

Technical Report

 Nr. TUD-CS-2015-1167

July 22nd, 2015

Authors
Nguyen Quang Do, Lisa (Fraunhofer SIT)
Karim Ali (Technische Universität Darmstadt)
Eric Bodden (Technische Universität Darmstadt)
Benjamin Livshits (Microsoft Research)

Toward a Just-in-Time Static Analysis

Toward a Just-in-Time Static Analysis

Lisa Nguyen Quang Do
Fraunhofer SIT

lisa.nguyen@sit.fraunhofer.de

Karim Ali, Eric Bodden
Technische Universität Darmstadt

firstname.lastname@cased.de

Benjamin Livshits
Microsoft Research

livshits@microsoft.com

Abstract—Despite years if not decades of research
and development on static analysis tools, industrial
adaption of much of this tooling remains spotty. Some of
this is due to familiar shortcomings with the tooling it-
self: the effect of false positives on developer satisfaction
is well known. However, in this paper, we argue that
static-analysis results often run against some cognitive
barriers. In other words, the developer is not able to
grasp the results easily, leading to higher abandonment
rates for analysis tools.

In this paper, we propose to improve the current sit-
uation with the idea of Just-In-Time (JIT) analyses. In
a JIT analysis, results are presented to the user in order
of difficulty, starting with easy-to-fix warnings. These
warnings are designed to gently “train” the developer
and prepare them for reasoning about and fixing more
complex bugs. The analysis itself is designed to operate
in layers, so that the next layer of results is being
computed while the previous one is being examined.
The desired effect is that static-analysis results are
available just-in-time, with the developer never needing
to wait for them to be computed.

I. Introduction

Static-analysis research has been focusing largely on
scalability and precision. While both pose important chal-
lenges, in this work we argue that there is a whole other
range of challenges that has largely been overlooked so far,
which significantly hinders tool adoption in practice. Static
analysis is still largely considered to be a batch-style activ-
ity. The user runs the static analysis tool at major release
points in the product cycle or even as part of a nightly
build. The user then proceeds to pour over the warnings,
deciding which messages correspond to real errors that
require a fix. Despite years of work on eliminating false
positives, end-user experience of using highly unsound
commercial tools tends to be overwhelming, leading to
a high degree of tool abandonment. Attention has been
given to prioritizing analysis warnings in an effort to focus
developer attention on the issues that are most likely to
be true positives. Observing developers’ interactions with
the static analysis tool, we point out that:

• some error reports are abandoned because they are
simply too difficult to deal with;

• reporting an error warning becomes useless if it is not
likely to be seriously examined;

• the relative advantages of showing less complex and
easy-to-find, therefore, easy-to-fix, bugs first.

1 void bar1() {
2 g = f;
3 foo(e, f , g); // args 2 and 3 aliased
4 }
5

6 void bar2() {
7 foo(h, i , j);
8 }
9

10 void foo(a, b, c) {
11 a. f = source(); // assume a is not null
12 b. f = a.f ;

13 sink(a. f); // detected in all cases A

14 sink(c. f); // detected for bar1 B
15 }

Fig. 1: Running example.

As a simplified running example, consider the code in
Figure 1 and assume an analysis that reports taint flows
from sources to sinks. One such taint flow that is easy
to identify for both the analysis and the user is the flow
from line 11 to line 13. This flow constitutes a strictly
intra-procedural flow, without taking into account aliasing
information. We propose to report such errors early. While
the user goes about fixing this problem, the analysis might
use that additional time to conduct further analysis. For
example, analyzing foo in the contexts of bar1 and bar2. In
this case, the analysis identifies another possible flow to
line 14 given the aliasing introduced by bar1.

More generally, we propose the idea of an interactive
just-in-time (JIT) analysis that starts by giving developers
easy-to-fix bugs, while building their understanding of
the analysis tool, code, and bug patterns. The approach
centers around analysis layers and carefully interleaves the
process of bug fixing with that of static analysis. The latter
runs in the background, while the user fixes the results
from a previous layer. Whenever the user is ready for the
next layer of bug reports, they are shown to them instantly.

Training the user to train the analysis: Note that
due to the process of informal training that occurrs as a
result of fixing the previous layers of bugs, the user never
encounters issues that they are ill-equipped to resolve. One
can combine observing which warnings get user attention
with a prioritization scheme for analysis warnings. This
approach to static analysis trains the user to face the
warnings they are well-equipped to address, while training
the analysis to be most helpful to the user. Ultimately,

the JIT framework gives the developer the experience they
have come to expect from on-the-fly compilation in IDEs
like Eclipse, in the context of static analysis.

