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Abstract. We study the problem of classifying images into a given,
pre-determined taxonomy. The task can be elegantly translated into the
structured learning framework. Structured learning, however, is known
for its memory consuming and slow training processes. The contribution
of our paper is twofold: Firstly, we propose an efficient decomposition
of the structured learning approach into an equivalent ensemble of local
support vector machines (SVMs) which can be trained with standard
techniques. Secondly, we combine the local SVMs to a global model by
re-incorporating the taxonomy into the training process. Our empirical
results on Caltech256 and VOC2006 data show that our local-global
SVM effectively exploits the structure of the taxonomy and outperforms
multi-class classification approaches.

1 Introduction

Recognizing objects in images is one of the most challenging problems in com-
puter vision. Although much progress has been made during the last decades,
performances of state-of-the-art computer vision systems are far from the recog-
nition rates of humans.

There are of course many natural explanations why humans outperform arti-
ficial recognition systems. However, an important difference between them is that
humans effectively use background knowledge and incorporate semantic informa-
tion into their decision making; their underlying representation is highly struc-
tured and allows for assessing co-occurrences to estimate the likeliness of events.
By contrast, artificial recognition systems frequently rely on shallow or flat rep-
resentations and models. The number of object recognition systems exploiting
those co-occurrences or semantic relations between classes is rather small.

We believe that incorporating semantics into the object recognition process
is crucial for achieving high classification rates. In this paper, we focus on tasks
where the semantics is given a priori in form of a class-hierarchy or taxonomy.
In general, incorporating a taxonomy into the learning process has two main
advantages: Firstly, the amount of extra information that is added to the system
details inter-class similarities and dependencies which can enhance the detection
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Fig. 1. The VOC2006 taxonomy.

performance. Secondly, the complexity of the task is spread across the taxonomy
which can be exploited by simpler learning techniques.

There have been many publications dealing with learning class-hierarchies,
for instance on the basis of delayed decisions [1], dependency graphs and co-
occurrences [2, 3], greedy margin-trees [4], and by incorporating additional in-
formation [5]. By contrast, we focus on classifying images into a pre-determined
taxonomy. The task fits into the structural learning framework [6, 7] which has
recently gained much attention in the machine learning community and which
has already been successfully applied to document classification with taxonomies
[8].

However, the structural framework is computationally costly in terms of
training time and memory consumption. We propose an efficient decomposi-
tion of the structural objective into several binary optimization tasks. The local
models can be trained efficiently in parallel and converge to the same solution
as their structural analogon. We furthermore show how to incorporate global
taxonomy information into the training process of the local models by re-scaling
the impact of images according to their location in the class-hierarchy. Empiri-
cally, we show on VOC2006 and Caltech256 data sets that our local-global SVM
effectively exploits the structure of the taxonomy and outperforms multi-class
classification approaches.

The remainder of this paper is structured as follows. Section 2 introduces
the formal problem setting and Section 3 briefly reviews structural learning. We
present our main theorem detailing the decomposition of the structured approach
into local models in Section 4 where we also address the problem of assembling
local models on a global level. We report on empirical results in Section 5 and
Section 6 concludes.
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2 Problem Setting

We focus on the following problem setting where we are given n pairs {(z(*, ()},
1 <i < n, where (@ € R denotes the vectorial representation of the i-th image
which can be represented in higher dimensions by a possibly non-linear map-
ping ¢(z(?). The latter gives also rise to a kernel function on images, given by
k(z,z') = (¢(x),¢(x’)). The set of labels is denoted by Y = {c1,¢a,...,ck}-
For simplicity, we focus on multi-class classification tasks, where every image is
annotated by an element of Y. However, our approach can easily be generalized
to the multi-label setting, where an image can be annotated with several class
labels.

