so
far. We now substitute the Huber loss for the hinge loss to obtain a smooth and
differentiable function that can be optimized with gradient-based techniques.
The Huber loss �Δ,ε is displayed in Figure 2 and given by

�Δ,ε(t) =

⎧
⎨

⎩

Δ − t : t ≤ Δ − ε
(Δ+ε−t)2

4ε : Δ − ε ≤ t ≤ Δ + ε
0 : otherwise

�′Δ,ε(t) =

⎧
⎨

⎩

−1 : t ≤ Δ − ε
− 1

2 (Δ−t
ε + 1) : Δ − ε ≤ t ≤ Δ + ε
0 : otherwise .

(4)

For notational convenience, we focus on the Huber loss for �Δ=0,ε(t) and move
margin dependent terms into the argument t. Using the Huber loss �0,ε, com-
puting the gradients of the slack variables ξi associated with unlabeled examples
with respect to the primal variables R and c yields

∂ξi

∂R
= 2R�′ε(R

2 − ||φ(xi) − c||2)
∂ξi

∂c
= 2(φ(xi) − c)�′ε(R

2 − ||φ(xi) − c||2).
The derivatives of their counterparts ξ∗j for the labeled examples with respect to
R, γ, and c are given by

∂ξ∗j
∂R

= 2y∗
j R�′ε

(
y∗

j

(
R2 − ||φ(x∗

j ) − c||2) − γ
)

∂ξ∗j
∂γ

= −κ�′ε
(
y∗

j

(
R2 − ||φ(x∗

j ) − c||2) − γ
)

∂ξ∗j
∂c

= 2y∗
j (φ(x∗

j ) − c)�′ε
(
y∗

j

(
R2 − ||φ(x∗

j ) − c||2) − γ
)
.
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Fig. 2. The differentiable Huber loss �δ=1,ε=0.5

Substituting the partial gradients, we resolve the gradient of Equation 3 with
respect to the primal variables:

∂EQ3
∂R

= 2R + ηu

n∑

i=1

∂ξi

∂R
+ ηl

n+m∑

j=n+1

∂ξ∗j
∂R

, (5)

∂EQ3
∂γ

= −κ + ηl

n+m∑

j=n+1

∂ξ∗j
∂γ

, (6)

∂EQ3
∂c

= ηu

n∑

i=1

∂ξi

∂c
+ ηl

n+m∑

j=n+1

∂ξ∗j
∂c

. (7)

The above equations can be plugged directly into off-the-shelf gradient-based
optimization tools to optimize Equation (3) in the input space for the identity
φ(x) = x. However, predictive power is often related to (possibly) non-linear
mappings φ of the input data into some high-dimensional feature space. An
application of the representer theorem (see Appendix) shows that the center c
can be expanded as

c =
∑

i

αiφ(xi) +
∑

j

αjy
∗
j φ(x∗

j ). (8)

According to the chain rule, the gradient of Equation (3) with respect to the
αi/j is given by

∂EQ3
∂αi/j

=
∂EQ3

∂c

∂c

∂αi/j
.

Using Equation (8), the partial derivatives ∂c
∂αi/j

resolve to

∂c

∂αi
= φ(xi) and

∂c

∂αj
= y∗

j φ(x∗
j ), (9)
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respectively. Applying the cain-rule to Equations (5),(6),(7) and (9) gives the
gradients of Equation (3) with respect to the αi/j . The final objective function
allowing for the use of kernel functions can be stated as

min
R,γ,α

R2−κγ+ηu

n∑

i=1

�ε

(
R2 − k(xi, xi) + (2ei − α)′Kα

)

+ ηl

n+m∑

j=n+1

�ε

(
y∗

j

(
R2 − k(x∗

j , x
∗
j ) + (2e∗

j − α)′Kα
) − γ

)
, (10)

where kernel K is given by K(x, x′) = 〈φ(x), φ(x′)〉 and e1, . . . , en+m is the
standard base of R

n+m. By rephrasing the problem as an unconstrained opti-
mization problem, its intrinsic complexity has not changed. However, the local
minima of Optimization Problems (3) and (10) can now easily be found with
gradient-based techniques such as conjugate gradient descent. In general, uncon-
strained optimization is also easier to implement than constrained optimization.
We will observe the benefit of this approach in the following.