Last but not least, we propose for later analysis stages to
take into account developer feedback in the form of simple
questions. Responses to those questions have the potential
to weed out many false warnings if answered correctly—
another dimension in which static-analysis tools and users
can benefit from the synergy of interaction.

Contributions: To summarize, this paper makes the
following contributions:

• advocate a renewed focus on the interaction between
the static analyzer and the user, with the goals of
increasing the number of bugs that actually get fixed
and reducing the abandonment rates of the tool.

• propose the idea of JIT analyses designed to interleave
the process of computing analysis warnings with that
of the user fixing them.

• show how such an analysis can be built for three
example applications: explicit-information-flow issues
in Java or Android applications, null-dereference de-
tection, and API misuse detection.

• propose an interactive frameaork that makes use of
JIT analyses.

• report performance numbers indicating that it is in-
deed feasible to build the kind of analyses we propose.

• discuss important quality features of the JIT frame-
work that future studies will have to evaluate.

II. Detailed Requirements

We next outline a number of requirements that we have
identified and which the JIT framework should ideally
fulfill. We will address some of those requirements in later
sections of this work. A few of them still raise largely
open research questions. Others also conflict, leading to
necessary design choices. We highlight those conflicts here.

Layering : JIT analyses must be layered, ideally such that
computations in later layers can build on top of results
computed by earlier ones.

Quick Response: Early analysis layers should present
first results within milliseconds, similar to automatic
spell checkers.

Eager Reporting : Generally, also in later analysis lay-
ers, analysis results should generally be displayed to
the user as early as possible.

Few False Alarms: JIT analyses should avoid false
alarms, i.e., not report results based on highly im-
precise computations. If in doubt about a program
property, the analysis should consult the user.

Helpful Results First: Early layers should report only
those results that are highly accurate, and likely to be
easily fixed by the user. Later stages may then report
results that are less accurate and/or less likely to be
useful.

Minimize User Interaction: The analysis may ask the
user specific questions to weed out false positives,

but should only ask questions that are simple to
answer and can indeed lead to a large fraction of false
positives to be dismissed.

Up-to-date Results: Before later analysis layers show
findings, those should be re-confirmed with respect
to code changes that the user might have performed
after the earlier layers were completed.

Aid Problem Repair : For simple-to-fix problems, the
analysis should suggest a “Quick Fix”, i.e., an auto-
matic code transformation that would fix the problem
and make the error message go away.

Generalize User Feedback : If the user dismisses an
analysis result as not helpful, this should suppress the
presentation of similar analysis results.

Change-aware Reporting : Problems once dismissed/-
suppressed as not interesting should not reappear
again after the program code has been modified.

Some of the aforementioned requirements harmonize with
each other. For example, while there is a subtle difference
between Quick Response and Eager Reporting , both lead
to the similar design decisions, prioritizing efficient anal-
ysis and reporting. Other combinations of requirements
are contradictory, however, which means that there may
be different pareto-optimal solutions, none of which fulfill
all requirements perfectly. Design choices determine which
one of those“best-effort solutions” an approach will target.

A particularly interesting design choice is the one of
whether and to what extent to perform Eager Reporting .
Such Eager Reporting contradicts with the requirement
for Few False Alarms. In any layer that is based on may-
information, i.e., information that may or may not be
accurate, the resulting analysis result may or may not
cause a false alarm. In such situations, the framework
could ask the user for additional input, potentially turning
the may-information into a must-information. But given
the requirement to Minimize User Interaction, such user
questions should ideally be pooled, to allow the frame-
work to select questions that may rule out multiple false
positives in combination. This in turn will lead to the
necessity to report such results lazily, contradicting Eager
Reporting . But lazy reporting also contradicts, to some
extent, the requirement to show Up-to-date Results: the
longer the framework waits with reporting results, the
higher the chance that the user has modified the analyzed
code in the meantime, forcing a potentially expensive re-
analysis for the program under analysis.

Note that Eager Reporting has no contradiction with
Few False Alarms; quite the contrary, assuming that the
first layers only compute must-results, there is no need to
consult the user for additional input.