In addition, we are given a taxonomy 7T in form of an arbitrary directed graph
(V,E) where V = (v1,...,vy|) and Y C V such that classes are identified with
leaf nodes, see Figure 1 for an example. We assume the existence of a unique
root node. The set of nodes on the path from the root node to a leave node y is
defined as 7(y). Alternatively, the set 7(y) can be represented by a vector k(y)
where the j-th element is given by

1:v; €m(y)

. = <7<
5 (y) {O:otherwise l<j=slVlyeY

such that the category sheep in Figure 1 is represented by the vector
r(sheep) = (1,0,0,0,0,0,0,0,1,0,1,1,0,1,0,0,0,0,0)".

The goal is to find a function f that minimizes the generalization error R(f),

RN = [ p@)irG.),

where P(z,y) is the (unknown) distribution of images and annotations. As in the
classical classification setting, we address this problem by searching a minimizer
of the empirical risk that is defined on a fixed iid sample from P

Remp(f) = ia (v, D). &

The quality of f is measured by an appropriate, symmetric, non-negative loss
function 6 : Y x Y — R detailing the distance between the true class y and the
prediction. For instance, § may be the common 0/1 loss, given by

otherwise.

50/1(ya?3):{(1) y=9 (2)

When learning with taxonomies, the distance of y and § with respect to the
taxonomy is fundamental. For instance, confusing a bus with a cat is more severe



4 A. Binder, M. Kawanabe, and U. Brefeld

than mixing-up the classes cat and dog. We’'ll therefore also utilize a taxonomy-
based loss function reflecting this intuition by counting the number of nodes
between the true class y and the prediction g,

V]

Or(y, §) = 3 Ii(y) = ;@)1 3)

For instance, the taxonomy-based loss between categories horse and cow in Fig-
ure 1 is 7 (horse, cow) = 4 because

m(cow) xor m(horse) = {cow, cetartiodactyla, pegasofera, horse}.

3 Learning in Joint Input-Output Spaces

The taxonomy-based learning task matches the criteria for learning in joint
input-output spaces [6, 7] where one learns a function

fz) = argznmw, ¥(z,y)) (4)

that is defined jointly on inputs and outputs. The mapping ¥(x, y) is often called

the joint feature representation and for learning taxonomies given by the tensor
product [§]

¢(x)|[v1 € 7(y)]]

o(x)||lvg €
B(z.y) = 6(z) @ wly) = (@)][ .6 )]

6(@) oy € 7(w)]

Thus, the joint feature representation subsumes the structural information and
explicitly encodes paths in the taxonomy. To minimize the empirical risk in
Equation (1), parameters w can be optimized with conditional random fields
(CRFs) [9] or structural support vector machines (SVMs) [6, 7]. Following the
latter and using the formulation by [10, 11] we obtain the optimization problem
in Equation (5).

S P . (i)
min Sl +CY 0 > &
1=1 g£y(i)
st Vi, Vi Ay (w, @D,y ) @, g) =60, p) - & ()
vi, Vi £y P g 20
The above minimization problem has one constraint for each alternative classi-

fication per image. Every constraint is associated with a slack-variable fg) that
acts as an upper bound on the error § caused by annotating the i-th image with
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label §. Once, optimal parameters w* have been found, these are used as plug-in
estimates to compute predictions for new and unseen examples using Equation
(4). The computation of the argmax can be performed by explicit enumeration
of all paths in the taxonomy.

Note that the above formulation differs slightly from [6,7] where every in-
stance is associated with only a single slack variable representing the most
strongly violated constraint for each image. Although, Equation (5) can be op-
timized with standard techniques, the number of categories in state-of-the-art
object recognition tasks can easily exceed several hundreds which renders the
structural approaches infeasible. As a remedy, we will present an efficient de-
composition of the structural optimization problem in the next section.

4 Local-Global Support Vector Learning

In this section we present the main contribution of this paper. Firstly, we devise
a decomposition of the structural approach in Equation (5) into several local
models in Section 4.1. Secondly, we show how to combine the local models glob-
ally by incorporating the structure of the taxonomy into the learning processes
in Section 4.2.

