
A Machine-learning Approach for Classifying and
Categorizing Android Sources and Sinks

Siegfried Rasthofer & Steven Arzt
Secure Software Engineering Group

EC SPRIDE, Technische Universität Darmstadt
{firstname.lastname}@ec-spride.de

Eric Bodden
Secure Software Engineering Group

Fraunhofer SIT & Technische Universität Darmstadt
eric.bodden@sit.fraunhofer.de

Abstract—Today’s smartphone users face a security dilemma:

many apps they install operate on privacy-sensitive data, although

they might originate from developers whose trustworthiness is

hard to judge. Researchers have addressed the problem with

more and more sophisticated static and dynamic analysis tools

as an aid to assess how apps use private user data. Those tools,

however, rely on the manual configuration of lists of sources of

sensitive data as well as sinks which might leak data to untrusted

observers. Such lists are hard to come by.

We thus propose SUSI, a novel machine-learning guided

approach for identifying sources and sinks directly from the code

of any Android API. Given a training set of hand-annotated

sources and sinks, SUSI identifies other sources and sinks in

the entire API. To provide more fine-grained information, SUSI

further categorizes the sources (e.g., unique identifier, location

information, etc.) and sinks (e.g., network, file, etc.).

For Android 4.2, SUSI identifies hundreds of sources and

sinks with over 92% accuracy, many of which are missed by

current information-flow tracking tools. An evaluation of about

11,000 malware samples confirms that many of these sources

and sinks are indeed used. We furthermore show that SUSI

can reliably classify sources and sinks even in new, previously

unseen Android versions and components like Google Glass or

the Chromecast API.

I. INTRODUCTION

Current smartphone operating systems, such as Android or
iOS, allow users to run a multitude of applications developed
by many independent developers available through various app
markets. While this flexibility is very convenient for the user,
as one will find a suitable application for almost every need,
it also makes it hard to determine the trustworthiness of these
applications.

Smartphones are widely used to store and process highly
sensitive information such as text messages, private and business
contacts, calendar data, and more. Furthermore, while a large
variety of sensors like GPS allow a context-sensitive user

experience, they also create additional privacy concerns if used
for tracking or monitoring.

To address this problem, researchers have proposed various
analysis tools to detect and react to data leaks, both statically
[1]–[13] and dynamically [14]–[17]. Virtually all of these tools
are configured with a privacy policy, usually defined in terms
of lists of sources of sensitive data (e.g., the user’s current
location) and sinks of potential channels through which such
data could leak to an adversary (e.g., a network connection). As
an important consequence, no matter how good the tool, it can
only provide security guarantees if its list of sources and sinks
is complete. If a source is missing, a malicious app can retrieve
its information without the analysis tool noticing. A similar
problem exists for information written into unrecognized sinks.

This work focuses on Android. As we show, existing
analysis tools, both static and dynamic, focus on a handful of
hand-picked sources and sinks, and can thus be circumvented by
malicious applications with ease. It would be too simple, though,
to blame the developers of those tools. Android’s version 4.2,
for instance, comprises about 110,000 public methods, which
makes a manual classification of sources and sinks clearly
infeasible. Furthermore, each new Android version includes new
functionality (e.g., NFC in Android 2.3 or Restricted Profiles
in the brand-new Android 4.3) which often also leads to new
sources and sinks. This shows that a manual identification
of sources and sinks is impractical. It would impose a high
workload on the analyst and would have to be done again for
every new Android version. Additionally, hand-picking is an
error-prone task.

We therefore propose SUSI, an automated machine-learning
guided approach for identifying sources and sinks directly from
the code of an Android API. We have identified both semantic
and syntactic features to train a model for sources and sinks on
a small subset of hand-classified Android API methods. SUSI
can then use this model to classify arbitrarily large numbers
of previously unknown Android API methods. In the Android
4.2 operating system, SUSI finds several hundred sources and
sinks, only a small fraction of which were previously known
from the scientific literature or included in configurations of
available analysis tools.

While SUSI is not able to identify each and every source
or sink, it resembles a practical best-effort solution that
solves the problem to a large extent, which is a substantial
improvement over existing hand-picked sets. In cross-validation,
SUSI achieves a precision and recall of over 92%, which means

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’14, 23-26 February 2014, San Diego, CA, USA
Copyright 2014 Internet Society, ISBN 1-891562-35-5
http://dx.doi.org/

http://dx.doi.org/10.14722/ndss.2014.23039

that the use of SUSI to identify sources and sinks greatly
reduces (though not completely eliminates) the risk of missing
sensitive data flows when used for configuring information-flow
tracking tools. To evaluate how well SUSI predicts sources and
sinks outside the training set, we applied SUSI’s model to the
Google Mirror API [18] that can be used for the communication
between Google Glass [19] and an Android smartphone. We
also applied SUSI to the Google Cast API [20] which is used
for screen-sharing between smartphones and televisions, in
particular using the new Chromecast device. Manual validation
of SUSI’s results on these new APIs shows an average precision
and recall of over 98% for both Google Cast and Google Mirror.
An evaluation of 11,000 malware samples from Virus Share [21]
shows that malware does cause data leaks using Android API
methods recognized as sources or sinks by SUSI, but missed
by existing static and dynamic taint analysis tools including
TaintDroid [14] or SCanDroid [5] (more details in Section
V-C).

SUSI is the first dedicated approach to detecting sources
and sinks. Due to missing lists of sources and sinks, some
code-analysis approaches (for instance LeakMiner [3]) so far
consider those methods as sources and sinks that require a
permission to execute. These methods can be identified using
a permission map which can be created either statically [22],
[23] or dynamically [24]. As we show in this work, permission
lists are a less than optimal heuristic for detecting sources and
sinks: many methods called in the control-flow of permission
checks are neither sources nor sinks, and even worse some
calls to methods that are sources or sinks are not protected
by permission checks. As an example, SUSI identifies as
source the unprotected getNetworkOperatorName() method in
the TelephonyManager class, which returns the name of the
network operator or carrier. Our study reveals malware samples
that use this method for reading out the network operator name
and sending it to a malicious server. Furthermore, permission
checks are scattered over several layers of the Android operating
system. The Internet permission, for instance, is checked in
native code while most other permissions are enforced in the
middleware. Fortunately, as our work shows, the implementation
of the Android API on the middleware layer reveals clues that
help identify sources and sinks much better than by just using
permission checks.

Awareness of sources and sinks is highly useful but if a
leak is found, the user often desires additional information
on what information has leaked where, for instance location
information to the Internet. SUSI thus further classifies the
identified sources and sinks into 12 source categories and 15
sink categories. The categorization shows that there is often
more than one way to retrieve a certain piece of data, and that
there are multiple ways to send it out to an attacker since all
categories contain more than a single method.

This paper presents the following original contributions:

• a practical and precise definition of data sources and
sinks in Android applications,

• an automated, machine-learning based approach for
identifying data source and sink methods in the
Android framework, even in case of new, previously
unseen Android versions and variants,

• a classifier for data source and sink methods into
semantic categories like network, files, contact data,
etc., and

• a categorized list of sources and sinks for different
Android versions, as well as the Google Mirror and
Google Cast APIs. The list can be directly used by
existing static and dynamic analysis approaches.

Our complete implementation is available as an open-source
project at:

https://github.com/secure-software-engineering/SuSi

The remainder of this paper is structured as follows.
Section II presents a motivating example, while Section III
gives a precise definition of the notions of sources and sinks.
Section IV presents the classifiers, which we evaluate in
Section V. Section VI discusses other sources of sensitive
information that are not directly related to method calls. In
Section VII we give an overview of related work. Section VIII
concludes.

II. MOTIVATING EXAMPLE

As mentioned earlier, comprehensive lists of sources and
sinks are hard to come by. As a consequence, lists of sources
and sinks known from the scientific literature [4], [5], [14] only
contain a few well-known Android API methods for obtaining
and sending out potentially sensitive information. (Section VI
gives detailed information about the current state of the art.)
However, there are often multiple ways to achieve the same
effect. Developers of malicious applications can thus choose
less well known sources and sinks to circumvent analysis tools.
Let us assume an attacker is interested in obtaining the user’s
location information and writing it to a publicly accessible
file on the internal storage without being noticed by existing
program-analysis approaches.

Listing 1 shows an example that attempts to disguise a data
leak by using less common methods for both the source and
the sink. In our scenario, we have two source methods. Firstly,
line 9 calls getCid(), returning the cell ID. Line 11 then calls
getLac(), returning the location area code. Both pieces of data
in combination can be used to uniquely identify the broadcast
tower servicing the current GSM cell. While this is not an exact
location, it nevertheless provides the approximate whereabouts
of the user. In line 12 the code checks for a well-known
cell-tower ID in Berlin, Germany. An actual malicious app
would perform a lookup in a more comprehensive list. Finally,
the code needs to make the data available to the attacker. The
example creates a publicly accessible file on the phone’s internal
storage, which can be accessed by arbitrary other applications
without requiring any permissions. Instead of employing Java’s
normal file writing functions, the code uses a little-known
Android system function (line 17) which SUSI identifies as
a “FILE” sink but which is normally hidden from the SDK:
the FileUtils.stringToFile function can only be used if the
application is compiled against a complete platform JAR file
obtained from a real phone, as the android.jar file supplied with
the Android SDK does not contain this method. Nevertheless,
the example application runs on an unmodified stock Android
phone.

