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Abstract—Smartphones are nowadays used to store and pro-
cess many kinds of privacy-sensitive data such as contacts, photos,
and e-mails. Sensors provide access to the phone’s physical
location, and can record audio and video. While this is convenient
for many applications, it also makes smartphones a worthwhile
target for attackers providing malicious applications. Current
approaches to runtime enforcement try to mitigate unauthorized
leaks of confidential data. However, they are often capable of
enforcing only a very limited set of policies, like preventing data
leaks only within single components or monitoring access only to
specific sensitive system resources.

In this work, we present DROIDFORCE, an approach for
enforcing complex, data-centric, system-wide policies on Android
applications. DROIDFORCE allows users to specify fine-grained
constraints on how and when which data may be processed on
their phones, regardless of whether the malicious behavior is
distributed over different colluding components or even appli-
cations. Policies can be dynamically exchanged at runtime and
no modifications to the operating system nor root access to the
phone are required.

DROIDFORCE works purely on the application level. It pro-
vides a centralized policy decision point as a dedicated Android
application and it instruments a decentralized policy enforcement
point into every target application. Analyzing and instrumenting
an application takes in total less than a minute and secured
applications exhibit no noticeable slowdown in practice.

I. INTRODUCTION

Over the last years, Android became the most prevalent
platform in the smartphone market, with a market share of
more than 79% [1]]. Applications are not only provided by
Google as the operating system’s vendor, but also by arbitrary
independent developers. As of now, there are more than one
million applications available through the official Google Play
store alone and numerous other markets exist. While this
abundance of applications that cater to almost every need is
convenient for the user, it also makes security and privacy goals
harder to achieve. In combination with the impact given by
the large number of devices used across the globe, this makes
modern smartphones a worthwhile target for attackers.

According to a recent security report of McAfee [2], one
of the major security threats in Android applications stems
from malicious applications stealing the user’s money through
premium-rate SMS messages. This kind of malware sends
text messages to premium-rate numbers that cost up to 10$
per message [3]]. Such behavior can easily be prevented by
blocking premium-SMS messages, at the price, however, of
disabling legitimate premium-rate services too. A more fine

grained user-defined policy that, e.g., limits the number or the
frequency of SMS messages that can be sent to a specific set
of telephone numbers, is therefore advantageous. Yet, a simple
per-application counter would not suffice: Since attackers try to
avoid detection, they may spread the malicious behavior across
multiple applications, each of which only sends a handful of
messages. The individual applications may look benign to a
user who is unaware of the hidden functionality. The abuse
could only be detected (and prevented) by security mechanisms
with a system-wide perspective, configured through a language
that is expressive enough to e.g. specify the maximum number
of messages that could be sent to a particular recipient within
a certain amount of timd'l

Furthermore, modern smartphones store and process a large
number of private data such as contacts, SMS messages, photos
and e-mails. When installing an application, users can only
review basic access-control policies in terms of permissions
granted to the application, e.g., “allow access to location data”.
Still, the user has no control over how the application processes
this data or whether it discloses it to untrusted parties. In this
example, the location could, for instance, be used to track the
user’s movements and report them to a remote server [4].

Like in the premium-SMS example, this problem is aggra-
vated in practical scenarios in which the user not only runs
a single application in isolation, but dozens of them. While
the data leaks of a single application might not be a large
concern, combining data from several applications may allow
for knowledge aggregation that severely threatens the privacy of
the user. Consider a weather application sending out the user’s
current location and a ticket booking application requiring the
user’s full name. Both are acceptable behaviors, but an adversary
running the shared remote server for both applications would
be able to associate the user’s movements with her identity, a
significant threat to the user’s privacy. Hence, in addition to
the system-wide perspective, a security mechanism must be
able to track which sensitive data is processed and disclosed
by each application and prevent unwanted combinations, e.g.
location data and full-name should not be sent to the same
server. Dually, the policy language to express such requirements
must allow the specification of requirements also in terms of
data, so-called data-centric policies, rather than pure events.

The task is more complex than tracking how data flows
from sources to sinks in a specific application, which in itself is

IAndroid 4.2 and later already implements a check on premium-rate
SMS messages and asks the user for confirmation. This is however a non-
customizable simple pattern matching, whereas our language allows complex
temporal and global properties on various types of data, not only SMS numbers.



already non-trivial [5]. Android applications can be developed
based on four components: activities for Ul interaction, services
for long-time running tasks, broadcast receivers for receiving
broadcasts and content providers which manage the access to
a structured set of data. Three of them - activities, broadcast
receivers and services - can communicate with each other with
asynchronous messages, so-called intents, also used for inter-
app communication. For instance, the Facebook messenger app
contains more than 300 different activities and more than 30
different services, all of which can potentially communicate
with each other. This shows that an analysis of a single
component within an application is not sufficient for data flow
tracking, although most of the current data flow tracking tools
[S]-[8] are able to track data only within a single component.

Consider a third example of an application designed to
steal contacts from the user’s address book and send them
to a remote attacker. For not requiring a suspicious set of
permissions (i.e., requesting access to both the Internet and
the list of contacts), the functionality is split among multiple
colluding applications. The first application only reads the
contacts and sends them to the next one, which in turn
propagates them to the next one, and so on, until the last
application finally sends them to a remote server. Even worse,
such collusion attacks do not always require all the colluding
applications to be malware; one malicious application may
leverage vulnerabilities or bugs in other already installed
benign applications to use functionalities (like “accessing the
Internet”) for which the malicious application does not have
the appropriate permissions [9]. Some applications also fail to
properly secure access to their own data, another vulnerability
that could be exploited by malicious applications installed on the
same phone to extract sensitive information [6]]. These kind of
collusion attacks are omnipresent in real-world applications [[10].
Regardless of the intention of the collusion, forbidding such
behavior requires system-wide data flow tracking capabilities
and an enforcement mechanism able to track and possibly ban
undesired inter-application data flows.

