
Design Automation for Embedded Systems manuscript No.
(will be inserted by the editor)

An Optimization Based Design for Integrated Dependable
Real-Time Embedded Systems

Shariful Islam, Neeraj Suri
Andr ás Balogh, Gÿorgy Csertán, András Pataricza

Received: date / Accepted: date

Abstract Moving from the traditional federated design paradigm, integration of mixed-
criticality software components onto common computing platforms is increasingly being
adopted by automotive, avionics and the control industry. This method faces new challenges
such as the integration of varied functionalities (dependability, responsiveness, power con-
sumption, etc.) under platform resource constraints and the prevention of error propagation.
Based on model driven architecture and platform based design’s principles, we present a
systematic mapping process for such integration adhering atransformation based design
methodology. Our aim is to convert/transform initial platform independent application spec-
ifications into post integration platform specific models. In this paper, a heuristic based re-
source allocation approach is depicted for the consolidated mapping of safety critical and
non-safety critical applications onto a common computing platform meeting particularly
dependability/fault-tolerance and real-time requirements. We develop a supporting tool suite
for the proposed framework, where VIATRA (VIsual Automatedmodel TRAnsformations)
is used as a transformation tool at different design steps. We validate the process and provide
experimental results to show the effectiveness, performance and robustness of the approach.

Keywords Fault-Tolerance, Real-Time, Constraints, Mapping, Transformation.

This work has been partly supported by the EU IST FP6 DECOS.

S. Islam, N. Suri
Department of Computer Science, Technische Universität Darmstadt
Hochschulstr. 10, 64289 Darmstadt, Germany. Tel.:(+49) 6151 16 7066, Fax: (+49) 6151 16 4310
E-mail:{ripon,suri}@cs.tu-darmstadt.de

A. Balogh, Gy. Csertán,
OptXware Research and Development Ltd.
Budafoki út 187-189. A. 2. em 32., H-1117 Budapest, Hungary. Tel: (+36) 1 814 9056, Fax: (+36) 1 814 9057
E-mail:{balogh,csertan}@optxware.hu

A. Pataricza
Department of Measurement and Information Systems, Budapest University of Technology and Economics
Magyart Tudósok körútja 2., H-1117 Budapest, Hungary. Tel.:(+36) 1 463 3595, Fax:(+36) 1 463 2667
E-mail: pataric@mit.bme.hu

2

1 Introduction

Design of dependable1 real-time (RT) embedded systems comprises diverse functional and
critical applications and faces a wide range of competing constraints (e.g., cost, space,
weight, power, FT, hard RT and multiple other realization constraints) imposed by the in-
creasing number of applications and their software (SW). Examples of such systems include
automotive, avionics and control systems among many others. As these are often safety-
critical environments, the applications (SW component) are desired to produce correct output
and preserve the safety of the operations even in the presence of some faults from an antic-
ipated set of faults. Moreover they have to fulfill severalresponsivenessandperformance
requirements in addition to functional correctness makingthe design even more challeng-
ing [1]. Thus efficient and cost effective system design strategies are needed to integrate
these diverse critical applications across limited hardware (HW) resources while consider-
ing the interplay of dependability/FT and RT requirements.

Traditional design techniques such as federated approach [2] are increasingly limited
for developing such systems.Extra-functionalproperties such as timeliness, FT and safety
are introduced often late in the development process when the design is difficult and costly
to change/upgrade. For example, FT is treated as an add-on requirement in the design pro-
cess. A typical (and costly) approach being replicating theimplementation, i.e., a so called
federated approach. Investigations show that this approach fails to produce cost-effective
dependable systems [3]. On the other hand embedded productshave become increasingly
complex and must be developed quickly that current design methodologies are no longer
efficient [4]. Therefore integrated approaches are more often advocated where integration of
different criticality applications onto a common computing platform is needed. The impor-
tance and benefits of such approach is evident from the designconcept in avionics industry
such as the Integrated Modular Avionics (IMA) [5–7] as well as such design concept is
currently being introduced in automotive industry such as in AUTomotive Open System
ARchitecture (AUTOSAR) [8] and in [9,10]. In order to ease the design complexity, inte-
grated system design should come up with guidelines, methodologies and tools [11] and
need a stepwise design process. This method for designing embedded systems requires to
specify and design SW and HW separately. The development of such systems also calls for
new forms of abstraction and design methodologies for bridging applications with platform
details.

The emerging Model Driven Architecture (MDA) [12] and Platform Based Design (PBD)
[4] initiatives address such design processes at differentabstraction levels. Adhering to these
methodologies and for developing an efficient transformation based system design, we pro-
pose the following guidelines:(i) to start the design by representing the functional applica-
tion development in an abstract form independent from the platform implementation details,
(ii) the selection of the HW platform such that it can support the functionality while meet-
ing the performance and dependability/FT requirements, and (iii) the integration/mapping
of application functionalities onto available platform resources satisfying specified design
constraints. In PBD technology this is often termed asmeeting-in-the-middleprocess. This
design step faces new challenges under platform resource constraints and needs careful at-
tention such that FT and RT requirements are not compromised. In order to tackle all these
design considerations, new methodologies need to be developed. Moreover a suitable tool-
chain is essential for such design steps in order to be able todesign the system in an efficient
and cost effective way. Consequently, in this work we propose a formalization of the soft-
ware job and hardware platform to perform constrained job mapping between them.

1 The terms dependability and fault-tolerance (FT) will be used synonymously in the paper.

3

1.1 Our Contributions

Unlike existing traditional design approaches, we consider integration of different criticality
applications using a transformation and mapping approach.Using these approaches and ad-
hering to model-based design principles2, our aim is to convert initial platform independent
SW component specifications into a platform specific post integration model (Figure 1). We
focus on mapping different applications/SW components onto shared HW resources sub-
ject to operational constraints. Applications are furtherdecomposed into smaller executable
fragments called jobs. A mapping is defined as:(I) assigning jobs onto suitable HW nodes
such that platform resource constraints and dependability/FT requirements are met (resource
allocation) and(II) ordering job executions in time (scheduling). This particular problem is
often NP hard [13] to solve in a tractable manner where a solution can be found in polyno-
mial time [14]. Consequently heuristic solution techniques are often utilized. Also, existing
approaches usually do not address(I) and(II) together. Mostly scheduling is performed as-
suming a predetermined manual allocation. This may not be possible for a rapidly developed
embedded systems where functionalities and complexities (due to large number of design
constraints and requirements) are increasing day-by-day.Thus intuitive mapping decisions
are inherently limited beyond a given complexity. We have developed a heuristics based
systematic resource allocationapproach for the mapping in [15]. Dependability/FT and RT
requirements are the prime drivers for our proposed mappingand both of them are taken into
consideration in step(I). The same concept is utilized in this transformation based design
process. Rather than focusing solely on the performance of the algorithm itself, we ensure
separation of replicas to maintain dependability over integration, while satisfying timing
constraints, minimizing interactions and reducing the communication load on the network.
The output of the algorithm is a feasible mapping of jobs ontoHW nodes.

Platform independent SW

components model (PIM)
(language based on UML)

Platform specific post

integration model (PSM)

HW platform,

Constraints

Prime driver:
Dependability

Transformation/

Mapping

Fig. 1 Transformation based design

The design starts from the high-level abstraction of systemfunctionality which is com-
pletely independent of platform specific programming details. The Platform Independent
Model (PIM) is created by specifying the functional as well as responsiveness and de-
pendability properties of application jobs. We develop this model for varied applications
(model is given in Section 8.2). The challenging task is to integrate these different criticality
PIMs onto resource constrained HW platform. Our aim is to provide an interactive (semi-
automated) and iterative transformation based design and asupporting tool set for such de-
sign. In the course of the transformation (PIM-to-PSM mapping), applications of different
requirements are allocated and integrated onto common HW resources based on the speci-
fied constraints. The post integration phase is defined in thePlatform Specific Model (PSM),

2 This follow the pervasiveness of these techniques in industry.

4

where system functionalities are already mapped onto platform meeting the requirements
andobjectives. This model controls the deployment of executables to the target platform.
Over all, we make the following contributions:
1) A novel transformation based design methodology is developed for integrated mapping

of SW components onto HW. To the best of our knowledge this is the first transformation
based mapping approach that combines both dependability and RT aspects.

2) Relevant design criteria such as classification of requirements and constraints, criticality
partitioning, reusability, fault-tolerance, fault-containment, responsiveness, utilization
of bandwidth are comprehensively addressed in our approach.

3) We model functional andextra-functionalrequirements in the same abstract platform,
i.e., in the PIM. Thus, the extra-functional requirements of RT and dependability/FT are
taken into account at early design phase.

4) Dependability is ensured through replication of jobs with high criticality. We then en-
hance dependability by using fault-containment mechanismand present a schedulability
analysis for guaranteeing the responsiveness/timelinessproperties.

5) Themarked PIMis introduced in the design process in order to complement the infor-
mation of PIM and HW platform model by designer decisions.

6) Based on heuristics a systematic mapping of Safety Critical(SC) and non-SC appli-
cations onto a distributed computing platform is carried out such that their operational
delineation is maintained over the integration. Our proposed algorithm generates an ini-
tial feasible solution and guides the design optimization in an efficient way.

7) We perform extensive experiments which show the effectiveness (quality of the solu-
tion), performance (reducing the search space and finding a quick feasible solution) and
robustness (consistent to perform the same mapping over many runs) of our design pro-
cess. A validation of the allocation process is performed aswell.

8) We provide a supporting tool set and technologies in a VIATRA3 based framework.
Once all the defined design steps/transformations are done in VIATRA, the PSM of the
target system is generated.

1.2 Paper Organization

The paper is organized as follows. Section 2 discusses the related work. Section 3 depicts the
fundamental aspects of our target system design describingsystem requirements, different
partitioning policies and SW reusability. The system modeland problem formulation is de-
tailed in Section 4. The developed transformation approachis provided in Section 5, where
we briefly describe the system design flow. The mapping process is systematically described
in Section 6 including mapping strategies (e.g., providingFT, influence/fault-containment,
schedulability analysis), proposed heuristics and the algorithm. Section 7 illustrates the map-
ping using a SC-application from an actual automotive system and provides performance
evaluation of the heuristics. The over all process is implemented in a VIATRA based tool
suite detailed in Section 8.

2 Related Work
Varied techniques have already been used for solving the resource allocation problem, e.g.,
constraint propagation [17,18], inform branch-and-boundand forward checking [18,19] and
mixed integer programming [20]. These approaches typically perform the mapping (alloca-
tion and scheduling) straightforwardly applying the abovementioned techniques. A disad-
vantage of these approaches is that usually they do not put additional efforts to reduce the
search space a priori while solving the problem thus limiting their applicability to handle

3 VIATRA (VIsual Automated model TRAnsformations) is an opensource model transformation tool [16].

5

only a few constraints. [17] applies symmetries exclusion to reduce the search space which
is more desirable in a homogeneous system. An enhancement ofthe Quality-of-Service
(QoS) based resource allocation model [20] is presented in [21], where a hierarchical de-
composed scheme by dealing with smaller number of resourcesis described enabling QoS
optimization techniques for large problems. Tasks replication is used as a QoS dimension
in order to provide FT. In this paper, we decompose our approach into several subproblems
and phases in order to reduce the complexity of solving the problem. We describe this more
in Section 4.2.

The major requirements for designing embedded systems are to meet both RT require-
ments and to provide dependability (FT, avoiding error propagation, etc.). Commonly used
approaches typically address RT and FT on a discrete basis [19,21]. AIRES (Automatic Inte-
gration of Reusable Embedded Systems) [19,22] describes the allocation of SW components
onto HW platforms for RT and embedded applications satisfying multiple resource con-
straints. They also provide a schedulability analysis. Themethod has been implemented into
a Model Driven Development (MDD) analysis tool that evaluates whether those constraints
are satisfied. Based on constraint programming, [18] presents an approach to constraint-
driven scheduling and resource assignment. They develop a constraint solver engine which
satisfies a set of constraints. However dependability/FT isnot considered in any of these
approaches. Moreover when scheduling for RT systems is performed, a predetermined al-
location or a simple allocation scheme is used (e.g., [5]). If the scheduling is performed
without assuming any pre-allocation it may significantly increase the computation complex-
ity and can make the problem intractable (cannot be solved inpolynomial time [14]). Also if
the allocation and scheduling are considered separately, important information (e.g., consi-
dering constraints) used from one of these activities is missed while performing the other.
On the other hand, usually FT is applied to an existing scheduling principle such as rate-
monotonic or static off-line either by using task replication [23] or task re-execution [24].
Existing all these approaches typically do not address all the constraints or use a limited
fault model where dependability is essential. We applyconstraints prioritization[25] dur-
ing the allocation phase in order to satisfy the constraintswhich also reduces the complexity
to solve the problem. [26] specifically addresses the dependability driven mapping (focuses
on minimizing interaction) and presents the heuristics fordoing the mapping. However the
focus is on design stage SW objects to aid integration. A survey of various SW development
processes addressing dependability as extra-functional requirements at both late and early
phases is described in [27]. Utilizing model-based principle, [28] describes a component
integration method for designing and deploying avionics systems. [29] provides a tool suite
for the design and analysis of large-scale embedded RT systems.

Using MDA and PBD methodologies, we develop a rigorous dependable RT embedded
system design approach considering all the requirements early in the design process as well
as provide a detail description of a heuristics based allocation and scheduling. Furthermore
we provide a new supporting tool-chain for the design of bothSC and non-SC applications.

3 Preliminaries

This section describes the functional and extra-functional requirements, partitioning issues
for SW execution and the SW reusability, which are the core criteria for our integrated
system design approach. Based on these descriptions, in Section 4.1 we present the system
model comprising of SW and HW model, constraints and the fault model.

6

3.1 Requirements

A typical FT-RT embedded system has to comply to a set of frequently contradicting re-
quirements formulating both envisaged functional and extra-functional properties. The re-
quirements can be expressed by categorizing them as:

– constraints, which have to be satisfied in the target design in a mandatoryway. Typical
representatives are timeliness constraints in hard RT systems or replication level in FT
systems.

– design objectives, occasionally referred to assoft constraints, can serve as a compa-
rison basis between design alternatives by providing some quantitative characteristics
expressing the level of compliance of a candidate design to the requirements.

