
Instrumenting Android and Java Applications

as Easy as abc

Steven Arzt, Siegfried Rasthofer, and Eric Bodden

Secure Software Engineering Group,
European Center for Security and Privacy by Design (EC SPRIDE),

Technische Universität Darmstadt, Germany
{steven.arzt,siegfried.rasthofer,eric.bodden}@ec-spride.de

Abstract. Program instrumentation is a widely used mechanism in dif-
ferent software engineering areas. It can be used for creating profilers and
debuggers, for detecting programming errors at runtime, or for securing
programs through inline reference monitoring.

This paper presents a tutorial on instrumenting Android applications
using Soot and the AspectBench compiler (abc). We show how two well-
known monitoring languages –Tracematches and AspectJ– can be used
for instrumenting Android applications. Furthermore, we also describe
the more flexible approach of manual imperative instrumentation directly
using Soot’s intermediate representation Jimple. In all three cases no
source code of the target application is required.

Keywords: Android, Java, Security, Dynamic Analysis, Runtime
Enforcement.

1 Introduction

According to a recent study [1], Android now has about 75% market share in
the mobile-phone market, with a 91.5% growth rate over the past year. With
Android phones being ubiquitous, they become a worthwhile target for security
and privacy violations. Attacks range from broad data collection for the purpose
of targeted advertisement, to targeted attacks, such as the case of industrial
espionage. Attacks are most likely to be motivated primarily by a social element:
a significant number of mobile-phone owners use their device both for private and
work-related communication [2]. Furthermore, the vast majority of users installs
apps containing code whose trustworthiness they cannot judge and which they
cannot effectively control.

One approach to combat such threats is to augment Android applications
obtained from arbitrary untrusted sources with additional instrumentation code.
This code alters the behaviour of the target application and can thus enforce
certain predefined security policies such as disallowing data leaks of confidential
information. Since the instrumentation code runs as an integrated part of the
target application, it has full access to the runtime state, thereby avoiding the
imprecisions that usually come with static analysis approaches [3–5]. It has full

A. Legay and S. Bensalem (Eds.): RV 2013, LNCS 8174, pp. 364–381, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Instrumenting Android and Java Applications as Easy as abc 365

access to environment information, user inputs, and external resources. Policy
violations can be captured as they actually occur, thus minimizing the number of
false alarms. Furthermore, it has also the advantage that the underlying Android
framework does not have to be changed at all, as done so by [6, 7].

In many cases, the source code of the target application is not available.
Therefore, a mechansim for conveniently analyzing and instrumenting binary
applications is required. Soot [8] and the abc compiler [9] for AspectJ both
support Android bytecode, both as input and as output for the instrumented
application. In this paper, we will give an overview of the two tools, explain how
to integrate instrumentation code on various layers of abstraction, and illustrate
the mechanisms using examples. Though this paper focuses on the Android
platform, many of the tools and concepts presented herein are directly applicable
to Java applications as well.

The remainder of this paper is structured as follows. In Section 2, we give an
overview of the Android platform, present an example application we will use for
instrumentation in the remainder of the paper, and discuss some Android-specific
aspects like application signatures. Section 3 is dedicated to high-level instru-
mentation using AspectJ while Section 4 focuses on Tracematches. In Section 5,
we introduce Soot and its Jimple intermediate representation which is then used
for manual instrumentation in Section 6. Section 7 concludes the paper.

2 Android Platform Overview

The Android platform is built as a stack with various layers running on top
of each other [10]. Lower-level layers provide services to upper-level layers. The
lowermost layer is built on a customized Linux system and its libraries. The
Android middleware builds an abtraction between the operating system and the
user-level application running on the very top of the architecture stack. In this
tutorial, we concentrate on instrumenting user-level applications.

Applications are provided to the user via different application markets like
the official Google Play Store [11] and various third-party stores. Application
developers can also host applications for download on their own websites.

2.1 Application Architecture

Most of the applications are written in the Java programming language1. They
are compiled to Android’s own bytecode format, called the Dalvik executable
(dex). On application launch, the Android middleware spawns a new Dalvik
Virtual Machine to execute the application’s dex file. This enables Android to
exploit the process isolation mechanisms of the underlying Linux operating sys-
tem and ensures that all applications are run inside their own isolated con-
tainers. Note that Android applications do not use Java’s concept of security
managers [12]. Instead, Android implements its own permission systems for cer-
tain sensitive function calls. Furthermore, the Dalvik Virtual Machine is not

1 In this tutorial, we disregard portions written in native code or script languages.

366 S. Arzt, S. Rasthofer, and E. Bodden

stack-based like the Java VM, but register-based and optimized for resource-
constrained mobile devices [13].

Android applications do not have a single entry-point, such as the main
method in Java. Developers must instead design the application in terms of
components, each one adhering to a set of predefined interfaces. Every com-
ponent is implemented as Java class derived from a specific base class in the
Android middleware. Components react to OS events by overwriting the respec-
tive methods or calling specific OS methods to register further callbacks that
are invoked when e.g. device’s physical location changes.

There exist four different kinds of components: activities, services, content
providers, and broadcast receivers [14]. Activities are single focused activities a
user can interact with. They are the visible parts of an applications. In con-
trast, the services run in the background and are not interacting with the user
directly. They are used for long-running background operations, such as MP3
playback. Broadcast receivers react to global events, such as incoming calls or
text messages. Content providers implement domain-specific databases for, e.g.,
contacts [15].