Lastly, policies are not fixed. Privacy preferences of end-
users differ, may change over time, and companies might
need to enforce even more complex rules for compliance and
intellectual property protection. It is therefore important for
a security framework to allow policies to be dynamically
configured on the user level without having to change the
underlying detection and enforcement mechanisms. Addition-
ally, such enforcement must be able to run on an unmodified
stock version of the Android operating system as users
cannot be expected to re-flash their device, thereby voiding its
warranty, or to create additional security threats by rooting
it. In corporate environments, the enforcement mechanism
must be guaranteed not to interfere with additional security
mechanisms that may already be in place such as a sandboxed
or partitioned operating system [11]]. Technically, this limits
practically feasible approaches to the application level.

In this paper, we present DROIDFORCE, a tool for enforcing
complex, data-centric, system-wide, policies on Android ap-
plications. DROIDFORCE works by instrumenting applications
which can afterward run on unmodified stock version of
Android operating system. No root access is required, because
DROIDFORCE directly integrates the policy enforcement logic
into the target applications and thus does not require any

modifications to the Android framework or kernel. The policies
enforced by DROIDFORCE are global, like “no more than
2 SMS messages per day may be sent to +01-234-56789,
regardless of the sending application”. Policies can refer to
data being transmitted between applications in order to prevent
the collusion attacks described above, like in the example of
the weather-application, for which a suitable policy would be
“No single server may receive both the user’s location and full
name (regardless of which application is actually sending it)”.

We evaluate DROIDFORCE on a number of real-world
Android applications and show that it is capable of enforcing
practically relevant system-wide security policies without
inducing notable overhead during normal application use. We
also evaluate the security of DROIDFORCE’s framework against
tampering and policy circumvention attempts by malicious
applications. We made our source code and evaluation results
available as an open source project at https://github.com/
secure-software-engineering/DroidForce

To summarize, the original contribution of this paper is
the first approach for Android security that supports all of the
following properties:

e Global: DROIDFORCE can enforce system-wide
policies, i.e. constraints for a single application as
well as for multiple applications at the same time;

e Data-centric: DROIDFORCE’s policies can be
expressed in terms of events and in terms of sensitive
data, like location data, contacts data, or IMEI;

e  Expressive: DROIDFORCE’s policies are written in
OSL [12]], a first-order linear temporal logic language
with support for cardinality and time constraints (see
section [IV));

e Dynamic: DROIDFORCE’s policies can be deployed
and revoked at runtime, without any change required
to the installed applications;

o Inter-application: DROIDFORCE tracks flows of
sensitive data through single application (statically)
and across different components and different
applications (dynamically);

o Non-intrusiveness: DROIDFORCE does not require
any modification to the underlying Android operating
system, nor rooting the device;

e Practical: DROIDFORCE’s practical relevance is sup-
ported by tests with real-world applications, policies
and attack scenarios.

The remainder of this paper is structured as follows: firstly,
we discuss the details about the architecture (Section
followed by details about the framework (Section[[II), analyzing
in details each of the three examples presented above; then
we introduce the policy specification language supported by
DROIDFORCE (Section [IV); afterward, in Section [V] we present
the results of our performance evaluation and our security
analysis; in Section [VI|we justify the relevance of our approach
by comparing it to existing solutions from the literature and in
Section we conclude and discuss future work.


https://github.com/secure-software-engineering/DroidForce
https://github.com/secure-software-engineering/DroidForce
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Fig. 1. DROIDFORCE Architecture Overview

II. THE ARCHITECTURE

DROIDFORCE consists of two main architectural compo-
nents: The Policy Decision Point (PDP) and the Policy Enforce-
ment Point (PEP). The PDP is a central independent entity
responsible for storing and managing user-defined policies,
like those described in Section V] The PEP is in charge of
intercepting system events and inhibiting their execution if
allowing it would violate a user policy. In DROIDFORCE, the
PEP is injected into each application using Soot [13]], an open
source bytecode instrumentation tool. The policy decision point
is implemented as a single centralized Android application with
which all PEPs interact (see Figure [2)).

Whenever a protected operation like sending an SMS
message is about to occur in an application, the enforcement
point generates a respective PDP request, e.g. “Application A
is about to send an SMS message with text X to phone number
Y. All requests are transmitted to the PDP. Only if the PDP
confirms that the event is allowed under the current policy, the
PEP allows the respective application to continue. If the PDP
denies the execution of the event, the protected operation is
skipped, and the execution resumes from the next instruction
in the application code. While denying the execution of some
instructions might lead to unexpected crashes, most of the time
the application can properly handle the denied request. As an
example, consider an application disclosing the user’s location
for targeted-advertisement purposes. Inhibiting the http request
containing the location implies that no response for the request
is ever received. Many advertisement libraries are programmed
very defensively, and in such a case, they simply do not display
the advertisement (instead of crashing or blocking the whole
application). The same defensive behavior is also implemented
by background tasks, like uploading usage statistics, which can
also be safely inhibited.