When to consult the user: An interesting design choice
to consider is when to ask the user questions, and which
ones. As already alluded to above, questions can be useful
to turn may-information into must-information. As we
found, there is an interesting and quite subtle difference

16 void environmentCausedInaccuracy() {
17 String query = UI.read();
18 DB.query(query);
19 }
20

21 void internalAnalysisLimitation () {
22 String query = Console.readLine ();
23 if (isPrime(37)) query = sanitize (query);
24 DB.query(query);
25 }
26

27 void inputDependentVarability () {
28 String query = Console.readLine ();
29 if (Console.readBool) query = sanitize (query);
30 DB.query(query);
31 }

Fig. 2: User input sanitization.

between at least three different types of may-information:

• Environment-caused inaccuracy: the information
is inaccurate (and therefore “may”) because the anal-
ysis has insufficient knowledge about the application’s
deployment or execution context.

• Internal analysis limitation: the information is
inaccurate simply because of shortcomings of the
analysis, be it because the analysis problem is un-
decidable in general or whether the analysis performs
program abstractions for other reasons.

• Input-dependent variability: accurate informa-
tion, but the result only applies to executions caused
by a fraction of the analyzed program input space.

To illustrate this, consider the three methods in Figure 2
and an analysis that reports strings read from user input
and then written to the database without sanitization.
In the first case, we assume a method UI.read() which
concrete semantics are unknown to the analysis. Does that
method provide pre-sanitized inputs or not? In this case,
it might be useful to ask the developer. In the second
case, we see an analysis limitation: 37 is always prime
but the analysis fails to determine this fact. Hence, it
will falsely assume a potentially unsanitized flow. Whether
or not to ask the developer in such situation is a tough
design choice. Finally, the last case shows may-information
that is of the form “maybe-definitely”: there is definitely
some user input that will cause an unsanitized flow but
there are also others that definitely will not. Such results
would be readily reported without additional interaction.
An interesting scientific question, which we raise here for
future work, is how analyses can efficiently and effectively
distinguish those three situations and whether further
interesting cases exist.

III. Just-in-Time Framework

In static analysis, some results only take minimal com-
putation to find, whereas others are more complex. This
is the case for the two leaks in Figure 1 where one can
be found directly and the other requires inter-procedural
propagation, aliasing and context-sensitive information.

32 F g = new F(), h = new F(), f = null;
33 g = f;
34 if (...)
35 h = f;

36 x = f.a; C

37 y = g.a; D

38 z = h.a; E
Fig. 3: Null dereference.

39 void foo(Y y, Z z) {
40 Cipher g = new Cipher();
41 z.bar(g);

42 g.doFinal (); F
43

44 Cipher h = new Cipher();
45 y.bar(h);

46 h.doFinal (); G
47 }
48

49 // X extends Z
50 void bar(h) { h. init (); }
51

52 // Y extends Z
53 void bar(i) { }

Fig. 4: API misuse.

For real programs, such flows can get exponentially more
complex and take hours of computation to be reported,
holding back the delivery time of other simpler results.

The JIT framework proposes a layered system that
reports simple flows immediately. Early layers of JIT anal-
yses are run first, yielding results in a matter of seconds.
While the user reviews these results, the analyses are
enriched by introducing increasingly complex information
and adding to the results as the user goes through them.

A. Instantiations of the JIT analysis model

To illustrate our layering system, we use three different
analyses and instantiate them following the layer model.

Taint analysis is used to find dangerous flows in code
bases. It tracks tainted variables from sources to sinks
to detect, for example, the injection of dangerous
commands from the user interface to a database. In
Figure 1, two data leaks should be reported: A and

B , the latter for the calling context of bar1 due to
the alias between f and g at line 2.

Null propagation searches for null dereferences: use of
null pointers that would cause a NullPointerException .
In Figure 3, f .a is dereferenced at line 36 C . This

is also the case for g.a at line 37 D due to its alias

to f at line 33. The dereference at line 38 E is also
reported, due to the may-alias at line 35.

API misuse detection ensures that programs use APIs
correctly by verifying that they follow a certain usage
protocol. In Figure 4, we want to verify that a cipher
is always initialized before a call to doFinal. Two
warnings should be reported: F and line 46 G . Note
that the latter is harder to detect, since the call to bar

at line 41 may resolve to either of the two bar methods.

Taint analysis Null detection API misuse

L1 A : direct C : direct

L2 D : must-alias to f .a

L3 G : monomorphic call to Y.bar

L4 B : caller may-alias to a. f E : local may-alias to f .a

L5 F : polymorphic call to X.bar or Y.bar

TABLE I: Results reported by the different layers for three just-in-time analyses without user feedback.