The first three component types can communicate via asynchronous messages
called intents. An intent is an abstract description of an action “intended” to be
performed, such as “launch the following website”. Intents are a powerful feature
in the Android platform that allow communication between components, both
inside an application and across application boundaries. Intents are dispatched
by the Android middleware, either to a directly specified receipient or to all
receivers registered with the system for a specific intent type, e.g., all components
capable of displaying a website to a user.

Each of the four different types of components have a distinct lifecyle that
defines how the component is created, used and destroyed. The lifecycle is guided
using events, i.e., a sequence of methods called by the OS. For instance, the
onCreate()method gets called when an activity is loaded for the first time [16].

2.2 Android SMS Messenger Example

We next describe a simple Android application implementing an SMS Messenger.
The app’s user interface simply consists of two user inputs, one for the phone
number and one for the message to be sent. When the user clicks on the“Send
SMS” button, the application sends the given text message to the given phone
number.

Listing 1.1 shows the corresponding source code. The code comprises the two
methods onCreate and sendSms. As described in Section 2.1, the onCreate event
method gets called when the activity is launched for the first time. The method
defines some layout settings (setContentView) and prints out some debug in-
formation. Section 2.5 will give more details on Android’s logging infrastructure.

The sendSms callback method is the more interesting part. It is called when
the user clicks on the “Send SMS” button. The link between the method and
the button is established using a layout XML file, which is a declarative way

Instrumenting Android and Java Applications as Easy as abc 367

1 public class RV2013 extends Activity
2 {
3 private EditText phoneNr , message ;
4 private SmsManager smsManager = SmsManager.getDefault();
5
6 @Override
7 protected void onCreate (Bundle savedInstanceState) {
8 super.onCreate (savedInstanceState);
9 setContentView(R.layout.activity_rv2013);

10
11 Log.i("INFO", "in onCreate ");
12 }
13
14 public void sendSms (View v){
15 Log.i("INFO", "in sendSms ");
16
17 phoneNr = (EditText)findViewById(R.id.phoneNr);
18 message = (EditText)findViewById(R.id.message);
19
20 System.out.println ("in sendSms ");
21
22 smsManager.sendTextMessage(phoneNr .getText ().toString (), null ,

message .getText ().toString (), null , null);
23 }
24 }

Listing 1.1. Source Code of SMS Messenger Example

to register callsbacks for UI components2. The button handler again writes out
some debug information (“in send Sms”), then extracts the user input in the
different text fields using the findViewById OS function, afterwards calls the
println method in the PrintStream class with the string “in SendSms” and
finally sends out the SMS message, again using an OS function.

2.3 Overview of Android API Calls

The Android middleware provides abstractions for conveniently using device
functions like sending SMS messages directly from applications written in Java
without having to directly interact with native code libraries on the system level.
The most important Android API methods for this paper are the following ones:

– Log.i(String tag, String msg):
Static methods which writes an info message to the log. The log can be
browsed using the tool LogCat (c.f. Section 2.5).

tag: usually identifies the class or activity where the log call occurs
msg: the message that should be logged

– findViewById(int id):
Returns references to GUI objects. In this example, the findViewById

method is used to get the text field contents for message text and recipi-
ent phone number. Note that such calls are generated by the compiler; one
usually use the constants in the R pseudo class to access GUI elements from
app code.

2 The other alternative would have been to programatically set a listener in onCreate.

368 S. Arzt, S. Rasthofer, and E. Bodden

id: the object id to search for

– SMSManager.sendTextMessage(String destinationAddress, String

scAddress, String text, PendingIntent sentIntent, PendingIntent

deliveryIntent):
sends a text-based SMS message

destinationAddress: the address to send the message to
scAddress: the service center address; pass null to use the default
text: the body of the message to send
sentIntent: a broadcast message to be generated by the system when the
message has been sent; pass null if not required
deliveryIntent: a broadcast message for the message delivery; pass null
if not required

2.4 Android.jar: Where Android Lives

The Android middleware consists of predefined Java classes and a set of native
libraries. To be able to compile Android apps that make use of this API on a
desktop PC, the Java classes of the Android API must be present. Therefore, the
Android SDK provides these classes in a file called android.jar in its platforms
directory. There is one such file for every version of the OS. We recommend
using the appropriate version of the JAR file since new APIs are added from
time to time and old, deprecated ones are removed. The minimum compatible
OS version specified in the application’s manifest file is usually a good pick.

However, note that these JAR files can only be used to create a somewhat
complete callgraph and points-to set in the user code, but they cannot be used
to actually run the application. This is because for many methods they only
contain stubs and no actual implementations. Stubbed methods just throw a
NotImplementedException. Obtaining a full android.jar file from a real phone
is possible, but not trivial, as the Android API is stored in a precompiled and
optimized file format. In most cases, such complete JAR files are not needed
anyway.

2.5 Useful Tools

The Android SDK provides a number of tools that support a developer during the
developement of an Android application. For instance, debugging or running on
an emulator is essential during the developement phase. Therefore, we will briefly
introduce the two most important tools: Logcat and the Android emulator.

Logcat. Android’s logging system provides a mechanism for collecting different
kinds of log messages from various applications and system components. These
logs can be easily viewed and filtered using the logcat tool which is built on
top of Android’s debug bridge adb. Logcat can directly be launched from the
command line with adb logcat. It supports various settings for filtering and

Instrumenting Android and Java Applications as Easy as abc 369

formatting the output as explained in [17]. The Android eclipse plugin provides
a more convenient graphical user interface to logcat.