Executing sensitive operations such as sending SMS mes-
sages, or opening Internet connections are done via calls to API
methods in Android applications. During the instrumentation
phase, DROIDFORCE uses Soot to wrap these calls with policy
checks that (1) generate a request for the PDP, (2) send it,
and (3) only execute the API call if the response is positive
(allow). Policies can optionally specify additional compensative
actions to be taken in response to attempted violations, such as
reporting the event or executing user-defined code. This feature
is useful as it allows policies to take corrective measures like
reporting targeted attacks on company smartphones to the IT
security department or automatically blocking and uninstalling
the respective applications via the company’s mobile device

Instrumented
App

Runtime on Phone

Instrumented
App

A
Policy Checks

v
PDP

management (MDM) solution. The code can either be executed
in the context of the application itself, allowing for further
inspection into the monitored application’s state, or in the
context of the PDP application, which is a secured environment.

Figure [I] shows an overview of DROIDFORCE’s architecture.
The PEP must be able to intercept every protected operation
in all applications on the phone. DROIDFORCE therefore
instruments a decentralized enforcement point into every user
application during a preprocessing step on a desktop computer
or server before the respective application is deployed onto
the device. On this server, DROIDFORCE first analyzes the
application for data flows using the FlowDroid [5] data flow
tracker. FlowDroid is a context-, flow-, field-, object-sensitive
and lifecycle-aware data flow tracking tool, and is one of
the most precise data flow trackers currently available [5].
The statically extracted dependencies between sources and
sinks are instrumented into the application in form of a table,
alongside the code responsible for policy enforcement. After
the instrumented application is installed on the user phone, the
enforcement code can interact with the PDP at runtime to check
whether protected operations shall be allowed or inhibited. The
data flow table is queried to obtain the origin of the data
being transmitted across components or applications, in order
to generate proper PDP requests.

III. THE FRAMEWORK

This section elaborates on DROIDFORCE’s architecture
presented in Section [T using the examples given in Section[l|and
is structured as follows: Section [I[-Aldescribes the enforcement
of a simple policy against the abuse of costly premium SMS
messages. Section shows how data aggregation attacks
can be prevented using DROIDFORCE. Section discusses
active collusion attacks between multiple applications which
attempt to stealthily leak privacy-sensitive data. The advantages
and drawbacks of the design decisions in DROIDFORCE’s
architecture are discussed in Section

A. Example 1: Premium SMS Messages

In this example, a malicious application tries to steal money
from the user by sending a large number of SMS messages to
costly premium-rate numbers, which is explicitly forbidden by
a user policy. Per telephone number, only two premium-rate
messages may be sent in a day. Note that this policy is not an
artificial one. Malware sending premium-rate SMS messages
indeed introduce artificial delays after each sending in order
not to be detected (e.g., Android.FakeRegSMS.B [14]]).
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Fig. 2. Enforcement of the global policy “no more than 2 SMS per day can
be sent”, assuming the last request happens within 24 hours after the first.

Figure 2] shows a simple communication diagram for this
scenario. Three apps contain calls to sendTextMessage ().
When the first application asks the decision point for permission,
the PDP’s counter is still zero, so it gets incremented and the
request is granted. The second application’s request is also
allowed and the counter is increased once more. Since the
example policy however only allows at most two SMS messages
to be sent, the request made by the third app (assuming it
happens within 24 hours from the first request) is rejected and
no further SMS message is sent until 24 hours from the first
request has passed.

The events sent to the decision point are also parameterized
with runtime data. In the example, the decision point not only
receives the fact that an SMS message is to be sent, but also the
text message and the target telephone number. This allows the
decision point to decide rich parameterized expressive policies.
One could, for instance, only impose a limit on the number of
messages sent to premium-rate numbers, but allow an arbitrary
number of messages to normal-rate numbers. Another usage
example would be to prevent target SMS spam by imposing a
general limit on the number of messages per telephone number.
Furthermore, one could also enforce restrictions in the carrier’s
plan for not exceeding the number of included SMS messages
per month to avoid extra costs.

B. Example 2: Data Leakage Aggregation

In the second example of Section [ multiple applications
send different pieces of data to the same server, thereby allowing
the attacker to aggregate the various pieces of information,
which is to be prevented. DROIDFORCE generates an event for
the centralized decision point whenever an application sends a
single piece of data. The decision point can keep track of this
information, observe the total information leakage per remote
server (or IP-address range) and disallow further transmissions
if the accumulated leakage violates certain user-defined criteria
(e.g. a threshold on the amount of data sent or a constraint
on data aggregation). This allows for expressive policies that
do not necessarily impact the functionality of single benign
applications, but still guarantee a certain level of privacy for the
overall system. A weather application, for instance, is required
to disclose the user’s location, but can do so anonymously. As
long as this data cannot be aggregated with other information,
the leak is not substantial in itself. This is an example of the
data-centric policies that can be enforced by DROIDFORCE.
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Fig. 3. Data Leak Collusion Attack. App 1 can access the contacts database,
but can not connect to the internet. App 2 has access to the Internet, but not
to the contact list. In this attack, App 1 reads contacts data (1) and sends it
to App 2 via intent (3). App 2 is then allowed to send the data it received
to a remote server (5). Note that in order to prevent this attack, one must be
able to track the complete flow (1-5). DROIDFORCE does it in two phases:
using static analysis to model dependencies between sources and sinks (1-2
and 4-5), and combining this information with runtime observations (3).

Of course, DROIDFORCE’s ability to detect data aggregation
is bounded by its ability to correlate remote targets, e.g., if
the different data records are sent to the same DNS name and
can easily be linked. With minimal effort, more sophisticated
correlation techniques could be integrated into DROIDFORCE.

C. Example 3: Collusion Attack for Data Leakage

DROIDFORCE’s data flow tracking capabilities go beyond
simple intra-application intra-component flow analysis. Con-
sider the third example in section [I|in which an attacker tries to
steal a user’s contact list using multiple colluding applications.
Spreading the functionality among multiple apps avoids having
a single application requesting access to, e.g., both the list
of contacts and the Internet, which may look suspicious to
a careful user who thoroughly reviews the permissions of
an application before installing it. However, two seemingly
innocent applications - one only requesting access to the contact
database and one only to the Internet - can still collude to
achieve the originally intended data leak. This attack cannot
be prevented by the default Android permission system [15].