B. Layers

We define a set of layers following the requirements
of Section II, implemented by the three instantiations
presented in Section III-A. Table I presents the results the
three analyses would yield for each of the layers, assuming
no user interaction.

L1: Intra-procedural, no aliasing: In this layer, the
analysis performs data flow propagation in the scope
of the current working set (typically, the currently
open file, project, etc.), assuming no alias information.
Information about assignments is kept in memory for
later layers when aliasing is resolved. Only the classes
required by the current working set are fully loaded.

L2: Intra-procedural, must-alias: From L1, we com-
pute must-alias information in the scope of the
method, and adjust the data flow accordingly.

L3: Inter-procedural, must-alias, monomorphic
call sites: From L2, we extend to inter-procedural
computation for both the callers and callees of
the base methods. Continuing a must-analysis,
we traverse only monomorphic calls. For any
polymorphic call, we keep the call in memory for a
later stage. The necessary classes are loaded in the
background, presumably at the package level.

L4: Inter-procedural, may-alias, polymorphic call
sites: From L3, we extend the must-alias information
to incorporate may-aliases. For callees, we approxi-
mate the aliases through a side-effects analysis. If we
target incomplete code (e.g. in the case of an IDE such
as Eclipse), we need to distinguish between certain
and uncertain may-aliasing, depending on whether
or not the alias is caused by the incompleteness
of the code. This refers to the Environment-caused
inaccuracy explained in Section II.

L5: Inter-procedural, may-alias, propagation in
polymorphic call sites: From L4, we resolve the
polymorphic call sites from L3 and propagate the data
flow information into the callees. This may require
more classes to be loaded.

Let us consider how this design addresses the require-
ments from Section II. Layering comes by design. Quick
Response is ensured, as an intra-procedural analysis needs
minimal class loading and computational resources. Eager
Reporting and Few False Alarms are given by the layering
policy that only confirmed flows are reported. Pending

ones are left for further propagation, unless the user
purposely intervenes. Helpful Results First is ensured by
the observation that a warning found in an earlier layer
relies on less assumptions and is most likely true. The other
requirements concerning user feedback follow from the
design of the JIT framework in Sections III-C and III-D.

C. Developer Interactions

The JIT framework aims at making maximum use of
user input, without flooding the user with requests, to
facilitate tool understanding. The framework interacts
with the user on three levels:

Warning validation: By suppressing uninteresting
warnings, the user can facilitate the computation
of the next layers. For example, if for Figure 3 the
user suppresses warning C , the propagation is killed
and further layers do not need to be run, saving
computational resources. Furthermore, the dependent
issues D and E will not be reported, removing false
positives. Instead of blindly suppressing a warning
to make developer beliefs explicit, the framework
can insert into the code-appropriate assertions such
as assert(f != null) to document feedback and
check its validity in test runs.

Questions to the user: Key questions can be asked to
the user to define the need to go to the next layer.
If for Figure 1 the user confirms that bar2 is not
reachable, warning B can be reported at L3 instead
of L4, yielding the warning earlier. Additionally, bar2
and its callees can be removed from the scan worklist,
reducing the code surface to be analyzed.

Fix-oriented output: As the user modifies the source
code, warnings can be invalidated. To minimize the
consequences of bug-fixing, we propose to report
warnings in a fix-oriented manner. In addition of
being useful to warning understanding, this system
also guides the user as to where and how to fix warn-
ings. It is generally easier to fix simple warnings from
early layers. Therefore, the layered system provides an
intuitive way to group warnings by fix-similarity, by
tracking the dependencies of the warnings from one
layer to the other. For example, the propagation of
C induces warnings D and E . The JIT framework

can suggest to the user to fix warning C , which then

automatically fixes D and E . Thus, the changeset

JIT Analysis 1

Layer 1

Layer 2

Layer 3

Engine IDE

Callgraph constructor

Fig. 5: Architecture of the JIT framework.

for warnings fixing is kept minimal. The reporting
system can be further optimized, for example, by
computing common flows across different warnings.

D. General Solution Architecture

In Figure 5, we present the JIT framework, which works
as follows: The main component is the engine, which runs
in an Integrated Development Environment (IDE). While
the user writes code and fixes bugs, the engine chooses a
suitable layer, based on the past run layers, the working
set and user feedback. It launches the JIT analyses on the
determined layers. All of these JIT analyses are imple-
mented following the layered model imposed by the engine.
Figure 5 illustrates a run at L2 that makes use of the
information computed in L1. The different client analyses
may run in parallel, while sharing some of the engine-level
data such as data flow or call graph information.