A log entry can be produced by invoking the static methods in the android.
util.Log class. For instance, the statement Log.e("TAG", "Ooops") creates an
error line in the log. The Log.e method takes two parameters: The tag (first pa-
rameter) can be used for filtering and categorization. The error message (second
parameter) contains the error message or failure reason.

Android Emulator. As the name already suggests, the Android emulator [18]
is a virtual mobile device that runs on a computer and is similar to a real device.
It does not contain all the features of a real mobile device such as sending emails,
but for most purposes, it is sufficiently complete. However, note that applications
may suffer from serious performance penalties when run on the emulator.

With the help of the Android debug bridge [19], it is easy to create a new emu-
lator. The command android create avd -n <name> -t <targetID> creates
a new virtual device with the given name. The targetID is the API level one
needs, e.g., 17 for Android 4.2. The new emulator is started by emulator -avd

<name>. Afterwards, the virtual device’s user interface is shown and one can
interact with the emulator through the SDK’s command-line tools. A more con-
venient way for the creation of an emulator is the usage of the grafical interface
provided by eclipse (Android Virtual Device Manager).

2.6 Managing APKs on the Device

For author identification purposes, the Android framework requries that each
application has to be signed with a certificate. This, for instance, allows the
system to check whether an application update actually comes from the original
application developer. Furthermore, applications signed with the same key are
granted special privileges in interprocess communication. On the Android plat-
form, it is common that most of the application certificates are self-signed [20].
When changing the APK file, e.g., by instrumenting the code, the signature is
lost and the application must be signed again.

Standard tools like keytool and jarsigner can be used for signing the applica-
tion. An example for the generation of a private/public key pair with keytool [20]
is shown in Listing 1.2.

1 $ keytool -genkey -v -keystore my-release -key.keystore
2 -alias alias_name -keyalg RSA -keysize 2048 -validity 10000

Listing 1.2. Generation of a private/public key pair with keytool [20]

The jarsigner tool can be used for signing the application my application.apk
with the private key generated with keytool. Listing 1.3 shows the command for
signing an app with jarsigner.

1 $ jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1 -keystore
2 my -release -key.keystore my_application.apk alias_name

Listing 1.3. Signing my application.apk with jarsinger [20]

370 S. Arzt, S. Rasthofer, and E. Bodden

After signing the application, Google [21] recommends to use the zipalign tool
to optimize the final APK. It ensures that all uncompressed data starts with
a particular alignment relative to the start of the file. The zipalign tool comes
with the Android SDK and Listing 1.4 shows the corresponding command.

1 $ zipalign -v 4 my_application.apk my_application_release.apk

Listing 1.4. Alignment of my application.apk befor release

3 Instrumentation with abc and AspectJ

In this section, we describe how AspectJ and the AspectBench Compiler abc [9]
can be used to declaratively instrument Android applications. Our goal is to
modify the example application from Listing 1.1 such that no premium SMS
messages to costly 0900 phone numbers can be sent anymore. Instead, an error
message shall be written into the log file whenever the target phone number
starts with 0900. SMS messages to normal phone numbers should be sent as
usual. Obviously, this requires us to inline a monitor since no static analysis can
know the target phone number the user is going to enter.

We create a new file SendPremiumSMS.aj with the contents shown in List-
ing 1.5. Note that the name of the file must match the name of the aspect. We
first declare a pointcut for the SmsManager.sendTextMessagemethod. We could
also have inlined it into the advice definition, but we are using it twice (once
for blocking premium-rate SMS messages and once for logging that a message
has actually been sent), so we keep it separate. The pointcut matches calls to
the SMS sending method in the Android operating system, not our own user
code. This way, we ensure that actually all SMS messages are intercepted which
is especially useful when instrumenting unknown target applications.

1 import android .telephony.SmsManager;
2 import android .app.PendingIntent;
3 import android .util.Log;
4
5 public aspect SendSMS_PremiumAspect {
6 pointcut sendSms (String no) :
7 call(void SmsManager.sendTextMessage(..)) && args(no, ..);
8
9 after (): sendSms (*) {

10 Log.i("Aspect", "SMS message sent");
11 }
12
13 void around(String no): sendSms (no) {
14 if (no.startsWith("0900"))
15 Log.i("Aspect", "Premium SMS message blocked ");
16 else proceed (no);
17 }
18 }

Listing 1.5. Aspect for blocking premium-rate SMS messages

Instrumenting Android and Java Applications as Easy as abc 371

In general, the aspects as such are written in the well-known AspectJ syntax
and are not Android-specific except for the methods intercepted in the pointcuts
and the ones called in the pieces of advice. All mapping to the Android platform
is done by the abc compiler during the weaving process.

Since we only want a notification when an SMS message has actually been
sent, the order of the pieces of advice inside the aspect is important: We place the
around advice last to give it precedence over the after advice which shall only
be executed when the around advice proceeds, i.e., the target phone number is
not a premium-rate number. Otherwise, the SMS message is blocked and thus
shall not be logged.

abc supports two different frontends for parsing Java source code: Polyglot
and JastAdd. The Polyglot frontend is a bit dated and should not be used for
instrumenting Android applications from source. JastAdd can be enabled as an
extension using the -ext abc.ja command-line option. Also note that abc has
its own class path which is independent of the JDK’s class path and which must
be set using the -cp option. It should include both the JRE’s rt.jar file and
abc’s own abc-runtime.jar file. Since our target application references classes
from the Android framework, we also need to include the android.jar file.