Figure [3] illustrates an example of such an attack. In app 1,
the user’s contact data is read, passed on through the application,
and then sent to app 2 using an intent, a common mechanism
for inter-app communication on the Android platform. App
2 receives the intent, reads the data contained in it (i.e. the
contact database), and sends it to a remote server using an
http get request. Analyzing each application in isolation would
not be sufficient to detect this flow. More precisely, because
an intent could possibly contain any kind of data, including
contact data, a conservative static analysis of app 2 would
prevent any invocation of an http get request after receiving
the intent, regardless of the content. This means that legitimate
invocations would be denied as well.

DROIDFORCE’s approach, in contrast, combines the (stat-
ically computed) data flows of both applications at runtime.
Firstly, when app 1 sends the intent, the enforcement framework
attaches an additional parameter to it, called CONTACT_DATA
and set its value to true. This happens because, according
to previously computed static analysis results, data leaving
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Fig. 4. Data-flows context-insensitivity example. The arrow labels indicate
the order of execution and, in parenthesis, the PDP response for the policy “no
contact data can be sent over the Internet”. Notice that the second getRequest
operation (number 4) is also denied, although legit.

app 1 at this particular endpoint (sink) may possibly depend
on the result of the invocation of a certain source method
(readContactData()) which returns contact data.

Secondly, when app?2 receives the intent, the enforcement
framework checks for the presence of special data parameters in
the intent, like CONTACT_DATA. If such parameters are found
(and set to true), then the table that stores app2’s static analysis
results is updated. More precisely, the source instruction
currently being executed (or callback method receiving the
intent) is now also associated with each source of the received
data (CONTACT_DATA in the example). As a consequence,
every sink instruction in app2 that, according to the same
table, depends on this particular source, is now potentially
leaking CONTACT_DATA. In other words, the table containing
the statically computed data flows is dynamically extended
with inter-app flows by building the transitive closure over the
individual intra-app flows.

Finally, when app2 attempts to send some data via the
Internet, DROIDFORCE uses app2’s table to identify the origin
of data being sent (CONTACT_DATA) and adds the relative
parameter to the PDP request. Considering that the policy states
that no contact data should be disclosed over the Internet, the
PDP will deny such requests, preventing the leakage. This is a
detailed example of how DROIDFORCE can prevent complex
collusion attacks that involve inter-application flows of data.

D. Discussion

The described approach for tracking data flows between
components inside and across application boundaries is fast
since applications must only be analyzed once in isolation
at instrumentation time. In contrast, considering all possible
combinations of applications a user might have on his phone,
as in existing approaches, is a substantial effort that may even
be infeasible for a realistic number of applications [16].

DROIDFORCE’s approach is context-insensitive. Once sen-
sitive data is received by a certain source instruction, every
execution of a sink that depends on that source is assumed to
possibly leak that sensitive data, even if meanwhile the source
is invoked again with non-sensitive data. Inside one application,
the table of source-sink dependencies is computed statically,
so every value ever arriving at a source potentially arrives at
the connected sink(s).

For example, consider the worst-case scenario depicted in
Figure {4 for the policy “contact data can not be sent over the
Internet”. In the example, two applications (app 1 and 2) send
data to a third application which, in turn, sends all data it
receives to the Internet. After receiving the contact data (1),
app 3 tries to send it over the Internet (2), but the request is
denied by the PDP. Afterward, app3 receives through the same
source instruction, location information from a different app (3).
Because the policy only forbids contact data from being leaked,
the event should be allowed. DROIDFORCE, however, denies
also this transmission (4). The reason is that our static tracking
associates the outgoing http request with every data received
via this particular callback (1 and 3). Since a context-insensitive
analysis cannot keep track of which of two previously received
pieces of data is being sent at the moment, it must conservatively
assume the worst: the data being sent now (4) could be any
of those received so far, including contact data (1). Therefore,
DROIDFORCE needs to always block every further http request,
even if it would only send the location data, which is allowed
by the policy.

Note that this imprecision only happens if both different
pieces of sensitive data have been received by the same
component. Such behavior is rare in realistic applications since
there is usually a separation of duty between components
for architectural reasons. Moreover, the imprecision could be
overcome by applying a fully dynamic data flow tracking,
instead of relying on statically computed paths; this, on the
other hand, would adversely affect runtime performance.

The complete policy decision is centralized in DROID-
FORCE. While this requires the policy enforcement code to
generate requests for all sensitive events even if they are
not addressed by the currently enforced policy, this does
not adversely affect performance in practice, as we show in
Section On the other hand, it gives DROIDFORCE the
flexibility to exchange the policy at any time without having to
re-instrument the controlled applications with new enforcement
/ event generation code. Furthermore, it does not require
any changes to the operating system’s binder module, which
transfers intents between applications; this makes DROIDFORCE
usable without root access to the device or re-flashing and does
not interfere with Android updates shipped to the phone.

IV. POLICY LANGUAGE

Considering the example requirements described in the pre-
vious sections, we decided to use OSL (Obligation Specification
Language) [12] as policy specification language. OSL is a first-
order temporal-logic language (e.g. “A until B”), with support
for cardinality (e.g. “A at most 3 times”) and time constraints
(e.g. “A within 30 seconds”). Policies are written in form of
Event-Condition-Action rules: if a system event E is detected
and allowing its execution would make OSL condition C true,
then action A should be performed. Action A states whether
the execution of the event should be allowed or not, and if
any additional action should be executed. Additional actions
could for instance include asking the user for permission or
reporting the violation via a popup window. By default any
event is allowed, unless a mechanism requires its inhibition.

