
Int. J. of Autonomous and Adaptive Communications Systems, Vol. x, No. x, xx 1

Efficient Predictive Monitoring of Wireless
Sensor Networks

Abstract: Wireless Sensor Networks (WSN) are deployed to monitor
physical events such as fire, or the state of physical objects such as
bridges in order to support appropriate reaction to avoid potential
damages. However, many situations require immediate attention or
long reaction plan. Therefore, the classical approach of just detecting
the physical events may not suffice in many cases. We present a WSN
level event prediction framework to forecast the physical events well
in advance. Our approach is generic and allows to predict also the
network events such as network partitioning, thus supporting proactive
self* actions. For example, by monitoring and subsequently predicting
trends on network load or sensor nodes energy levels, the WSN can
proactively initiate self-reconfiguration to meet its desired operational
requirements. The framework collects the state of a specified attribute
on the sink for a certain duration of time. For this we propose an
efficient spatio-temporal compression technique. Based on the collected
history of attribute values, the future state of the targeted attributes
are predicted using time series modeling. The forecasted future state
is then used to detect generalized future events through our proposed
event detection algorithm. Additionally, the proposed framework is
adaptable to cover multiple application domains. Using simulations
we show our framework’s enhanced ability to accurately predict the
network partitioning, accommodating parameters such as shape and
location of the partition with very high accuracy and efficiency.

Keywords: Wireless Sensor Networks, Predictive Monitoring, Time
Series Analysis, Spatio-Temporal Compression, Event Detection and
Prediction.

1 Introduction

Wireless Sensor Networks (WSN) typically entail an aggregation of both sensing
and communicating sensor nodes to result in an ad hoc network linking them to
the base station or sink. The sensor nodes typically possess limited storage and
computational capabilities and require low-energy operations to provide longevity
of operational time.

WSN’s are deployed for monitoring different environmental attributes. Based
on the sensed data ranges, the corresponding reaction decisions are carried out.
The decisions to take actions are triggered by some events happening in the
network. For example, while monitoring pressure in a certain facility an event could
be triggered to indicate either high or low pressure. Similarly, we can have many
events related to numerous attributes. In addition to the environmental events,
there are also the network events to be considered such as network partitioning.
Various works exist for detecting different discrete events (Yick et al., 2008) such
as, fire detection (Yu et al., 2005) and network partitioning (Shrivastava et al.,

Copyright c© 2009 Inderscience Enterprises Ltd.

2

2005; Rost and Balakrishnan, 2006; Shih et al., 2007). Most of these efforts develop
excellent foundations, however, are tailored for specific scenarios. Other works do
consider generic scenarios (Xue et al., 2006), but they suppose the event to take
specific shapes and patterns. Also, all of these efforts focus on detecting the events
after the events have already occurred. It could be already too late to react to
many events if the traditional approach of detecting and reacting to the events
is followed. Consequently, it is either insufficient or inefficient just to react to the
events. For example, if we detect network partitioning, the repair might require
a long time and the required resources may not be available. Meanwhile, the
functionality of network and hence the monitoring, which is the main objective of
deployment, will be lost. Thus, reporting of such events beyond simple monitoring
becomes highly useful if these events can be predicted in advance. The ideological
shift from detecting the events to predicting them provides enough time window
to take appropriate autonomic actions. Consequently, we could avoid or delay
events from happening. Multiple efforts also exist for predictions (Mini et al., 2002;
Tulone and Madden, 2006; Landsiedel et al., 2005; Wang et al., 2007). However,
most of them are either limited to predicting specifically a certain attribute such
as energy or provide only node level short-term prediction for data compression to
minimize data to be reported from the network.

It is very useful to combine generic prediction techniques with generalized
event detection to predict the events and to carry out self* actions well in
advance. To the best of our knowledge there exists no work that proposes generic
event prediction. In this paper, we develop a generic framework to predict the
events. The framework predicts the future states of the network for the attribute
of interest, e.g., temperature or residual energy. The developed generic event
detection technique is used on ”predicted future state of attributes” to effectively
forecast the events. We target long-term predictions that require the history of the
attribute to be long enough to contain all system dynamics. However, a sensor
node does not possess the computational resources required to model the complex
dynamics in attribute values to accurately predict the future states. Hence, we
collect multiple profiles of the considered attribute and conduct modeling on
the sink. We refer to the collection process of attribute values from network as
profiling. Accordingly, a profile is the state of the attribute in the network at a
specified instance of time. We also propose data collection techniques to efficiently
and accurately collect such a history of the attribute from the network. On this
background this paper makes four specific contributions, namely
• Generalized framework design for sink-aided attribute profile prediction,

allowing to predict varied physical and network events.
• Efficient data collection technique based on spatio-temporal compression,

minimizing both spatial and temporal data redundancies while collecting
attribute profiles.