A typical set of requirements for hard FT-RT embedded systems may cover the following:
Temporal Requirements:A hard RT system must respect all timeliness requirements

in order to deliver a predictable and deterministic behavior in addition to the compliance to
the functional specification. For instance, applications must terminate their execution within
a certain temporal limit even in presence of faults. Classical scheduling theories define two
types of temporal constraints:deadlinesto be kept by the termination of execution of the
individual jobs andprecedence relationsrequire a guaranteed termination of a job prior of
launching another one causally depending on its results.

Synchronous system implementation (e.g., time-triggered[30]) is a frequently used
paradigm guaranteeing by principle the fulfillment of temporal requirements. Here each
operation gets a time slot assigned according to its worst-case (longest) execution time.

Dependability Requirements:This class of requirements may contain any of the as-
pects of dependability properties [31], which are reliability, availability, safety, security, in-
tegrity and maintainability. In the case of replication based safety, the top priority constraint
relates the number (or cumulated reliability) of replicas to the designated reliability of the
system. The next level constraint formulates the requirement to ensure dependability by de-
sign, two types of requirements are defined.Separation of replicas: replicated jobs from the
high critical applications must be in partitions of different HW nodes andSC and non-SC
partitioning: in order to maintain strong partitioning between applications of different criti-
cality particularly to ensure that SC applications are not affected by the erroneous behavior
of non-SC ones.

Resource Requirements:We define several resource related constraints under this cat-
egory of requirements mentioned as follows. Some jobs can only be mapped on a subset
of available nodes due to the need of certain resources (e.g., sensors or actuators) and treat
them as binding requirements. The sum of computation times of all jobs running on the same
processor must be less than the computation capability provided by that processor (depends
on available processor utilization) and the memory usage ofjobs cannot exceed the available
memory capacity. Sufficient bandwidth for communicating jobs on different nodes must be
provided by the underlying network (e.g., TTP/C [32], FlexRay [33]).

3.2 Robust Partitioning Policies

Conceptual partitioning means that the boundaries among jobs as well as among applica-
tions are well defined and protected so that operations of a job will neither be disrupted
nor corrupted by the erroneous behavior of another job [2]. This erroneous behavior of a
job can be the result of a SW fault or a failure in a HW element used exclusively by that
job. Partitioning is needed to ensure that SC applications are not affected by the erroneous
behavior of non-SC applications. The main means of achieving robust partitioning is the

7

implementation of well-defined and protected damage confinement regions between com-
ponents assuring a guaranteed blocking of inter-componenterror propagation. The different
policies can be distinguished according to the granularityof the architecture, i.e., the notion
of components they apply:

– Node-level partitioning is a traditional policy adopting the granularity of HW nodesas
elementary construction and fault isolation components. Each (usually highly dedicated)
HW node runs a single functional component of the system. Similarly, replication is
introduced at the HW node level. The same separation principle is used for isolating
the implementations of replicas and SC and non-SC functionalities, as well, by strictly
deploying each function onto a separate HW node. Damage confinement isolates faulty
components.
This paradigm necessitates a high HW overhead due to the redundancy induced by the
architectural granularization for fault isolation. It typically results in an architecture
composed of at least one separate computing node per each individual function inter-
connected by a fabric of point-to-point communication links.

OS Service Provider - Kernel

Service

Interface

OS Service

A

Partition A

SC
Device Driver
Management

Partition

OS Services
for Driver

Partition B

non-SC

OS Service Provider - Kernel

SC Core Non- SC Core

Network (e.g., TTP/C, FlexRay)

HW

Node

HW

Node

HW

Node

HW

Node

Option 1

Option 2 OS Service B

Service

Interface

Service
Interface

OS Service A

Partition A Device Driver

Management
Partition

OS Services

for Driver
Service

Interface

OS Service A

Partition A
Device Driver

Management
Partition

OS Services
for Driver

OS Service Provider - Kernel

Fig. 2 High-level model of the target platform shows the partitioning concepts and the appli-
cation execution environment

– Processor level physical partitioningis a modified version of node-level partitioning
for nodes embedding multiprocessors for a higher computational power. The loose cou-
pling between processors provides a basic inter-processorisolation to take processors
as partitioning units, while sharing the remaining (less critical) shared resources such as
external communication channels or other I/O interfaces. This is shown in Option 1 in
Figure 2. This configuration gives the provision of assigning SC and non-SC applica-
tions onto different processor cores on the same HW node so that the influence4 from
non-SC to SC applications are prohibited by design.
However the feasibility of the principle of system composition of dedicated parts is lim-
ited in scope for ever increasing function complexity of embedded systems. A large
number of HW components interconnected by a complex fabric becomes prohibitively

4 Influence is the probability of error propagation between modules where a module can be an application,
a job, a processor core or a node.

8

expensive from the point of view of resource use, power consumption and space/weight.
Moreover the high level of redundancy rapidly results in reduced overall system reliabil-
ity despite the increase in component reliability as induced by technology development.
This paradigm necessitates the use of a high-level of HW redundancy. The architectural
granularization results in architectures composed of at least one separate computing
node per function interconnected by a fabric of point-to-point communication links.

– Job level partitioning policiesuse a finer granular approach by taking jobs as alloca-
tion and replication units. It allows HW resource sharing bythe deployment of multiple
functions (implemented as isolated SW jobs) onto the same HWcomponent (option 2).
They provide each job with a certain amount of computationaltime and memory re-
sources for an exclusive use called thepartition for the job (Figure 2). Typically, bus
organized communication channels interconnect the HW nodes. Safety of the systems is
still based on replication of the critical parts. The operating system (OS) service provider
(kernel) layer (Figure 2), is used to virtualize the CPU, dividing it into protected parti-
tions (shown as A, B, etc.), inside which a job executes. In a non-SC partition more
than one job can run. The service interface encapsulates theOS services to the specific
job running in that partition. The OS kernel layer supports the intra-nodes processor
communication.

Resource sharing is obviously beneficial from the view pointof cost reduction, but inter-
job isolation becomes crucial for safety. Partitioning mechanisms [2] in each shared proces-
sor have to exclude both erroneous spatial interactions (e.g., error propagationvia shared
resources between jobs) and temporal ones (e.g., starvation of a job caused by another one
stealing its processor time). Isolation of the jobs is carried out by means of the standard
support mechanism built-in into most modern processors, like memory segmentation in the
Memory Management Unit (MMU) further enforced by specialized HW and OS, like [2].
Strict spatial and temporal isolation is provided in platforms intended for SC applications
(like TTP) by means of extra HW units assuring FT for each mainisolation-related function-
ality both in the multitasking run-time environment and in the communication infrastructure
over shared buses. However in this paper we provide the notion of reducing error propaga-
tion during integration so that the partitioning will be less reliant on the use of OS and other
partitioning mechanisms.

3.3 Component Reusability

Reuse of existing components is a key approach aimed at reducing development and man-
ufacturing times and costs. An efficient workflow covering all phases of the development
process (design, component integration, validation and testing, certification) is one of the
key factors in the reduction of development and manufacturing costs and time.

– As job level partitioning loses the dependence on the level of dedication of the HW
platforms, they may increasingly become of a generic type, thus supporting the reuse of
COTS and other legacy components. Automotive, avionics, control and seaborne sys-
tems are representative examples of SC systems relying on a rapidly growing number of
SW componentsand aHW component integrationsystem design paradigm.

– Another evolving form of reuse is that of theintellectual property. While the change
in the functionality offered by subsequently developed members of a product family
follows typically an evolutionary path, their implementations can drastically differ due
to the revolutionary changes in the HW platform technology background.

Note, that there is an interesting interplay between reusability and robust partitioning in
building SC systems [6]. As the core concept of robust partitioning is a strict componentiza-

9

tion assigning a single partition to each individual functionality to be executed, modification
of a functional component influences only those ones, which are in an explicit functional
interdependence with it. As side effect freedom is guaranteed by principle with respect to
other ones, robust partitioning facilitates the reuse, modification, debugging, integration, and
certification of components.

4 System Model and Problem Statement
This section presents the system design models (SW and HW models, constraints and the
fault models) and the problem formulation.

4.1 System Model

The system model is decomposed into several models described as follows. The SW model
presents the functional andextra-functionalrequirements of jobs and the HW model is the
physical execution platform for those jobs. The fault modeldepicts the types of faults and
their causes, whereas constraints define the possible solution space. The rest of this section
details characteristics of the different models.

SW Model: The PIM of a hard RT application has to be enriched with the specifica-
tion of temporal and dependability related requirements controlling its mapping to the PSM.
This section presents the description of the properties of jobs and mathematical formula-
tion in order to serve as a reference basis for the description of the PIM-to-PSM mapping
algorithms, while Section 8.2 will address the SW technology context.

The designated functionality of the target system can be characterized by its respective
HW resource demand, SW models, and the anticipated fault models associated with them.
The SW model consists of a set of job typesJ = { j1, . . . , jn}. Jobs represent the smallest
executable SW fragments with basic communication capabilities for inter-job information
exchange. Each job typej i has the following attributes associated to it:

– resource requirementsare summarized in a record (represented by the vectorr i) com-
posed of the different quantitative descriptors of resource capacity required, like CPU
capacity, memory size, availability of a certain kind of sensors etc.

– degree of criticality(dci) measured as the number of the replicas needed for the partic-
ular job type.

Inter-job communication is characterized by a weighted directed graph (WDG),G =
(J ,E), having the job types as verticesV, and an edge between jobsjs and jt , if they com-
municate. Timing properties is represented as (ti), which is the triple ofti(ESTi ,CTi ,Di),
whereEST,CT,D are the earliest start time, computation time and deadline of a job respec-
tively. ei j ∈ E is an edge between two job vertices(vi ,v j) ∈V, which is the notion of both
of influence(Ii j) and communication data(bi, j) (bytes) between jobs.Ii j denotes the cumu-
lated conditional probability of error propagation from the source jobjs to the target jobjt ,
either via message passing or shared resources, assumed, that js is in a erroneous state.bi, j

is the amount of data of the required communication between jobs, for instance measured
by the maximal total size of information to be transferred per execution cycle.

HW Model: We assume a distributed shared platform with a network topology allowing
a HW node to communicate with each other node as shown in Figure 2. A HW node may
contain a single or multiple processors or a processor with multiple cores. The set of nodes
N = {n1, . . . ,nk} can be modeled as an interconnection HW graph that representlimited
HW capability provided by the node processor. The measure oflimitation can be in time
(e.g., a certain amount of CPU time is assigned) or in space (e.g., a certain memory region is
assigned to a partition). The OS kernel layer supports the intra-node processor communica-
tion (e.g., by shared memory, buffer). For inter-node communication, nodes share the same

10

communication channel to send and receive messages (e.g., by message passing). Jobs are
mapped onto nodes which is represented as∀i,kM(j i,nk), whereith job j i is mapped ontokth

nodenk.
Constraints Model: Constraints define the conditions that limit the possible mappings

from a dependability, RT or resource perspective. A set of constraintsC = {c1, . . . ,cl }
need to be satisfied for a mapping to be valid [15]. Based on therequirements presented
in Section 3.1, we summarize the following constraints:(a) binding constraints - jobs that
need to be allocated onto specific nodes due to the need of certain resources (e.g., sensors or
actuators),(b) FT constraints - separation of replicas to different nodes,(c) schedulability -
maintaining RT constraints and(d) computing constraints - such as the amount of memory
available for jobs.

Fault Model: We consider both SW and HW faults, therefore a fault can occurin any
job, HW node or communication link. The consequence of a fault is an error (deviances
from the functional or temporal specification) which can propagate from a source module
to a target module explicitly via an erroneous message sent by a faulty job or via some
shared resource (implicit propagation channel). A single (transient or permanent [31]) fault
impacting any of these shared resources is likely to affect several or all of the jobs running
on the node. In the case of communication link, only transient faults are considered.

4.2 Problem Formulation

The generalized resource allocation problem can be modeledas aConstraints Satisfaction
Problem(CSP), which is characterized by a given set of jobsJ = { j1, . . . , jn}, a distributed
computing platform associated withk nodesN = {n1, . . . ,nk} and by a set of constraints
C = {c1, . . . ,cl }. A solution to this problem is an assignment of each of then jobs to one
of the k nodes such that all constraintsC = {c1, . . . ,cl } are satisfied and objectives are
met. The set of all possible mappings for a given set of jobs and nodes is called thedesign
space (X)that includes feasible (X

′
) and infeasible region (X −X

′
). The constraint surface

(Figure 3) divides the design space into two regions: feasible and infeasible. Constraints that
represent limitations on the behavior or performance of thesystem are termed as behavior
constraints (e.g., FT and RT constraints) and that represent physical limitations are called
geometric/side constraints (e.g., binding constraints) [34]. All these constraints are satisfied
during the mapping algorithm presented in Section 6.4.

A hypothetical design space is shown in Figure 3, where the infeasible region is indi-
cated by the hatched line. Apoint x in the design spaceX represents a mapping of jobs onto
nodes. Points located in the region of constraints satisfaction are feasible points. A map-
ping is either feasible/aceptable or infeasible/unacceptable. A feasible mapping is a solution
which satisfies all constraintsC . If any constraint is not satisfied then the mapping is infeasi-
ble. TheneighbourhoodspaceN(x)⊆ X of a pointx is the set of all points that are reachable
by performing amoveoperation (e.g., relocating a job to a different node). Thisparameter
is used either creating an initial feasible mapping when backtrack is necessary or an opti-
mized mapping both from feasible and infeasible one. Our mapping algorithm presented in
Section 6.4 searches the global spaceX for a solution in the region ofX

′
. It is a constructive

heuristic which creates a feasible mapping for a set of jobs and nodes in every single run of
the algorithm if a solution exists at all. Usually there exist many mappings that satisfy the
defined constraints. Therefore measures are needed to find a suitable mapping. Thevalueof
a point is a measure of the suitability of the mapping represented by that point. The func-
tion f (x) is used to measure the value of a point of the design space. Foran optimization
problem, which minimizes the value of objectives, good mappings have low values. The
task is to find a mappingx∗ ∈ X with the lowest function value, i.e.,f (x∗) ≤ f (x) ∀x ∈ X.