For instance, an appropriate policy for the first example of
the previous section (premium SMS) could be “no more than



2 SMS messages per day may be sent to +01-234-5678”. In
our framework, this translates into

E: sendTextMessage to +01-234-5678

C: not ( replim (24 hours, 0, 1, sendTextMessage to
+01-234-5678) )

A: Inhibit

The semantics of the not operator is intuitive, whereas
replim(time, min, max, ¢) is true if ¢ has been true in the
past time at least min times and at most max times. Otherwise
the operator evaluates to false. In this example, a message to
+01-234-5678 can be sent if, in the previous 24 hours, other
SMS to the same number have been sent at least O times and
at most 1 time. Recall that in order for the trigger event to be
allowed, the condition must evaluate to false, which explains
the presence of the not operator. The concrete syntax of the
policy is a bit more complex but reflects the same structure:

<preventiveMechanism name="1imitSMS">
<description>
No more than n SMS to specific number per day
</description>
<trigger action="sendTextMessage"
isTry="true" >
<paramMatch
name="destination"
value="+01-234-5678" />
</trigger>
<condition>
<not>
<repLim amount="24" unit="HOURS"
lowerLimit="0" upperLimit="1"
<eventMatch
action="sendTextMessage"
isTry="false" >
<paramMatch
name="destination"
value="+01-234-5678" />
</eventMatch>
</repLim>
</not>
</condition>
<authorizationAction name="default" >
<inhibit />
</authorizationAction>
</preventiveMechanism>

Notice that our system distinguishes between desired and
actual events. A desired event is an attempt of executing an
event that has been intercepted by our PEP component. An
actual event is an event that has been observed by our PEP but
that has already happened or is going to be executed anyway and
cannot be inhibited. In our concrete language this distinction
is modeled by the flag isTry, which is true for desired events
and false for actual events. The interpretation of the above
policy is then “if the app is trying (¢stry = true) to send an
SMS and in the last 24 hours more than 1 SMS has been
actually (istry = false) sent, then deny the request”. Given an
application that tries to send SMS in a loop, this would mean
that every 24 hours the app would succeed in sending two
SMS. If on the other hand, we change the istry flag in the
condition to true, then also failed attempts would be counted
and the app wouldn’t be able to send more than 2 SMS in
total, unless it stops trying for at least 24 hours. This behavior
is not uncommon in premium-SMS trojans [14].

Notice that the conditions are expressed using the past

variant of temporal logic operators. This is because ECA
policies are enforced at runtime, where decisions can only
be taken based on what already happened and not on possible
future events. For this reason, specification and enforcement
of liveness properties [|17] are possible only in a limited time-
bounded way, e.g. “the location data history must be deleted
after at most a day”.

As described before (cf. Section [[II-C)), a message sent by
the PEP to the PDP contains the name and all the parameters of
the intercepted event, plus an additional one for each sensitive
data in the system, like unique identification number (IMEI),
location data, contact data, etc. Each of them is set to true if
the target of the event possibly contains data of that kind. With
this information, we can write a policy like “Advertisement
server leadbolt.com should not receive both IMEI and GPS
position” (second example), as

E: network_send()

C: target URL contains leadbolt.com and
((parameter IMEI_DATA = true and eventually
(httpRequest to “leadbolt.com” with parameter
GPS_DATA=true)) or
(parameter GPS_DATA = true and eventually
(httpRequest to “leadbolt.com” with parameter
IMEI_DATA=true)))

A: Inhibit

where eventually means “at least once so far” and
network_send() is the high level event signaled by the PEP in
correspondence of any API call that attempts to send data over
a network connection, such as the constructor of java.net.URL
for http get requests or writing on a stream retrieved from
Jjava.net.Socket.getOutputStream() for binary network data. The
idea of this policy is that if we are trying to send one of the two
pieces of sensitive information (location or unique identification)
and the other one has been already sent in the past, then the
event should be forbidden. The respective concrete policy can
be found in Appendix.

Because the events received by the PDP could be generated
by different applications, policies in DROIDFORCE control the
use of sensitive data not only inside a single application, but
also across application boundaries. This is particularly relevant
for the third example, in which an attacker tries to steal user’s
contact list using one application to retrieve it and another
one (possibly hijacked [9]) to send it over the Internet. In this
scenario, the policy “every attempt of sending contacts data
over the Internet must be manually approved by the user (via
popup notification)” would be translated into

E: network_send()
C: (parameter CONTACT_DATA = true)
A: If ( user_prompt(“Allow this app to send contacts

data?”)==YES ) then allow, otherwise inhibit.

In this section, we focused on the policies for the three
running examples, but the expressiveness of the language allows
for way more complex conditions [12], [[18]]. Though writing a
policy in OSL requires a degree of expertise that typical users
do not have, results from existing work can be used to refine
informal requirements to concrete policies [19].