5 Active Learning

The SSSVDD is initially trained solely on unlabeled examples and then subse-
quently refined by incorporating labeled examples that have been queried by the
active learning rule. We now devise an active learning strategy to query low-
confidence decisions, hence guiding the user in the labeling process. Our active
learning strategy selects an instance of the unlabeled data pool to be labeled
by the user. The selection process is designed to find the unlabeled example in
the pool which – once labeled – leads to the maximal improvement of the actual
model.

We begin with a commonly used active learning strategy which simply queries
borderline points. The strategy is sometimes called margin strategy and can be
expressed by asking the user to label the point x′ that is closest to the decision
hypersphere [1,29]

x′ = argmin
x∈{x1,...,xn}

|f(x)|
Ω

= argmin
x∈{x1,...,xn}

|R2 − ‖φ(x) − c‖2|
Ω

, (11)

where Ω is a normalization constant and given by Ω = maxi |f(xi)|.
However, when dealing with many non-stationary outlier and/or attack cate-

gories, it is beneficial to identify novel reject classes as soon as possible. We trans-
late this into an active learning strategy as follows. Let A = (aij)i,j=1,...,n+m be
an adjacency matrix, for instance obtained by a k-nearest-neighbor approach,
where aij = 1 if xi is among the k-nearest neighbors of xj and 0 otherwise.
We introduce an extended labeling ȳ1 . . . , ȳn+m for all examples by defining
ȳi = 0 for unlabeled instances and retaining the labels for labeled instances, i.e.,
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ȳj = yj . Using these pseudo labels, Equation (12) returns the unlabeled instance
according to

x′ = argmin
xi∈{x1,...,xn}

1
2k

n+m∑

j=1

(ȳj + 1) aij . (12)

The above strategy explores unknown regions in feature space and subsequently
deepens the learned knowledge by querying clusters of potentially similar objects
to allow for good generalizations.

Nevertheless, using Equation (12) alone may result in querying points lying
close to the center of the hypersphere or far from its boundary. These points will
hardly contribute to an improvement of the hypersphere. In other words, only a
combination of both strategies (11) and (12) guarantees the active learning to
query points of interest. Our final active learning strategy is therefore given by

x′ = argmin
xi∈{x1,...,xn}

= δ
|f(x)|

Ω
+

1 − δ

2k

n+m∑

j=1

(ȳj + 1) aij (13)

for δ ∈ [0, 1]. The combined strategy queries instances that are close to the
boundary of the hypersphere and lie in potentially anomalous clusters with re-
spect to the k-nearest neighbor graph. Depending on the actual value of δ, the
strategy jumps from cluster to cluster and thus helps to identify interesting re-
gions in feature space. For the special case of no labeled points our combined
strategy reduces to the margin strategy.

Usually, an active learning step is followed by an optimization step of the
SSSVDD taking into account the newly labeled data. This procedure is of course
time-consuming and can be altered for practical settings, for instance by querying
a couple of points before performing a model update. Irrespectively of the actual
implementation, alternating between active learning and updating the model can
be repeated until a desired predictive performance is obtained.

6 Empirical Results

In this section, we empirically evaluate the SSSVDD and the active learning
strategies and compare their performances to appropriate strawmen. The base-
lines SVDD and SVDDneg [23] are implemented in Matlab and optimized by
SMO [18]. Additional baselines for the object recognition tasks are binary SVMs.
SSSVDDs are optimized by conjugate gradient descent. Parameters of the active
learning strategy are set to k = 10, α = 0.1 for simplicity. We experiment on
network intrusion and object recognition tasks.