• Generic event detection technique to detect events from the predicted profiles.
• Case study of network partition as validation for our efficient predictive

monitoring framework.
The paper is organized as follows. Section 2 discusses the related work. Section

3 details the key preliminaries for the framework. Section 4 details our approach
for predictive WSN monitoring. The case study is presented in Section 5 and its
simulation evaluations in Section 6. Section 7 presents summary conclusions and
outlines future directions.

Efficient Predictive Monitoring of WSN 3

2 Related Work

In WSN literature a variety of work addresses event detection (Yick et al.,
2008). The most relevant one to our event detection strategy is (Xue et al.,
2006), where the authors investigate map based event detection. The approach
requires the user to (a) specify the distribution of an attribute over space and
(b) the variation of distribution over time incurred by the event. Three common
types of events are defined namely pyramid, fault and island. In contrast, our
detection technique is independent of event shape thanks to our generic regioning
algorithm. Furthermore, we apply the detection technique on predicted profiles
allowing to predict events rather than just detecting them. (Banerjee et al.,
2008), presents a technique to detect multiple events simultaneously. They employ
a polynomial based scheme to detect event regions with boundaries and propose
a data aggregation scheme to perform function approximation of events using
multivariate polynomial regression. Our work in addition to the capability of
detecting multiple events, can predict events beforehand. Various other works exist
that address specific event scenarios such as partition detection (Shrivastava et al.,
2005), and fire detection (Yu et al., 2005). These specific solutions do not feature
portability to adapt to different application scenarios.

There is a variety of work for monitoring WSN’s and prediction of certain
attribute. (Landsiedel et al., 2005) predicts the power consumption in WSN.
(Mini et al., 2002) proposes a network state model to predict the energy
consumption rate and constructs energy map accordingly. In (Wang et al., 2007),
authors focus on predicting multimedia networks energy efficiency. These works
concentrate specifically on energy, also they do not provide any extension to
predict other attributes. Authors in (Mamei and Nagpal, 2007) propose inference
mechanism using Bayesian network to detect anomalies. We provide a generic
framework to predict variety of events that might happen in future.

As we present a case study for network partition prediction, we discuss the
related work in this respect. In (Shrivastava et al., 2005), partition detection
has been addressed for a sub-class of linearly separable partitions, i.e., cuts.
Memento (Rost and Balakrishnan, 2006) continuously collects connectivity
information at the sink to be able to detect network partitioning. The partition
avoidance lazy movement protocol for mobile sensor networks (Shih et al., 2007) is
a decentralized approach, where a node periodically collects the position of all its
neighbors and checks if at leat one neighbor is located in a small angle towards the
sink. If no neighbor is located in this ”promising zone”, the node suspects network
partitioning and moves to avoid it. Based on our event prediction framework as an
example we propose a solution that is generalized and not dependent on the shape,
size or location of the partition. Moreover, our framework provides for prediction
of network partitioning rather than just the detection.

3 Preliminaries
We now describe the system model and the requirements driving our approach.

3.1 System Model

We consider a WSN composed of N static sensor nodes and one static sink.
Sensor nodes are battery powered and usually entail limited processing and storage
capabilities. Sensor nodes are assumed to know their geographic position either

4

using distributed localization methods (He et al., 2005) or GPS. A typical WSN
deployment may contain hundreds or thousands of sensor nodes with varying
densities according to the coverage requirements. We consider an arbitrary node
distribution, provided the network is connected at deployment time. We assume
all sensor nodes to be homogeneous. Hence, the sensor nodes have the same
transmission range R and same initial battery capacity. We consider that nodes
crash due to energy depletion only. We assume a reliable data transport protocol,
e.g., (Shaikh et al., 2010) to transports the data from sensor node to the sink. We
assume the events for predictions to be happening over a longer period of time,
e.g., events that may take hours, days or even months to develop. We consider
that events are (a) not spontaneous, (b) spatially correlated, (c) do not depend
discretely on a single node, and (d) display attribute trends that can be predicted.

3.2 Requirements on the Framework

We identify the following requirements on the framework. First, it should be
lightweight, i.e., its creation, management and usage requires minimal resources
with respect to energy. Second, we desire the framework to long-term predict
attribute profiles, hence the events accurately. Depending on the context of the
problem, long-term may mean hours, days or even months that should be enough
to activate a self* mechanism to support autonomic actions. Third, we desire the
framework to be generic to adapt to prediction of varied event types.