If applications written for modern versions of the Android API are also sup-
ported on older platforms (i.e., have a lower minimum SDK version that one
they were developed for), the Android eclipse plugin automatically integrates
so-called support classes which add some newer APIs to older platforms. The
respective jar file can then found in the libs directory of the application project
and needs to be included in abc’s class path as well.

The complete command-line for instrumenting the example is shown in List-
ing 1.6. The Android support is enabled with the -android option, the APK file
name is given with the -injars switch.

1 java -cp abc-ja-exts -complete .jar abc.main.Main \
2 -cp /path/to/rt.jar: \
3 /path/to/android -support -v4.jar: \
4 /path/to/android .jar: \
5 /path/to/abc-runtime .jar \
6 -ext abc.ja \
7 -android -injars /path/to/RV2013.apk \
8 /path/to/SendSMS_PremiumAspect.aj

Listing 1.6. abc compiler command-line

Unsigned applications will not run on the Android OS, which is why the instru-
mented apk file still needs to be signed before it can be run on a real phone or
the emulator (c.f. Section 2.6).

4 Instrumentation with Tracematches

While AspectJ is rather convenient for describing Android instrumentations (see
Section 3), it requires additional manual effort when sequences of actions shall be
tracked. Tracematches [22] provide a simple regular-expression based approach
to declaratively abstract from such tracking. Let us assume we want to raise an

372 S. Arzt, S. Rasthofer, and E. Bodden

1 import android .telephony.SmsManager;
2 import android .app.PendingIntent;
3
4 public aspect SMSSpam {
5 tracematch(String no) {
6 sym sendSms after:
7 call (void SmsManager.sendTextMessage(..)) && args(no, ..);
8
9 sendSms [3] sendSms + {

10 System.out.println ("SMS spam detected to no: " + no);
11 }
12
13 }
14 }

Listing 1.7. Aspect for blocking premium-rate SMS messages

alert when more than three SMS messages are sent to the same phone number
by an application, as this might indicate SMS spam. In AspectJ such counting
would have to be implemented manually. In Tracematches, we simply define the
pattern shown in Listing 1.7. Note that the name of the file and the name of the
aspect must match, i.e., SMSSpam.aj in this case.

For compiling the tracematch, we again use the AspectBench compiler abc.
The command-line is similar to the one shown in Section 3 for AspectJ, we only
need to enable the tracematch extension as shown in Listing 1.8.

1 java -cp abc-ja-exts -complete .jar abc.main.Main \
2 -cp /path/to/rt.jar: \
3 /path/to/android -support -v4.jar: \
4 /path/to/android .jar: \
5 /path/to/abc-runtime .jar \
6 -ext abc.ja.tm \
7 -android -injars /path/to/RV2013.apk \
8 /path/to/SMSSpam .aj

Listing 1.8. abc compiler command-line

5 The Machinery: Soot and Jimple

Soot [8] is an extensible program analysis and optimization framework for Java
and Java-like environments such as Dalvik. It supports various input formats
including Java source code, Java class files, and Dalvik dex files and also allows
to write out these file formats after transformation. Figure 1 gives an overview
of all possible input and output formats.

Code included in an Android application’s apk file is automatically extracted
before analysis. Afterwards, a new apk file containing the transformed code is
built which can then be signed and executed on a phone or the emulator. abc
uses Soot internally to weave aspects or tracematches into Java programs or
Android apps.

Soot is organized in phases and packs [23]. Every pack contains an ordered list
of phases. The first pack applied to every single method is the Jimple Bodies pack
jb which translates the respective method’s body into an intermediate represen-
tation called Jimple. Afterwards, if whole-program analysis is enabled, a number

Instrumenting Android and Java Applications as Easy as abc 373

Produce Jimple 3-address IR

Analyze, Optimize and Tag

.java.dex
.jimple
.jimp

.shimple
.shimp

.baf
.b

.grimple
.grimp

.xml

.jasmin

.class.apk

.java.dex
.jimple
.jimp

.shimple
.shimp

.baf
.b

.grimple
.grimp

.xml

.jasmin

.class.apk

Input

Output

Fig. 1. Input and Output Formats in Soot

of whole-program packs run. They do not target single methods or classes, but
the whole so-called scene containing all classes that have been loaded. Which
classes are loaded depends on Soot’s command line options. Consult the online
documentation for details [24]. Usually, you only need to enable whole program
mode if your analysis requires a complete call graph. If not, you can skip these
phases by leaving the whole-program-mode option disabled which can consider-
ably improve performance.

The first whole-program pack to run is the cg pack which creates the callgraph.
Soot implements various callgraph construction algorithms. In this tutoral, we
will use SPARK [25] for maximum precision. In some cases, less precise, but faster
algorithms might be more appropriate. Once the callgraph is done, three more
whole-program packs (whole-jimple-transformation, whole-jimple-optimization,
whole-jimple-annotation) are executed, followed by a sequence of single method-
packs (jimple-transformation, jimple-optimization, jimple-annotation).