Package Name (Version Code) # Instr. Orig. # Instr. Orig. Soot  # Instr. Instrum. Soot Overhead Instr. (perc.) Static Analysis [sec.] Instrum. [sec.]
bg.angelov.send.my.location (9) 107,938 112,819 113,814 995 (0.9%) 7.6 (+/-3.6) 23.9 (+/-1.6)
buy.more.chuck (3) 16,313 17,256 19,699 2443 (14.2%) 22.7 (+/-0.9) 2.5 (+/-0.2)
com.advancedprocessmanager (59) 70,216 86,823 90,251 3,428 (3.9%) 48.5 (+/-4.0) 8.4 (+/-0.7)
com.bfs.papertoss (7005) 93,562 106,520 109,360 2,840 (2.7%) 28.1 (+/-0.9) 14.0 (+/-0.8)
com.mymobileprotection20 (19) 56,958 65,739 70,553 4,814 (7.3%) 19.0 (+/-8.5) 4.7 (+/-0.7)
com.xmm.surgery (11) 84,252 102,843 105,626 2,783 (2.7%) 31.3 (+/-2.0) 11.2 (+/-0.3)
org.me.SendSMS (8) 34,160 38,948 41,584 2,636 (6.8%) 13.4 (+/-8.5) 2.1 (+/-0.7)
org.nastysage.blacklist (2016177433) 89,417 92,633 93,872 1,237 (1.4%) 18.2 (+/-7.5) 6.3 (+/-1.2)
tv.twitch.android.viewer (11) 29,077 33,038 33,887 849 (2.6%) 18.2 (+/-0.5) 9.3 (+/-1.2)
www.eidolonstudio.puzzleBall (8) 22,096 26,767 28,204 1,437 (5.4%) 24.9 (+/-0.7) 5 (+/-0.4)
com.flash.light.flashlight (8) 194801 207215 208941 1726 (0.8%) 13.1 (+/-7.0) 31.3 (+/-2.1)
ro.robisoft.android.flashlight (1) 182 183 998 815 (445.4%) 1.2 (+/-1.3) 2.0 (+/-1.7)

TABLE L

OVERHEAD INTRODUCED BY OUR FRAMEWORK IN TERMS OF ADDITIONAL INSTRUCTIONS AND TIME REQUIRED FOR STATIC ANALYSIS

(FLOWDROID) AND FOR INSTRUMENTATION (SOOT).

V. EVALUATION

In this section, we evaluate DROIDFORCE. Section [V-A|
deals with DROIDFORCE’s performance, both for instrumenting
new applications before they are deployed on the phone and for
running the resulting apps on the device, whereas in Section [V-B]
we discuss the security of DROIDFORCE with respect to the
Android environment and some limitations of our current
implementation.

A. Performance

Our performance evaluation considers the following research
questions:

RQ1: How long does the instrumentation phase take?

RQ2: How many additional instructions are injected in
an application during the instrumentation phase?

RQ3:  How much slower is the instrumented application

w.r.t. the original version?

We tested our approach on randomly-picked real-world
Android applications taken from the official Google Play Store.
In order to answer the first two research questions, we compared
the size of the applications in terms of bytecode instructions
before and after the instrumentation, as shown in Table |} The
first column contains the package name of the application,
together with its version code, as defined in the manifest file.
The second column shows the number of instructions in the off-
the-shelf application, before applying any kind of transformation
to it. The process of converting the application code into the
intermediate language (jimple) used by the Soot instrumentation
tool and then back into Android bytecode introduces some
additional instructions, that have nothing to do with our
DROIDFORCE framework. For this reason, in our evaluation we
factor them out by comparing the number of instructions after
running our DROIDFORCE instrumentation (fourth column)
with the number of instructions after performing a conversion
dex—jimple—dex without any modification (third column).
Notice that the application after this conversion, although bigger
in size, is semantically equivalent to the original one.

Based on these values, we computed the overhead induced
by our infrastructure in terms of additional instructions (fifth
column). As expected, this proved to be reasonably small,
confirming that DROIDFORCE does not introduce undue
overhead on an application.

In order to answer RQ1, we also measured the time required
to instrument the applications. All timings were averaged

over ten runs. The values in brackets in the table show the
standard deviation. The tests were carried out on a MacBook
Pro computer running MacOS X version 10.7.4 on a 2.5 GHz
Intel Core i5 processor and 8 GB of memory. Oracle’ s JDK
implementation was used in its default configuration, except
for the maximum heap size which was increased to 6 GB.

Furthermore, Table [I] shows the average time required to
perform the static data flow analysis (sixth column) and to
instrument the policy enforcement code into the application
(seventh column). The values in brackets indicate the standard
deviation. The complete process of analyzing and instrumenting
never takes more than one minute with an average of 34.4
seconds, which confirms that even an on-the-fly instrumentation
on an external server whenever a user installs a new application
on his phone would be feasible.

In terms of RQ2, we start from a constant base overhead
of 815 instruction that DROIDFORCE always injects into an
application. These instructions are communication interfaces
between the enforcement code and the decision point applica-
tion. In addition to them, for each sensitive instruction in the
application, we inject some “wrapping” code, that includes the
creation of the PDP request, the lookup table for source-sink
dependencies and the enforcement of the PDP decision. For
the sake of our proof-of-concept experiment we used the most
frequently used source and sink API methods in malware apps
from the literature [20]. These APIs also contain the APIs
required for specifying the three example policies described
in Section Additionally, DROIDFORCE also injects fake
initialization for variables that would have been written in the
skipped code, in order to increase application stability and
avoid crashes where possible.

On average, for the randomly-picked applications we
measured an overhead in terms of additional instructions of
less than 4%. This number, however, needs to be interpreted
with a grain of salt: the size of the application (for the constant
overhead) and the number of sensitive to-be-instrumented
instructions significantly affect the individual results.

In the lower part of Table [I] we show the same analysis
for two flashlight applications manually picked from the
Google Play Store. Although they both offer roughly the
same functionality, one (com.flash.light.flashlight) uses a large
advertisement library known to leak sensitive information
and one (ro.robisoft.android.flashlight) does not contain any
advertisement . Since the latter does not contain any sensitive
operations and is very small in size (183 instructions), the



baseline is exceptionally low, which leads to a total overhead
after instrumentation of about 450% with no single instrumented
operation. Note that for this particular example, one could use
the ad-hoc solution of not adding the interface code if there
is no sensitive operation in the target application. Still, when
at least one of such calls exists, all 815 instructions must be
added anyway.