4.1 An Efficient Local Decomposition

The idea is to learn a binary SVM using the original representation ¢(x) for each
node v; € V' in the taxonomy instead of solving the whole problem at once with
an intractable structural approach. To preserve the predictive power, the final
binary SVMs need to be assembled appropriately according to the taxonomy.
Essentially, our approach boils down to training |V| independent binary support
vector machines such that the score f;(x) = (w;,¢(x)) + b; of the j-th SVM
centered at node v; serves as an estimate for the probability that v; lies on the
path y of instance z, i.e., Pr(k;(y) = 1). It will be convenient to define the
auxiliary label function z;(y) by

Zj(y):{Jrl:if ki(y) =1 (6)

—1 : otherwise.

An image () is therefore treated as a positive example for node v; if this very
node lies on the path from the root to label 3 and as a negative instance
otherwise. In Figure 1 for instance, we have zjt(cow) = 1 but 230 (bus) = —1.

Using Equation (6), we resolve the local-SVM optimization problem that can
be split into |V| independent optimization problems, effectively implementing a
one-vs-rest classifier for each node.

V] VI n
1 i N
_in, §Z|\wj||2+zcj25§)
R j=1 =1
st Wi, Vi (D) (6 D) +5;) 2 1€ (7)

vi, Vi €Y >0.
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At test time, the prediction for new and unseen examples is computed similarly
to Equation (4). Denote the local-SVM for the j-th node by f; then the score
for class y is simply the sum of all nodes lying on the path from the root to the
leave vy,

§ = argmax Z fi(z). (8)

ey .
Y Jjirj(y)=1

The following theorem shows that the above approach is equivalent to the struc-
tural SVM in Equation 5.

Theorem 1. If C = C; for 1 < j < |V| and §(y,7) in Equation (5) is the 0/1
loss (Equation (2)) then the optimization problems in Equations (5) and (7) are
equivalent.

The proof is shown in the Appendix and relies on projecting combinatorial vari-
ables ¢ onto nodes, hence reducing the number of possible events significantly to
only a binary choice: either a node lies on a path or not. Along with the number of
combinatorial outcomes, the training times reduce significantly. Another appeal-
ing aspect of this result is that the |V| support vector machines can be trained
efficiently in parallel. This property is also preserved when re-incorporating the
taxonomy information as is shown in the next section. Moreover, model selec-
tion can be applied to the training process of each model separately which may
lead to highly adapted local models with optimal trade-off C; parameters (and
potentially also kernel parameters) while its structural counterpart allows only
for a single parameter C'. In the next section we will show how to combine the
local SVMs of optimization problem (7) globally by introducing example-specific
costs.

4.2 Incorporating Global Misclassification Costs

The previous section shows how to decompose the structural approach into inde-
pendent, binary problems. Although, the taxonomy is still necessary for scoring
paths at prediction time (Equation (8)), the training processes of the binary
SVMs is independent of any taxonomy information.

We now show how to incorporate taxonomy information into the training
process of the local models. The intuition behind our approach is to reweight
images by their taxonomy-distance. That is, we intend to penalize confusions of
classes that have a large distance with respect to the taxonomy. On the other
hand we are willing to accept misclassifying instances of nearby classes.

To be precise, we identify the cost c; (@) at node v; for a negative example
as the number of nodes on the path from the j-th node to the true output; that
is, ¢j(z(M) = o7 (v;,y?). For instance, in Figure 1, the associated costs with an
instance (x,bus) at the node life are cjs(x) = 4. The costs for positive examples
are given by the costs of all negative instances for balancing reasons,

@) =— Y E®),

J iz (y(D)=—1
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Fig. 2. Results for Caltech256. 0/1 loss and Taxonomy loss of local-global-SVM.

where nj is the number of positive examples at node v;. Given the weights c;,
these can be augmented into the training process according to [12]. The local-
global SVM optimization problem can be stated as follows,

1 V] Vi n =
min 2024+ Y0 G e @) €
Wibki 2o j=1 =1
st Vi, Vi 2y ) (g, 6(@®)) +by) > 1 &Y )

Vi, Vi €9 >0.