For our purposes, we leave the whole-porgram-mode disabled and add a new
phase to the jimple-transformation pack jtp which places our code directly after

374 S. Arzt, S. Rasthofer, and E. Bodden

the Jimple bodies are produced and before all other optimizations like dead
code elimination run. This allows us to exploit the transformations done in
the latter. If we needed a complete callgraph, we would use the whole-jimple-
transformation-pack wjtp instead.

In the remainder of this section, we will show how to programatically configure
and launch Soot, how to access the Jimple code of a method, and explain how
Jimple is structured.

5.1 Jimple: Java, But Simple

Jimple stands between full Java sourcecode on one side and Java/Dalvik byte-
code on the other side. While the first is impractically complex for static analysis
or program transformations, the latter is quite cumbersome to work with because
of its large number of (untyped) instructions. Jimple combines the advantages of
both sides: There is only a limited instruction set, data is stored in variables, and
statements are generally of a simple three-operand form. More complex state-
ments or expressions are broken up into simple single-operation pieces and a set
of intermediate variables. For instance, in Jimple a=b+c+2 would be transformed
to temp=b+c, a=temp+2 with a new intermediate variable temp.

Jimple contains two general concepts: locals which are local variables and units
which are statements. Every method body contains one chain of locals and one
ordered chain of units. Units are usually of some type derived from Stmt, which in
turn can contain references to expressions derived from Expr. Jimple generalizes
all Java constructs to units and locals. The Java this reference, for instance,
is assigned to a local at the beginning of an instance method. Afterwards, it
behaves just like an ordinary local variable. The same happens with method
parameters. These special assignments are called IdentityStatements (c.f. lines
12 and 13 in Listing 1.9).

Assignments between locals, constants, and fields are done using AssignState-
ments (c.f. line 23). Since Soot represents the AST as an object model in memory,
the left and right side of an assignment are references to the objects represent-
ing the expressions standing on either side. Programatically traversing Jimple
code thus simply means following chains of references. For instance, in line 16,
the right-hand side of the assignment is a typecast represented by a CastExpr
object.

To call methods, Jimple supports four different expressions, depending on the
type of the target method. The three most important ones are VirtualInvokeExpr
for a virtual dispatch invoke to an instance method (lines 15 and 18), StaticInvo-
keExpr for calling a static method (line 14), and InterfaceInvokeExpr for calling
a method of an object of which only its interface type is known (line 26). Any in-
voke expression can be part of standalone statement called InvokeStmt (lines 14,
22, and 30), but can also serve as the right side of an assignment (i.e. AssignStmt,
e.g., in line 15) unless the return type is void.

Instrumenting Android and Java Applications as Easy as abc 375

1 public void sendSms (android .view.View)
2 {
3 de.ecspride .RV2013 $r0;
4 android .view.View $r1;
5 java.lang.String $r2 , $r3;
6 android .widget.EditText $r4;
7 int $i0;
8 java.io.PrintStream $r5;
9 android .telephony.SmsManager $r6;

10 android .text.Editable $r7;
11
12 $r0 := @this: de.ecspride .RV2013;
13 $r1 := @parameter0: android .view.View;
14 staticinvoke <android .util.Log: int

i(java.lang.String,java.lang.String)>("INFO", "in sendSms ");
15 $r1 = virtualinvoke $r0.<de.ecspride .RV2013: android .view.View

findViewById(int) >(2131165184) ;
16 $r4 = (android .widget .EditText) $r1;
17 $r0.<de.ecspride .RV2013: android .widget.EditText phoneNr > = $r4;
18 $r1 = virtualinvoke $r0.<de.ecspride .RV2013: android .view.View

findViewById(int) >(2131165187) ;
19 $r4 = (android .widget .EditText) $r1;
20 $r0.<de.ecspride .RV2013: android .widget.EditText message > = $r4;
21 $r5 = <java.lang.System: java.io.PrintStream out >;
22 virtualinvoke $r5.<java.io.PrintStream: void

println (java.lang.String)>("in sendSms ");
23 $r6 = $r0.<de.ecspride .RV2013: android .telephony.SmsManager

smsManager >;
24 $r4 = $r0.<de.ecspride .RV2013: android .widget.EditText phoneNr >;
25 $r7 = virtualinvoke $r4.<android .widget.EditText : android .text.Editable

getText () >();
26 $r3 = interfaceinvoke $r7.<android .text.Editable : java.lang.String

toString () >();
27 $r4 = $r0.<de.ecspride .RV2013: android .widget.EditText message >;
28 $r7 = virtualinvoke $r4.<android .widget.EditText : android .text.Editable

getText () >();
29 $r2 = interfaceinvoke $r7.<android .text.Editable : java.lang.String

toString () >();
30 virtualinvoke $r6.<android .telephony.SmsManager: void

sendTextMessage(java.lang.String ,java.lang.String ,java.lang.String ,
android .app.PendingIntent ,android .app.PendingIntent)>($r3 ,

null , $r2 , null , null);
31 return ;
32 }

Listing 1.9. Jimple code for sending an SMS message

Method bodies are commonly analyzed by iterating over the units (i.e., state-
ments) they comprise. For program rewriting, the chain of units is patched by
removing existing units, inserting new units at the desired positions, or changing
the expressions within existing units. All of these changes will be explained in
the remainder of this paper.

5.2 Soot Options

Soot provides a lot of different command-line options. An online tutorial [26]
gives a good overview of the different kinds of options available. The most im-
portant options for instrumenting Android applications are the following:

-cp pathlist : The classpath to be used when loading classes into Soot.
Not to be confused with the classpath used by the JVM.