Nevertheless, the real world applications that we randomly
picked form the market were in general big enough to mitigate
the impact of the constant overhead. The “variable” overhead,
in contrast, is highly dependent on the number of sensitive
instructions in the application, which is usually related to the
advertisement libraries used in it and to the semantics of the
application (e.g. a social network app should in general contain
more sources and sinks than a flashlight app).

In terms of RQ3, we tested every instrumented application
on a Nexus 4 phone (Android version 4.4.2), and none of them
exhibited any perceivable slowdown in the user experience.
Moreover, although possible, during the tests none of the
applications crashed, partially thanks to the additional initial-
izations injected by DROIDFORCE. Based on these preliminary
experiments we have good reasons to believe that our approach
is indeed usable on real-world applications.

B. Security analysis

DROIDFORCE works by instrumenting API calls at the
bytecode level. Methods executed in native libraries are not
monitored and could, in principle, evade our analysis. A
simple solution would be to prevent the execution of any
native code at all by instrumenting the bytecode accordingly.
This would obviously compromise the functionality of the
application, although it is known to the literature that only
about 4.52% of all application in the Google market use
native code at all [21]]. Alternatively, native calls could
be over-approximated or modeled using external domain
knowledge. For the most common native methods such as
System.arraycopy, DROIDFORCE already provides such
models. Lastly, solutions for instrumenting native libraries can
be found in the literature [22f], but various challenges such as
self-modifying code or precisely modeling complex pointer
computations remain.

For a complete enforcement, DROIDFORCE must make
sure to monitor all sensitive API calls possible in the Android
framework. However, this is a non-trivial challenge since there
exist around 110 000 public API methods in Android 4.2.
Recent work such as SuSi [20] is able to provide comprehensive
lists of data sources and sinks through the use of machine-
learning. SuSi’s classification has both a recall and precision
of over 90% which means that over 90% of all sources
and sinks are actually flagged as such. All the API calls
in this list that offer the same functionality are grouped
in categories, like UNIQUE_IDENTIFIER for sources or
SMS_MMS for sink APIs. This is useful to formulate policies
in terms of abstract events like “send via Internet” or “send
SMS” instead of extensively listing all the possible technical
alternatives. In addition, relying on the SuSi list also prevents
attackers from easily circumventing the restrictions imposed
by DROIDFORCE by simply using alternative methods/APIs
for the same functionality that are not covered by our tool.

In this work we do not consider the attacker model of a
user wanting to circumvent usage control restrictions on her
own phone. We instead assume the attacker to be a malicious
application (or set of applications) that tries to steal information
or, in general, act against user’s will, specified in form of
policies. For this reason, it is safe for our analysis to assume
that our PDP application (cf. Section is installed and thus
protected by the application isolation built into the Android
framework. Other applications have no access to the PDP’s
memory region or private files and thus cannot tamper with the
policies registered in the PDP. Additionally, as stated before,
we assume that every application in the system has been
previously instrumented using our approach. Lastly, we assume
that no malicious application is running with root permissions,
otherwise, like in any system, no concrete security claim could
be made at all. This also implies that malicious application
cannot uninstall or replace the decision point application.

Since the decision point does not provide any publicly
accessible APIs for creating, modifying, or deleting policies,
malicious applications cannot disable restrictions the user has
placed upon them. The policies themselves are provided as
files and are thus only accessible to the PDP application itself.
All administration interfaces for modifying policies are only
accessible to applications signed with the same key as the
PDP, i.e., applications provided by a trusted manufacturer. This
signature restriction is configured in the PDP’s manifest file
and enforced by the Android operating system.

An application could, however, execute a large number of
protected operations and thereby generate many requests for the
decision point for launching a denial-of-service attack. This can
be easily overcome either by adding a small but increasingly
bigger delay in the application after denying the execution of
an event or by writing a simple policy that kills the application
if it generates more than a certain maximum amount of events
in a limited time.

A malicious application could also try to provide a fake
implementation of the decision point that simply allows all
protected operations regardless of any policy. DROIDFORCE
protects against such attacks by sending policy events using
explicit intents. With this technique, the operating system’s
intent dispatcher is forced to a single receiver class, namely
DROIDFORCE’s decision point implementation.

DROIDFORCE assumes that all code being executed is
available at analysis time. If a malicious application downloads
additional code from the Internet and executes it, leaks in this
code are not detected. To solve this problem, we could detect
such code loading and re-route the traffic through a server
where we analyze and instrument the loaded code (i.e. run the
static part of DROIDFORCE) on-the-fly. Given that analyzing
and instrumenting the code takes less than a minute as shown in
Section this is reasonable as an on-the-fly-approach. We
plan to do this as part of our future work. The instrumentation
part of DROIDFORCE could potentially also be done on the
phone, but the static analysis usually requires more hardware
resources than what is currently available on mobile devices.

Since by design our analysis only detects policy violations
due to executed events, DROIDFORCE is not able to detect data
leaks due to events not being executed. Assume a malicious
application contains the code from Listing [I} In this case,



1 void attack () {

2 if (secret == 42)

3 sendTextMessage (...);
4 )

Listing 1. Field Library Interface

the attacker can infer that the secret was not 42 if he does
not receive the SMS message. Such cases are currently not
covered by our approach. Instead, one can detect and react to
the violation of a timed obligation, e.g., “A must happen at
most ten minutes after B”. Anyway, we have not discovered
any such attacks in real-world applications.