6.1 Intrusion Detection

For the intrusion detection experiments we use HTTP traffic recorded within 10
days at Fraunhofer Institute FIRST. The data set comprises 145,069 unmodified



416 N. Görnitz, M. Kloft, and U. Brefeld

0 1 2 3 4 5 7.5 10 15
0.7

0.75

0.8

0.85

0.9

0.95

1

labeled data in %

A
U

C
 [0

,0
.0

1]

 

 

SSSVDD

SVDD

SVDDNeg
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connections of average length of 489 bytes. We refer to the FIRST data as the
normal pool. The malicious pool contains 27 real attack classes generated using
the Metasploit framework [16]. It covers 15 buffer overflows, 8 code injections and
4 other attacks including HTTP tunnels and cross-site scripting. Every attack
is recorded in 2 – 6 different variants using virtual network environments and
decoy HTTP servers.

To study the robustness of the different approaches in a more realistic scenario
we also study techniques to obfuscate malicious content by adapting attack pay-
loads to mimic benign traffic in feature space [6]. As a consequence, the extracted
features do not deviate from a model of normality and the classifier is likely to
be fooled by the attack. For our purposes it already suffices to study a simple
cloaking technique by adding common HTTP headers to the payload while the
malicious body of the attack remains unaltered. We apply this technique to the
malicious pool and refer to the obfuscated set of attacks as cloaked pool.

We focus on two scenarios: normal vs. malicious and normal vs. cloaked data.
For both settings, the respective byte streams are translated into a bag-of-3-
grams representation. For each experiment, we randomly draw 966 training ex-
amples from the normal pool and 34 attacks either from the malicious or the
cloaked pool, depending on the scenario. Holdout and test sets are also drawn at
random and consist of 795 normal connections and 27 attacks, each. We make
sure that attacks of the same attack class occur either in the training, or in
the test set but not in both. We report on 10 repetitions with distinct training,
holdout, and test sets and measure the performance by the area under the ROC
curve in the false-positive interval [0, 0.01] (AUC0.01)

Figure 3 shows the results for normal vs. malicious data pools, where the x-axis
depicts the percentage of randomly drawn labeled instances. Irrespectively of the
amount of labeled data, the malicious traffic is detected by all methods equally
well as the intrinsic nature of the attacks is well captured by the bag-of-3-grams
representation. There is no significant difference between the classifiers. However,
our next experiment shows the fragility of the of these results in the presence of
simple cloaking techniques. Simply obfuscating the attacks by copying normal
headers into the malicious payload leads to dramatically different results.
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Figure 4 (left) displays the results for normal vs. cloaked data. First of all,
the performance of the unsupervised SVDD drops to only 70%. We obtain a
similar result for the SVDDneg ; incorporating cloaked attack information into
the training process of the SVDD leads to an increase of about 5% which is far
from any practical value. Notice that the SVDDneg cannot make use of labeled
data of the normal class. Thus, its moderate ascent in terms of the number of
labeled examples is credited to the class ratio of 966/34 for the random labeling
strategy. The bulk of additional information cannot be exploited and has to
be left out. By contrast, the semi-supervised SSSVDD includes all labeled data
into the training process and clearly outperforms the two baselines. For only
5% labeled data, the SSSVDD easily beats the best baseline and for randomly
labeling 30% of the available data it separates almost perfectly between normal
and cloaked malicious traffic.

Nevertheless, labeling 30% of the data is not realistic for practical applications.
We thus explore the benefit of active learning for inquiring label information
of borderline and low-confidence points. Figure 4 shows the results for normal
vs. cloaked data where the labeled data for SVDDneg and SSSVDD is chosen
according to the active learning strategy in Equation (13). The unsupervised
SVDD that does not make use of labeled information remains at an AUC0.01 of
70%. Compared to the results for a random labeling strategy (Figure 4, left), the
performance of its counterpart SVDDneg increases significantly. The ascent of
the SVDDneg is now steeper and yields 85% for 15% labeled data. However, the
SSSVDD also improves for active learning and dominates the baselines. Using
active learning, we need to label only 3% of the data for attaining an almost
perfect separation, compared to 25% for a random labeling strategy. Our active
learning strategy effectively boosts the performance and reduces the manual
labeling effort significantly.