11

 Satisfaction of

all constraints (C)

INFEASIBLE REGION

Behavior constraint (e.g., FT)

e
B

n
o

c
r

oi
v

a
h

s
)

T
R

,.
g.

e(
 t

ni
ar

t

Behavior

constraint

(e.g., power)

Side constraint

(e.g., need of sensor)

Side constraint

(e.g., need of resources)

x*

x

X

N(x)

Design

optimization

X‘

FEASIBLE REGION

IN
F

E
A

S
IB

L
E

 R
E

G
IO

N

Fig. 3 Hypothetical design space

x∗ is the optimized mapping from the search space ofX. However, guidance of heuristics is
necessary for an efficient search in the global design space and for obtaining an optimized
mapping with less computation cost. In order to prove this wehave performed a comparative
study with [35], where scheduling (ordering jobs execution) is implemented and conducted
in a CPLEX based tool. CPLEX is an ILOG software product for solving Linear and Mixed
Integer programming problems [36].

It is already mentioned that the problem is NP hard, therefore, in order to reduce the
complexity we divide the process into subproblems. The mapping problem itself is divided
into two subproblems: allocation and scheduling. First, wecreate a feasible allocation by
using the proposed algorithm satisfying all the defined constraints including schedulabil-
ity. The algorithm considers the proposed jobs and nodes ordering heuristics presented in
Section 6.3 in its construction. The jobs and nodes are ordered before the allocation takes
place which helps to find a feasible solution with less numberof iterations (see experimental
results in Section 7.2). During the allocation phase all theconstraints are satisfied in a pri-
oritized manner in order to be able to create a feasible mapping. If any of the constraints is
not satisfied inStep7 of the Algorithm 2 we perform the backtracking inStep8. Moreover
the assignment process is divided into phases according to the criticality of applications. In
the first phase we consider only jobs from SC applications andafter assigning them we con-
sider jobs from non-SC applications. A validation test for the allocation is then performed so
that it can be scheduled. The output of the algorithm derivesthe basic scheduling. An opti-
mized solution can then be easily found by using CPLEX or any other approaches like [37].
The initial feasible mapping guides the optimization process in an efficient way to find the
solution (see the validation and comparative study in Section 7.3).

12

5 The Transformational Approach

On the basis of the design aspects and system model presentedin Section 3, we now briefly
describe the system design flow within this transformational approach. Section 5.2 & 5.3
describe the consistency check of the input models used in the process and the constraint
handling techniques.

5.1 System Level Design Flow

In this section, we describe the transformation based system design framework shown in
Figure 4. The design process starts specifying the varied system requirements. These re-
quirements can be captured for example by using the technique like in [38]. Once the re-
quirements are specified they are modeled in PIMs. This high-level specification modeling
is completely independent of underlying platform details.The process continues over setting
the HW platform resources and performing the mapping through to the implementation. We
assume that specification of PIMs and description of the candidate set of HW resources and
services are available prior a mapping can take place. Essentially the PIM is modeled with
the jobs properties of functionality, computation time, degree of criticality etc. The require-
ments from the SC applications are modeled in SC PIMs and non-SC applications are in the
non-SC PIMs.

Abort,
Change

platform
resources

PIMs
PIMs

Platform
independent SW

components
model (PIMs)

Platform

resources and
services (CRD)

Consistency check

Constraints,
Job replication

Marking (marked PIM)

Job allocation
(dependability driven)

Message scheduling

Job scheduling

Platform specific post

integration model (PSM)

 Estimation:

- EST
- CT

- code size

- data size

Error,

Abort

succeed

succeed

succeed

fail

fail

System
requirements

and specification

fail

Deployment and
executables

Mapping

Fig. 4 Design flow for an integrated system design

As previously mentioned, properties that have to be satisfied in the mapping are mod-
eled asconstraints. All constraints imposed on application or platform level are extracted
from the specification or defined by a designer before resource allocation can take place.
This includes details such as timing information, memory and computational requirements.
For SC jobs, designer has to specify the required degree ofreplication in order to ensure
fault-tolerance. Other types of constraints, such as the computational capability and mem-
ory capacity of the computing nodes as well as network bandwidth have to be extracted from

13

the platform details. The HW platform resources are modeledusing CRD (Cluster Resource
Description) [39] independent from the applications specification. It is represented using
a meta-model called Hardware Specification Model (HSM) for capturing the resources of
the platforms, e.g., computational resources, communication resources, special purpose HW
like sensors or actuators etc. Based on this HSM meta-model,[39] develops a tool set for
modeling the HW properties where designer can configure the resources according to their
need. We have transformed this meta-model in the VIATRA framework in order to represent
the quantity of each HW node (e.g., amount of CPU speed, memory, sensor/actuator etc.).

Before the mapping process can start, a consistency check ofthe input models (i.e.,
PIMs, CRD) is performed (see Section 5.2 for details), that means that checking the feasi-
bility of transforming the input models into a platform specific post integration model (see
Section 8 for details). As indicated in Figure 4 marked PIM (see Section 8.3 for details) is
used in the design process in order to enhance the mapping process by complementing the
information of PIM and HW platform model by designer decisions.

A crucial issue that comes up at this design stage is the mapping of jobs onto suitable
nodes satisfying all the defined constraints.

A part of such job property descriptors dealing with type matching can be derived di-
rectly from their specification. For instance, a job delivering temperature values obviously
needs a platform equipped with a thermometer of range, accuracy and sensitivity conform-
ing to the specification.

Another part of job descriptors is related to the quantitative characteristics needed to
the job-node allocation. For instance, information is needed in the form of parametrized job
models on measures or estimates of job code, data size, timing requirements etc.

Here are two typical options depending on the level of readiness of the job implementa-
tion to be integrated:

In the case of the integration of an already complete job (as it is typical for reusing
existing components) these parameters are available from prior measurements. Some char-
acteristics like worst case execution times may need some simple adaptation to the particular
candidate platform for instance due to variations in the processor speeds in different comput-
ing platforms built around the same processor types but having different clock rates. These
types of information are provided in a parametrized form in the marked PIM.

Another case is when the overall system architecture designis performed concurrently
with the integration design. Here expert estimates can substitute the temporally missing
measurement results with a potential post-implementationiteration if the a posteriori mea-
surements indicate an intolerable error in the initial estimator.

Once this information about models and jobs is obtained, theassignment of jobs onto
suitable nodes is performed in the allocation phase applying the algorithm presented in Sec-
tion 6.4.

The outcome of the allocation is used for scheduling which isperformed in two phases
as message and job scheduling:

– Message scheduling assigns a certain amount of bandwidth toeach node and specifies
the points in time of message transmission.

– Job scheduling is then performed satisfying their timeliness properties.

The infeasibility of the allocation or scheduling indicates an insufficiency in resources.
If the time matching constraints cannot read satisfied than new times of platforms have to
be introduced otherwise the capacity or the numbers of the nodes have to be increased.

The final task of the system level design is to deploy (integrating the PSM data with
the application source code) and to create the executables for the target platform. The map-

14

ping process is elaborated in Section 6 and implemented in the VIATRA based tool set in
Section 8.

5.2 Consistency Check

Consistency check is an important input filter of the process. It ensures that the input mod-
els are valid instances of their respective modeling languages. Usually, modeling language
constraints are defined using the Object Constraint Language (OCL) [40]. During the de-
sign of the domain-specific languages for PIM and PSM, we alsoused OCL to express
well-formedness criteria. During the language development phase, we discovered that on-
tologies can be used to check consistency of metamodels [41]. Using this technique, the
domain-specific languages could be validated. As a byproduct, it has been shown that in-
stance model completeness and consistency can also be validated by means of ontologies.
Compared to OCL, the advantage of this technique is that it works both on meta and in-
stance levels. Techniques like in [42] can also be used in order to formally verify the created
models, e.g., verify the platform independent semantics byshowing that the system under
test conforms to the specification.

5.3 Constraint Handling and Design Optimization

The precise definition of requirements reduces the design space as they define constraints
and objectives in addition to the designated functions, that limit the possible mappings from
the dependability, temporal or resource perspectives. It helps to avoid the exploration of in-
feasible design alternatives [43], moreover a properly selected objective function may con-
trol an automated synthesis process to deliver (sub)optimal solutions. Applying the efficient
search methods and techniques for constraints satisfaction we can avoid the unnecessary
exploration of infeasible regions in the design space and effectively guide the search space.
In the following we discuss how the constraints are handled during the mapping and de-
scribe different search techniques employed in the allocation phase of the design process.
The constraints handling techniques are employed during the mapping algorithm to satisfy
the constraints in a systematic manner. We also briefly discuss the optimization aspect.

Constraints Prioritization

The efficient management of a large set of constraints can rely on constraints prioritiza-
tion [25]. Here the system designer assigns priority levels to the individual constraints es-
timating their order to guide the search process of the design space. This technique can be
used for partitioning complex constraint systems into sequentially solvable blocks by ex-
posing causal interdependencies between the individual constraints. For instance, the repli-
cation of SC jobs precedes (in a SC application) all other decisions on job allocation as is
expressed by the topmost priority assigned to the related constraints. While generating a
feasible mapping the constraints are checked as a priority basis to satisfy them on each time
node assignment, i.e., an evaluation is performed for the assignment in order to increase the
search efficiency. This assignment evaluation step (described in Section 6.4.1) tries to find
a feasible assignment for each job without any backtracking. The backtracking search tech-
nique described below is applied in the mapping algorithm only when there is no feasible
assignment found for a particular job assignment on the available nodes, i.e., a dead-end is
reached. The backtracking is seldom needed when search procedures integrate prioritization
of constraints together with the ordering heuristics.

15

Backtracking

This mechanism enables us to undo some previous assignmentsin case there is an inconsis-
tency5, i.e., no feasible assignment is possible with the current search path. The backtrack
process goes back to the earlier assignments and changes them to the alternative feasible
ones. One simple and easy backtracking mechanism is the chronological backtracking which
systematically changes the most recent past assignment andtries alternative ones. If it is not
possible then it respectively goes back to the next most recent assignment. We have imple-
mented this technique which includes moves likerelocate(relocating a job to a different
node) andswap(swapping the nodes between two jobs). If there is no assignments left to
undo, i.e., search reaches its initial state, then the mapping is infeasible and the process
terminates.

Design Optimization

Different objectives are combined into a single composite function by applying weights ex-
pressing their importance, or reached by using multi-objective optimization techniques [37].
In this design process, optimization is primarily realizedby using the ordering heuristics. We
assign jobs according to the heuristic of reducing influences so that the algorithm can find a
local optimized solution. However, there can be more than one feasible mapping and even
more than one optimized mapping, so we need mechanisms to explore all the feasible re-
gions and consideration of different variables for global optimized solution. In order to find
a global or near-optimal solution a Multi Variable Optimization (MVO) approach [37] is
used. We have used influence, scheduling length and bandwidth utilization as objectives.
Given the prime focus on designing SC systems the quantification of influence is described
in detail in this paper. The tool presented in [35] is used to compare the approach described
in this paper and takes throughput (end-to-end deadline), robustness (number of failures),
number of nodes, cost in the objective function during the optimization.

6 The FT+RT Driven SW-HW Mapping

Increasingly embedded systems functionalities are being implemented as SW. However the
availability of physical resources is not necessarily suchthat each SW component (that is
equal to a job in our terminology) can be allocated to its own HW node. The situation is
limited by physical (space, size), weight and economic constraints. Therefore mapping of
those SW components needs to be performed onto limited and shared HW resources. We
develop a framework which systematically guides the mapping of jobs (SW) onto a shared
distributed computing platform comprising of HW nodes. Themain drivers behind the map-
ping are to provide(a) FT assuring a certain level of dependability desired by the user,(b)
to enhance dependability by reducing the probability of error propagation, and,(c) to satisfy
the timeliness properties (RT) through schedulability analysis. Other requirements and con-
straints, e.g., satisfaction of need of certain resources,desire to reduce the communication
load on network etc. are also taken into account to ensure a valid suitable mapping.

We develop an iterative mapping algorithm presented in Section 6.4. The algorithm em-
ploys various mapping strategies together with the job and node ordering heuristics. Heuris-
tics are used to create feasible mapping for a reduced numberof backtrackings, or no back-
tracking if an optimal ordering can be obtained [44]. The idea behind our heuristics is to or-
der the jobs and the nodes to facilitate the recursive assignment. Jobs are ordered so that the
most conflicting and most constrained jobs are handled first.Similarly, the nodes which al-
low the most assignments are ordered first. For example a nodeattached with sensor/actuator

5 An assignment when it does not violate any constraints is said to be consistent.

16

will be preferred at the beginning of node ordering so that a job needs sensor/actuator can
be assigned without exploring further nodes. In the algorithm, we start by assigning the first
job from the ordered list onto the first node from the ordered nodes and continue until all
jobs have been assigned. While doing the mapping the constraints are checked in a priority
basis to satisfy them on each time node assignment, i.e., an evaluation and aconsistency
enforcing[44] is performed for the assignment. The proposed heuristics and the algorithm
are implemented (in VIATRA) in the allocation phase of the tool-chain.

6.1 Basis of the Mapping

We now outline the strategies that drive the PIM-to-PSM mapping considering both FT and
RT constraints. On the basis of the requirements and models presented in Section 3, we start
sequentially by discussing the strategies for ensuring FT,followed by discussions on the
desire to reduce sensitivity to errors by influence reduction. Next, the schedulability anal-
ysis is discussed. The strategies presented here are subsequently employed in the mapping
algorithm presented in Section 6.4.

6.1.1 FT Schemes

Traditionally FT predominantly utilized HW based redundancy, e.g., Multi-computer Archi-
tecture for Fault Tolerance (MAFT) [45], Maintainable Real-Time Systems (MARS) [46],
XBW [47] and JAS 39 Gripen [48]. The active replication basedFT is used in order to toler-
ate both permanent and transient faults. Usually multiple HW components/nodes are formed
as a single unit called asfault tolerant unit(FTU) in order to tolerate either one permanent
and/or one transient fault. When a node detects a fault, it falls silent and other replica nodes
provide the necessary services. In these approaches addinga new function requires adding
a new HW node which is needed to be further replicated to provide FT. Hence this method
of redundancy incurs high HW costs for adding new functionalities.