2

https://github.com/secure-software-engineering/SuSi

1 void onCreate() {
2 TelephonyManager tm; GsmCellLocation loc;
3 // Get the location
4 tm = (TelephonyManager) getContext().
5 getSystemService

(Context.TELEPHONY_SERVICE);
6 loc = (GsmCellLocation)

tm.getCellLocation();
7
8 //source: cell-ID
9 int cellID = loc.getCid();

10 //source: location area code
11 int lac = loc.getLac();
12 boolean berlin = (lac == 20228 && cellID

== 62253);
13
14 String taint = "Berlin: " + berlin + " ("

+ cellID + " | " + lac + ")";
15 String f = this.getFilesDir() +

"/mytaintedFile.txt";
16 //sink
17 FileUtils.stringToFile(f, taint);
18 //make file readable to everyone
19 Runtime.getRuntime().exec("chmod 666 "+f);
20 }

Listing 1. Android Location Leak Example

This example is, at least for the source methods, a represen-
tative example for malware [21] we inspected. We have tested
this example with publicly-available static and dynamic taint
analysis tools including Fortify SCA [4], SCanDroid [5], IBM
AppScan [13] and TaintDroid [14] and confirmed that none
of these tools detected the leak. This shows how important it
is to generate a comprehensive list of sources and sinks for
detecting malicious behavior in deceptive applications. SUSI
discovers and classifies appropriately all sources and sinks used
in the example.

III. DEFINITION OF SOURCES AND SINKS

Before one can infer sources and sinks, one requires a
precise definition of the terms “source” and “sink”. Several
publications in the area of taint and information-flow analysis
discuss sources and sinks, but all leave open the precise
definitions of these terms. For instance, Enck et al. [14] define
sinks informally as “data that leaves the system” which is,
however, too imprecise to train a machine-learning based
classifier; such classifiers are only as good as their training
data.

Taint and information-flow analysis approaches track
through the program the flow of data. Sources are where such
data flows enter the program and sinks are where they leave
the program again. This requires us to first define data in the
context of data flows in Android applications.

Definition 1 (Data): A piece of data is a value or a
reference to a value.

For instance, the IMEI in mobile applications is a piece of
data, as would be the numerical value 42. We also treat as data,
for instance, a database cursor pointing to a table of contact

records, since it directly points to a value and is thus equivalent
in terms of access control.

In taint tracking, one monitors the flow of data between
resources such as the file system or network. Conversely, due
to Android’s app isolation, data that is simply stored in the
app’s address space is not of interest. Before one can define
sources and sinks, one must therefore define the notion of a
resource method. Mobile operating systems like Android enable
applications to access resources using predefined methods.
While one could also imagine fields being used for resource
access, we found this not to be the case with Android.

Definition 2 (Resource Method): A resource method reads
data from or writes data to a shared resource.

For instance, the operating system method for reading the
IMEI (getDeviceId() in class TelephonyManager) is a resource
method. In this case, the phone’s hardware itself is the resource
as the IMEI is branded into the silicon. The sendTextMessage()
method in class SmsManager is a resource method for sending
text messages to a specific phone number. The resource is the
GSM network.

Note that a writing resource method does not necessarily
need a reading counterpart. In our definition, there is no
restriction on how the data is shared. A writing resource method
might, for instance, send out data over the network (which is
a resource). Though another application cannot directly obtain
this data through a simple method call, the data can easily be
sniffed from the network and is thus shared. Data leaving the
phone is thus always considered shared.

After defining data and resource methods we can now define
sources and sinks in the context of Android applications:

Definition 3 (Android Source): Sources are calls into re-
source methods returning non-constant values into the applica-
tion code.

The getDeviceId() resource method is an Android source. It
returns a value (the IMEI) into the application code. The IMEI
is considered non-constant as the method returns a different
value on every phone. Looking at the source code alone does
not reveal this value. In contrast, a function that just reads a
fixed constant from a database is a resource method but, by
our definition, is not an Android source.

Note that our definition of sources does not make any
restrictions on whether the data obtained from a source is
actually private. SUSI will thus, at first, report sources of non-
private data as well. However, in a second step SUSI then
applies a further categorization which partitions sources into
different categories of private data. This partitioning includes a
class NO CATEGORY, which represents sources of non-private
data, which privacy-analysis tools can ignore. Details will be
given in Section IV.

Definition 4 (Android Sinks): Sinks are calls into resource
methods accepting at least one non-constant data value from
the application code as parameter, if and only if a new value
is written or an existing one is overwritten on the resource.

The sendTextMessage() resource method is an Android sink
as both the message text and the phone number it receives are
possibly non-constant. On the other hand, the reboot method

3

in the PowerManager class, for instance, just receives a kernel
code for entering special boot modes which must be part of a
predefined set of supported flags. This method is thus only a
resource method (the data is written into the kernel log), but
not an Android Sink. We require this restriction on constant
values for methods which do not introduce any new information
into the calling application in the case of sources, or do not
directly leak any data across the application boundary in the
case of sinks. The values at calls to such methods are of a
purely technical kind (e.g., system constants, network pings
etc.) and not of interest to typical analysis tools. Note that our
definition also excludes some implicit information flows. This
is a design choice. For instance, in our approach the vibration
state of the phone is not considered a single-bit resource, even
though it could theoretically be observed and would then be
“shared”.

A malicious app can try to access private information not
only through calls to the official Android framework API but
also through calls to code of pre-installed apps. For instance, the
default email application provides a readily-available wrapper
around the getDeviceId() function. This app is pre-installed
on every stock Android phone, which gives a malicious app
easy access to the wrapper: the app just instructs the Android
class loader to load the respective system APK file and then
instantiates the desired class. To cover such cases, our approach
does not only analyze the framework API but the pre-installed
apps as well. (We use a Samsung Galaxy Nexus with Android
4.2.). In other words, our analysis boundary is between a
(potentially malicious) user application and all components
pre-installed on the device.

IV. CLASSIFICATION APPROACH

In this section, we explain the details of SUSI, our machine-
learning approach to automatically identify sources and sinks
corresponding to the definitions given in Section III. We
address two classification problems. For a given unclassified
Android method, SUSI first decides whether it is a source, a
sink, or neither. The second classification problem refines the
classification of sources and sinks identified in the first step.
All methods previously classified as neither are ignored. For an
uncategorized source or sink, SUSI determines the most likely
semantic category it belongs to. In our design, every method
is assigned to exactly one category.

Section IV-A gives a short introduction to machine learning.
Section IV-B then presents the general architecture of SUSI,
while Section IV-C discusses the features SUSI uses to solve its
classification problems. Section IV-D gives more details on one
particularly important family of features which deals with data
flows inside the methods to be classified. In Section IV-E we
show how the semantics of the Java programming language can
be exploited to artificially generate further annotated training
data.

A. Machine Learning Primer

SUSI uses supervised learning to train a classifier on a
relatively small subset of manually-annotated training exam-
ples. This classifier is afterwards used to predict the class
of an arbitrary number of previously unseen test examples.
Classification is performed using a set of features. A feature

ID Experience Alcohol Phone No Accident

T1 5 yrs 0.6 1234 yes
T2 11 yrs 0.4 45646 yes
T3 7 yrs 0.2 76546 yes
T4 4 yrs 0.0 54645 no
T5 10 yrs 0.2 78354 no
C1 6 yrs 0.1 6585 ?
C2 12 yrs 0.55 67856 ?

TABLE I. CLASSIFICATION EXAMPLE ON DRUNK DRIVING

is a function that associates a training or test example with a
value, i.e., evaluates a certain single domain-specific criterion
for the example. The approach assumes that for every class
there is a significant correlation between the examples in the
class and the values taken by the feature functions.

As a simple example, consider the problem of estimating
the risk of a driving accident for an insurance company. We
may identify three features: years of experience, blood alcohol
level and the driver’s phone number. Assume the learning
algorithm deduces that a higher level of experience is negatively
correlated with the accident rate, while the alcohol level is
positively correlated and the phone number is completely
unrelated. The impact of a single feature on the overall estimate
is deduced from its value distribution over the annotated training
set. If there are many examples with high-alcohol accidents,
then this feature will be given a greater weighting than the
years of experience. However, if there are more accidents of
inexperienced drivers in the training set than alcohol-related
issues, the classifier will rank the experience feature higher.

The classifier works on a matrix, organized with one column
per feature and one row per instance. Table I shows some sample
data. An additional column indicates the class and is only filled
in for the training data. In our example, this column would
indicate whether or not an accident took place. The first five
rows are training data, the last two rows are test records to be
classified.

In this example, a simple rule-based classifier would deduce
that all reports with alcohol levels larger than 0.2 also contained
accidents, so C2 would be classified as accident:yes. However,
since the converse does not hold, further reasoning is required
for C1. Taking the experience level into account, there are two
records of inexperienced drivers with levels of 0.2 or below
in our test set: one with an accident and one without. In this
case, the classifier would actually pick randomly, since both
accident:yes and accident:no are equally likely. A probabilistic
classifier could also choose accident:yes because accidents are
more likely for inexperienced drivers (two out of three with five
years of experience or less in this test data set) in general. This
demonstrates that results can differ depending on the choice
of the classifier.