Figure 5 details the impact of our active learning strategy in Equation (13).
We compare the number of outliers detected by the combined strategy with the
margin-based strategy in Equation (11) (see also [1]) and by randomly draw-
ing instances from the unlabeled pool. As a sanity check, we also included the
theoretical outcome for random sampling. The results show that the combined
strategy effectively detects malicious traffic much faster than the margin-based
strategy.
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6.2 Object Recognition

For our object recognition experiments we use the classification data of the VOC
2008 challenge [5]. The data set comprises 8780 images and 20 object classes.
An image is annotated with a class label if at least one object from that class is
detectable in the image. We use the training and holdout sets for our experiments
which contain 4340 images.

For computational reasons, we focus on the three randomly drawn classes
aeroplane (198 instances), bird (286 instances), and dog (266 instances), exem-
plary images are displayed in Figure 6. From the pool, we draw 375 instances
randomly as independent test set while the remaining 375 examples are used for
model selection over 10 repetitions. In each run, we randomly draw 10 labeled
images of each class, 148 unlabeled instances, and 187 holdout examples.

We employ pyramid histograms [10] of visual words [4] (PHOW) for pyramid
levels 0,1,2 over the grey channel. We obtain a feature vector for every image by
concatenating histograms of all levels. For the grey channel, 1200 visual words
are computed by k-means clustering on SIFT features [13] from randomly drawn
images of each class. The underlying SIFT features are extracted from a dense
grid of pitch ten.

Figure 7 compares regular support vector machines (SVMs) with SSSVDDs
where both approaches apply margin-based active learning (Equation (11)) and
the combined strategy in Equation (13) for detecting query points. For only a
few labeled data points and many unlabeled examples (which cannot be utilized

Fig. 6. Exemplary images from the VOC2008 object recognition data set. From left to
right: aeroplane, dog, and bird.
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Fig. 7. Error rates for the VOC2008 data set

by SVMs), both approaches perform comparably. However, for increasing per-
centages of labeled data, the task becomes more and more a binary problem
for which the SVM is well suited. For 25% labeled data, the SVM beats the
SSSVDD significantly. Nevertheless, SSSVDD proves robust when labeled data
is scarce and expensive to obtain; unlabeled examples are effectively exploited
to augment sparse labelings.

7 Conclusion

In this paper, we proposed to view data domain description as a semi-supervised
learning problem to allow for the inclusion of prior and expert knowledge. We
generalized support vector data description to a semi-supervised learning algo-
rithm (SSSVDD). Since the objective function of the SSSVDD is not convex, we
translated the optimization problem into an unconstraint, continuous problem
which can be optimized with efficient gradient-based techniques. Furthermore,
we proposed a novel active learning strategy to guide the user in the labeling
process of the unlabeled data by querying instances that are not only close to
the boundary of the hypersphere but also likely members of novel rejection cat-
egories.

Empirically, we showed on network intrusion detection and object recognition
tasks that rephrasing the unsupervised problem setting as a semi-supervised
task is worth the effort. For instance in the network intrusion detection task,
SSSVDDs prove robust in scenarios where the performance of baseline ap-
proaches deteriorate due to obfuscation techniques. Moreover, we observe the
effectiveness of our active learning strategy which significantly improves the qual-
ity of the SSSVDD and spares practitioners from labeling unnecessarily many
data points.

Acknowledgements. We thank Konrad Rieck for providing the kernels for the
HTTP traffic and Christina Müller and Shinichi Nakajima for helping us with
the object recognition task. This work was supported in part by the German
Bundesministerium für Bildung und Forschung (BMBF) under the project Re-
MIND (FKZ 01-IS07007A) and by the FP7-ICT Programme of the European
Community, under the PASCAL2 Network of Excellence, ICT-216886.