Lastly, for data-flow policies, DROIDFORCE inherits the
limitations of the FlowDroid data flow tracker on which it is
built. In FlowDroid, reflective method calls can be analyzed if
the method to be invoked and the name of the class containing
this method are constant.

VI. RELATED WORK

Android applications can be analyzed for policy violations
in a purely static way. Data flow trackers such as FlowDroid [5]],
Scandal [8|], LeakMiner [7], or AndroidLeaks [23] detect intra-
app data flows without the need for executing the application.
They are however prone to false positives and can only over-
approximate inter-app data flows by flagging all data leaving
the current application as a potential leak. Approaches such
as CHEX [6l], WoodPacker [24] or ComDroid [25] scan
applications for potential confused-deputy attacks where an app
is able to access sensitive data in the context of a vulnerable app.
These approaches are only intra-application, intra-component
and sometimes even intra-procedural, where DROIDFORCE
is able to enforce complex data-centric policies between
components in an app and even app comprehensive. Epicc [26]
is a tool for statically detecting inter-component and inter-
application data flows on the Android platform. DROIDFORCE
is more precise since it only reports flows that actually occur
and lead to policy violations while Epicc reports all statically
possible flows even if the respective code paths leading to such
flows are never taken at runtime.

AppGuard [27] allows users to enforce access-control
policies on Android applications by dynamically revoking
permissions from apps after they are installed. On stock Android
systems, app can only be installed with all the permissions they
require or not at all. AppGuard overcomes this limitation, but
is not capable of enforcing data-centric policies such as “allow
this application to access the location data and the Internet,
but prevent it from sending out the location data to a remote
adversary”. Kynoid [28]] is a dynamic data flow analysis tool
for Android based on TaintDroid [29]. It works by replacing
the Dalvik virtual machine with an implementation that tracks
taint bits along with register values. This requires changes to
the underlying operating system, in contrast to DROIDFORCE,
which works on unmodified stock Android phones. Feth et
al. [30] proposed a usage control solution for Android similar
to ours. Their work also leverages TaintDroid, allowing them
to track system-wide data-flows for every installed application,
but consequently sharing TaintDroid’s limitation of requiring a
dedicated modified operating system.

XManDroid [31] was designed to prevent privilege escala-
tion and collusion attacks by enforcing policies on the com-
munications between applications, e.g., banning an application
that has access to the user’s location from interacting with an
application that is allowed to access the Internet. In contract to
DROIDFORCE, such policies are very coarse-grained and not
data-centric.

Aurasium [32] repackages applications and introduces an
intermediate layer between the framework’s native code libraries
and the operating system kernel inside the application process.
Just like DROIDFORCE, this does not require any changes
to the operating system. While Aurasium can also detect
protected operations in native code, it is highly dependent on
undocumented internal interfaces between the Android libraries
and the kernel which may change in future Android versions
without notice. DROIDFORCE does not need such assumptions.

AppSealer [33|] combines static- and dynamic-code analysis
techniques to patch the apps’s bytecode in order to mitigate
component hijacking attacks. Like DROIDFORCE, they rely on
Soot, but their focus is only on component hijacking vulnera-
bilities. DROIDFORCE is able to enforce complex data-centric
policies, including timing and/or sequence based policies, which
is required for practical system-wide enforcement.

Solutions for enforcing security policies based on inline
reference monitoring have also been proposed for other (mobile)
environments such as J2ME or Windows Mobile [34], [35]. To
the best of our knowledge, none of these approaches combine
IRM for usage control with data flow tracking that enforces
complex policies on multiple applications at the same time
without requiring root access to the phone.

VII. CONCLUSIONS

We presented DROIDFORCE, an approach for enforcing
complex, data-centric, system-wide policies on Android appli-
cations. Unlike previous approaches, DROIDFORCE can prevent
collusion and data aggregation attacks by keeping a global
policy state. Furthermore, rich data-centric policies such as
banning SMS messages depending on the telephone number
can be expressed. No modifications to the Android operating
system are required, nor rooting the phone. The PEP code is
injected into applications in less than a minute and introduces no
perceivable delay at runtime. We thus consider DROIDFORCE
an important step towards securing smartphone platforms.

As future work, we plan to extend DROIDFORCE to
automatically re-instrument applications when they are updated.
Updates replace the app and thus destroy the injected enforce-
ment code. This can be solved by relaying all app installations
and updates through a trusted instrumentation server on the
Internet. Instrumenting applications directly on the phone is also
an interesting direction of future research which is challenging
due to the resource-constrained nature of the platform.
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APPENDIX

<preventiveMechanism name="noImeiAndGPStoAds" >
<trigger action="httpRequest">

<paramMatch name="targetDomain"
value="leadbolt.com"/>

</trigger>
<condition>
<or><and>
<xPathEval>
//event /parameter [@name=' IMEI_DATA’]/@value = ’'true’
</xPathEval>
<not><always><not>
<eventMatch action="httpRequest">
<paramMatch name="targetDomain"
value="leadbolt.com" />
<paramMatch name="GPS\_DATA"
value="true" />
</eventMatch>
</not></always></not>
</and><and>
<xPathEval>
//event/parameter [@name=’'GPS_DATA’]/@value = ’true’

</xPathEval>
<not><always><not>
<eventMatch action="httpRequest">
<paramMatch name="targetDomain"
value="leadbolt.com" />
<paramMatch name="IMEI\_DATA"
value="true" />
</eventMatch>
</not></always></not>
</and></or>

</condition>
<authorizationAction name="default" >

<inhibit />

</authorizationAction>
</preventiveMechanism>
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