376 S. Arzt, S. Rasthofer, and E. Bodden

-pp: This option prepends the VM’s classpath to Soot’s own classpath.
-validate: Causes sanity checks to be performed on Jimple bodies to make
sure the transformations have caused no type errors. This option may de-
grade Soot’s performance, but might be useful for debugging instrumentation
code.
-output-format format : Specifies the format of output files Soot should
produce, if any. In case of Android instrumentation, the dex format has to be
set. For debugging purposes, one can use the jimple output format to inspect
the instrumentation results in the intermediate language. Note, though, that
one cannot create outputs in multiple formats at the same time.
-process-dir dirs : Adds all classes in dirs to the set of classes to be
analyzed and transformed by Soot. The list dirs can also contain jar or apk
files.
-src-prec format : Sets format as Soot’s preference for the type of source
files to read when it looks for a class. In the case of Android, the apk format
must be set.
-w: Tells Soot to enable the whole-program transformation packs. Required
if one requires a callgraph or wants to use the wjtp pack for performing global
transformations spanning multiple methods.
-allow-phantom-refs: Allows Soot to model classes not found on the class-
path by stubs containing no methods or fields. Useful for saving memory by
not including full implementations of some libraries.

These options can either be set via the command line or directly in the Java
code via Options.v(), e.g., Options.v().set whole program(true) for en-
abling whole-program mode if required. Listing 1.10 shows an example of a
possible Soot initialization for instrumenting Android applications.

1 private static boolean SOOT_INITIALIZED = false;
2 private final static String androidJAR = "./ lib/android .jar";
3 private final static String apk = "./apk/RV2013 .apk";
4
5 public static void initialiseSoot(){
6 if (SOOT_INITIALIZED)
7 return;
8
9 Options .v().set_allow_phantom_refs(true);

10 Options .v().set_prepend_classpath(true);
11 Options .v().set_validate(true);
12
13 Options .v().set_output_format(Options .output_format_dex);
14 Options .v().set_process_dir(Collections.singletonList(apk));
15 Options .v().set_force_android_jar(androidJAR);
16 Options .v().set_src_prec(Options .src_prec_apk);
17
18 Options .v().set_soot_classpath(androidJAR);
19
20 Scene.v().loadNecessaryClasses();
21
22 SOOT_INITIALIZED = true;
23 }

Listing 1.10. Soot Initialization Example for Instrumenting Android Applications

Instrumenting Android and Java Applications as Easy as abc 377

6 Manual Instrumentation

Besides the convenient way of instrumenting Android applications with the help
of AspectJ (c.f. Section 3) or tracematches (c.f. Section 4), one can also use
Soot to directly manipulate an Android application’s code using the Jimple
intermediate representation. This is especially important for instrumentations
that are not possible with ApsectJ or tracematches. We described a range of
such policies in previous work [27]. As a simple example, AspectJ cannot be
used to remove debugging outputs including all intermediate computations that
are only used in such debugging statements. These computations will remain
even if the debug outputs as such are filtered using an around advice.

This section demonstrates the two possiblities in direct code modification:
removing or adding code. Manipulating existing units is straight-forward given
that knowledge. Instead of generating new Jimple units, one simply changes the
fields of existing objects. As a first step, we need to configure launch Soot as
desribed in section 5. We then register a jimple-transformation transformation
phase as shown in listing 1.11. As discussed in section 5.2, this is more efficient
than using a whole-jimple-transformation whole-program phase. Furthermore,
we do not need a complete callgraph for our goal, so there is no reason to have
Soot create one.

1 PackManager.v().getPack ("jtp").add(
2 new Transform("jtp.myAnalysis", new MyBodyTransformer()));
3 PackManager.v().runPacks ();
4 PackManager.v().writeOutput();

Listing 1.11. Adding new Phase to Jimple Transformation Pack

The runPacks() methods triggers the execution of the packs and calls the
overwritten internalTransform()method inside the MyBodyStranformer class
derived from BodyTranformer3. In order to iterate over all classes and methods
in the Android application, one can use the code in listing 1.12 as a starting
point. The code must be placed inside internalTransform().

1 for (SootClass c : Scene.v().getApplicationClasses()) {
2 for(SootMethod m : c.getMethods()){
3 if(m.isConcrete()){
4 Body body = m.retrieveActiveBody();
5 Iterator <Unit > i = body.getUnits ().snapshotIterator();
6 while (i.hasNext ()) {
7 Unit u = i.next();
8 //do something
9 }

10 }
11 }
12 }

Listing 1.12. Iterating over the Android Code

3 In whole-program-mode, we would have used a SceneTransformer in the wjtp pack.

378 S. Arzt, S. Rasthofer, and E. Bodden

One important point in this code snippet is the snapshotIterator() method
that should be used if statements in the method’s body will be changed while
the loop runs. This avoids ConcurrentModificationExceptions.

6.1 Removing Statements

The fact that all statements in the body of a method are stored into a chain
makes it very easy to remove a complete statement from the Jimple code. This
can be done by just removing it from the chain:

body.getUnits ().remove (unit);

After removing statements, dead code can remain. Soot already offers optimiza-
tions for removing such code, propagating definitions that are only used once,
and others. If the subsequent Jimple optimization pack (jop) is enabled, those
optimizations are applied automatically.