Thus, in distributed hard RT systems, FT is usually achievedthrough active SW or tim-
ing redundancy. In case of active replication, critical SW components/jobs in the system are
replicated and the replicas perform their services in parallel [49]. The technique employs
replica deterministic agreement protocols, e.g., assure that all replicas start with the same
initial state and perform the same computation. For timing redundancy, once there is a fault
during the primary execution of a job it repeats the execution. The FT scheme presented
in this paper ensures dependability through replication ofjobs from SC applications. FT is
provided by allocating replicas of jobs onto distinct nodesand either having recovery repli-
cas to take over when a failure is detected, or use voting to mask the failure of a job. As
the jobs from an application may not be equally critical, alljobs from a single application
do not need to be replicated to an equal level. The degree of replication of jobs is speci-
fied by the system designer based on the necessary level of criticality, e.g., derived from
the safety integrity level or from the specifications of the system or from the experimental
vulnerability analysis [50] results. If the user sets a criticality degree (usually based on the
knowledge and complexity of the application) uniformly on an application, all the jobs from
that application have to be replicated equally. Replication of critical jobs makes the system
more dependable. However overprotection leads to brute replication that may in turn come
at the expense of increased hardware cost, power and schedulability. Thus a suitable degree
of criticality needs to be set for each application jobs.

We have also investigated different techniques complementing replication for FT, such
as re-execution, checkpointing [51] or roll-back recoveryand the interplay of these tech-
niques [52]. These recovery techniques are based on timing redundancy. The desired FT
techniques depend on the considered fault model and also depend on particular application

17

requirements. If an application needs to tolerate a permanent fault it has to be replicated in
spatial domain. On the other hand if it needs to tolerate onlytransient faults then re-execution
or checkpointing would be sufficient given that deadlines are not violated. Figure 5 shows
the trade-off between different redundancy based FT techniques such as spatial and temporal
redundancy, where the system tolerates 2 transient faults.Prior to executing any FT schemes,
the faults need to be detected. The fault detection process detects the existence of faults in
the system either implemented with the FT schemes or implemented separately. Examples of
fault detection techniques include signatures, HW watchdogs, assertions, comparators etc.
The overheads in time for fault detection and recovery always need to be considered with
the execution time of particular application job. As we see from the Figure 5 (a) that the

Fault

Detection

(without

recovery)

Temporal redundancy

S
p
a
ti
a
l
re
d
u
n
d
a
n
c
y

j1
1

j1
2

j1
3

N0

N1

N2

Primary backup (b)

j1
1

j1
2

j1
3

N0

N1

N2

Active replication (a)

j1
1

j1
2

N0

j1
3

N1

Re-execution and replication (e)

j1
1

j1
2

j1
3

N0

Re-execution (c)

j1
1

j1
2

j1
3N0

Checkpointing (d)

Fault detection

overhead

Tolerating 2 faults

Fault recovery

overhead

Check-pointing

overhead

Fig. 5 Trade-off between different FT schemes (a)-(e)

SW based active replication uses more resources while taking less time to finish the com-
putation. However this configuration tolerates permanent faults. Whereas techniques like
re-execution and checkpointing (and combination with replication) use comparatively less
physical resources, incur large time overhead and are only applicable for transient faults
(Figure 5 (c), (d) and (e)). In the case of primary backup FT scheme (Figure 5 (b)) the main
or the primary job run on a computing node and provide the services until there is a fault.
If there is a fault in the system the backup replica starts executing on a different node and
provide the necessary services.

In our approach we consider SW based active replication for tolerating both transient and
permanent faults. The reasons for choosing active job replication over roll-back recovery or
checkpointing is that while on one hand we consider tolerating permanent faults and on
the other hand in hard RT systems roll-back recovery is oftenof limited use [43], due to,
e.g.,:(i) as the roll-back/recovery can take an unpredictable amountof time, it is difficult
to guarantee the deadline after the occurrence of a fault,(ii) an irrevocable action which
has been effected on the environment cannot be undone,(iii) the temporal accuracy of the

18

checkpoint data is invalidated by the time passed between the checkpoint time and the instant
now and(iv) usually a perfect fault detection mechanism and permanent fault free data
storage are assumed which may not be the case.

6.1.2 Influence Reduction

We strive to minimize the interactions and influences between jobs and also the communica-
tion load on the physical network by allocating jobs with thehighest mutual communication
onto the same node.Influenceis defined as the probability of error propagation from a source
to a target module. Faults can occur either in the source module or in the communication
channel. The consequence of fault is an error. Shared memoryis a typical element poten-
tially causing error propagation between different functionalities. This propagation depends
on the size of the memory they share and how often they access it. Errors can also propagate
through message passing which depends on the size of the sending/receving messages and
how frequently messages are being sent and received. All these error propagations between
any modules are termed as influence. At an early design stage we are not necessarily aware
of specific execution environments or communication protocols. Hence, the worst case sce-
nario is assumed in order to design a system for a better cost-performance ratio by giving the
provision of using a less efficient error detection mechanism or less efficient communication
protocol.

The allocation of highly communicating jobs to the same nodeis beneficial both for re-
ducing the bandwidth and for confining the inter job error propagation within a single node.
In doing this, it is important not to violate FT, RT and resource constraints. The commu-
nication clustering heuristic, which attempts to allocatehighly communicating jobs to the
same node, thus reducing the overall communication load on physical network, has been ad-
dressed in [53]. As we consider design of an integrated system where several nodes share a
single network, the communication clustering heuristic isdesirable. Between two communi-
cating/interacting jobs, there is an influence that may leadto propagation of errors from one
job to the other. When communication between two jobs is high, the influence between them
is considered high as well. If a job is affected by an error of the node it is running on, it might
propagate errors by interacting with jobs on other nodes. These influences risk the failure
of multiple nodes and are undesirable. Moreover, messages sending over the network can
cause loss of messages due to transmission error, e.g., in automotive cars electro-magnetic
interferences causes communication failure due to transient errors.

Example Describing the Benefits:We consider an example of an application (similar
to [54]), which consists of four jobsj1, j2, j3, and j4 and need to be mapped onto an ar-
chitecture consists of two nodes (n0 andn1) communicating via a network. The application
and the architecture is shown in the upper part of the Figure 6. All jobs must finish their
execution by 140ms, i.e., by the deadline of the application. IndividualCTs for each job are
shown in the figure, e.g., jobj1 takes 40ms for its execution. A particular job takes the same
amount ofCTs to execute on either processor.j1 is a predecessor ofj2 and j3, and sends
messagesm12 andm13 to j2 and j3 respectively.j4 is a successor ofj2 and j3, and receives
messagesm24 andm34 from j2 and j3 respectively. A TDMA based network is assumed for
the communication where a TDMA roundTDx comprises of two slotss0 ands1. For the
purpose of deterministic message transmissions noden0 andn1 are statically assigned to
slot s0 ands1 respectively. The slot length of the network is equal to 10msand maximum
2 messages can be sent per slot. The time for intra-communication (communication within
the same node) is assumed to be zero. This is shown in Figure 6 (b) when j1 and j3 are
allocated on noden0. These two jobs communicate through the services provided by the OS

19

j1

j2

j3

j4

30

40 20

m34

m24

m13

m12

n0

s0 s1 s0 s1

j1

m12

j2 j3

s0 s1

j4

... s1

n0

n1

m24 m34

Length

decreases 30ms

m13

(a)

(b)

n1

30

140ms

s1

m12 m34

s0 ...

j1 j3

j2 j4

OS Kernel

j1 j3

m13 m13

n1n0

TD0 TD7TD1

Fig. 6 Reduction of influence and communication overhead

kernel layer while taking a negligible amount of time comparing with the time taken by the
communication channel. We assume that the partition switching time is also negligible.

Figure 6 illustrates that in a typical case, allocating the interacting jobs to the same
node (case b) is resulting in a reduced end-to-end delay and network load, in compared to
a generic allocation pattern (case b). We emphasize the following key benefits (where first
two benefits enhance dependability) of assigning highly interacting jobs to the same node:

(1) Restricting the possible nodes from correlated faults,
(2) The probability of losing messages over the network is reduced,
(3) The communication load on the network is reduced (may allow for the use of a slower

but cheaper bus [17]) and
(4) Increases the over all performance by reducing the totalexecution time (computation

time + time to send/receive messages) of a job since network delays are avoided.

Estimating Influence

Deviances from the correct state corresponding to the specification, or in other wordserrors
originate either in some local fault of a component or in corrupted measseges. They may
propagate along the messages.

Influence covers three phases of error propagation as shown in Figure 7 (a), namely:
(1) a fault/error occurring in a module or in a communication link, (2) propagation of the
fault/error to another module and(3) the propagating fault/error causing a cascaded error in
the target module.

In order to quantify influences, we assumePe as the probability of error propagation
from source to target considering no corruption over the network andPl as the probability of

20

message corruption over the network. If the message size is large, or the frequency of send-
ing messages is high, then the probability of messages getting corrupted over the network is
high.

Source

(s)

Target

(t)

p(message corruption)

Inputs

1

2

3

s
P

t
P

ts
I ,

l
P

j1
j3

j2

Node Node 2n1n

.4

1
2,1I =

.32
2,1I =

(a) (b)

Fig. 7 (a) Phases of error propagation and (b) Combining influences

The probability of error propagation from a source (s) to a target (t) is denoted byPs,t

and defined as follows:

Ps,t = p{error propagation|no corruption over the network}∗

p{no corruption over the network}

= Pe · (1−Pl) = Ps ·Pt ∗ (1−Pl) (1)

Where,

Pe = Ps ·Pt

Ps = p{error in out put o f s|error in input o f s}

Pt = p{error in state o f t|error in input o f t coming f rom s}

Pl = p{message corruption|error on the communication link}

The probability thats outputs an error and sends it to the input oft is Ps. The probability
that an error occurs int due to the error received froms is Pt . The former indicates how
often s allows errors to propagate out ofs and the latter indicates how vulnerablet is to
errors propagating froms. The probability of message corruptionPl can be defined as the
unreliable message transmission over the network, which iscalculated as 1−exp(−λl ·

bs,t
T).

Where,bs,t is the size of the messages betweens and t andT is the transmission speed.

Assume that the failure rate of the communication link isλl . exp(−λl ·
bs,t
T) is the reliability

factor due to message transmissions over the network, i.e, the probability that the messages
are transmitted safely.

We further elaborate on different error probabilities. An error (e.g., a bit flip transient
error) occurs at any inputs ofs or generated from any other sources and may propagate to
input of t, where an error may occur. The probability of an error inIy (the yth input or the

yth source to propagate out ofs) is P
Iy
s and is expressed by 0≤ P

Iy
s = p{s|Iy} ≤ 1. If there

is more than one input or error sources, the equation is generalized [50] for calculating the
error transmission probabilityPs:

Ps =
Y

∑
y=1

(p{Iy}/Y)∗ p{s|Iy} (2)

21

WhereY is the number of inputs ofsandp{Iy} is the probability of occurring error in inputs
or in any other sources.

Measuring by Fault Injection: We now describe an experimental estimation of influ-
ence usingfault injection. The error propagation probability is estimated using the following
procedure:(a) in each inputIy of s inject an error (one input at a time, i.e., no multiple er-
rors),(b) observe the state and output signals ofs and the state and outputs oft, and(c) use
golden run comparison (i.e., comparing an injection run with agoldenreference or the fault-
free run) in order to detect when errors have occurred in either. Let the number of injection
runs where errors in the output ofs and in the state and output oft have been detected be
denoted asηerr,s andηerr,t respectively. The total number of injection runs is denotedasηin j .
We then estimate the error probability asPs =

ηerr,s
ηin j

andPt =
ηerr,t
ηin j

.

Overall System Level Influence:Considering bothPs,t (comprisesPs andPt) andPl ,
the influence for a single error propagation path is calculated asIs,t = Ps,t + Pl . The overall
influences between a set of jobs assigned together on a node and interacting jobs allocated
on different nodes is denoted asIo

s,t and expressed as:

Io
s,t = 1 − (1− I1

s,t) · (1− I2
s,t) · · ·(1− Ix

s,t)

Io
s,t = 1 − ∏

ρ
(1− Iρ

s,t) (3)

whereρ = 1, ...,x is the number of influences paths between two modules.
We consider the following example shown in Figure 7 (b) wherea job j1 is assigned

to a noden1, and another two interacting jobsj2 and j3 are assigned onton2. The overall
influence of noden1 to n2 will be: Io

n1,n2
= 1− [(1−0.4) · (1−0.3)] = 0.42.

Influences are assumed to be zero for jobs which are assigned on the same node, e.g.,
the influence betweenj2 and j3. If all these three jobs could be assigned onto a single node
then the error would contain within that node only. However it is not possible to assign
all interacting jobs onto a single node due to imposed constraints. Also replicas need to be
placed on different nodes which might have influences with other jobs. Hence, there will be
jobs interacting across nodes. We strive to minimize these influences as much as possible
for a mapping such that dependability is enhanced by design.Values for error occurrence
probabilities can be obtained, for example, from field data or from system specification or
by fault injection [50]. The computation of the system levelinfluence Î f is expressed as
follows, which is then normalized, wherek is the number of nodes:Î f = ∑k

i, j=1 Io
i, j .

6.1.3 Schedulability (RT) Guarantee

Once the jobs have been allocated to different nodes, the scheduler takes over the task for
generating the execution sequences of jobs. In our approach, the timing constraints specified
in Section 4.1 are checked during the assignment of jobs, i.e., in the allocation phase in
order to ensure that the mapping is schedulable. When assigning jobs to a processor which
already hosts one or multiple jobs, precedence and deadlines constraints are checked to
ensure schedulability. Such a check was developed in our previous work [15]. However the
deadline of a job sending a message to another job located on adifferent node must be
reduced by the time for transmitting a message across the busto accommodate for possible
network delays (TN) (see Figure 8) and the precedence relations have to be preserved as well.
In this paper, we particularly focus on communication/message scheduling and provide a
measure of network delay by using thetime-division multiple access(TDMA) protocol as
an example.

22

Scheduling for Integrated Systems:A hard RT system must execute a set of jobs in
such a way that time-critical jobs meet their specified deadlines [43]. In traditional system
design one function is assigned to a single node and therefore, typically, application jobs
are scheduled on an independent processor, i.e., uniprocessor scheduling. Such types of
scheduling and schedulability analysis have been discussed in [55]. The principal assump-
tion made is of scheduling independent tasks/jobs onto a single processor. However in our
integrated system design, jobs from different criticalityapplications are assigned onto a sin-
gle processor and jobs from single application are assignedonto different processors, i.e.,
a multiprocessor scheduling. Moreover jobs usually have precedence relations among each
other, i.e., the execution of one job depends on the result from the other. Consequently, new
schedulability analysis techniques are needed [1] which can consider distributed applica-
tions, data and control dependencies, and accurately take into account the communication
protocols that have a significant influence on the timing properties. For such distributed
RT systems, specifically the type of systems whose failure can be catastrophic due to vi-
olation of deadlines, static scheduling algorithms are used to build, off-line, schedulability
tables with activation times for each job such that timing constraints are satisfied. TTP/TTX-
Plan (for TTP/C and FlexRay networks respectively) and TTP/TTX-Build are commercial
tools [56] employing such scheduling techniques. Using thetime-triggered communication
protocol (TDMA as communication scheme), TTP/TTX-Plan andTTP/TTX-Build derive
the off-line schedule for messages and jobs respectively. They are utilized in our developed
tool-chain to generate the scheduling. In order to validatethe schedulability analysis we also
use the alternative tool [35].