As a concrete classifier, we use support vector machines
(SVM), a margin classifier, more precisely the SMO [25]
implementation in Weka [26] with a linear kernel. We optimize
for minimal error. The basic principle of an SVM is to represent
training examples of two classes (e.g., “sink” and “not a
sink”) using vectors in a vector space. The algorithm then
tries to find a hyper-plane separating the examples. For a new,
previously unseen test example, to determine its estimated

4

4 6 8 10 12

0

0.2

0.4

0.6
T1

T2

T3

T4

T5

C1

C2

Years of Experience

A
lc

oh
ol

Le
ve

l

Accident
No Accident
To Be Classified

Fig. 1. SMO Classification Example

class, it checks on which side of the hyper-plane it belongs. In
general, problems can be transformed into higher-dimensional
spaces if the data is not linearly separable, but this did not
prove necessary for any one of our classification problems.

Figure 1 shows an SMO diagram for Table I. We have not
included the phone number feature since it is unrelated to the
probability of an accident. The red line shows a projection
of the hyper-plane. In this example, the SMO detects that all
points above the line are positive examples (i.e., records of
accidents), and all points below are negative ones (i.e., no
accident). C2 would thus be classified as an accident, just as
with the simple rule-based classifier above, but C1 would now
definitely be classified as non-accident because it lies below
the line.

SMO is only capable of separating two classes. However, in
SUSI, we have three classes in the first problem (source/sink/nei-
ther) and a lot more in the second one (the categorization).
We solve the problem with a one-against-all classification,
a standard technique in which every possible class is tested
against all other classes packed together to find out whether
the instance corresponds to the current single class or whether
the classification must proceed recursively to decide between
the remaining classes.

We also evaluated other classification algorithms based on
different principles, for instance Weka’s J48 rule learner, which
implements a pruned C4.5 decision tree [27]. The main problem
with a rule set is its lack of flexibility. While many source-
method names, for instance, start with get, this is not the case
for all source methods. On the other hand, not all methods that
start with get are actually sources. Since this rule of thumb is
correct most of the time, however, a rule tree would usually
include a rule mapping all get methods to sources and only
perform further checks if the method name has a different
prefix. With an SVM, such aspects that are usually correct, but
not always, can be expressed more appropriately by shifting
the hyper-plane used for separation.

Probabilistic learning algorithms like Naive Bayes [28]
produced very imprecise results. This happens because our
classification problem is almost rule-based, i.e., has an almost

Feature
Database

train classifier

Classifier

Sources Sinks

Input

Classification

Output

1st run (classification) 2nd run (categorization)

Training
Set

Test
Set

Training Matrix Testing Matrix
Preparation

Fig. 2. Machine learning approach

fixed semantics. The variance is simply not large enough to
justify the imprecision introduced by probabilistic approaches
which are rather susceptible to outliers.

B. Design of the Approach

Figure 2 shows SUSI’s overall architecture. It includes four
different layers: input, preparation, classification, and output.
The square elements denote objects, while the round elements
represent actions. We run two rounds: One for classifying
methods as sources, sinks, or neither, and one for categorizing
them. Solid lines denote the data flow within SUSI. The two
dashed lines denote the initialization of the second round.
The general process is the same for both rounds. For the
categorization, SUSI just takes the outputs of the classification
as test data inputs. More precisely, SUSI categorizes separately
those methods it has previously identified as sources or sinks
and disregards those it classified as neither.

SUSI starts with the input data for the first classification
problem, i.e., for identifying sources and sinks. This data
consists of the Android API methods to analyze. These methods
can be separated into a set of training data (hand-annotated
training examples) and a set of test data for which we do not
know whether a method is a source, sink or neither. The set
of training data is much smaller than the set of unknown test
data, in our case only roughly 0.7% for the classification and
about 0.4% for the categorization. Beside the API methods
we need a database of features, both for the classification and
categorization. The features are different for classification and
categorization. See Section IV-C for details.

As described in in Section IV-A, a supervised learning
approach requires two matrices. The first one is built by
evaluating the features on the set of hand-annotated training
data, the second one by applying the same feature set as well
to the test data yet to be classified (preparation step). SUSI
then uses the first matrix to train the classifier (classification
step), which afterwards decides on the records in the test matrix
(output step).

5

While there are a few methods in the Android library that
are both sources and sinks (such as some of the transceive
methods of the NFC implementation), their scarcity stops
us from establishing a fourth category “both”, even though
in theory such a category might sound sensible. Classifying
a sufficient amount of training data for a machine learning
approach would be equal to classifying almost all transceiver
methods. Respectively, we treat such methods as either sources
or sinks. This decision affects both the training data and the
classifier’s results.

In a second step, SUSI categorizes the sources and sinks
set. In this step, SUSI separately considers the sources and
sinks determined in the first step as new test sets (dashed
arrows). Note that methods classified as neither are ignored at
this point. SUSI also requires new training data for the second
classification problem. To provide such data, we hand-annotated
a subset of the Android sources and sinks with semantic
categories related to the mobile domain. We furthermore chose
different kinds of features for the feature database as explained
in Section IV-C. We chose 12 different kinds of source-
categories that we identified as being sufficiently meaningful for
the different Android API methods: account, bluetooth, browser,
calendar, contact, database, file, network, nfc, settings, sync,
and unique-identifier. For the sinks, we defined 15 different
kinds of categories: account, audio, browser, calendar, contact,
file, log, network, nfc, phone-connection, phone-state, sms/mms,
sync, system, and voip. For the purpose of compiling our
training data, if a method is not relevant or does not fit in
any of the identified categories, it is annotated as belonging
to the special no-category class. If one wants to add a new
category, one simply has to create new features for the feature
database and randomly annotate the corresponding API methods.
Our approach then automatically uses the new feature for
the generation of the categorized sources and/or sinks. The
subsequent steps as shown in Figure 2 are equal to the ones
for the classification. The final output consists of two files, one
for the categorized sources and one for the categorized sinks.

Note that some of these categories refer to data being
managed by applications, not the operating system itself. One
example are contacts: The system provides a data interface to
make sure that there is a uniform way of obtaining contacts
for all applications that require them, e.g., travel planners, or
calendars sending invitations. Additionally, Android contains
system applications providing default implementations of these
interfaces, so there are methods which are available on every
Android phone and which can be called in order to obtain
private data. Therefore, we include categories for such methods,
despite them not being part of the operating system as such.

Since we have different categories for sources and sinks,
their categorization comprises two distinct classification prob-
lems: one for sources and one for sinks. Though they share
the same feature set (see Section IV-C), both are solved
independently of each other. Thus, quite naturally, the resulting
correlations might differ significantly, as some features might
be more relevant to distinguish different kinds of sources than
different kinds of sinks, and vice versa.

C. Feature Database

We used a set of 144 syntactic and semantic features for
classifying the Android methods. A single feature alone does

not usually give enough information to decide whether a given
Android method is a source, a sink or neither. However, all
features in combination can be used to train a highly precise
classifier. The same holds for the second classification problem
in which we need to find categories for our sources and sinks.

One main reason for why these features work is that many
developers of the Android framework do in fact follow a
certain regular coding style, or duplicate parts of one method’s
implementation when implementing another. These social
aspects of software development lead to a certain degree of
regularity and redundancy in the code base, which a machine-
learning approach such as ours can discover and take advantage
of.

Though we have a large number of distinct features, most
of them are instances of the same parameterized class. For
example, the “method name starts with” feature class has
instances “method name starts with get”, “method name starts
with put”, and so on. For identifying sources and sinks, SUSI
uses the following classes of features:

• Method Name: The method name contains or starts
with a specific string, e.g., “get”, which can be an
indicator for a source.

• Method has Parameters: The method has at least
one parameter. Sinks usually have parameters, while
sources might not.

• Return Value Type: The method’s return value is of
a specific type. A returned cursor, for instance, hints
at a source, while a method with a void return value
is rarely ever a source.

• Parameter Type: The method receives a parameter
of a specific type. This can either be a concrete type
or all types from a specific package. For instance, a
parameter of type java.io.* hints at a source or a sink.

• Parameter is an Interface: The method receives a
parameter of an interface type. This is often the case
with methods that register callbacks. Note that such
methods are neither sources nor sinks according to
our definition, since they do not perform any actual
operation on the data itself.

• Method Modifiers: The method is static/native/etc.
Static methods are usually neither sources nor sinks,
with some exceptions. Additionally, sources and sinks
are usually public.

• Class Modifiers: The method is declared in a protect-
ed/abstract etc. class. Methods in protected classes are
usually neither sources nor sinks.

• Class Name: The method is declared in a class whose
name contains a specific string, e.g., Manager.

• Dataflow to Return: The method invokes another
method starting with a specific string (e.g. read in the
case of a source). The result of this call flows into the
original method’s return value. This hints at a source.

• Dataflow to Sink: One of the method’s parameter
flows into a call to some other method starting with

6

a specific string, e.g., update, which would suggest a
sink.

• Data Flow to Abstract Sink: One of the method’s
parameter flows into a call to an abstract method. This
is a hint for sink as many command interfaces on the
hardware abstraction layers are built on top of abstract
classes.

• Required Permission: Invoking the method requires a
specific permission. There is one such feature for every
permission declared in the Android API. We were only
able to use this feature on the approximately 12,600
methods for which we had permission annotations from
the PScout [22] list.

Some features, in particular “Method Name”, might sound
naı̈ve at first, but it turns out that such syntactic features are
among the ones that correlate the strongest with sources and
sinks. Of course, their effect is only positive in combination
with other features; one could not, for instance, detect sources
by only looking at prefixes of method names.

All our features can assume one of three values: “True”
means that the feature applies, i.e., a method does indeed start
with a specific string. “False” means that the feature does not
apply, i.e., the method name does not have the respective prefix.
“Not Supported” means that the feature cannot be decided for
this specific method. The latter can happen if, for example, the
feature needs to inspect the method body, but no implementation
is available in the current Android version’s platform JAR file.