That is, if cj(x(i)) > 1 then the importance of the i-th input is increased while
cj (x()) < 1 decreases its impact on the objective function. Thus, input examples
that are associated with large costs ¢;(x) are likely to be classified correctly while
accepting misclassifications associated with small costs.

5 Empirical Results

We compare our local-global SVMs empirically with the one-vs-rest SVM which
is contained as a special case of our approach and furthermore equivalent to
employing a flat taxonomy, where the root is directly connected to all leave

nodes.
We experiment on the Caltech256 [13] and on the VOC2006 [14] data sets.

5.1 Data Sets

The Caltech256 data set comes with 256 object categories plus a clutter class;
we focus on the 52 animal classes. This reduces the number of images to 5895;
the smallest class has 80, the largest 270 elements. Each image is annotated
with precisely one class label. We construct 5 sets of training, holdout, and
test splits and deploy a taxonomy with approximately 100 nodes from biological
systematics as underlying class-hierarchy. The left panel of Figure 3 shows the
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loss 07 (y,y) based on our taxonomy. Here blue color denotes categories which
are close in taxonomy distance while red pairs are far apart. For example, the
classes 40-52 belong to a sub-group which is far from the cluster 18-39.

The VOC2006 dataset comprises 5,304 images containing in total 9507 an-
notated objects from 10 categories. The smallest class consists of 354 and the
largest contains 1341 examples. We prepare 5 different training, holdout, and
test splits by drawing images randomly to preserve the same number of class
labels as proposed by the VOC2006 challenge. Thus, our training sets vary in
their sizes and comprise between 2,500 and 3,000 instances. Although VOC2006
is a multi-label task, we treat the data set as a multi-class classification task by
comparing for each class and each image belonging to that class the class label
to the class of the maximum score. The taxonomy is shown in Figure 1.

5.2 Feature Extraction and Combination

We employ pyramid histograms [15] of visual words [16] (PHOW) for pyramid
levels 0,1 over grey, opponent color 1 and 2 channels, which results in six different
features. For every color channel, 1200 visual words are computed by hierarchical
k-means clustering on SIFT features [17] from randomly drawn images. For
VOC2006, the underlying SIFT features are extracted from a dense grid of pitch
six. For Caltech256 the images have been pre-scaled to have 160,000 pixels,
while their aspect ratios have been preserved. We apply a y?-kernel for every
PHOW feature [18]. The kernel width parameter is initialized with the mean
of the x? distances over the respective training splits [2]. The final kernel K is

A
then computed by the product of the six x?-kernels, K = (H?:l Ki) , where \
controls the width of the product kernel.

5.3 Experimental Setup

Model selection is performed for the SVM trade-off parameter C' in the range
C € [672,6%] and for the kernel parameter \ in the interval A € [377,32]. For
experiments with the taxonomy loss ér (Equation (3)) we also apply dr for
finding the optimal parameters in the model selection. All other experiments
use the 0/1-loss analogon. We deploy class-wise losses at each node to balance
extreme class ratios for all methods. In our binary classification setting, this
reduces to the computing the average of the loss on the positive class £(+1) and
that of the negative class £(—1). The final value is then given by £ = $(¢(+1) +
£(—1)). We use the model described in Section 4.2 and refer to it as local-global
SVM.

5.4 Caltech256

Figure 2 shows the results for varying numbers of training images per class for
combining the training of local-global SVMs (right). As expected, the error of
all methods decrease with the sample size. As expected, there is no significant
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Fig. 3. (Left panel) The taxonomy loss dr(y, §) for the Caltech256 experiment. (Right
panel) The expected taxonomy loss for each class.
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Fig. 4. Confusion probabilities for classes kangaroo (left) and scorpion (right).

difference between a one-vs-all SVM and our local-global SVM in terms of 0/1
loss. By contrast, the local-global SVM significantly outperforms the shallow
basline in terms of taxonomy loss dp. This effect is due to incorporating the
taxonomy structure into the training process of local-global SVMs.