4 Efficient Predictive Monitoring

We develop the proposed framework in a modular manner for it to be generically
applicable to a variety of scenarios. The framework consists of three phases, i.e.,
data collection phase, prediction phase and event detection phase. In the data
collection phase, attribute values related to an event are periodically but efficiently
fetched from the network on the sink. The prediction phase is used for predicting
future states of the network for the interested attribute using the previous history
of attribute fetched from the network during data collection phase. The main
objective in event detection phase is to detect events in the predicted state of
the network, obtained in prediction phase, essentially predicting the events. The
techniques we propose in each phase are independent of the attribute to be
monitored, thus fulfilling generality requirements of our framework. It is important
to highlight that we do not limit the framework to only these techniques. Rather,
for a particular implementation, specialized additional techniques can be easily
accommodated due to the framework’s modular structure. These phases are
individually detailed in the following sections.

4.1 Data Collection Phase

From the nature of the problem we can expect an efflux of data (sensed
attribute values) from the network towards the sink. A simplistic periodic
approach to collect data from each sensor node on the sink would lead to
high communication and energy overhead on sensor nodes rendering the whole
framework impracticable. Our framework addresses this issue by exploiting the
inherent redundancies to reduce the amount of data to be transported to the sink
without sacrificing the accuracy of the collected data.

Efficient Predictive Monitoring of WSN 5

4.1.1 Data Redundancy in WSN
We first describe the redundancies present in WSNs, and how these redundancies
can be exploited in general. Subsequently, we present our approach that efficiently
utilizes both spatial and temporal redundancies for compression.

Spatial Redundancy - Reduction Through Clustering: By its basic nature, a
WSN involves redundancy in node deployment that yields redundant sampling
of the environment. Furthermore, spatial distribution of the attributes in the
environment such as temperature, pressure, etc., tend to be similar over large
contiguous area than just in the neighborhood of redundant nodes. To avoid
spatial data over-sampling, not all the nodes need to send their samples (spatial
compression). The existing approaches take into account spatial redundancy by
forming clusters of similar valued nodes (Gedik et al., 2007). Authors in (Gedik
et al., 2007) further break the clusters into sub-clusters to select fewer sampling
nodes. However, they have to re-execute cluster construction algorithm repeatedly
to maintain these bigger clusters. There are also other variations like (Solis and
Obraczka, 2005) that form clusters and send updates to sink if there is any change
on the edge of the cluster.
Definition 1 A time series is a sequence of data points xt considered as a sample
of random variable X(t), typically measured at successive times. The time series
can be modeled to predict future values based on past data points.

Definition 2 A stationary random process exhibits similar statistics in time,
characterized as constant probability distribution in time. However, it suffices to
consider the first two moments of the random process defined as weak stationary or
wide sense stationary (WSS) as follows:
1. The expected value of the process (E[X(t)]) does not depend on time. If mx(t) is
the mean of X(t) then

E[X(t)] = mx(t) = mx(t + τ) ∀τ ∈ <
2. The autocovariance function for any lag τ is only a function of τ not time t

E[X(t1)X(t2)] = Rx(t1, t2) = Rx(τ, 0) ∀τ ∈ <

Definition 3 X(t) is an Autoregressive Moving Average Process ARMA(p, q)
process of order (p, q) p, qεℵ, if X(t) is WSS and ∀ t,

X(t) = φ1Xt−1 + · · ·+ φpXt−p + θ1Zt−1 + · · ·+ θqZt−q (1)

where Zt is white noise with mean zero and variance σ2, denoted as WN(0, σ2).
Temporal Redundancy - Reduction Through Piecewise Modeling: We primarily

observe for a given node the monitored attribute values are often dynamic in
nature, however, they are usually statistically correlated in time. This correlation
in time can be exploited by abstracting the attribute values as a time series
(Def. 1). Consequently, we can compress the data by modeling the raw data
samples and send only the model parameters to the sink (temporal compression).