The details of our dataflow features are explained in
Section IV-D. SUSI’s features for categorizing sources and
sinks can be grouped as follows:

• Class Name: The method is declared in a class whose
name contains a specific string, e.g., Contacts.

• Method Invocation: The method directly invokes
another method whose fully-qualified name starts with
a specific string, e.g., com.android.internal.telephony
for Android’s internal phone classes. This feature does
not consider the transitive closure of calls starting at
the current method.

• Body Contents: The method body contains a reference
to an object of a specific type, e.g. android.telephony
.SmsManager for the SMS MMS category).

• Parameter Type: The method receives a parameter of
a specific type (similar feature as for the classification
problem with different instances).

• Return Value Type: The method’s return value is
of a specific type, e.g., android.location.Country for
regional data.

Note that we do not use permission-based features for the
categorization, since many methods require permissions for
internal functionality not directly related to their respective
category. For instance, a backup method requests many per-
missions, but does not necessarily give out all of the data it
accesses using these permissions if it only creates an internal
save point that can be restored later. The permission list alone
thus does not directly relate to the method’s category.

It becomes apparent that semantic features are much more
suitable for identifying sources and sinks than for categorizing
them. On the source-code level, Android’s sources and sinks
share common patterns which can be exploited by our dataflow
feature. For finding categories, however, there seems to be
no such technical distinction and SUSI must rather rely on
syntactical features such as class and method names.

D. Dataflow Features

As we found through empirical evaluation, considering a
method’s signature and the syntax of its method body alone
is insufficient to reliably detect sources and sinks. With such
features alone we were unable to obtain a precision or recall
higher than about 60%. It greatly helps to take the data flows
inside the method into consideration as well. Recall from our
definitions in Section III that sources must read from and sinks
must write to resources.

To analyze data flows, we originally experimented with a
highly precise (context-, flow- and object-sensitive) data-flow
analysis based on Soot [29], but found out that this did not easily
scale to the approximately 110,000 methods of the Android
SDK. Computing precise call graphs and alias information
simply took too long to be practical. We thus changed to
a much more coarse-grained intra-procedural approximation
(also based on Soot1) which runs much faster whilst remaining
sufficiently precise for the requirements of our classification.
Keep in mind that the result of the data-flow analysis is only
used as one feature out of many. Thus, it suffices if the analysis
is somewhat precise, i.e., produces correct results with just a
high likelihood.

Our data-flow features are all based on taint tracking inside
the Android API method m to be classified. Depending on the
concrete feature, we support the following analysis modes:

• Treat all parameters of m as sources and calls to
methods starting with a specific string as sinks. This
can hint at m being a sink.

• Treat all parameters of m as sources and calls to
abstract methods as sinks. This can hint at m being a
sink.

• Treat calls to specific methods as sources (e.g. ones that
start with ”read”, ”get”, etc.) and the return value of
m as the only sink. This can hint at m being a source.
Optionally, parameter objects can also be treated as
sinks.

Based on this initialization, we then run a fixed-point
iteration with the following rules:

• If the right-hand side of an assignment is tainted, the
left-hand side is also tainted.

• If at least one parameter of a well-known transformer
method is tainted, its result value is tainted as well.

• If at least one parameter of a well-known writer method
is tainted, the object on which it is invoked is tainted
as well.

• If a method is invoked on a tainted object, its return
value is tainted as well.

1We take the android.jar built from the OS and the system applications on
a real phone (Galaxy Nexus running Android 4.2) as input for Soot.

7

• If a tainted value is written into a field, the whole base
object becomes tainted. For arrays, the whole array
becomes tainted respectively.

When the first source-to-sink connection is found, the fixed-
point iteration is aborted and the dataflow feature returns “True”
for the respective method to which it was applied. If the
dataflow analysis completes without finding any source-to-sink
connections, the feature returns “False”.

While such an analysis would be too imprecise for a general-
purpose taint analysis, it is very fast and usually reaches its
fixed point in less than three iterations over the method body.
Since the analysis is intra-procedural, its runtime is roughly
bounded by the number of statements in the respective method.

Instead of using fixed initialization rules as explained above,
one can also first run the machine learning algorithm wihout
the data flow feature enabled, and then initialize the data flow
feature with the results of this preliminary round. This method
can be applied incrementally until a fixed point is reached. We
plan to investigate the tradeoffs involved with this method in
the future.

E. Implicit Annotations for Virtual Dispatch

SUSI’s implementation is based on Weka, a generic
machine-learning tool, which has no knowledge about the
language semantics of Java. However, we found that when
annotating methods to obtain training data it would be beneficial
to propagate method annotations up and down the class
hierarchy in cases in which methods are inherited. Such a
propagation models the semantics of virtual dispatch in Java.
We thus extended SUSI such that if encountering an annotated
method A.foo, the annotation is implicitly carried over also to
B.foo in case B is a subclass of A that does not override foo
itself, thus inheriting the definition in A. Similarly, if B.foo
were annotated, but not A.foo, we would copy the annotation
in the other direction.

For our subset of 12,600 methods with permission anno-
tations taken from the PScout list [22], SUSI was able to
automatically create implicit annotations for 305 methods. After
loading the remaining methods of the Android API to get our
full list of 110,000 methods, SUSI was able to automatically
annotate another 14 methods.

V. EVALUATION

Our evaluation considers the following research questions:

RQ1 Can SUSI be used to effectively find sources and
sinks with high accuracy?

RQ2 Can SUSI be used to categorize the found sources
and sinks with high accuracy?

RQ3 Which kind of sources and sinks are used in
malware apps?

RQ4 How do the sources and sinks change during
different Android versions? Can SUSI be used
to identify sources and sinks in new, previously
unseen Android versions?

RQ5 How complete are the lists of sources and sinks
distributed with existing Android analysis tools
and how do they relate to SUSI’s outputs?

The following sections address these questions in order.

A. RQ1: Sources and Sinks

To assess the precision and recall of SUSI on our training
data, we applied a ten fold cross validation and report the
results in Section V-A1. Since the test data used for the
cross validation is picked randomly, the results of the cross
validation usually carry over to the complete classification
performance on unknown training sets if the test set was
sufficiently representative. To confirm that this actually holds,
we manually evaluated the source and sink lists SUSI generated
for the Google Mirror and Google Cast APIs and report the
results in Section V-A2. The Google Cast API is used for
the communication between an Android-based smartphone and
Google’s Chromecast device [20]. The Google Mirror API
links an Android device to Google Glass [19]. We chose these
two APIs to show that SUSI is actually able to efficiently
handle even previously unseen Android or Java APIs. Note that
neither API is included in the base Android system. Secondly,
both APIs include methods that handle personal data, such as
location or network information. To the best of our knowledge
no taint analysis tool has considered these APIs yet. Thirdly,
the APIs are of manageable size, making a complete manual
validation of SUSI’s results practical.

1) Cross Validation: We envision SUSI to be used as an
automated approach in which experts like ourselves hand-
annotate parts of the Android API and then use SUSI to
automatically extrapolate these annotations to larger parts of
the API. Of course, such an approach only makes sense if the
extrapolation is meaningful, which is equivalent to delivering
a high precision and recall. Measuring precision and recall is
hard in this setting, as one has no gold standard to work with:
there is no correctly pre-annotated Android API with which one
could compare SUSI’s results. Thus, as a best-effort solution
we hand-annotated a subset of the Android API ourselves
(details below) and then used these methods both as training
and test data in a ten-fold cross validation [30] which is the
standard approach for evaluating machine-learning techniques.
It works by randomly dividing all training data into 10 equally-
sized buckets, training the classifier on nine of them, and then
classifying the remaining bucket. The process is repeated 10
times, omitting another bucket from training each time. In the
end, SUSI reports the average precision and recall. For each
class c, precision is the fraction of correctly classified elements
in c within all elements that were assigned to c. If precision
is low it means that c was assigned many incorrect elements.
Recall is defined as fraction of correctly classified elements in
c within all elements that should have been assigned to c. If
recall is low it means that c misses many elements.

Table II shows the results of this ten-fold cross validation
over our training set of 779 methods randomly picked from the
PScout subset [22] of about 12,600 methods. The training set
contains 13% source-, 22% sink- and 65% neither-annotations.
We started with this subset as it provided mappings between
methods and required permissions and thus enabled us to
also use Android permissions as features for our classifier.
The averages we report in our tables are taken from Weka’s
output. They are weighted with the number of examples in
the respective class. Also note that, since our training set is
randomly picked, the precision and recall should carry over to
the entire Android API with high probability.

Our final results for the source/sink classification had to be

8

Category Recall [%] Precision [%]
Sources 92.3 89.7
Sinks 82.2 87.2
Neither 94.8 93.7
Weighted Average 91.9 91.9
TABLE II. SOURCE/SINK CROSS VALIDATION PSCOUT

computed without any permission features, though, since we
do not have permission associations for the complete Android
API2. For assessing the impact of the permission feature, we ran
the PScout subset again with the permission feature disabled,
yielding the results shown in Table III. Interestingly, the average
precision and recall are almost the same with the permission
feature and without. The impact of the permission feature is
apparently low enough for not having to worry about the lack of
permission information when analyzing the complete Android
4.2 API. Conversely, the results also indicate that permissions
alone are not a good indicator for identifying sources or sinks.