The results are reported to the user as soon as they
are found, allowing them to either continue developing, or
fixing bugs as they are introduced, thus allowing a smooth
integration in the workflow. The engine is responsible for:

• Selecting and launching the layers of the JIT analyses;
• Organizing and reporting results to the user;
• Creating quick-fixes;
• Determining and asking key questions to the user;
• Interpreting different user inputs;
• Learning from user input to remove unwanted issues.

The user-centric, adaptive nature of the JIT framework
raises the problem of scanning incomplete code. Therefore,
we center our JIT analyses around an on-demand model
with a varying degree of uncertainty. This motivates the
need for fast class loading, in particular for virtual call
resolution, when one call can refer to multiple methods
depending on the dynamic type of the base object.

IV. Feasibility Study

In static analysis, code loading and call graph creation
account for a significant part of the initial analysis cost.
Anecdotally, analyzing a “Hello world!” Java program may
involve looking at hundreds of standard library classes. To
improve responsiveness, a JIT analysis loads classes and
generates the call graph on demand. This is particularly
useful for the layers operating intra-procedurally. Addi-
tionally, in the context of an IDE, the user is often only
interested in a portion of the codebase. Loading only the

Dangling Hierarchy Signatures Bodies

0

5

10

15

20

Resolution level

T
im

e
(s

)

jython lusearch
tomcat batik
pmd fop
xalan luindex
h2 sunflow

avorra eclipse

Fig. 6: Resolution times in Soot.

necessary classes shortens and distributes the computation
time of both code loading and call-graph creation.

We have performed some initial measurements on the
Soot framework for analyzing Java programs. These
initial experiments show that it is generally possible to
compute a call graph fast based on the class hierarchy.
Soot has the ability to resolve Java classes at different
levels, listed below in increasing order of complexity:

1) Dangling: creates an empty model of a class C.
2) Hierarchy: from Dangling, loads the super-

classes, interfaces, and outer classes of C.
3) Signatures: from Hierarchy, loads the fields,

method signatures and exceptions of C. Dependen-
cies are loaded at level Hierarchy.

4) Bodies: from Signatures, loads the bodies of the
methods in C. Dependencies are loaded at level
Signatures.

For our measurements, we loaded the class files of several
DaCapo benchmarks at different resolution levels. The
results in Figure 6 show the average loading times over
10 runs. Loading at level Bodies takes up to 15x more
processing time than at level Signatures (average 8x).

These measurements indicate that one can perform JIT
analyses with minimal startup cost. A JIT analysis would
first generate a CHA-induced call graph, (based on classes
loaded at level Signatures) and refine it by loading
classes at level Bodies when required by the analysis.

V. Related Work

In this section, we start by describing several similar
efforts and then talk about studies that focus on the usabil-
ity of static analysis tools and largely motivate our work.
Lastly, we mention several relevant commercial tools.

A. Layered or Staged Analyses

Cifuentes et al. [5], [6] present Parfait, a bug checker
used internally at Oracle. Parfait computes a list of poten-
tial defects and runs different and independent analyses

on them in cascading order, from the least to the most
expensive. Each analysis confirms the (in)validity of some
defects and delegates the unconfirmed cases to the next
layer. A JIT analysis has a different notion of Layering
where each layer reuses previously computed information.
This enables full use of the Quick Response of the first
layers by quickly reporting initial results to the user, which
facilitates IDE integration.

Parfait provides interesting usability features, including
a fix-oriented defects grouping system, a build integration,
and custom categorizations of defects. Our tool will sim-
ilarly include bug categories within each layer of a given
JIT analysis. Higher priority would ne given to bugs that
could be easily fixed such that this fix leads to fixing
other similar bugs. This eventually reduces the number of
issues reported by a JIT analysis, which would encourage
developers to continue using the JIT framework.

Ali and Lhotak [1] show that it is possible to precisely
reason about parts of a program as long as those parts
conform to the Separate Compilation Assumption. Our
framework can use this assumption to precisely reason
about the pieces of the program it analyzes without having
to analyze the rest of the code. This will help scale to large
code bases without compromising precision.

B. User Studies

Xiao et al. [12] have conducted a set of interviews to in-
vestigate the social factors affecting security tool adoption
amongst developers. In general, developers continue using
security tools when they feel they can trust these tools.
In other words, the more confidence a developer has in a
security tool (i.e., Few False Alarms), the more likely they
will continue using it.