6.2 Adding New Statements

In general, the unit chain allows new statements to be placed before
(insertBefore()) or after (insertAfter()) a specific code point. These must
be fully-constructed Jimple units containing all required expressions, i.e., the
operands in case of a primitive arithmetic operation. The Jimple.v() singleton
provides factory methods called Jimple.v().newX for generating new Jimple
statments and expressions where X stands for the different kinds of AST ele-
ments. An example is newStaticInvokeExpr() which creates a new static in-
voke expression to be used inside an invoke statement or as the right side of an
assignment.

Let us go back to our original SMS Messenger Example (c.f. Section 2.2)
and insert some checks that prevent the application from sending SMS mes-
sages to premium rate numbers. This check has to be placed before the
sendTextMessage() method in line 30 and could look like the one described
in Listing 1.13 for premium rate numbers that start with 0900.

1 if(! phoneNr .getText ().toString ().startsWith("0900"))
2 smsManager.sendTextMessage(phoneNr .getText ().toString (), null ,
3 message .getText ().toString (), null , null);

Listing 1.13. 0900 Premium Rate SMS Check

Before this statement can be constructed, various expressions must be generated:

– String constant for the number “0900”
– Method call to the startsWith() method. The result must be stored in a

new local variable that does not conflict with any existing local variable.
– “if” statement with then and else branch

A complete example for integrating such a check is described in Listing 1.14.

Instrumenting Android and Java Applications as Easy as abc 379

1 private void eliminatePremiumRateSMS(Unit u, Body body) {
2 Stmt stmt = (Stmt) u;
3 if (stmt.containsInvokeExpr()){
4 InvokeExpr iinv = (InvokeExpr) invoke.getInvokeExpr();
5 if(iinv.getMethod().getSignature().equals(SEND_SMS_SIGNATURE)){
6 Value phoneNumber = invoke.getInvokeExpr().getArg (0);
7 if (phoneNumber instanceof Local){
8 Local phoneNoLocal = (Local)phoneNumber;
9

10 // Invoke startsWith and save result
11 VirtualInvokeExpr inv = generateStartsWith(body , phoneNoLocal);
12 Local invRes = generateNewLocal(body , BooleanType.v());
13 AssignStmt astmt = Jimple.v().newAssignStmt(invRes, inv);
14 body.getUnits ().insertBefore(astmt , u);
15
16 //generate condition
17 NopStmt nop = Jimple.v().newNopStmt();
18 IfStmt ifStmt = Jimple.v().newIfStmt(invRes , nop);
19
20 body.getUnits ().insertBefore(ifStmt , u);
21 body.getUnits ().insertAfter(nop, u);
22 }
23 }
24 }
25
26 private InvokeExpr generateStartsWith(Body body , Local phoneNoLocal) {
27 SootMethod sm = Scene.v().getMethod(STARTS_WITH_SIGANTURE);
28 return Jimple.v().newVirtualInvokeExpr(phoneNoLocal , sm.makeRef (),

StringConstant.v("0900"));
29 }
30
31 private Local generateNewLocal(Body body , Type type){
32 LocalGenerator lg = new LocalGenerator(body);
33 return lg.generateLocal(type);
34 }

Listing 1.14. Generation of Jimple Statements for Premium Rate SMS Check

SEND SMS SIGNATURE is a string constant containing the method signature of the
sendTextMessage. STARTS WITH SIGNATURE is the signature of the startsWith()
method in the String class.

Note that we do not directly create new locals by giving a name and a type.
Instead, we defer this task to the LocalGenerator class which automatically
creates a unique local name.

Finally, the eliminatePremiumRateSMS()method has to be called inside the
code snipped shown in Listing 1.12 so that the instrumentation is performed for
all methods that possibly send SMS messages.

7 Conclusion

In this tutorial paper, we have shown how to instrument Android applications
using AspectJ, Tracematches and manual imperative instrumentation based on
Soot. All these techniques can also be applied to classical Java programs. For
Android, there are a number of platform-specific issues to keep in mind such as
the need for signing the APK file before running it on a phone or the emulator.

380 S. Arzt, S. Rasthofer, and E. Bodden

The techniques shown in this paper can not only be used for security purposes,
but also for code optimization and analysis in general. Many optimizations like
constant propagation or dead code elimination are already built into Soot, mak-
ing instrumentations easier for the user.

8 Examples

The SMS Messenger example (RV2013) as well as the instrumentation
examples can be downloaded from https://github.com/secure-software-

engineering/android-instrumentation-tutorial

References

1. International Data Corporation: Worldwide quarterly mobile phone tracker 3q12
(November 2012), http://www.idc.com/tracker/showproductinfo.jsp?prod
id=37

2. Bit9: Pausing google play: More than 100,000 android apps may pose security risks
(November 2012), http://www.bit9.com/pausing-google-play/

3. Lu, L., Li, Z., Wu, Z., Lee, W., Jiang, G.: Chex: statically vetting android apps for
component hijacking vulnerabilities. In: Proceedings of the 2012 ACM Conference
on Computer and Communications Security, pp. 229–240. ACM (2012)

4. Kim, J., Yoon, Y., Yi, K., Shin, J., Center, S.: Scandal: Static analyzer for de-
tecting privacy leaks in android applications. In: Proceedings of the Workshop on
Mobile Security Technologies (MoST), in Conjunction with the IEEE Symposium
on Security and Privacy (2012)