The generic time series modeling is not possible on a node because of its
limited storage and computational capabilities. Therefore, a time series on a node
is better modeled piecewise. This also avoids having to model complex time series
dynamics. Consequently, the models are still simple enough to be evaluated on
sensor nodes. As in (Tulone and Madden, 2006), nodes maintain short history of
data samples (sensed attribute values). A 3rd order autoregressive model (AR3)
is fit to the data, which is only a particular case of the ARMA(p, q) model

6

(Def. 3), for p = 3 and q = 0. AR3 gives a good compromise between complexity
and predictability (hence compressibility). Nodes estimate next values according
to this model. If the model is no longer valid for the new data a new model is
constructed. A few values that do not fit the model are termed as outliners. The
track of outliners to the model is kept explicitly. A minor optimization over this
basic scheme is to group nodes in 1-hop cluster (Ci). Using this optimization the
nodes that are in each other’s transmission range build only one model instead of
each one building its own model. Consequently, only cluster heads (Hci) maintain,
update and send the models to the sink. A node joins a cluster Ci if its attribute
value is within the allowed maximum threshold (∆MCi) between the Hci and the
cluster members (Mci). Two clusters may overlap, i.e., the members of one cluster
may communicate with the Hci of the other neighboring cluster. Hci periodically
broadcasts its attribute value to its members Mci so they ensure that they are
also within the error bounds ∆Mci of the value of Hci. Otherwise, they leave this
cluster and join another cluster for which error is within ∆Mci or build a new
cluster if they do not fall within ∆Mci of any of the surrounding Hci.

4.1.2 Optimized Spatio-Temporal Compression Scheme
Our main design objective is to reduce the overhead while maintaining high
accuracy of data. We propose a hybrid compression scheme to reduce the reported
data by exploiting both spatial and temporal redundancies.

The spatial and temporal compressions are complementary schemes. The
current literature optimizes for one scheme (Solis and Obraczka, 2005) or the
other (Tulone and Madden, 2006). Applying both schemes together is challenging.
Clustering algorithms group nodes based on the similarity of the values. However,
value based spatial clustering can not guarantee that such achieved grouping will
hold for long time. Moreover, the temporal compression is based on the assumption
that the entity to be modeled demonstrates a certain behavior in statistical terms
such that it fits a certain model for certain duration of time. Hence, a large cluster
may not live long enough to be justified to be modeled and breaks up into further
clusters. Therefore, the temporal compression schemes are very efficient on node
level or in a very small neighborhood but suffer the scalability issues when applied
to model behavior of multiple nodes or clusters. Thus, we conclude that the larger
the cluster, the shorter the spatio-temporal correlation holds.

We propose a very efficient approach in terms of message and energy overhead.
Our approach exploits both spatial and temporal redundancies. The proposed
scheme starts with 1-hop clusters ’Ci’ based modeling (Section 4.1.1).The main
advantage of 1-hop clusters is that it is the unit of clustering, i.e., all the higher
level clusters can be formed from these clusters by merging them. They are easy to
construct and maintain, i.e., through simple 1-hp beacons (Tulone and Madden,
2006). Moreover, if the model does not fit the new attribute values, Ci does not
break up like larger clusters, instead a new model is built to fit to the new values.
However, if the attribute values are so discretely divergent that each node has
different values within 1-hop then it implies that there is no redundancy, which is
contradictory to inherent redundancy in WSN.

We next describe our algorithm to determine spatio-temporally correlated
regions in WSN. Subsequently, an algorithm is presented to optimally aggregate
the region information to be sent to the sink.

Efficient Predictive Monitoring of WSN 7

Distributed Regioning Algorithm (DRA): Data compression for 1-hop cluster
based modeling is efficient for temporal compression but is limited to 1-hop cluster
area. However, as discussed before, the attributes tend to be similar in larger area
than just 1-hop distance. To also exploit the spatial redundancy for Ci models,
a Hci sends its model to its neighboring clusters. The neighbors compare the
received model with their local model. If the error is under given error bounds,
neighbors accept their behavior to be represented by the same model as Hci and
forward this model to their respective neighbor clusters. This scheme generates a
region that is spatially correlated for the cluster head models. Consequently, we
achieve spatio-temporal compression. Now, we elaborate DRA further in detail.

Algorithm 1 DRA: Distributed Regioning Algorithm (On Sensor Nodes)
1: VAR: PJN=Positive Join Notification,

NJN=Negative Join Notification, Ri=Region
ID, list=list of clusters, NBN=Not border
Notification

2: function growRegion()
3: me.list.addToList(me);
4: msg=[”join request” model Ri];
5: for Ci ∧ ∀Ci ∈ Nci do
6: if sendMsg(msg, Ci)=”PJN” then
7: me.Nci.Ci=Ri;
8: else
9: me.Nci.Ci= -Ri;