420 N. Görnitz, M. Kloft, and U. Brefeld

References

1. Almgren, M., Jonsson, E.: Using active learning in intrusion detection. In: Proc.
IEEE Computer Security Foundation Workshop (2004)

2. Angiulli, F.: Condensed nearest neighbor data domain description. In: Advances
in Intelligent Data Analysis VI (2005)

3. Chapelle, O., Zien, A.: Semi-supervised classification by low density separation. In:
Proceedings of the International Workshop on AI and Statistics (2005)

4. Csurka, G., Bray, C., Dance, C., Fan, L.: Visual categorization with bags of key-
points. In: Workshop on Statistical Learning in Computer Vision, ECCV, Prague,
Czech Republic, May 2004, pp. 1–22 (2004)

5. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.:
The PASCAL Visual Object Classes Challenge 2008 (VOC2008) Results (2008),
http://www.pascal-network.org/challenges/VOC/voc2008/

6. Fogla, P., Sharif, M., Perdisci, R., Kolesnikov, O., Lee, W.: Polymorphic blending
attacks. In: Proceedings of USENIX Security Symposium (2006)

7. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of self for unix
processes. In: Proc. of IEEE Symposium on Security and Privacy, Oakland, CA,
USA, pp. 120–128 (1996)

8. Hoi, C.-H., Chan, C.-H., Huang, K., Lyu, M., King, I.: Support vector machines for
class representation and discrimination. In: Proceedings of the International Joint
Conference on Neural Networks (2003)

9. Knorr, E.M., Ng, R.T.: Algorithms for mining distance-based outliers in large
datasets. In: Proceedings of the 24th International Conference on Very Large Data
Bases (1998)

10. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In: IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, New York, USA, vol. 2,
pp. 2169–2178 (2006)

11. Lee, W., Stolfo, S.J.: A framework for constructing features and models for in-
trusion detection systems. ACM Transactions on Information Systems Security 3,
227–261 (2000)

12. Liu, Y., Zheng, Y.F.: Minimum enclosing and maximum excluding machine for
pattern description and discrimination. In: ICPR 2006: Proceedings of the 18th
International Conference on Pattern Recognition, Washington, DC, USA, 2006,
pp. 129–132. IEEE Computer Society Press, Los Alamitos (2006)

13. Lowe, D.: Distinctive image features from scale invariant keypoints. International
Journal of Computer Vision 60(2), 91–110 (2004)

14. Mahoney, M.V., Chan, P.K.: Learning nonstationary models of normal network
traffic for detecting novel attacks. In: Proc. of ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD), pp. 376–385 (2002)

15. Mahoney, M.V., Chan, P.K.: Learning rules for anomaly detection of hostile net-
work traffic. In: Proc. of International Conference on Data Mining (ICDM) (2003)

16. Maynor, K., Mookhey, K., Cervini, J.F.R., Beaver, K.: Metasploit toolkit. Syngress
(2007)

17. Pelleg, D., Moore, A.: Active learning for anomaly and rare-category detection. In:
Proc. Advances in Neural Information Processing Systems (2004)

18. Platt, J.C.: Fast training of support vector machines using sequential minimal
optimization. In: Advances in kernel methods: support vector learning (1999)

http://www.pascal-network.org/challenges/VOC/voc2008/


Active and Semi-supervised Data Domain Description 421

19. Rieck, K., Laskov, P.: Detecting unknown network attacks using language models.
In: Büschkes, R., Laskov, P. (eds.) DIMVA 2006. LNCS, vol. 4064, pp. 74–90.
Springer, Heidelberg (2006)

20. Rieck, K., Laskov, P.: Language models for detection of unknown attacks in network
traffic. Journal in Computer Virology 2(4), 243–256 (2007)

21. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)
22. Stokes, J.W., Platt, J.C.: Aladin: Active learning of anomalies to detect intrusion.