Job period

TNCT

Deadline for sending

messages over network

Job

deadline

time

EST

Fig. 8 Network delay (TN)

Message Transmission Time:For communicating jobs located on different processors
the message transmission time through the network has to be considered to make the jobs
schedulable. A maximum network delayTN is assumed for transmitting a message across the
bus. This time must be bounded by using an appropriate protocol, e.g., a statically scheduled
TDMA protocol. Of course in this case the network delay depends on whether a node gets
access to a TDMA slot for sending messages in this TDMA round or will have to wait for the
next round. This is also utilized in the TTP/TTX-Plan message scheduling tool. A similar
message communication planning can be found in [54] where the authors determine the slot
and the round for a specific message to be sent. In Algorithm 1,the estimation ofTN as well
as the actualEST of allocated jobs are provided. The following expression isnecessary to
calculateESTs of jobs having precedence relations:

ESTi ≥ ESTj +CTj +TNi, j (job i depends on jobj) (4)

whereTNi, j is the network delay due to message transmission between jobs j i and j j .
We use following parameters in the Algorithm 1.nk is the node which is ready to send

the message over the network andsk is a specific slot assigned to it.bmi is the size of the

23

Algorithm 1 Network delay calculation for messages transmission
1: Function: message transmission(nk ,bmi ,releasetime)
2: sk = assigned slot to nk; /*Slot assigned in TDMA round*/
3: round = f loor(releasetime/round length); /*Calculate current round*/

/*Next step checks whether the slot of the current round has passed*/
4: if releasetime− round∗ round length> startsk then
5: round = round+1; /*Increase a TDMA round*/
6: end if
7: while bmi > bsk −boccupieddo
8: round = round+1; /*Increase round if the message size does not fit in this slot*/
9: end while

10: Tni = round∗round length+startsk +slot length−releasetime; /*Calculate the delay for a job sending
messages over the network*/

11: return(round,sk,TNi);

12: end message transmission

message ready to send at timereleasetime. Therefore,releasetimeis the message delivery
time of a job.bsk is the size of corresponding slot where asstartsk is the starting time of
the slot in a round. For a successor of more than one jobs, maximum delay caused by all its
precedence jobs is used for calculating the actualESTand is computed as follows:

ESTi = max
{

ready(j i ,nk), max∀ j j∈pred(ji)

(
f t(j j ,np)+TNi, j

)}
(5)

whereready(j i ,nk) is the earliest time at which processornk is ready to start executing the
job j i . pred(j i) is the set of all predecessor jobs ofj i . f t(j j ,np) is the finish time of jobj j

in nodenp computed by the sum ofESTj andCTj . The message transmission delay between
(j i ,nk) and(j j ,np) is TNi, j . The scheduling length of a mapping can be calculated using the
following expression:

Sl = max∀(i,k) { f t(j i,nk)} (6)

6.2 Supporting Data Structures

We introduce matrices for the purpose of ease structuring and implementation of the map-
ping algorithm presented in Section 6.4. Theallocation compatibility matrix Ais used to
check the usable nodes for each job and accordingly jobs and nodes are ordered. Thecom-
munication matrix Crepresents the communication between jobs and is used to determine
the most communicating jobs.

Allocation Compatibility Matrix A: A rectangular matrixAk×n is used to describe
possible assignment of a single job onto nodes, in such a way that rows represent nodes and
columns represent jobs, wherek is the total number of nodes andn is the total number of
jobs. Note that all replicas of the same job are represented using only one column. Each
element of the matrix is filled with either 0 or 1, 1 if a jobj i can be assigned to a node
nk and 0 if it cannot. Restrictions on which nodes a job can be assigned to is the result of
binding constraints and are determined by the use of particular resources, e.g., when a job
needs sensors or actuators.

Communication Matrix C: A communication matrix of sizen×n is used in order to
determine the most communicating jobs. Each element of the matrix corresponds to the
mutual communication of a pair of jobs, andn being the number of jobs (counting replicas
of the same job only once). If there is communication betweenthe two jobsi and j, we
use the valueCi, j to represent the total amount of data (bytes) being transferred. If there is
no communication, 0 is used. This means that the communication matrix by construction
will be symmetric. Note thatCi, j denotes the maximum amount of communication possible

24

between jobsi and j for one time execution (i.e., the available size of sent and received
messages as defined by the system user).

6.3 Ordering Heuristics

Assignment of jobs and nodes needs two important heuristicsfor effective solving of the
mapping problem, namely how to decide which job to assign next (ordering of jobs), and
which node to assign to this job. This is similar to the so called variable (job) and value
(node) ordering heuristics which are concerned with the order in which variables are instan-
tiated and values are assigned to each variable. A good variable ordering is one that starts
with the variables that are the most difficult to instantiate(i.e., most constraining variable
ordering heuristic) and a good value ordering heuristic is one that leaves open as many op-
tions as possible to the remaining uninstantiated variables (i.e., a so-called least constraining
value ordering heuristic). In the next section, we provide details on this using an example.
These heuristics can have a significant impact on search efficiency. No backtracking would
be necessary if an optimal variable/value ordering is achieved [44]. Thus in such a case a
linear time solution for the mapping problem is possible. Therefore a proper and good selec-
tion of ordering can reduce the number of steps to find a solution. For creating the mapping,
we propose job and node ordering heuristics which are described in the subsequent sections.
Of course the proposed ordering is no guarantee that backtracking will never be necessary.
However we believe that the proposeda priori heuristics for ordering jobs and nodes is a
viable strategy as a justification of ordering heuristics isprovided in the next section.

6.3.1 Justification of Ordering Heuristics

The algorithm presented in the next section considers the most conflicting jobs that can-
not be mapped on the same node, e.g., replicas and the most important jobs, e.g., binding
functionality of jobs first which can easily guarantee the feasibility of the generated initial
solution. This consideration is realized by explaining thefollowing example.

Let us consider the following jobsj1, j2, j3 and j4 and their assignment onto nodesn1

and n2. Job j2 is a high critical job and is replicated twicej2a, j2b. We assume that two
jobs can run on one node and three jobs can run on another node with sufficient resources.
Four constraints are defined which need to be satisfied duringthe assignment:c1- due to
the binding functionalityj1 must run onn1, c2- j2a and j2b must run on separate nodes in
order to tolerate faults,c3- computational capability andc4- memory resource capacity. The
type c3 andc4 are common/general constraints that are always present in each allocation
problem. They refer to all jobs and therefore do not give us a direct hint which jobs should
be assigned first.c2 explicitly refers to conflicting jobs, i.e., replicasj2a and j2b and c1

exclusively mentions aboutj1 which requires a sensor. Thus,j1 and j2 are to be considered
first for the mapping. Therefore, we start by assigningj1, j2 and thenj3, j4 as follows:(a)
assignj1 onton1 as enforced byc1, (b) j2a and j2b are assigned ton1 andn2 due to constraint
c2, (c) j3 can now be assigned to either node, we arbitrarily choosen1 and(d) j4 must be
assigned ton2 (due to the resource constraints of the nodes). Now, assume an arbitrary
job ordering of j1, j3, j4, j2a, j2b. The assignments are as follows:(a) assign j1 onto n1 as
enforced byc1, (b) j3 can be assigned to either node, we arbitrarily choose first node n1,
(c) j4 can be assigned to any node, we choosen1 again,(d) as enforced byc2, j2a and j2b

have to assign on different nodes but we fail to assign onn1 due toc3 andc4, therefore,(e)
repeated backtracking (or back jumping to step(b) and(c)) is necessary so that eitherj3 or
j4 can be moved ton2 to create a feasible assignment. When jobj1 is considered last in the
order list backtracking is also necessary.

25

6.3.2 Job Ordering-Heuristics

These heuristics are used to order the jobs, i.e., to decide which jobs to assign first. The
compatibility matrixA and the communication matrixC is also employed in the ordering as
follows:

1a. Create a sub-matrix̃A of the assignment matrixA, containing only those jobs (columns)
to be assigned in aPhase6 of the allocation.

b. Sum each column (representing a job) in the matrixÃ. Order the jobs in ascending order,
i.e., the jobs with the least possible assignments will comefirst. By considering these
jobs first, the search space is likely to decrease since thesejobs are the most constrained
(with respect to binding constraints). Ties are broken according to the second heuristic
given below.

2a. Create a sub-matrix̃C of the communication matrixC, containing only those rows and
columns belonging to jobs that are to be assigned in this specific phase. ForPhase II, a
sub-matrixC̃ of the communication matrixC is created, containing both the rows and
columns belonging to jobs that are to be assigned in this phase, as well as those rows
and columns belonging to jobs assigned inPhase I. The reason for including already
assigned jobs in the matrix̃C in Phase II, is that jobs to be assigned in this phase belong
to SC PIMs and thus are more likely have communication with the jobs previously
assigned inPhase I.

b. Search the matrix̃C and find the pair of jobs with the highest mutual communication
between them. Arbitrarily, select one of the jobs in the pairand order that job first, fol-
lowed by the second job in the pair. If any (or both) of the jobsin the pair have already
been ordered, just ignore it. Continue with selecting the next most communicating pair
and order those jobs as described, until there are no jobs left. Ties are broken arbitrar-
ily. This heuristic can be applied stand-alone when jobs arenot restricted by binding
constraints.

Note that for implementing these heuristics, it is not necessary to create the full compat-
ibility matrix A nor the full communication matrixC. Just the sub-matrices suffice. Further
the sub-matrix of the communication matrix, which is used inPhase Iis itself a part of the
sub-matrix used inPhase II. Hence, the sub-matrix ofPhase IIcould be created and used in
Phase I, reducing the number of matrices that need to be created. Also, the symmetry of the
communication matrix (and its sub-matrices) can be exploited in the implementation. In this
case the search for the highest mutual communication pair relies either only upper or lower
triangular part of the matrix̃C as shown in Table 2.

6.3.3 Node Ordering-Heuristic

Just as in the job ordering-heuristics, the same sub-matrixÃ of the compatibility matrixA
is used for ordering nodes. Nodes are ordered by taking the sum of each row (representing
nodes) in the sub-matrix̃A, and ordering the nodes in descending order. By using this order-
ing the nodes which allow the most assignments are ordered first. Ties are broken arbitrarily.

6.3.4 Example Describing the Ordering Heuristics

We take an example which consists of four jobsj1, j2, j3, j4 and two nodesn0,n1. Consider
that job j2 needs a sensor and noden1 has a sensor attached to it. Let us assume that the
mutual communication volume within a time period betweenj1 and j2 is 4 bytes, between
j1 and j3 5 bytes, betweenj2 and j4 8 bytes and betweenj3 and j4 is 5 bytes. When

6 Phases (I, II and III) are used in the Algorithm 2 described inSection 6.4.

26

the assignment compatibility matrixA is created (Table 1), we see that jobj2 can only be
assigned to noden1, correspondinglyn1 is the only usable node forj2. Since j2 cannot
be assigned onton0, we put 0 in the corresponding cell. All other jobs can be assigned
to any of the two nodes. We put 1 in the corresponding cell whena job can be assigned
onto a node. The ordering of jobs will start byj2 and noden1 will come first in the node

A j1 j2 j3 j4 ∑
n0 1 0 1 1 3
n1 1 1 1 1 4
∑ 2 1 2 2

Table 1 Building assignment compatibility ma-
trix

C j1 j2 j3 j4
j1 0 4 5 0
j2 4 0 0 8
j3 5 0 0 5
j4 0 8 5 0

Table 2 Building communication
matrix

ordering. Ties are broken for other jobs by using the communication matrix (Table 2). Each
cell of the communication matrix is filled by the total amountof mutual communication
volume in bytes of the corresponding jobs pair. The upper andlower triangular parts of
this matrix is symmetric. Hence during the implementation we only need to search for the
communication pairs either in upper or lower triangular part. We see that jobj2 and j4 have
high mutual communication among all the pairs followed by the pair j4, j3 and j3, j1. Hence
the job ordering will bej2, j4, j3, j1 and the node ordering will ben1,n0. If a job appears
more than once in different pairs then from the first pair it isplaced in the ordered list. If
we assume that maximum two jobs can be assigned on a single node due to the computation
and resource constraints then noden1 will host the jobsj2 and j4 andn0 will host the jobs
j3 and j1. The replicas are not included in either matrices only the primary job is included.
When a job is replicated two times the corresponding communication link of the job is also
replicated and the communication volume becomes double. Only the primary replicas (the
main job) are considered in the communication matrix for their ordering. The other replicas
are not considered as they will be anyway assigned onto different nodes and will disseminate
messages over the network.

6.4 The Algorithm

The construction of the algorithm is inspired by the established constructive heuristics in
space allocation [57], in course timetabling [58] and by thevariable and value ordering-
heuristics for the job shop scheduling constraint satisfaction problem [44]. The algorithm
works in three phases and considers SC PIMs and non-SC PIMs separately to reduce in-
fluences. As a result of component based design, SC and non-SCPIMs communicate mini-
mally, thus they can be treated separately. To facilitate strong partitioning between SC and
non-SC PIMs, we allow that jobs of SC PIMs and jobs of non-SC PIMs can be allocated
onto separate processors or cores on the same node. The jobs are assigned in three different
phases, mentioned below:

Phase I: High critical jobs of SC PIMs,
Phase II: Non-replicated jobs (if any) of SC PIMs and
Phase III: Jobs from non-SC PIMs.
The described algorithm is executed once in each phase of themapping process. We start

by considering the most conflicting jobs that cannot be mapped on the same node (i.e, repli-
cas) in the first phase. Throughout the assignment process the most constrained jobs (with

27

Algorithm 2 Extra-functionality driven SW-HW mapping algorithm
Input : J :set of jobs,N : set of nodes

Output : alloc : set of job to node mappings

1: J :={all jobs to be assigned in this phase}
2: J := replicateJobs(J) /*Replicate jobs according to their degree of criticality*/

3: J := orderJobs(J) /*Order the jobs according to a job ordering-heuristics*/
/*Section 6.3 provides a discussion of the heuristics used.*/

4: N := orderNodes({allnodes}) /*Order all nodes according the heuristics*/

/*Section 6.3 provides a discussion of the heuristic used.*/
5: ji := getFirstElement(J).
6: nk := getNextNode(N, ji) /*nk is the next node that has not been evaluated already

as a possible assignment for ji.*/
7: if nk = null then
8: if alloc = /0 then
9: f ail/*allocation is not possible*/

10: end if
11: (jlast,nlast) = getLastElement(alloc)
12: alloc := alloc\ (jlast,nlast)/*delete last allocation*/

13: J := J∪ jlast/*re-add last job to the set*/

14: goto step 5.