Category Recall [%] Precision [%]
Sources 90.5 91.3
Sinks 86.0 88.8
Neither 95.2 94.4
Weighted Average 92.8 92.8

TABLE III. SOURCE/SINK CROSS VALIDATION PSCOUT WITHOUT
PERMISSION FEATURE

We evaluated SUSI on an extended test set obtained
using the implicit-annotation technique explained in section
Section IV-E. With this technique, classifications for a method
are copied to all other methods that would lead to the same
code being executed according to the semantics of virtual
method dispatch in Java. SUSI again shows an average recall
and precision of more than 92%, see Table IV. The results are
not exactly equal because some of our features consider not
just a method’s definition but also its container, e.g., the name
of the class the method resides in. The fact that SUSI obtains
similar results despite these differences is a good indicator of
inherent consistency in the results as it shows that semantically
equal methods (i.e., ones that have not been overwritten and
are thus exposed as-is) are also recognized equally.

Category Recall [%] Precision [%]
Sources 89.6 88.0
Sinks 84.7 90.8
Neither 95.2 93.6
Weighted Average 92.3 92.3

TABLE IV. SOURCE/SINK CROSS VALIDATION WITH IMPLICIT
ANNOTATIONS

The classifier takes about 26 minutes to classify the
complete Android 4.2 API on a MacBook Pro computer running
MacOS X version 10.7.4 on a 2.5 GHz Intel Core i5 processor
and 8 GB of memory.

As explained in Section IV-A, we experimented with various
classification algorithms, and found that SMO performed best.
In Table V, we compare the weighted average precision for

2The available permission lists including PScout are incomplete since they
exclude permissions enforced through calls to native code.

Category Recall [%] Precision [%]
ACCOUNT 100.0 100.0
BLUETOOTH 83.3 100.0
BROWSER 83.0 100.0
CALENDAR 100.0 100.0
CONTACT 95.0 100.0
DATABASE 50.0 100.0
FILE 75.0 100.0
NETWORK 83.3 83.3
NFC 100.0 100.0
SETTINGS 75.0 85.7
SYNC 100.0 100.0
UNIQUE IDENTIFIER 88.9 100.0
NO CATEGORY 95.7 62.9
Weighted Average 88.7 89.6

TABLE VI. SOURCE CATEGORY CROSS VALIDATION

SMO, J48, and Naive Bayes, the most well-known represen-
tatives of their respective families of classifiers (margin, rule-
based and stochastic classifier, respectively). The results were
computed on the extended training set obtained through the
implicit-annotation technique. The permission feature was not
used.

2) Validating SUSI’s Source/Sink Output: The output of
SUSI’s first phase is a list of sources and a separate list of
sinks. In this section we verify that the precision and recall
of the cross validation in Section V-A1 is representative for
SUSI’s actual output. Since manually verifying the outputs for
the complete Android API is infeasible, we concentrate on two
APIs: The Google Cast API and the Google Mirror API.

Our manual validation of the Google Cast API results in
a precision of 96% and a recall of 99% for the sources and
a precision of 100% and recall of 88% for the sinks. The
somewhat lower recall for the sinks is due the fact this API
has only 18 sinks, out of which 16 were detected. The Google
Mirror API yields a precision of 100% and a recall of 97% for
the sources and a precision of 100% and recall of 94% for the
sinks. In result it seems that one can be rather optimistic: at
least for these APIs the precision and recall are even higher than
the ones obtained through cross validation (cf. Section V-A1).

B. RQ2: Categories for Sources and Sinks

For evaluating the categorization of sources and sinks, we
used similar techniques like the ones used for assessing the
identification of sources and sinks in Section V-A. However,
recall that only methods identified as sources or sinks in the
first step get categorized by SUSI.

1) Cross Validation: We use ten-fold cross validation on
our training data to assess the quality of our categorization. For
this task, we do not use the permission feature, but do apply
the implicit annotation technique from Section IV-E. Table VI
shows the cross-validation results for categorizing the sources,
while Table VII contains those for the sinks.

While SUSI achieves a very high precision and recall for
most of the categories, the results for a few categories (e.g.
Bluetooth) are considerably worse. These categories are rather
small, i.e., randomly picking training methods from the overall

9

Classifier Avg. Recall Avg. Precision

Class. [%] Source Cat. [%] Sink Cat. [%] Class. [%] Source Cat. [%] Sink Cat. [%]
Margin (SMO) 92.3 88.8 88.4 92.3 89.7 90.4
Rule-Based (J48) 89.5 81.0 80.2 89.4 81.6 77.4
Probabilistic (Naive Bayes) 86.9 61.5 46.6 87.1 61.7 36.1

TABLE V. SOURCE/SINK CLASSIFIER COMPARISON

Category Recall [%] Precision [%]
ACCOUNT 85.7 100.0
AUDIO 100.0 100.0
BROWSER 50.0 100.0
CALENDAR 100.0 100.0
CONTACT 91.7 100.0
FILE 60.0 100.0
LOG 100.0 71.4
NETWORK 72.7 88.9
NFC 100.0 100.0
PHONE CONNECTION 75.0 85.7
PHONE STATE 100.0 100.0
SMS MMS 96.3 100.0
SYNC 80.0 100.0
SYSTEM 80.6 89.3
VOIP 66.7 100.0
NO CATEGORY 97.1 70.2
Weighted Average 85.7 88.0

TABLE VII. SINK CATEGORY CROSS VALIDATION

set of 110,000 Android 4.2 API methods yields only few entries
belonging to such categories. Respectively, there is not much
material to train the classifier on. Annotating more data (recall
that we only have category annotations for 0.4% of all methods)
would certainly improve the situation.

Categories can be ambiguous in some cases. A method to
set the MSIDN (the phone number to be sent out when placing
a call) could for instance be seen as a system setting (category
SETTINGS), but could also be considered a UNIQUE ID.
In such cases, we checked the classifier’s result and updated
our training data if a misclassification was to due semantic
ambiguity, i.e., the result would be right in both categories.
Categories that ended up empty or almost empty due to such
shifts were removed.

Categorizing the sources took about 6 minutes on our test
computer. The sinks were classified in about 3 minutes.

2) Validating SUSI’s Categorized Source/Sink Output:
Manually evaluating the categorized sources and sinks for
the Google Cast and Google Mirror APIs shows a precision
and recall of almost 100% . The precision and recall for the
Google Cast API are 100% for both sources and sinks. For
sources in the Google Mirror API the precision is 98% and the
recall is 100%. For sinks, both precision and recall are 100%.
This shows that the results from Section V-A2 also carry over
to the categorization.

C. RQ3: Sources and Sinks in Malware Apps

It is an important question to ask whether existing malware
apps already use sources and/or sinks discovered by SUSI but

not currently recognized by state-of-the-art program-analysis
tools. To address this question, we selected about 11,000
malware apps from Virus Share [21] and analyzed which kinds
of sources and sinks these malware samples use. Unsurprisingly,
as already found by different researchers [4], [31], [32]
current malware is leaking privacy information such as location
information or the address book.

Interestingly, however, these samples do not only use
the standard source and sink methods commonly known to
literature, but also such ones not detected by popular program
analysis tools (see Section V-E). In total, the samples revealed
usage of more than 900 distinct source methods, all of which
can be used to obtain privacy-sensitive information. Further-
more, the samples leak data through more than 500 distinct
sink methods. The getLac() and getCid() methods used
in our motivating example (see Section II) are two of the most
commonly used methods in the LOCATION INFORMATION
category. This is partly related to the fact that both are
called in the Google Maps Geolocation API [33], which is
used in the respective malware samples. Another example
is the getMacAddress() method in the WifiInfo class
that SUSI categorizes as NETWORK INFORMATION. This
method is among the most often called methods in this category
and is not treated as a source by many tools either. By manual
analysis of different malware samples, we found that these
source methods are not just called, but their privacy-sensitive
return values are indeed leaked to a remote web server.

Since approaches such as LeakMiner [3] create their
source and sink lists from a permission map, we also ana-
lyzed whether malware samples exploit source methods that
do not need a permission. Examples of such methods are
getSimOperatorName() in the TelephonyManager
class (returns the service provider name), getCountry()
in the Locale class, and getSimCountryIso in the
TelephonyManager class (both return the country code),
all of which are correctly classified by SUSI. By manually
analyzing the malware samples, we found that these methods
are used frequently and that this data is actually leaked to web
servers. This confirms that approaches which solely rely on
the permission map for inferring sources and sinks miss data
leaks in real-world malware samples.

SUSI’s categorized output of sources and sinks for Android
4.2 (see Section V-A1) includes a lot of methods which return
privacy-sensitive information, such as the IMEI. SUSI found
that there is not only one way of accessing such information (e.g.
via getDeviceID for the IMEI). Instead, there are plenty of
wrapper methods in internal Android classes or pre-installed
apps that return the same value. One example would be the
internal GSMPhone class or the pre-installed email-application
which contains a getDeviceId() method for returning the
IMEI. These methods can only be called using explicit class

10

4 6 8 10 12 14 16 18

0

100

200

300

400

Android version

#
A

m
ou

nt
of

so
ur

ce
m

et
ho

ds

Bluetooth
Location
NFC

Fig. 3. Amount of source methods for bluetooth, location and NFC information
in different Android versions

loading and reflection, but still work on an unmodified stock
Android phone. We analyzed the malware samples for this
obfuscation technique but found no sample that actually tries
to obtain personal data through such methods. Furthermore, we
did also not find methods for sinks which are not so well known
as shown in the motivating example (cf. Section II). However,
we expect such advanced techniques to become more prevalent
when security tools evolve, for instance by incorporating the
results of this paper, and thus more effectively detect the easier
cases.