Lewis et al. [11] have conducted a user study at Google
to understand whether bug prediction is useful for de-
velopers or not. The study finds that developers often
prefer warnings to have actionable tasks (e.g., quick-fix
suggestions) to Aid Problem Repair . In general, developers
are more interested in the new parts of code that they have
dealt with. Therefore, bug finding tools should have some
bias to the new and report Up-to-date Results.

Johnson et al. [9] investigate why developers do not use
static analysis tools more often. Based on the interactive
interviews with developers, the authors compile a list of
characteristics that should be in an ideal widely-used static
analysis tool. In particular, a static analysis tool should
incorporate an interactive mechanism to help developers
fix bugs. Developers also expressed the need to, temporar-
ily, suppress warnings they deem irrelevant at the moment
(Generalize User Feedback). More importantly though,
almost all developers who were interviewed agreed that
a static analysis tool should not disrupt their workflow
(Minimize User Interaction).

Ayewah et al. [3] present a study conducted by Google
using the FindBugs tool to find and fix bugs. The study
shows that not all reported bugs appear in production

code. Ideally, our JIT framework could take into consider-
ation whether it is analyzing production code (so it could
ignore warnings that it is unsure of) or some code under
development and have not undergone rigorous testing yet
(so it issues warnings more conservatively).

C. Commercial Tools

Most current commercial tools such as IBM Appscan [2],
Coverity [7], HP Fortify [8], and Klockwork [10] only
support whole-program scans. However, Checkmarx [4]
gives the possibility of running incremental scans where
only the change set from the initial scan is considered. This
allows a gain of time but it still disrupts the workflow in
the same way as a full scan does. Checkmarx also provides
a speedy fix feature that proposes optimal locations to
fix reported issues. In addition to the common filtering
features of commercial tools, Checkmarx also allows the
user to customize the analysis itself through the use of
queries. However, this requires full knowledge and under-
standing of the analysis, the scanned code, Checkmarx
query language, and the company’s scan requirements,
which puts a heavy burden on the user.

VI. Conclusion

This paper advocates the idea of the JIT framework,
an approach to building static analysis tools that aim to
address the computational limitations of a typical analysis
engine and the cognitive limitations of a typical software
developer. In this framework, JIT analyses proceed in
layers, starting with simple errors with lower false positive
rates, all the while teaching the developer and preparing
them for higher levels of complexity. This paper outlines
how several typical analyses can be encoded in this JIT
manner and presents some initial measurements, showing
that an incremental analysis of this sort is feasible.

References

[1] Karim Ali and Ondrej Lhoták. Application-only call graph
construction. In ECOOP, pages 688–712, 2012.

[2] IBM Appscan. http://www-03.ibm.com/software/products/
en/appscan, May 2015.

[3] Nathaniel Ayewah and William Pugh. The Google FindBugs
fixit. In ISSTA, pages 241–252, 2010.

[4] Checkmarx. https://www.checkmarx.com/, May 2015.
[5] Cristina Cifuentes. Parfait - A scalable bug checker for C code.

In SCAM, pages 263–264, 2008.
[6] Cristina Cifuentes, Nathan Keynes, Lian Li, Nathan Hawes, and

Manuel Valdiviezo. Transitioning Parfait into a development
tool. IEEE Security & Privacy, 10(3):16–23, 2012.

[7] Coverity. http://www.coverity.com/, May 2015.
[8] HP Fortify. http://www8.hp.com/us/en/software-solutions/

static-code-analysis-sast/, May 2015.
[9] Brittany Johnson, Yoonki Song, Emerson R. Murphy-Hill, and

Robert W. Bowdidge. Why don’t software developers use static
analysis tools to find bugs? In ICSE, pages 672–681, 2013.

[10] Klockwork. http://www.klocwork.com/, May 2015.
[11] Chris Lewis, Zhongpeng Lin, Caitlin Sadowski, Xiaoyan Zhu,

Rong Ou, and E. James Whitehead Jr. Does bug prediction
support human developers? Findings from a Google case study.
In ICSE, pages 372–381, 2013.

[12] Shundan Xiao, Jim Witschey, and Emerson R. Murphy-Hill.
Social influences on secure development tool adoption: why
security tools spread. In CSCW, pages 1095–1106, 2014.

	tech_report_cover
	ASE-NIER-15-submission