15: end if
16: if assignmentValid(ji ,nk) then
17: alloc := alloc∪ (ji ,nk)/*add new allocation*/

18: else
19: goto step 6.

20: end if
21: J := J\ ji
22: if i f J 6= /0 then
23: goto step 5

24: end if
25: stop/*allocation completed.*/

respect to binding constraints) are assigned first. Using this ordering and assigning replicas
in Phase I, the number of backtracks are reduced (see experimental results in Section 7.2).
In Phase II, we continue with non-replicated jobs of SC PIMs, they will be integrated with
the replicated jobs of SC PIMs in a way that reduces job influences. As the lower critical
jobs from SC PIMs are treated in a different phase, it is more likely that there will be less
influences between them. Finally, jobs from non-SC PIMs are allocated in the third phase. A
high level description of each mapping phase is outlined in Algorithm 2. A detail description
of Step7 and 8 of the algorithm is given in the following section. Section 6.4.2 describes
the adaptability of the algorithm onto a heterogeneous platform.

6.4.1 Assignment Evaluation and Consistency Enforcing

Before a job can be assigned to a node, an evaluation has to be performed. In this step of
mapping, all the defined constraints are satisfied. If the node is empty, i.e., there are no
previously assigned jobs to that node, then only binding constraints need to be checked. If
there are already assigned jobs on a node then applyretrospective techniques. Retrospective
techniques are characterized by the assignment of a job to a node while checking other jobs
that are already assigned in this node in order to avoid conflicts. If all constraints hold,
i.e., consistency enforcing is ensured, then the next job isselected. This technique allows
us not to try to assign the replicated jobs on the same node andis also enforced by the FT
constraints. While assigning jobs duringPhase I, different nodes are selected for the replicas
in Step6, which significantly reduces the number of iterations as well as backtracks to find

28

the feasible solution. The assignment process does not knowa priori before checking the
constraints whether there is a replica already assigned. When a replica job is chosen to be
assigned from the list, a new node is selected for it to be assigned. If the verification of
consistency fails, exploration continues with the next node. When all nodes for this job has
been checked unsuccessfully, the backtracking goes back tothe most recently instantiated
job, and so on (Step8 in Algorithm 2). Backtrack is performed by simply swappingor
moving the jobs between nodes. After performing a move, if a feasible solution is found
then the algorithm is continued with selecting the next job from the actual list. If a solution
is not found after backtracking then the algorithm returns an infeasible mapping.

In the case when non-SC applications share the same processor as SC applications,
some optional strategies are possible. After the jobs belonging to SC applications have been
assigned, nodes can be re-ordered in a way that eases the assignment of non-SC jobs. As an
example, ordering the jobs according to the amount of remaining computation capacity of
each node thus betterload balancingbetween nodes can be achieved. Another possibility
is to re-order the nodes according to least memory utilization or nodes having less failure
rate (useful when heterogeneous platform is assumed). All of these re-orderings might also
be beneficial from a dependability viewpoint. Since non-SC jobs will be primarily assigned
to nodes with few/no jobs from SC applications, the separation of SC and non-SC jobs is
likely to increase. This will reduce the likelihood of errors occurring in non-SC applications
propagating to SC applications.

6.4.2 Applicability on Heterogeneous Platform

We explain the adaptability of our algorithm onto heterogeneous platforms in terms of com-
putation and failure rates. A heterogeneous platform may consist of node processors of
different speeds (f) and of different failure rates (λk). Therefore each job may have different
CTs on different nodes and also the failure probability can be different. A processor with
less failure rate is obviously more reliable and more jobs are assigned onto this node so
that the system reliability is maximized. However, this mayoverload some processors while
other processors are less utilized. In order to tackle this,heuristics like in [59] can be utilized
while applying the retrospective technique inStep7. The technique is toallocate jobs onto
a processor according to the product of the failure rate and the total time (Tt) required by
the instantiated job and already assigned jobs on that processor. Assign the selected job on
a processor where the productλk ·Tt is minimum. We term this asHetHeus. This heuristic
(HetHeus) provides a better trade-off between reliability and schedulability of the mapping.
Moreover, if a job needs certain level of reliability and only a specific processor can provide
it then this job should be assigned on that processor. These types of requirements can be
taken into account in the allocation compatibility matrixA described earlier.

7 Evaluation of the Mapping

In order to demonstrate the effectiveness of the approach, we provide illustrations of dif-
ferent scenarios and the proof of concept of the algorithm using mixed-critical applications
of actual automotive system from industry partners. Several experiments have been car-
ried out to evaluate the performance of the mapping heuristics. The results are discussed in
Section 7.2. Assuming a homogeneous platform the detail assignment policy by using the
proposed ordering-heuristics has been described in [15]. In the following section, we are
interested to show the assignment policy described in the algorithm onto a heterogeneous
platform. This platform consists of node processors of different computing power and failure
rates. A discussion of how the objectives are quantified to select a good mapping is depicted

29

as well. At the end of this section we present the validation and a comparative study of the
algorithm using an independent tool [35].

7.1 Mapping Illustration

We consider a mixed-critical application consisting of brake-force control (BFC) of adaptive
cruise control (SC application) and mirror movement functionality (MVF) of doors control
subsystem (non-SC application). For the sake of simplicitya part from each of these sub-
systems is considered as shown in Figure 9. The interaction from BFC to MVF comes from
the fact that when the speed of the car is high the door must be locked. As the MVF is a part
of doors control a communication is set so that when the speedis high mirror movement
should not happen. However there is no data and control flow from the non-SC (MVF) to
SC application (BFC) as error occur in non-SC application may propagate to SC application
which is strongly prohibited in our design.

Brake force

control job j3

Brake actuator

job j4

Mirror

sensor job

Mirror

switch job

Mirror

movement job

Mirror

actuator job

Speed sensor

 job j1

Distance

control job j2

j2b

j4b

j1a j3b

j2a

j1b

j3a

j4a

j4c

j5 j6 j7 j8

(a) (b)

Fig. 9 (a) Mixed-critical application (SC BFC and non-SC MVF) and (b) after FT scheme

Properties of Jobs and Nodes:BFC is a video-based emergency brake for the collision
warning and avoidance system. This subsystem is decomposedinto four jobs j1, j2, j3 and
j4 as shown in the upper part of Figure 9. Jobsj1a and j1b are the replicas ofj1 and the
similar type of notation is used for all other replicas. Jobj1 is responsible for reading car
speed value from the speed sensor and sends the speed messagem13 to j3. j3 is a control
object job for computing the necessary brake force. Jobj2 reads distance value of the nearest
object from the image sensor and sends the corresponding value via a messagem23 to j3.
Job j3 computes the brake force and transmits the messagem34 to brake actuator (BA) job
j4. j4 activates the brakes in order to make the necessary actions to avoid collision. All
the functional and extra-functional properties are modeled in a SC-PIM. The assumed job
properties are as follows: Replication factor: 2,2,2 and 3;EST : 0,0,20 and 45ms; CT :
20,20,25 and 15ms for jobs j1, j2, j3 and j4 respectively. The values ofCTs are adapted
according to the speed of the node processor where the jobs are assigned. The influence
value (calculated using the method defined in [50]) betweenj1, j3 and betweenj2, j3 is
assumed as 0.40 and betweenj3, j4 is 0.30. The message size between each pair of job is
25bytes. All jobs from the subsystem have to finish executionby their deadline equal to the
period of 150ms. The chosen FT schema tolerates one failure (either transient or permanent).

30

The MVF is decomposed into 4 jobsj5, j6, j7 and j8 as shown in the lower part of the
Figure 9. Jobj5 is a mirror sensor job, which reads the left mirror movement command
and sends messagem56 to mirror switch management jobj6 of the switch panel. Jobj7 is
responsible for moving the left mirror, which receives command from j6 via messagem67.
Actuator job j8 actuates the mirror movement. When jobj7 receives messagem17 from j1
with a higher speed value then it reacts accordingly to prohibit any mirror movement. The
chosenEST andCT values are as follows:EST : 0,20,40 and 65ms; CT : 20,20,25 and
20ms for j5, j6, j7 and j8 respectively. All jobs have to finish execution by their deadline
equal to the period of 150ms.

We consider a HW platform of 4 nodes and the node processors can have different
computing power and failure rates. The slotss0,s1,s2 ands3 are statically assigned with
nodesn0,n1,n2 andn3 respectively. Maximum two messages of size 25bytes can be sent
from each slot. The above assumed jobsCTs are for the processors of having relative speed
of 1 unit (say for 125MHz). Let’s assume the speed of node processorsn0,n1,n2 andn3 are
1,1.25(i.e,156MHz),1.5 and 1.25 unit respectively. Therefore a job assigned on noden1

requires 1/1.25 times less time to finish the job execution. The failure rates (λk) per hour
are 1×10−5,1.5×10−5,1.5×10−5 and 1.75×10−5 for node processorsn0,n1,n2 andn3

respectively.
Illustration on a Heterogeneous Platform: At this stage, mapping of above selected

jobs onto available HW nodes needs to be performed. For this illustration, jobs of BFC are
considered whereas jobs of both applications are considered in performing the experiments.
We describe the applicability of the assignment process to aplatform consists of processors
of different computing power and failure rates.

n0

n1

s0 s1 s3

j1a j2a

t
s2

n2

n3

j1b j2b

m23 m23m13m13

j3b

m34
m34

j4c

j4a

j4bj3a

s0 s0

n0

n1

t

n2

n3

m23

m23 m13m13 m34m34

j1a j3a j4c

j1b j4a

j2a j3b

j2b j4b

s0 s1 s3s2 s0

(a) (b)

Fig. 10 Assignment of the example subsystem

We consider the assignment of jobs onto nodes shown in Figure10. For the first map-
ping (Figure 10(a)) jobs are assigned without the guidance of the heuristics. For the other
configuration, according to our heuristics we first assign the sensor jobsj1 and j2. We then
apply theHetHeus(described in Section 6.4.2) inStep7 of the Algorithm 2 for the remain-
ing jobs. The resulted mapping is shown in Figure 10(b). Since all jobs are high critical only
Phase Iis executed. Let us consider the case of assigningj3a. We calculate the value of the
productλk ·Tt for nodesn0,n1,n2 andn3 which are(20+25)×1 = 457,(16+20)×1.5 =
54,(14+17)×1.5 = 46.5 and(16+20)×1.75 = 63 respectively. According toHetHeus
j3a is assigned to noden0, which has resulted the smallest product value. Similarlyj3b is
assigned ton2. When there is a tie, a node is chosen arbitrarily. We observethat high reliable
nodes (less failure probability) execute more jobs while maintaining the scheduling length

7 For simplicity 10−5 is discarded from the value ofλk.

31

to a minimum. There always exists a trade-off between reliability and scheduling length.
In order to maintain a better trade-off between them, this heuristic can be applied stand
alone or can also be applied when there is a tie in the communication heuristic. Detailed
consideration of heterogenous platform is part of our future work.

Estimation of TN and EST: We now describe the estimation ofESTsfor jobs having
precedence relations. In this case TDMA protocol is assumedas a communication scheme.
This protocol provides deterministic access to the medium by ordering the message trans-
missions statically at design time and thus response time isguaranteed. Each node sends
messages only during a predetermined time interval, calledslot (si) and listens to all other
nodes, over a TDMA round. In this example, the slotss0,s1,s2 ands3 of a single TDMA
round are statically assigned to nodesn0,n1,n2 andn3 respectively. We assume that the slot
length is equal to 4msand maximum 2 messages each of size 25bytescan be sent per slot.
For inter-job communication, it is necessary to calculate the network delay. This delay de-
pends on the type and speed of the network. The function shownin Algorithm 1 is used for
calculatingTN and actualEST. For example, jobj3a in Figure 10(a) can only start execution
when it receives messages from jobj1a, j1b and j2a, j2b. We calculateESTj3a due to its all
previous assigned jobs and select the highest one. When the delay from j1a and j1b are con-
sidered,j3a can start executing on any nodes at 36mswith a TN of 16ms(used Equation 5
of Section 6.1.3). However it has a precedence relation alsowith j2. Therefore considering
delay due toj2a and j2b, ESTj3a is at 52mswith aTN of 12ms. As a resultESTj3a andESTj3b

will be 52ms. In this way actualESTs are calculated.
Quality Mapping: The metrics in terms of influence, total scheduling length and com-

munication overhead have been calculated for the above mappings. The values are(0.58,92ms,
150bytes) and(0.43,83ms,150bytes) which are corresponding to the assignment shown in
Figure 10 (a) and (b) respectively. These objectives are used for measuring the quality of
the mapping. The overall influence and the scheduling lengthhave been calculated by us-
ing the formulae given in Equation 3 and 6 respectively. The communication overhead is
calculated by the sum of size of the messages transferred over the network. Both mappings
satisfy all the constraints, i.e, both are feasible mappings. However the mapping shown in
Figure 10 (b) is preferable due to its less overall influence and scheduling length value.
These three variables have also been used for our optimization framework [37], where the
experimental results show a significant quantitative gain.

7.2 Performance Evaluation of the Heuristics

This section presents the experimental results for the proposed heuristics. Different set of
jobs from 10 to 100 are randomly selected. The jobs properties are selected in the following
range: Replication factor∈ 2,3,4, EST∈ [0,80]ms, CT ∈ [2,20]ms, D ∈ [14,200], Memory
size∈ [4,15]MB and Messages size∈ [2,120]Bytes. All jobs along with their replicas are
to be assigned onto a set of nodes. The memory capacities of nodes are arbitrarily chosen
between 100MB and 250MB. Sensors and actuators are arbitrarily attached to nodes. The
proposed heuristics are compared with existing base line approaches.