D. RQ4: Changes during Android Versions

To assess how well SUSI can deal with previously unseen
versions of the Android operating system, we compared the
categorized source and sink lists generated for a selection
of different Android releases. Figure 3 shows the number
of sources found for API versions 4 (Android 1.6) to 18
(Android 4.3). We here focus on the bluetooth, location, and
NFC categories, as they nicely demonstrate how Android was
extended over the various versions. From the figure one can
clearly deduce that new sources are introduced with every
version. This is yet another motivation to use a tool-supported
approach like SUSI’s to discover sources and sinks.

The distribution of the number of source methods for
location information shows three different jumps, namely
between versions 8 and 9, between 16 and 17, and between 17
and 18. This is due to major changes in the Android location
APIs [34]–[36]. The same holds for the jumps in the number
of bluetooth information sources between versions 17 and
18, where new source-bearing classes where added to the
android.bluetooth API. One also clearly sees that NFC
was added to Android in API version 9 [34]. There are some
cases in which the number of sources is decreased from one
version to the next, e.g. between versions 4, 5, 6, 7 and 8
for location. This is related to minor changes in the API. The
cross-validation results on the different Android versions were
effectively the same as reported for version 4.2 in Sections
V-A2 and V-B.

Our results show that SUSI detects the changes in different
API versions very well. It reliably finds new sources and sinks
that were added to the Android platform and thus provides a
much higher level of coverage than available lists assembled by
hand. Note that for completely new, previously unanticipated
APIs that should yield a new category, SUSI obviously cannot
anticipate this category either. In such cases one can easily
open a new category, though, by annotating by hand a few
examples that fall into this category. This is exactly how we
formed categories in SUSI’s training set.

E. RQ5: Existing lists of sources & sinks

In this section we assess to what extent current static [2]–[7],
[9], [12], [13] and dynamic [14], [15] code analysis approaches
could benefit from our categorized sources/sinks list. As our
results show, SUSI finds all the sources and sinks these previous
approaches mention, plus many others which the community
was previously unaware of, including some of which are actually
being used by malware. Most of the code-analysis tools were
not publicly available, precluding one from directly comparing
their source and sink lists to SUSI’s [2], [3], [6], [7], [9], [15].
For those approaches we thus estimated the lists from their
research papers.

Mann et al. [9] mention a few concrete source and sink
methods. This hand-picked list is only a fraction of the one
produced by SUSI. The taint-tracking tool CHEX [2] uses
a list of 180 semi-automatically collected sources and sinks.
Unfortunately, this list is not publicly available and the paper
does not explain how the semi-automatic approach works. The
authors do mention that their list is based on the Android
permission map by Porter Felt et al. [37] but also argue
that this list is insufficient. LeakMiner [3] uses the Android
permission map to identify sources and sinks. From this map
it filters out all methods an application is not allowed to use.
However, this leaves open how the tool actually identifies
the relevant sources and sinks in the remaining method set.
Furthermore, if all methods not requiring a permission are
filtered, some sensitive data might be overlooked as we have
shown. ScanDal [6] and AndroidLeaks [7] do not provide
concrete lists of source and sink methods. The publications only
provide categories (e.g., location information, phone identifier,
internet, etc.), which are also covered by our automatic
categorization. Aurasium [15] shifts the problem of identifying
sources and sinks by intercepting calls at the system level, i.e.,
between the native Android libraries and the standard Linux
system libraries. While this reduces the number of methods to
consider, it makes it harder to reconstruct higher-level semantics,
and is failure-prone in case of Android version upgrades. Due
to this design, the sources and sinks considered by Aurasium
are incomparable to SUSI’s results.

Three different taint-analysis approaches were publicly
available to us: The dynamic taint analysis tool TaintDroid [14],
an approach based on DeD by Enck et al. [4], and SCan-
Droid [38]. TaintDroid does not specify the high-level API calls
as sources or sinks. Instead, it uses the smaller set of lower-level
internal system methods called by those, an approach somewhat
comparable to Aurasium. However, this again raises the problem
of reconstructing the higher-level context from lower-level
calls. The type of data leaked can thus be imprecise. The DeD
approach works by decompiling the Android bytecode into Java

11

bytecode which is then used as input for the commercial Fortify
SCA [12] static code-analysis suite. Fortify can be configured
with rules for defining sources and sinks. Enck et al. created
such rules and made them publicly available [39]. The list
contains about 100 Android sources and 35 Android sinks, all
of which are also included in SUSI’s source and sink lists. For
SCanDroid, we extracted the source and sink specifications
from the source code (version of April 2013). The resulting
list appears hand-picked and is fully covered by SUSI’s output.

For evaluating the completeness of the source and sink lists
contained in these three tools, we analyzed the most frequently
referenced source and sink methods in the malware samples
from Section V-C. Table VIII shows that the three tools treat
only a few of the methods as a sources or sinks respectively.
To assess TaintDroid, we created a separate app for every
source and sink in the table. For a source, the respective data is
obtained and then leaked via the network (note that the network
connection is treated as a sink by TaintDroid). For the sinks we
used the well-known getLongitude() method as a source
(which is treated as a source by TaintDroid) and also created
one app per sink. We ran all of our apps on a phone with
Cyanogenmod 10 [40] containing TaintDroid for Android 4.1.
The results of our evaluation are shown in Table VIII.

Table VIII shows that the source and sink lists of the three
tools are missing some important methods such as one returning
the Wifi MAC-address which enables a phone to be uniquely
identified. All three tools also miss the method for obtaining
the list of accounts (mail, Exchange, social networks, etc.)
registered in the phone.

We also found that TaintDroid over-approximates the list
of sources and sinks, leading to over-tracking, for instance
by tainting the result value of all methods in the Telephony-
Manager class, including the result of toString(), which is
just the Java object ID (default implementation inherited from
java.lang.Object). We thus argue that automatically inferring
higher-level API methods as provided by our approach would
improve tools like TaintDroid as this would allow one to more
easily categorize and differentiate various types of sources and
sinks.

In total, the results of our evaluation show that obtaining
a complete list of sensitive sources and sinks is difficult and
SUSI’s automatically generated list of categorized sources and
sinks can be used to improve this situation.

We also examined well-known commercial tools for static
code analysis such as Fortify SCA [12] by HP and IBM
AppScan Source [13]. As we found, by default these tools
provide lists that are rather incomplete. However, both provide
an easy way to integrate new sources and sinks to be considered
by the analysis. This shows that these tools shift the problem
of defining sources and sinks to the analyst, who still needs to
obtain such a list from somewhere. SUSI can help to provide
more comprehensive defaults.

VI. SOURCES NOT CONSIDERED BY SUSI

SUSI works well when it comes to classifying sources
and sinks based on their structural similarity to other sources,
respectively sinks. In practice, this seems to work well for
sources that return data from method calls and sinks that obtain

1 NmeaListener mylistener = new

NmeaListener() {
2 public void onNmeaReceived(long arg0,

String nmea) {
3 if (nmea.startsWith("$GPGLL")) {
4 String[] data = nmea.split(",");
5 Log.d("Loc", "Longitude: "
6 + data[3]} + data[4]
7 + ", Latitude: " + data[1] +

data[2]);
8 }
9 }

10 };
11 LocationManager lm = (LocationManager)

this.getSystemService(LOCATION_SERVICE);
12 lm.addNmeaListener(mylistener);
13 // Just to start GPS, no data from this

callback is ever used
14 lm.requestLocationUpdates

(LocationManager.GPS_PROVIDER, 0, 0,
new LocationListener() { ... });

Listing 2. Android Location via NMEA Data

data through parameters. Android offers other less prevalent
sources and sinks, however, which cannot be easily classified
through machine learning which we will show in this section.

Applications can implement callback methods and receive
data from the operating system through the parameters of these
methods. This is commonly used to, e.g., obtain the location in
an Android application. In an attempt to avoid detection, the
app could however register the callback with onNmeaReceived
instead of the well-known onLocationChanged method and
then parse the raw GPS data (the NMEA records) as shown in
Listing 2 to get the same data. This shows, that a complete list
of callback methods is required for finding all data leaks. SUSI
cannot currently find such callbacks due to our definition of
sources. The number of callback interfaces in the Android
operating system is however sufficiently small for manual
inspection. All callback handlers are defined using a small set
of well-known and documented interfaces. Static analysis thus
aid their detection by finding methods taking these interfaces as
parameters. This approach scales well and does not introduce
an unreasonable number of false positives as shown in [41].

Android defines layout controls through XML files. In the
source code, they can be accessed by passing the respective
identifier to the system’s findViewById function. Depending on
the ID that is passed, this function can return, for instance, a
reference to a password field or to a button with a constant
label. Thus, depending on the ID, the method can or can not
be a source. Since calls to this function are present in almost
every Android app, a precise analysis must model the Android
resource system. If UI sources are restricted to password fields
(the default in FlowDroid [41]), the analysis scales well in
terms of precision. Regarding every input field as a source,
on the other hand, can lead to a substantial number of false
positives. A more fine-grained tradeoff might be possible by
exploiting knowledge about the app’s expected behavior.