5. Yang, Z., Yang, M.: Leakminer: Detect information leakage on android with static
taint analysis. In: IEEE 2012 Third World Congress on Software Engineering
(WCSE), pp. 101–104 (2012)

6. Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
Taintdroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. In: Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation. OSDI 2010, pp. 1–6. USENIX Association,
Berkeley (2010)

7. Xu, R., Säıdi, H., Anderson, R.: Aurasium: practical policy enforcement for an-
droid applications. In: Proceedings of the 21st USENIX Conference on Security
Symposium, Security 2012, pp. 27–27. USENIX Association, Berkeley (2012)

8. Lam, P., Bodden, E., Lhoták, O., Hendren, L.: The soot framework for java program
analysis: a retrospective. In: Cetus Users and Compiler Infastructure Workshop,
CETUS 2011 (October 2011)

9. Allan, C., et al.: Abc: the aspectbench compiler for aspectj. In: Glück, R., Lowry,
M. (eds.) GPCE 2005. LNCS, vol. 3676, pp. 10–16. Springer, Heidelberg (2005)

10. Android: Android security overview (December 2012),
http://source.android.com/tech/security/

11. Goolge Inc.: Google play (December 2012), https://play.google.com/
12. Bodden, E., Hermann, B., Lerch, J., Mezini, M.: Reducing human factors in software

security architectures. In: Future Security Conference (to appear, September 2013)
13. Oh, H.S., Kim, B.J., Choi, H.K., Moon, S.M.: Evaluation of android dalvik virtual

machine. In: Proceedings of the 10th International Workshop on Java Technologies
for Real-time and Embedded Systems, JTRES 2012, pp. 115–124 (2012)

https://github.com/secure-software-engineering/android-instrumentation-tutorial
https://github.com/secure-software-engineering/android-instrumentation-tutorial
http://www.idc.com/tracker/showproductinfo.jsp?prod_id=37
http://www.idc.com/tracker/showproductinfo.jsp?prod_id=37
http://www.bit9.com/pausing-google-play/
http://source.android.com/tech/security/
https://play.google.com/

Instrumenting Android and Java Applications as Easy as abc 381

14. Google Inc.: Application fundamentals (December 2012),
http://developer.android.com/guide/components/fundamentals.html

15. Google Inc.: Content provider basics (December 2012),
http://developer.android.com/guide/topics/providers/

content-provider-basics.html

16. Google Inc.: Activity (June 2013),
http://developer.android.com/reference/android/app/Activity.html

17. Google Inc.: Logcat (June 2013),
http://developer.android.com/tools/help/logcat.html

18. Google Inc.: Android emulator (June 2013),
http://developer.android.com/tools/help/emulator.html

19. Google Inc.: Android debug bridge (June 2013),
http://developer.android.com/tools/help/adb.html

20. Google Inc.: Signing your applications (June 2013),
http://developer.android.com/tools/publishing/app-signing.html

21. Google Inc.: zipalign (June 2013),
http://developer.android.com/tools/help/zipalign.html

22. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding trace matching with
free variables to aspectj. In: Proceedings of the 20th Annual ACM SIGPLAN Con-
ference on Object-oriented Programming, Systems, Languages, and Applications.
OOPSLA 2005, pp. 345–364. ACM, New York (2005)

23. Bodden, E.: Packs and phases in soot (November 2008),
http://www.bodden.de/2008/11/26/soot-packs/

24. Lam, P., Qian, F., Lhoták, O.: Packs and phases in soot (November 2008),
http://www.sable.mcgill.ca/soot/tutorial/phase/

25. Lhoták, O., Hendren, L.: Scaling java points-to analysis using spark. In: Hedin, G.
(ed.) CC 2003. LNCS, vol. 2622, pp. 153–169. Springer, Heidelberg (2003)

26. Patrick Lam, F.Q., Lhoták, O.: Soot command-line options (June 2013),
http://www.sable.mcgill.ca/soot/tutorial/usage

27. Arzt, S., Falzon, K., Follner, A., Rasthofer, S., Bodden, E., Stolz, V.: How useful
are existing monitoring languages for securing android apps? In: 6. Arbeitstagung
Programmiersprachen (ATPS 2013). Lecture Notes in Informatics, Gesellschaft für
Informatik (February 2013)

http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/topics/providers/content-provider-basics.html
http://developer.android.com/guide/topics/providers/content-provider-basics.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/tools/help/logcat.html
http://developer.android.com/tools/help/emulator.html
http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/tools/help/zipalign.html
http://www.bodden.de/2008/11/26/soot-packs/
http://www.sable.mcgill.ca/soot/tutorial/phase/
http://www.sable.mcgill.ca/soot/tutorial/usage

	Instrumenting Android and Java Applications as Easy as abc

	1 Introduction
	2 Android Platform Overview
	2.1 Application Architecture
	2.2 Android SMS Messenger Example
	2.3 Overview of Android API Calls
	2.4 Android.jar: Where Android Lives
	2.5 Useful Tools
	2.6 Managing APKs on the Device

	3 Instrumentation with abc and AspectJ
	4 Instrumentation with Tracematches
	5 The Machinery: Soot and Jimple
	5.1 Jimple: Java, But Simple
	5.2 Soot Options

	6 Manual Instrumentation
	6.1 Removing Statements
	6.2 Adding New Statements

	7 Conclusion
	8 Examples
	References