To interpret this result, we compute average confusion matrices detailing
P(gly) over 5 repetitions for 50 training images per class. We compute the av-
erage taxonomy loss with respect to the confusion probabilities for each object
class, i.e., Zy 07 (y,9)P(gly). The right panel of Figure 3 shows the differences of
the average taxonomy losses between our method and the one-vs-rest baseline.
Negative values in this plot indicate that our method reduces the taxonomy loss
of the corresponding classes. We observe that the local-global SVM effectively
reduces the taxonomy loss for a large number of classes. However, there also
exist classes such as toad (4), ostrich (9), and kangaroo (18) for which the error
increased. To investigate this finding, we compared confusion probabilities of the
baseline (upper left panel) and the taxonomy-based approach (lower left panel)
for the kangaroo class in Figure 4. In fact, kangaroo was substantially confused
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Table 1. Error-rates for VOC2006.

I Jo1 | ot
one-vs-rest 0.5257 £ 0.0131 0.2714 + 0.0050
taxonomy 0.5006 4 0.0126 0.2507 & 0.0042

with llama (27) and raccoon (39) which are rather far from kangaroo in our
taxonomy.

By contrast, our approach achieves significantly better accuracies than the
baseline on the scorpion (47) class. Figure 4 (top right panel) shows that the
taxonomy model increases confusions when compared to one versus all slightly
between scorpion and Arthropoda like crab (44) which are relocated in the higher
fourty indices and are biologically close to scorpions while it reduces confusions
for example to kangaroo (18), raccoon (39) and toad (4).

Our analysis indicates that a mismatch between the similarity in feature space
and distance with respect to the taxonomy can substantially harm the classifi-
cation performance. Thus to improve learning with pre-determined taxonomies,
one would either have to (i) remove these mismatches by reverse engineering
the class-hierarchy or to (ii) design features which resolve this conflict. We will
address both aspects in future research.

5.5 VOC2006

Finally, Table 1 shows average precisions for the VOC2006 data set. The left
column shows the 0/1 loss (Equation (2)) and the loss in the right column
corresponds to the average number of nodes that lie in-between the true and
the predicted class (Equation (3)). For both loss functions, the local-SVM yields
significantly lower error-rates than a flat one-vs-rest classification.

6 Conclusions

We presented an efficient approach to classification of images with underlying
taxonomies. Our method grounds on decomposing structural support vector ma-
chines into local, binary SVMs that can be trained in parallel. Furthermore, we
employed taxonomy-based costs for images to incorporate the taxonomy into the
learning process. Significant contributions like [1,19] compared taxonomy mod-
els to flat ones using 0/1-loss. Empirically, we observed our local-global SVMs to
effectively benefit from the underlying taxonomy with respect to taxonomy loss:
our approach was always equal or better than its shallow multi-class counterpart
that cannot make use of taxonomy information.
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Appendix: Proof of Theorem 1

Proof: We show the equivalence of the unconstraint objective functions. We first note
that the dual representation of the structural parameter vector is given by w =

> iy, @6, 9)(¥(zi,yi) — ¥(xi,9)). Since nodes are treated independently and the
k; are orthogonal, we have

loll* =32 2 a9 (v ) - v, 9)

2
VI || n

() (ms (™) = 15 (@)

™
l.‘M
N

for a; (i) = >, a(i, §)|k; (™) — k;(7)|. Note that the pseudo labels in Equation

(6) can alternatively be computed by z;(i) = sign(3_,., o ; (y™) — k;(§)). For the
sum of the slack variables, we define the non-negativity function (¢)4+ = ¢ if ¢ > 0 and
0 otherwise and proceed as follows:

DY =3 Y (1w, + v )
=1 gty (D =1 gy (D) *
V]

S0 Y (1 o) ) - @)
J=1A=1 giogg (i)
V]

=33 (1 -z e ))

j=11i=1 +

4
Zg(l)

where w; denotes the j-th block of w = (w1, ..., w}y|) and is given by

Wy =w;l > wyY) = k@),

4,57y

3

3

M

This concludes the proof. a