VII. RELATED WORK

Our work was originally inspired by Merlin [42], a proba-
bilistic appraoch that uses a potentially incomplete specification

12

Method Description TaintDroid SCanDroid DeD

android.bluetooth.BluetoothAdapter.getAddress() Returns the hardware address of
the local Bluetooth adapter.

no no no

android.net.wifi.WifiInfo.getMacAddress() Returns the MAC address of the
Wifi interface.

no no no

java.util.Locale.getCountry() Returns the country code for the
phone’s locale.

no no no

android.net.wifi.WifiInfo.getSSID() Returns the SSID of the current
802.11 network.

no no no

android.telephony.gsm.GsmCellLocation.getCid() Returns the GSM cell id. no no no
android.telephony.gsm.GsmCellLocation.getLac() Returns the GSM location area

code.
no no no

android.location.Location.getLongitude() Returns the longitude in degrees. yes yes yes
android.location.Location.getLatitude() Returns the latitude in degrees. yes yes yes
android.accounts.AccountManager.getAccounts() Returns all accounts of any type

registered on the device as a list.
no no no

java.util.Calendar.getTimeZone() Returns the time zone. no no no
android.telephony.TelephonyManager.getDeviceId() Returns the unique device ID. yes no yes
android.telephony.TelephonyManager.getSubscriberId() Returns the unique subscriber ID. yes no yes
android.telephony.TelephonyManager.getLine1Number() Returns the phone number of the

device.
yes no yes

android.telephony.TelephonyManager.getSimSerialNumber() Returns the serial number of the
SIM.

yes no yes

android.provider.Browser.getAllBookmarks() Returns a cursor pointing to a list
of all the bookmarks.

yes no no

android.telephony.SmsManager.sendTextMessage() Send a text based SMS. yes yes yes
android.util.Log.d() Sends a debug log message. no no yes
java.net.URL.openConnection() Returns a URLConnection instance

that represents a connection to the
remote object referred to by the
URL.

yes no no

TABLE VIII. DETECTION OF MOST FREQUENTLY USED SOURCES AND SINKS IN MALWARE SAMPLES [21] IN DIFFERENT ANALYSIS TOOLS

of sources, sinks and sanitizers to produce a more complete
one. Livshits et al.’s approach is based on a propagation
graph, a representation of the interprocedural data flow in
the program where probabilistic inference rules are applied.
Their specifications are based on string-related vulnerabilities,
such as cross-side-scripting vulnerabilities or sql-injections.
SUSI in comparison to Merlin does not need any information
about the client program or application. It instead analyzes the
Android framework code alone to generate a list of categorized
sources and sinks. Furthermore, purely string-based approaches
fit a web application scenario, while SuSi focuses on privacy-
related aspects of Android where data is usually not of type
string (e.g., the longitude and latitude information is of type
double).

Privacy violations through leaks of sensitive data in Android
applications are well known in the community. To protect the
user’s privacy, different kinds of taint-tracking approaches have
been proposed, both static [1]–[13] and dynamic [14], [15], [17].
As already described in Section I, such approaches are only
as good as the source and sink lists they are configured with.
In Section V-E we have shown that all approaches we have
evaluated only consider a few sensitive methods for sources and
sinks. With the support of our categorized list of sources and
sinks, we argue that all of them could be improved to detect
more data leaks that are a security problem for the mobile
device user.

More generic policy enforcement approaches such as
AppGuard [16] also require comprehensive lists of sensitive

information sources. AppGuard, for instance, provides the user
with the ability to revoke permissions after app-installation
time. The implementation inserts additional permission checks
into the application (not the framework). This requires the
identification of relevant methods at the API level for which
such checks are required. Our list of sources and sinks includes
many methods that require permissions and access sensitive
information (e.g., phone identifier, location information, etc.)
but are not considered by AppGuard (evaluated version 1.0.3).

Applying machine learning for security has already been
done for automatic spam detection [43] or anomaly detection
in network traffic [44]). Sarma et al. [45] and Peng et al.
[46] successfully used various machine-learning approaches to
detect malicious Android applications. MAST [47] is a machine-
learning approach based on Multiple Correspondence Analysis
(MCA) for automatically identifying malicious applications
from various Android markets. The tool aims at ranking apps for
inspection by a human security analyst, thereby giving priority
to those applications that look suspicious. For classifying
sources and sinks, we use SMO instead of MCA since MCA
requires a logical ordering of records which is not applicable to
our scenario. SUSI instead works on discrete and independent
classes.

VIII. CONCLUSIONS

In this paper, we have shown that privacy-enhancing
technologies for Android are threatened by the fact that they
come with largely incomplete lists of sources and sinks of

13

private information, thereby allowing attackers to circumvent
their measures with ease. We have presented SUSI, a novel
automated machine-learning guided approach for identifying
sources and sinks in the Android framework and pre-installed
apps. The approach is capable of automatically categorizing
findings according to the type of data being processed, for
instance to distinguish between sources providing unique
identifiers and sources providing file data.

A ten-fold cross validation showed our approach to have an
average precision and recall of more than 92%. On Android 4.2,
SUSI finds hundreds of sources and sinks. A manual comparison
with existing hand-written (categorized) lists shows that, while
SUSI finds all sources and sinks of the existing lists it also
finds many more that were previously unknown, thus greatly
reducing the risk for analysis tools to miss privacy violations.
We showed that these previously missed sources and sinks
are already used in existing malware samples which are thus
not detected by state-of-the-art analysis tools. Furthermore, we
showed that current approaches based on permission checks
alone are inadequate as permission checks are, contrary to
popular belief, not a good indicator for a method’s relevance.
Additionally, we have shown that new versions of the Android
operating system come with new sources and sinks. While static
hand-crafted lists usually do not contain such methods, as the
manual effort for keeping the lists current is impractically high,
SUSI can automatically infer them whenever a new Android
version is released.

As future work, we aim to apply our approach to interfaces
for automatically finding and classifying sensitive callbacks.
We also want to further investigate how our approach can be
applied to other environments than Android, e.g., J2EE. We
are confident that the same concepts can also be applied to
identify sources and sinks in other procedural programming
languages such as C#, C++ or PHP.

Acknowledgements: We would like to thank Christian
Wirth of the Knowledge Engineering Group at TU Darmstadt
for his support in the field of machine learning and for his
support with WEKA. Thanks to Damien Octeau for helping
us to identify sources and sinks used by TaintDroid. This
work was supported by a Google Faculty Research Award,
by the BMBF within EC SPRIDE, by the Hessian LOEWE
excellence initiative within CASED, and by the DFG within
the project RUNSECURE, which is associated with the DFG
priority program 1496 “Reliably Secure Software Systems -
RS3”.

REFERENCES

[1] J. Hoffmann, M. Ussath, M. Spreitzenbarth, and T. Holz, “Slicing Droids:
Program Slicing for Smali Code,” in Proceedings of the 28th Symposium
On Applied Computing, ACM, Ed., 2013, pp. 0–0.

[2] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically vetting
android apps for component hijacking vulnerabilities,” in Proceedings of
the 2012 ACM conference on Computer and communications security,
ser. CCS ’12. New York, NY, USA: ACM, 2012, pp. 229–240.
[Online]. Available: http://doi.acm.org/10.1145/2382196.2382223

[3] Z. Yang and M. Yang, “Leakminer: Detect information leakage on
android with static taint analysis,” in Third World Congress on Software
Engineering (WCSE 2012), 2012, pp. 101–104.

[4] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study
of android application security,” in Proceedings of the 20th
USENIX conference on Security, ser. SEC’11. Berkeley, CA,

USA: USENIX Association, 2011, pp. 21–21. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2028067.2028088

[5] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “Scandroid: Automated
security certification of android applications,” Manuscript, Univ. of
Maryland, http://www. cs. umd. edu/˜ avik/projects/scandroidascaa, 2009.

[6] J. Kim, Y. Yoon, K. Yi, and J. Shin, “ScanDal: Static analyzer for
detecting privacy leaks in android applications,” in MoST 2012: Mobile
Security Technologies 2012, H. Chen, L. Koved, and D. S. Wallach,
Eds. Los Alamitos, CA, USA: IEEE, May 2012. [Online]. Available:
http://ropas.snu.ac.kr/scandal/

[7] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androidleaks:
automatically detecting potential privacy leaks in android applications
on a large scale,” in Proceedings of the 5th international conference
on Trust and Trustworthy Computing, ser. TRUST’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 291–307. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-30921-2 17

[8] L. Batyuk, M. Herpich, S. A. Camtepe, K. Raddatz, A.-D.
Schmidt, and S. Albayrak, “Using static analysis for automatic
assessment and mitigation of unwanted and malicious activities within
android applications,” in Proceedings of the 2011 6th International
Conference on Malicious and Unwanted Software, ser. MALWARE
’11. Washington, DC, USA: IEEE Computer Society, 2011, pp. 66–72.
[Online]. Available: http://dx.doi.org/10.1109/MALWARE.2011.6112328

[9] C. Mann and A. Starostin, “A framework for static detection of
privacy leaks in android applications,” in Proceedings of the 27th
Annual ACM Symposium on Applied Computing, ser. SAC ’12. New
York, NY, USA: ACM, 2012, pp. 1457–1462. [Online]. Available:
http://doi.acm.org/10.1145/2231936.2232009

[10] Z. Zhao and F. C. C. Osorio, “”trustdroid;”: Preventing the use of
smartphones for information leaking in corporate networks through the
used of static analysis taint tracking,” in MALWARE, 2012, pp. 135–143.

[11] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing
inter-application communication in android,” in Proceedings of the 9th
international conference on Mobile systems, applications, and services,
ser. MobiSys ’11. New York, NY, USA: ACM, 2011, pp. 239–252.
[Online]. Available: http://doi.acm.org/10.1145/1999995.2000018

[12] “Fortify 360 source code analyzer (sca),”
Apr. 2013, http://www8.hp.com/us/en/software-
solutions/software.html?compURI=1214365#.UW6CVKuAtfQ.