The mapping problem is NP hard [13] and usually needs the guidance of heuristic tech-
nique to find a feasible solution with least iterations. If less number of iterations is needed
to find the solution, it obviously takes less computation time. Our goal is to show how eas-
ily and efficiently the proposed heuristics find a feasible solution and whether the use of
heuristics needs backtracking, or if backtracking is needed then how often. To show the
effectiveness of the ordering in our approach the results are compared with the basic ap-
proaches where ordering heuristics are not applied. This can be effectively shown by using
the number of iterations it takes to find a feasible solution.The computation time taken in

32

each case to find the feasible solution was in the range of onlyfew seconds. Our observa-
tion on number of iterations including number of backtracksneeded to find the solution is
depicted below.

Effectiveness of Heuristics:We are interested to show the performance (finding a fea-
sible solution while reducing the complexity of the problem) of the heuristics. We observe
that our multi-phase algorithm requires less or no backtracking to find a feasible solution.
Several experiments are carried out. First the assignment policy is applied with the job and
node ordering-heuristics, we call itHeuristic solution. Second, we considered random se-
lection of nodes which is theRandomsolution. Third, we considerThrashingwhich is a
different way of exploring nodes, where first node from the order is tried for every job to be
assigned. If all constraints are satisfied, the selected jobis assigned onto this node, other-
wise next node is explored. According to the heuristics of consideringmost constrained jobs
first, high critical jobs are assigned inPhase Iof the Algorithm 2. When jobs are assigned
in this phase, different nodes are selected for them inStep6 of the algorithm. Both of these
considerations result a significant number of less iterations to find the feasible solution.

0

01 0

02 0

03 0

04 0

05 0

06 0

07 0

08 0

09 0

001 0

01 02 30 04 05

eH uristics

Ra modn

oN O rd. +
hT rashing

)CS(sboJ #

#
 I

te
ra

ti
o

n

0

002

004

006

008

0001

0021

0041

0061

0081

0002

02 04 06 08 001

eH uristics

Jo O b r .d +

hT r hsa ing

oN Ord. +

hT r hsa ing

#
 I
te

ra
ti
o
n

)CS(sboJ #

(a) (b)

Fig. 11 Performance of mapping heuristics (SC applications)

Figure 11(a) shows the number of iterations needed for different assignment policies.
Five nodes are chosen for this experiment. We observe that applying the mapping heuris-
tics takes least number of iterations and hardly need backtrack to find a feasible solution.
However this does not guarantee that the backtracking is notneeded at all to find feasible
solutions while performing the mapping for different sets of jobs and nodes. We applied
simple swapping (swap the nodes between two jobs) and reallocation (relocate a job to a
different node) in the case backtrack was necessary. In casebars touch the highest iteration
line (Figure 11), a feasible solution has not been found for that assignment policy despite
of changing some assignments when backtrack was necessary.In Figure 11(b), the results
found by heuristics process is compared withjob ordering + thrashingand with no job
ordering + thrashing. We observe that heuristic based solution require least number of it-
erations to find the feasible mapping. In this set up (Figure 11), the number of nodes were
increased with the increasing number of jobs. 5 nodes are used for 20 and 40 jobs; 7,8 and
10 nodes are for 60,80 and 100 jobs respectively.

Figure 12 shows the outcome of the similar type of experiments, which have been per-
formed for the non-SC jobs set. In this case the heuristics also works better than random

33

)CS-non(sboJ #

#
 I

te
ra

ti
o

n
0

02

04

06

08

001

021

041

061

081

002

01 02 03 04 05 06 07

rueH is it sc

modnaR

rhT ihsa ng

Fig. 12 Performance of mapping heuristics (non-SC applications)

or thrashing solution. As there are no high critical jobs in non-SC applications, binding
constraints play role in the ordering-heuristics. Four nodes are used for this set up.

Resource Utilization: We have performed experiments in order to compare the CPU
and memory utilization of heuristics process with the random and thrashing policy. We
observe that the distribution of CPU and memory capacity by the heuristics approach is
comparable with the random solution which is almost equallydistributed among all the
processors. In case of thrashing, the load (computation andmemory) among nodes are not
properly distributed, i.e., are not properly load balanced. The measured utilization is based
on computation and memory available only for applications jobs. Resource consumption for
middleware code and for other services are not included.

Observation: We have conducted similar experiments by using different application
patterns. For example, deadline is set at the application level, therefore, all jobs within an
application have the same deadline equal to the deadline of the application. The estimation
of jobs properties are also varied, e.g., by changing the jobs criticality degree, varying the
computation time, deadline, messages size etc. We observe that our heuristics approach finds
similar results to those discussed above. This shows the applicability and robustness of our
algorithm on a wide area of applications. Furthermore when we applied the communication
heuristic, most of the communicating jobs are instantiatedto allocate onto the same node. If
we allow all these jobs to be assigned onto the same node, it may result poor load balancing
among nodes. In order to tackle this we have appliedload balancingtechnique so that the
loads are properly distributed among nodes. In doing this westrive to assign the jobs equally
among nodes while having the gain on communication heuristic. Load balancing is defined
as the distribution of tasks among the processors such that each of the processor is loaded
with almost equal amount of computation.

7.3 Validation and Comparative Study of the Approach

The result of the allocation process is validated using an independent tool [35]. The tool
supports optimization-based allocation and scheduling ofembedded time-triggered systems.
Although, this tool uses mathematical optimization framework [36], it may lack of perfor-
mance in case of large system models, so the tool and our solution proposed in this paper
can complement each other.

The optimization-based tool supports MVO in the schedulingphase, including criteria
such as robustness, extensibility and throughput. The developer can select an appropriate
composite objective function that delivers the needed combination of the target criteria. Our

34

method uses heuristics-based search that delivers solutions quickly. This initial solution can
either be validated (proving schedulability), or optimized (to cut the solution space) using
other tools. Our experiments show that the usage of allocation algorithm as part of the input
to the optimization resulted in a significant performance gain. The result with less number
of workloads8 shows that in case of optimization the presence of the initial feasible solution
can help to reduce the search space by at least an order of magnitude. The experiments are
done using multiple objectives function as described in [35]. The independent tool is used to
perform the proof-of-correctness of the output of the allocation algorithm for different size
of workloads. However we experienced some limitation whileperforming optimization in
the tool using large workloads.

Both methods are complementing each other, because(i) the result of the heuristic ap-
proach can be validated and scheduled using the optimization-based method, and(ii) the
basis solution can be used to improve the performance of the optimization [37].

8 The Supporting Tool-Chain
We now develop supporting tools for the developed framework. The tool-chain provides
functionality for SW-HW integration in the SC embedded systems domain. The concepts
and algorithms introduced in the earlier sections have beenimplemented in an open, exten-
sible development environment. First we briefly present thearchitecture of the integration
tool-chain (Figure 13) and then describe different implementation steps of the tool-chain
including transformations in VIATRA.

8.1 Implementation

The tool-chain is implemented on top of the open Eclipse toolintegration framework. Eclipse
is a Java-based, open-source system that is currently one ofthe most important open plat-
forms for tool development [60]. As the tool-chain works with multiple modeling languages
and facilitates multiple model transformations, we used VIATRA2 a generic, open-source
model transformation framework [16], which is an official Eclipse extension. VIATRA2
supports the simultaneous handling of multiple models, modeling languages and transfor-
mation, as well as code generation. The model transformation is the process of converting
one model to another model which applies some rules like graph transformation [61]. In this
context transformation of the PIM to the PSM of the same system is performed. The input
of the tool-chain are the PIM models (each containing a single application) in XMI format,
the CRD model (also in XMI format), and the job code information files (in XML). In or-
der to improve usability of the tool, we implemented a customuser interface that hides the
technical details of models and transformations and shows only the high level information
for the system designer. This way a VIATRA based model space is created.

After the allocation and scheduling are done, all the necessary configuration files and
source code for the system can be generated. The SW is compiled and deployed using third
party, system specific C compiler and SW download tools, e.g., TTP/TTX-Load [56]. All
the steps shown in Figure 13 are described in the subsequent sections.

8.2 Application and platform modeling

The primary modeling artifact of the application design process (Figure??) is the PIM
that describes three aspects of system development. The functionality contains information
about jobs (basic SW components), (logical) sensors and actuators that interconnect the sys-
tem with its environment, and messages that interconnect jobs. The performance (or timeli-
ness) of the model contains requirements for message and jobperiods, worst-case execution

8 Defined as numbers of jobs and nodes used in the experiment.

35

Eclipse Framework

VIATRA2 Model Space

Jo
b
 p

la
ce

m
e
n

t

m
a

rk
in

g

A
p
p

lic
a

tio
n
 i
n
-

te
rc

o
n
n
c
e
ti
o

n

J
o
b

 c
o
m

p
a
-

tib
ili

ty
 m

a
rk

in
g

P
IM

m
e

ta
m

o
d

e
l

C
R

D

m
e

ta
m

o
d

e
l

P
S

M

m
e

ta
m

o
d

e
l

Graphical User Interface

PIM

CRD

TTP/TTX-

 Plan

TTP/TTX-

 Build

Python

Python

XMI

XMI

Config files
Source code

S
e

n
s
o
r/

a
ct

u
a
-

to
r

a
llo

c
a
ti
o
n

R
e
p
lic

a
ti
o

n

A
u

to
m

a
ti
c

a
llo

ca
tio

n

C
o
m

m
u

n
ic

a
-

ti
o
n
 S

c
h
e

m
e

Job info
XML

Fig. 13 Architecture of the SW-HW integration tool-chain

times, and other temporal parameters. Dependability of thePIM describes the dependability
requirements such as the safety criticality degree and reliability requirements. The definition
of PIM models is supported by a graphical domain-specific model editor, and a UML profile
suitable for any of the current UML tools. PIMs for specific DASs are created either by us-
ing standard UML tools. Similarly to the PIM, the hardware model (called Cluster Resource
Description - CRD) can also be defined using a graphical domain-specific editor.

The behavioral design step describe the definition of job behaviors. This complements
the PIM by the definition of job behavior. There are several commercial tools that can be
used for this purpose (like SCADE [62], or Matlab/Simulink [63]).

8.3 Marking the PIM Elements

PIM marking precedes the automatic transformations that generate the PSM of the target
system. Markings are interactive steps that are used to inject additional (platform–specific)
information that is not already included in PIM or in HSM. This process enables the incor-
poration of human design decisions into the mapping process. The marked PIM, the result of
the marking process, will contain all information that is needed for automatically generating
the PSM. The most important steps of marking will be introduced in the followings.

Job Placement Definition: In the job placement definitionmarking step, the designer
can specify whether a job is running on one of the core nodes, or it is implemented on
an external node connected to the cluster via a field bus (these jobs are calledexternal
jobs). External allocation is usually chosen in case of hardware implementation of smart
sensor/actuator nodes, like intelligent keylock modules in cars.

After the job placement definition, the designer has to manually allocate external jobs
to field busses of the system. This allocation is currently a marking, and is not supported
by automation. This decision was taken with alignment of response from industrial partners,
because the allocation of external nodes to field busses has usually a predefined scheme, that
cannot be changed.

Application Interconnection Definition: In this step, the designer can pair source and
target gateway messages to create inter-application information flows. The interconnection
information will appear explicitly in the marked PIM. Each interconnection link has an
additional parameter: whether there is a need for data conversion, or not.

Sensor/Actuator Allocation: The next marking step is thesensor/actuator allocation.
In this step, the designer has to pair logical resources (sensors/actuators) that are defined
in the application PIMs with hardware peripherals of the target platform. This step is not
automated, as the description of selection criteria (sensor/actuator type, accuracy, physical
position in the system, etc.) would require a large effort atboth the HW and SW modeling
side.

36

Job Compatibility: This marking is the preliminary step of allocation. The designer
has to define which job is compatible with which node. In case of jobs using sensors and/or
actuators, it is mandatory to place them on the same node as the hardware peripheral they
control (driver jobs) and the marking is done automatically. For ordinary jobs, there are no
constraints on placement. The designer can, however, limitthe set of possible nodes for a
given job. This decision can be based on hardware constraints (presence of a specific co-
processor, or peripheral), or safety criteria (in avionic application, there are physical place-
ment constraint on nodes and SW components). The compatibility marking information is
used to build the compatibility matrix in Section 6.2 neededby the mapping algorithm.

Job Code Information Import: The last marking step of the process is to import the
job code information. This is a feedback from the behavioraldesign process, and contains
information about the worst-case execution time (WCET) andcode and data memory con-
sumption of the jobs. WCET is also estimated in the PIMs, but after implementing and
compiling the job code, it can be measured more precisely. The memory consumption is
calculated by most compilers, and is an important input parameter for the mapping tool.

All the marking steps are implemented as Graphical User Interface (GUI) input forms.
At the end of the marking process, an intermediate model (marked PIM) is built which is an
input of the automatic PSM generation.

8.4 Transformations in VIATRA

Based on the input models and marking information, several automatic transformation steps
are executed in order to produce the PSM of the system. These transformations are executed
in the background, so the designer will see only the results and progress information and
does not need to know about the transformation technology.

Replication: Replicationof jobs and resources is the first transformation of the pro-
cess. The tool replicates the high critical jobs and places them on different HW nodes to
achieve higher dependability. The most important parameter of the replication is the number
of replicas for a given component. This can be specified by thedeveloper in the PIM, either
on application, or on job level. It should be noted that the sensors and actuators attached to
the replicated jobs are also replicated.

Job Allocation:
This transformation is the direct implementation of the allocation algorithm discussed

in Section 6.4 using the capabilities of the VIATRA2 graph transformation engine. As all
information required by the allocation is present in the PSM, this transformation works
directly on the PSM of the system under design.

At this point, all information is available that is needed tocreate message and job
scheduling in the cluster. We decided to use third-party scheduling tools therefore the PIM-
to-PSM mapping process exports the data to the scheduler andthen reads back the results.
The final step of the whole process is the generation of application glue code and configura-
tion files for the OS and for the communication controllers.

8.5 Scheduling Tool Support

A scheduling tool is necessary generate or validate the scheduling table for the time-triggered
core network and for operating system instances on the core nodes. It also supports the
designer in exploring several solutions in the design spaceand helps to design optimized
implementation from RT view. Various tools exist which provide the scheduling of tasks,
such as RapidRMA [64], VEST (Virginia Embedded Systems Toolkit) [65] and AIRES
ToolKit [66]. These tools mainly use the RMA for uniprocessor scheduling. Nevertheless,
as mentioned in the previous Section 6.1.3, TTP/TTX-Plan and TTP/TTX-Build are ex-

37

ploited in our approach as an example tools set for scheduling safety critical applications in
a distributed platform. These tools implicitly perform a feasibility test to check whether a
given system assignment is schedulable and perform the scheduling.