Technical report, Microsoft Research (2008)
23. Tax, D.M.J.: One-class classification. PhD thesis, Technical University Delft (2001)
24. Tax, D.M.J., Duin, R.P.W.: Support vector data description. Machine Learning 54,

45–66 (2004)
25. Thottan, M., Ji, C.: Anomaly detection in ip networks. IEEE Transactions on

Signal Processing 51(8), 2191–2204 (2003)
26. Wang, J., Neskovic, P., Cooper, L.N.: Pattern classification via single spheres. In:

Computer Science: Discovery Science, DS (2005)
27. Wang, K., Parekh, J.J., Stolfo, S.J.: Anagram: A content anomaly detector resistant

to mimicry attack. In: Zamboni, D., Krügel, C. (eds.) RAID 2006. LNCS, vol. 4219,
pp. 226–248. Springer, Heidelberg (2006)

28. Wang, K., Stolfo, S.J.: Anomalous payload-based network intrusion detection. In:
Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp.
203–222. Springer, Heidelberg (2004)

29. Warmuth, M.K., Liao, J., Rätsch, G., Mathieson, M., Putta, S., Lemmen, C.: Active
learning with support vector machines in the drug discovery process. Journal of
Chemical Information and Computer Sciences 43(2), 667–673 (2003)

30. yan Yeung, D., Chow, C.: Parzen-window network intrusion detectors. In: Proceed-
ings of the Sixteenth International Conference on Pattern Recognition, pp. 385–388
(2002)

31. Yuan, C., Casasent, D.: Pseudo relevance feedback with biased support vector
machine. In: Proceedings of the International Joint Conference on Neural Networks
(2004)

32. Zhu, X.: Semi–supervised learning in literature survey. Technical Report 1530,
Computer Sciences, University of Wisconsin-Madison (2005)

33. Zien, A., Brefeld, U., Scheffer, T.: Transductive support vector machines for struc-
tured variables. In: Proceedings of the International Conference on Machine Learn-
ing (2007)



422 N. Görnitz, M. Kloft, and U. Brefeld

Appendix

In this section, we show the applicability of the representer theorem for semi-
supervised support vector domain descriptions.

Theorem 1 (Representer Theorem [21]). Let H be a reproducing kernel
Hilbert space with a kernel k : X × X → R, a symmetric positive semi-definite
function on the compact domain. For any function L : Rn → R, any nonde-
creasing function Ω : R → R. If

J∗ := minJ(f)f∈H := min f ∈ H{Ω (||f ||2H
)

+ L (f(x1), . . . , f(xn))}

is well-defined, then there exist α1, . . . , αn ∈ R, such that

f(·) =
n∑

i=1

αik(xi, ·) (14)

achieves J(f) = J∗. Furthermore, if Ω is increasing, then each minimizer of
J(f) can be expressed in the form of Eq. (14).

Lemma 1. The representer theorem can be applied to Equation (3).

Proof. Recall the primal SSSVDD objective function which is given by

J(R, γ, c) =R2 − κγ + ηu

n∑

i=1

�
(
R2 − ||φ(xi) − c||2)

+ ηl

n+m∑

j=n+1

�
(
y∗

j

(
R2 − ||φ(x∗

j ) − c||2) − γ
)
.

Substituting T := R2 − ||c||2 leads to the new objective function

J(T, γ, c) =||c||2 + T − κγ + ηu

n∑

i=1

�
(
T − ||φ(xi)||2 + 2φ(xi)′c

)

+ ηl

n+m∑

j=n+1

�
(
y∗

j

(
T − ||φ(x∗

j )||2 + 2φ(x∗
j )

′c
) − γ

)
.

Expanding the center c in terms of labeled and unlabeled input examples is now
covered by the representer theorem. After the optimization, T can be easily re-
substituted to obtain the primal variables R, γ, and c. 
�
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