[13] “Ibm rational appscan,” Apr. 2013, http://www-
01.ibm.com/software/de/rational/appscan/.

[14] W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. Sheth, “Taintdroid: An information-flow tracking system for realtime
privacy monitoring on smartphones,” in OSDI, 2010, pp. 393–407.

[15] R. Xu, H. Saı̈di, and R. Anderson, “Aurasium: practical policy
enforcement for android applications,” in Proceedings of the 21st
USENIX conference on Security symposium, ser. Security’12. Berkeley,
CA, USA: USENIX Association, 2012, pp. 27–27. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2362793.2362820

[16] M. Backes, S. Gerling, C. Hammer, M. Maffei, and P. von
Styp-Rekowsky, “Appguard: enforcing user requirements on android
apps,” in Proceedings of the 19th international conference on Tools
and Algorithms for the Construction and Analysis of Systems, ser.
TACAS’13. Berlin, Heidelberg: Springer-Verlag, 2013, pp. 543–548.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-36742-7 39

[17] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster,
and T. Millstein, “Dr. android and mr. hide: fine-grained permissions in
android applications,” in Proceedings of the second ACM workshop on
Security and privacy in smartphones and mobile devices, ser. SPSM
’12. New York, NY, USA: ACM, 2012, pp. 3–14. [Online]. Available:
http://doi.acm.org/10.1145/2381934.2381938

[18] “Google mirror api,” aug 2013, https://code.google.com/p/
google-api-java-client/wiki/APIs#Google Mirror API.

[19] “Google glass,” aug 2013, https://developers.google.com/glass/.
[20] “Google cast,” aug 2013, https://developers.google.com/cast.
[21] “Virus share,” aug 2013, http://virusshare.com/.
[22] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: analyzing the

android permission specification,” in Proceedings of the 2012 ACM
conference on Computer and communications security, ser. CCS ’12.

14

http://doi.acm.org/10.1145/2382196.2382223
http://dl.acm.org/citation.cfm?id=2028067.2028088
http://ropas.snu.ac.kr/scandal/
http://dx.doi.org/10.1007/978-3-642-30921-2_17
http://dx.doi.org/10.1109/MALWARE.2011.6112328
http://doi.acm.org/10.1145/2231936.2232009
http://doi.acm.org/10.1145/1999995.2000018
http://dl.acm.org/citation.cfm?id=2362793.2362820
http://dx.doi.org/10.1007/978-3-642-36742-7_39
http://doi.acm.org/10.1145/2381934.2381938
https://code.google.com/p/google-api-java-client/wiki/APIs#Google_Mirror_API
https://code.google.com/p/google-api-java-client/wiki/APIs#Google_Mirror_API

New York, NY, USA: ACM, 2012, pp. 217–228. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382222

[23] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus, “Automatically
securing permission-based software by reducing the attack surface:
an application to android,” in Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
2012. New York, NY, USA: ACM, 2012, pp. 274–277. [Online].
Available: http://doi.acm.org/10.1145/2351676.2351722

[24] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM conference
on Computer and communications security, ser. CCS ’11. New
York, NY, USA: ACM, 2011, pp. 627–638. [Online]. Available:
http://doi.acm.org/10.1145/2046707.2046779

[25] J. C. Platt, “Advances in kernel methods,” B. Schölkopf, C. J. C.
Burges, and A. J. Smola, Eds. Cambridge, MA, USA: MIT
Press, 1999, ch. Fast training of support vector machines using
sequential minimal optimization, pp. 185–208. [Online]. Available:
http://dl.acm.org/citation.cfm?id=299094.299105

[26] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[27] J. R. Quinlan, C4.5: programs for machine learning. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1993.

[28] H. Zhang, “The Optimality of Naive Bayes.” in FLAIRS Conference,
V. Barr and Z. Markov, Eds. AAAI Press, 2004. [Online]. Available:
http://www.cs.unb.ca/profs/hzhang/publications/FLAIRS04ZhangH.pdf

[29] P. Lam, E. Bodden, O. Lhoták, and L. Hendren, “The soot framework
for java program analysis: a retrospective,” in Cetus Users and Compiler
Infastructure Workshop (CETUS 2011), 2011.

[30] R. Kohavi, “A study of cross-validation and bootstrap for accuracy
estimation and model selection.” Morgan Kaufmann, 1995, pp. 1137–
1143.

[31] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in Proceedings of the 2012 IEEE Symposium
on Security and Privacy, ser. SP ’12. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 95–109. [Online]. Available:
http://dx.doi.org/10.1109/SP.2012.16

[32] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe exposure
analysis of mobile in-app advertisements,” in Proceedings of the fifth
ACM conference on Security and Privacy in Wireless and Mobile
Networks, ser. WISEC ’12. New York, NY, USA: ACM, 2012, pp. 101–
112. [Online]. Available: http://doi.acm.org/10.1145/2185448.2185464

[33] “The google maps geolocation api,” aug 2013,
https://developers.google.com/maps/documentation/business/geolocation/.

[34] “Android api differences report,” aug 2013,
https://developer.android.com/sdk/api diff/9/changes.html.

[35] “Android api differences report,” aug 2013,
https://developer.android.com/sdk/api diff/17/changes.html.

[36] “Android api differences report,” aug 2013,
https://developer.android.com/sdk/api diff/18/changes.html.

[37] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM conference
on Computer and communications security, ser. CCS ’11. New
York, NY, USA: ACM, 2011, pp. 627–638. [Online]. Available:
http://doi.acm.org/10.1145/2046707.2046779

[38] “Scandroid,” apr 2013, https://github.com/SCanDroid.
[39] “A study of android application security - fortify rules,” Apr. 2013,

http://www.enck.org/tools/fsca rules-final.xml.
[40] “cyanogenmod,” Apr. 2013, http://www.cyanogenmod.org/.
[41] C. Fritz, S. Arzt, S. Rasthofer, and E. Bodden, “Flowdroid: Precise

context-, flow-, object-sensitive and lifecycle-aware taint analysis for
android apps,” in Submitted to ACM CCS 2013.

[42] B. Livshits, A. V. Nori, S. K. Rajamani, and A. Banerjee, “Merlin:
Specification inference for explicit information flow problems,”
SIGPLAN Not., vol. 44, no. 6, pp. 75–86, Jun. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1543135.1542485

[43] K.-M. Schneider, “A comparison of event models for naive bayes
anti-spam e-mail filtering,” in Proceedings of the tenth conference on
European chapter of the Association for Computational Linguistics -

Volume 1, ser. EACL ’03. Stroudsburg, PA, USA: Association for
Computational Linguistics, 2003, pp. 307–314. [Online]. Available:
http://dx.doi.org/10.3115/1067807.1067848

[44] A. A. Sebyala, T. Olukemi, L. Sacks, and D. L. Sacks, “Active platform
security through intrusion detection using naive bayesian network for
anomaly detection,” in In: Proceedings of London communications
symposium, 2002.

[45] B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, and I. Molloy,
“Android permissions: a perspective combining risks and benefits,” in
Proceedings of the 17th ACM symposium on Access Control Models and
Technologies, ser. SACMAT ’12. New York, NY, USA: ACM, 2012, pp.
13–22. [Online]. Available: http://doi.acm.org/10.1145/2295136.2295141

[46] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru,
and I. Molloy, “Using probabilistic generative models for ranking
risks of android apps,” in Proceedings of the 2012 ACM conference
on Computer and communications security, ser. CCS ’12. New
York, NY, USA: ACM, 2012, pp. 241–252. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382224

[47] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck, “Mast: triage
for market-scale mobile malware analysis,” in Proceedings of the
sixth ACM conference on Security and privacy in wireless and mobile
networks, ser. WiSec ’13. New York, NY, USA: ACM, 2013, pp.
13–24. [Online]. Available: http://doi.acm.org/10.1145/2462096.2462100

15

http://doi.acm.org/10.1145/2382196.2382222
http://doi.acm.org/10.1145/2351676.2351722
http://doi.acm.org/10.1145/2046707.2046779
http://dl.acm.org/citation.cfm?id=299094.299105
http://www.cs.unb.ca/profs/hzhang/publications/FLAIRS04ZhangH.pdf
http://dx.doi.org/10.1109/SP.2012.16
http://doi.acm.org/10.1145/2185448.2185464
http://doi.acm.org/10.1145/2046707.2046779
http://doi.acm.org/10.1145/1543135.1542485
http://dx.doi.org/10.3115/1067807.1067848
http://doi.acm.org/10.1145/2295136.2295141
http://doi.acm.org/10.1145/2382196.2382224
http://doi.acm.org/10.1145/2462096.2462100

	Introduction
	Motivating Example
	Definition of Sources and Sinks
	Classification approach
	Machine Learning Primer
	Design of the Approach
	Feature Database
	Dataflow Features
	Implicit Annotations for Virtual Dispatch

	Evaluation
	RQ1: Sources and Sinks
	Cross Validation
	Validating SuSi's Source/Sink Output

	RQ2: Categories for Sources and Sinks
	Cross Validation
	Validating SuSi's Categorized Source/Sink Output

	RQ3: Sources and Sinks in Malware Apps
	RQ4: Changes during Android Versions
	RQ5: Existing lists of sources & sinks

	Sources Not Considered by SuSi
	Related Work
	Conclusions
	References