The schedulers are executed using input files generated by the mapping tool from the
actual PSM model. The result of the scheduling is a set of configuration files for the oper-
ating system and communication subsystem of the core nodes reflecting the actual network
and job shceule tables.

8.6 PSM Metamodel

The result of the PIM-to-PSM mapping is the platform specificpost integration model of
the system that contains all information about the SW and theHW components, and about
the mapping of jobs onto nodes. The model is created and stored in the native XML format
of VIATRA that is the basis of the mapping tool. The model doesnot need to be exported,
as all transformations and marking steps are executed in theVIATRA framework.

The generated PSM controls the deployment task where all thesource files (application
code, middleware code, configuration code for the OS, etc.) are compiled and linked into
object files and executable files. Finally, in order to run a system these files are downloaded
onto the target platform , e.,g., by using the TTP/TTX-Load.

8.7 Proof of Concept Experiments

The methodologies and tool-chain introduced in this paper has been validated with various
system models. The basic validation of the tools has been done using tiny examples (like the
BFC and MVF introduced earlier) given by the industrial partner.

The industrial-grade experiments have been performed (using the same example) in
the framework of the EU Framework 6 Integrated Project DECOS(Dependable Embedded
Components and Systems) [68], where our tool-chain is used by three industrial technology
demonstrators from the automotive, avionic, and industrial process control domains.

9 Conclusions
We have presented a novel transformation based integrationmethodology and supporting
tools for the design of dependable real-time embedded systems. We performed consol-
idated mapping of different criticality applications ontoa common computing platform,
thus designing an integrated system. The functional and extra-functional requirements have
been considered early in the design process, which reduces the design efforts and cost. We
have presented comprehensive mapping strategies for ensuring fault-tolerance, enhancing
dependability, providing schedulability analysis and have implemented them in the tool
suite. Experimental results show the effectiveness, performance and robustness of our design
process as it considers the following important aspects:(i) uses of job and node ordering-
heuristics,(ii) checking the constraints during the assignment process (applying retrospec-
tive techniques) and are satisfied as a basis of constraints prioritization, which reduces the
search space by avoiding exploring infeasible design space, (iii) as the algorithm uses the
ordering-heuristics and run into multiple phases it takes less iterations and less convergence
time, and(iv) the generated initial solution is used to improve the performance of the opti-
mization. The post integration platform specific model generated by our tool-chain controls
the deployment task of the system development process to runexecutables on the target plat-
form. The implementation of custom user interface enhancesthe usability of the tool-chain
providing convenient user interface, ease in importing models, one-click transformation,
performing mapping algorithm, generating configuration files and results. An adaptation
of the algorithm has been described considering issues suchas processors having different
computing power and failure rates.

38

References
1. Pop, P., Eles, P., Peng, Z. & Pop, T., Analysis and Optimization of Distributed Real-Time Embedded

Systems, ACM Trans. Des. Autom. Electron. Syst., 11(3), 2006, 593-625.
2. Rushby, J., Partitioning in Avionics Architectures: Requirements, Mechanisms, and Assurance, SRI In-

ternational, NASA/CR-1999-209347, 1999.
3. Jhumka, A., Klaus, S. & Huss, S. A., A Dependability-Driven System-Level Design Approach for Em-

bedded Systems, DATE, 2005, 372-377.
4. Sangiovanni-Vincentelli, A. & Martin, G., Platform-Based Design and Software Design Methodology

for Embedded Systems, IEEE Des. Test, 18(6), 2001, 23-33.
5. Lee, Y.-H., Kim, D., Younis, M., Zhou, J. & McElroy, J., Resource Scheduling in Dependable Integrated

Modular Avionics, DSN, 2000, 14-23.
6. Younis, M. F., Aboutabl, M. & Kim, D., Software Environment for Integrating Critical Real-Time Con-

trol Systems, Journal of System Architecture, 50(11), 2004, 649–674.
7. ARINC, Design Guidance for Integrated Modular Avionics,Aeronautical Radio Inc., ARINC Report

651, 1991.
8. AUTOSAR, Technical Overview V2.0.1, AUTOSAR GbR 2006.
9. Kopetz, H., Obermaisser, R., Peti, P. & N. Suri, From a Federated to an Integrated Architecture for

Dependable Embedded Real-Time Systems. Technical Report 22, Institut für Technische Informatik,
Technische Universität Wien, Austria, Treitlstr. 1-3/182-1, 2004.

10. Peti, P., Obermaisser, R., Tagliabo, F., Marino, A. & Cerchio, S., An Integrated Architecture for Future
Car Generations, ISORC, 2005, 2-13.

11. Berger, A., Embedded Systems Design: An Introduction toProcesses, Tools and Techniques, CMP
Books, USA, 2002.

12. OMG: Model Driven Architecture (MDA), A Technical Perspective, OMG Document No. ab/2001-02-
04, Object Management Group, 2003.

13. Fernandez-Baca, D., Allocating Modules to Processors in a Distributed System, IEEE Trans. on Soft.
Eng., 15(11), 1989, 1427-1436.

14. Garey, M. R. & Johnson, D. S., Computers and Intractability : A Guide to the Theory of NP-
Completeness, W. H. Freeman, 1979.

15. Islam, S., Lindström, R. & Suri, N., Dependability Driven Integration of Mixed Criticality SW Compo-
nents, ISORC, 2006, 485-495.

16. Balogh, A. & Varró, D., Advanced Model Transformation Language Constructs in the VIATRA2 Frame-
work, SAC, 2006, 1280-1287.

17. Ekelin, C. & Jonsson, J., Evaluation of Search Heuristics for Embedded System Scheduling Problems,
Constraint Programming, 2001, 640-654.

18. Kuchcinski, K., Constraints-Driven Scheduling and Resource Assignment, ACM Trans. Des. Autom.
Electron. Syst., 8(3), 2003, 355-383.

19. Wang, S., Merrick, J. R. & Shin, K. G., Component Allocation with Multiple Resource Constraints for
Large Embedded Real-Time Software Design, RTAS, 2004, 219-226.

20. Rajkumar, R., Lee, C., Lehoczky, J. P. & Siewiorek, D. P.,Practical Solutions for QoS-Based Resource
Allocation, RTSS, 1998, 296-306.

21. Ghosh, S., Rajkumar, R., Hansen, J. & Lehoczky, J., Scalable resource allocation for multi-processor
QoS Optimization, ICDCS, 2003, 174-183.

22. Kodase, S., Wang, S., Gu, Z. & Shin, K., Improving Scalability of Task Allocation and Scheduling in
Large Distributed Real-Time Systems using Shared Buffers,RTAS, 2003, 181-188.

23. Oh, Y. & Son, S. H., Enhancing Fault-Tolerance in Rate-Monotonic Scheduling, Real-Time Syst., 7(3),
1994, 315–329.

24. Kandasamy, N., Hayes, J. P. & Murray, B. T., Tolerating Transient Faults in Statically Scheduled Safety-
Critical Embedded Systems, SRDS, 1999, 212-221.

25. Yuan, J., Pixley, C. & Aziz, A., Constraint-Based Verification, Springer Science+Business Media, Inc.,
New York, USA, 2006.

26. Suri, N., Ghosh, S. & Marlowe, T., A Framework for Dependability Driven Software Integration, ICDCS,
1998, 406-415.

27. Mustafiz, S. & Kienzle, J., A Survey of Software Development Approaches Addressing Dependability,
FIDJI, 2004, 78-90.

28. Effinger, M., Miller, C., Roll, W., Sharp, D. & Stuart, D.,Challenges and Visions for Model-Based
Integration of Avionics Systems, DASC, vol.2, 2001, 9B5/1-9B5/12.

29. Yin, X., Kiskis, D. L., Mihalik, D. & Shin, K. G., Integration of an Analysis Tool for Large-Scale Embed-
ded Real-Time Software into a Vehicle Control Platform Development Tool Chain, ESA, 2006, 53-59.

30. Kopetz, H. & Bauer, G., The Time-Triggered Architecture, Proc. of the IEEE, 91(1), 2003, 112-126.
31. Laprie, J-C. & Randell, B., Basic Concepts and Taxonomy of Dependable and Secure Computing, IEEE

Trans. Dependable Secur. Comput., 1(1), 2004, 11-33.

39

32. Kopetz, H. & Grünsteidl, G., TTP - A Protocol for Fault-Tolerant Real-Time Systems, Computer, 27(1),
1994, 14–23.

33. The FlexRay Group, FlexRay Communications System Protocol Specification, Version 2.1,
http://www.flexray.com/, 2005.

34. Rao, S., Engineering Optimization: Theory and Practice, A Wiley-Interscience Psublication, 1996.
35. Balogh, A., Pataricza, A. & R ´acz, J., Scheduling of Time-Triggered Embedded Systems, EFTS, 2007,

44-49.
36. ILOG CPLEX, Optimization Tool, http://www.ilog.com/products/cplex/, 2007.
37. Islam, S. & Suri, N., A Multi Variable Optimization Approach for the Design of Integrated Dependable

Real-Time Embedded Systems, EUC, LNCS - 4808/2007, 2007, 517-530.
38. Islam, S. & Omasreiter, H., Systematic Use Case Interviews for Specification of Automotive Systems,

APSEC, 2005, 17-24.
39. Huber, B., Obermaisser, R. & Peti, P., MDA-Based Development in the DECOS Integrated Architecture-

Modeling the Hardware Platform, ISORC, 2006, 43-52.
40. Object Management Group (OMG), Object Constraint Language 2.0 Specification,

http://www.omg.org/docs/formal/06-05-01.pdf.
41. Pataricza, A., Polgár, B., Gyapay, S. & Balogh, A., Formal Checking of Metamodels and Models, DE-

COS/ERCIM Workshop at SAFECOMP, 2006.
42. Kandl, S., Kirner, R. & Fraser, G., Verification of Platform-Independent and Platform-Specific Semantics

of Dependable Embedded Systems, WDES, 2006.
43. Kopetz, H., Real-Time Systems, Design Principles for Distributed Embedded Applications, Kluwer Aca-

demic Publishers, Boston, Dordrecht, London, 1997.
44. Sadeh, N. & Fox, M. S., Variable and Value Ordering Heuristics for the Job Shop Scheduling Constraint

Satisfaction Problem, Artificial Intelligence, 86(1), 1996, 1-41.
45. Keichafer, R. M., Walter, C.J., Finn, A.M. & Thambidurai, P.M., The MAFT Architecture for Distributed

Fault Tolerance, IEEE Trans on Comp., 37(4), 1988, 398-405.
46. Kopetz, H., Damm, A., Koza, C., Mulazzani, M., Schwabl, W., Senft, C. & Zainlinger, R., Distributed

Fault-Tolerant Real-Time Systems: The Mars Approach, IEEEMicro, 9(1), 1989, 25-40.
47. Claesson, V., Poledna, S. & Soderberg, J., The XBW Model for Dependable Real-Time Systems, IC-

PADS, 1998, 130-138.
48. Alstrom, K. & Torin, J., Future Architecture for Flight Control Systems, DASC, 1, 2001, 1B5/1–1B5/10.
49. Poledna, S., Barrett, P., Burns, A. & Wellings, A., Replica Determinism and Flexible Scheduling in Hard

Real-Time Dependable Systems, IEEE Trans. on Comp., 49(2),2000, 100-111.
50. Jhumka, A., Hiller, M. & Suri, N., Assessing Inter-Modular Error Propagation in Distributed Software,

SRDS, 2001, 152-161.
51. Punnekkat, S., Burns, A. & Davis, R., Analysis of Checkpointing for Real-Time Systems, Real-Time

Syst., 20(1), 2001, 83-102.
52. Izosimov, V., Pop, P., Eles, P. & Peng, Z., Design Optimization of Time-and Cost-Constrained Fault-

Tolerant Distributed Embedded Systems, DATE, 2005, 864-869.
53. Ramamritham, K., Allocation and Scheduling of Precedence-Related Periodic Tasks, IEEE Trans. Paral-

lel Distrib. Syst., 6(4), 1995, 412-420.
54. Eles, P., Peng, Z., Pop, P. & Doboli, A., Scheduling with Bus Access Optimization for Distributed Em-

bedded Systems, IEEE Trans. Very Large Scale Integr. Syst.,8(5), 2000, 472-491.
55. Liu, J. W. S., Real-Time Systems, Prentice Hall PTR, NJ, USA, 2000.
56. TTP-Tools, TTP-Tools SW Development Suite, http://www.tttech.com/products/software.htm, 2007.
57. Silva, J. L., Metaheuristic and Multiobjective Approaches for Space Allocation, University of Notting-

ham, PhD thesis, 2003.
58. Rossi-Doria, O. & Paechter, B., An Hyperheuristic Approach to Course Timetabling Problem Using an

Evolutionary Algorithm, Napier University, Scotland, 2003.
59. Dongarra, J., Jeannot, E., Saule, E. & Shi, Z., Bi-objective Scheduling Algorithms for Optimizing

Makespan and Reliability on Heterogeneous Systems, SPAA, 2007, 280-288.
60. Eclipse Foundation, http://www.eclipse.org/.
61. Ehrig, H., Korff, M. & Löwe, M., Tutorial Introduction to the Algebraic Approach of Graph Grammars

Based on Double and Single Pushouts, Graph Grammars and Their Application to Computer Science,
LNCS 532/1991, 1991, 24-37.

62. SCADE Suite, The Standard for the Development of Safety-Critical Embedded Software in the Avionics
Industry, http://www.esterel-technologies.com/products/scade-suite/, 2007.

63. The MathWorks, The MathWorks Homepage, http://www.mathworks.com/, 2007.
64. RapidRMA, http://www.tripac.com/, 2004.
65. VEST, Virginia Embedded Systems Toolkit, http://www.cs.virginia.edu/∼pnn7f/vest/, 2004.
66. AIRES-ToolKit, Automatic Integration of Reusable Embedded Software,

http://kabru.eecs.umich.edu/aires/, 2001.
67. Python Software Foundation, The Python Programming Language, http://www.python.org/, 2007.
68. DECOS, Dependable Embedded Components and Systems, http://www.decos.at/, IST, EU FP 6, 2004.