10: me.Nci.Ci.border=false;
11: end if
12: end for
13: if Ci.Ri=me.Ri∧∀Ci ∈ Nci then
14: me.border=flase;
15: msg=[”NBN” list];
16: for Ci ∧ ∀Ci ∈ Nci do
17: sendMsg(msg, Ci);
18: end for
19: if me.BTT then
20: me.BTT=False;
21: msg=[”BTT”];
22: sendMsg(msg, Ci ∧ ∀Ci ∈ Nci &

minDist(Nci));
23: end if

24: end if
25: if Ci ∧ ∀Ci ∈ Nci & Ci.Ri! = ”” then
26: me.transition=false;
27: me.stable=true;
28: end if
29: function recieveMsg(msg)
30: me.Nci.Ci=msg.Ri;
31: if msg.type=”join request” & me.Ri=””

then
32: nbrValues=expandModel(msg.model);
33: outs=cntOuts(nbrValues,me.Values);
34: if outs < ∆Nci then
35: me.regionId=msg.Ri;
36: me.border=true;
37: me.transition=true;
38: scheduleMsg(call growregion());
39: return(PJN);
40: else
41: return(NJN);
42: end if
43: else if msg.type=”NBN” & me.border

then
44: me.Nci.border=false;
45: me.list=msg.list;
46: else if msg.type=”BTT” then
47: me.BTT=True;
48: end if

During the cluster formation each Hci exchanges its distance from the sink
with its neighbor clusters (Nci). Thus, each Hci knows about its neighboring
clusters and their distances from the sink. Each Hci starts sampling the attribute
value. The local model is generated after collecting enough samples. The Hci

waits for maximum time Tmax, inversely proportional to its distance from the sink
(Ci.distance), before initiating regioning. If wait time is denoted by Tw, then it
can be given by Tw = Tmax/Ci.distance. Tw biases the clusters farther from the
sink to initiate the regioning earlier. The cluster that initiates the regioning has a
special privilege that we refer as border traversal token (BTT). We shall elaborate
the use of BTT token and biasing of DRA initiation away from sink afterwards.
As given in Alg. 1, DRA is a three step procedure:

• Once a cluster head, denoted as the sender cluster Cs, has fit a model to the
data after wait time Tw, it then sends its model to the heads of the neighboring
clusters Ncs (Alg. 1:L 4-12).

• A receiving cluster heads (Cr) finds dissimilarity between the received model
and its own model based on a dissimilarity metric to evaluate the error between

8

two models. This metric can be a statistical function, a signal processing metric
such as cross-correlation or time series analysis technique that we propose here.
We use time series based technique because it is very efficient and that the
models to be compared are derived using time series analysis. Hence, we can
guarantee the accuracy level with the dissimilar error bounds parameters that
we otherwise use for in-cluster dissimilarity measures. We introduce a maximum
allowed error threshold (∆Nci) between Cs and Cr for merging. We define
∆Nci to be the maximum number of allowed outliners to the received model.
To compute dissimilarity the Cr evaluates the received model (Alg. 1:L 32).
It counts the outliners by comparing Cs values (nbrValues), received as Cs

model, to its sampled values (Alg. 1:L 33). If outliners are within ∆Nci, Cr

acknowledges Cs by sending a ”Positive Join Notification” (PJN) to merge into
the region that is represented by Cs model. Otherwise, Cr sends a Negative
Join Notification” (NJN) (Alg. 1 :L 34-42). The cluster issuing a PJN considers
itself on the boundary of the region (Alg. 1:L 36) and schedules itself to further
propagate the model to its neighbors (Alg. 1:L 37). Consequently, every cluster
head participating in the region knows its status either as the region interior or
the region boundary to keep track of region boundary.

• If all neighboring clusters of Cs belong to the same region, this implies that Cs is
not on the region boundary (Alg. 1:L 13-14). Cs notifies Ncs it is not on border
anymore through a ”Not Border Notification” (NBN) message and transfers
the aggregated clusters list of this part of the region to Ncs (Alg. 1:L 15-18).
However, this information is of interest to only the clusters on the boundary.
Therefore, the list is updated by only the border clusters (Alg. 1:L 43-46). More
than one border clusters receive the list, consequently multiple border clusters
may have duplicated information for region interior in the end, which is then
removed in the border traversal algorithm (BTA), described in Alg. 2. The
cluster leaving the border status hands over the BTT token to the cluster head
closest to the sink on the border if it possesses one (Alg. 1:L 19-23).

The three steps repeat until the outliners count is below ∆Nci for Cs and Cr. This
process creates a region that is spatially and temporally correlated for an attribute
for the modeled time duration. Hence, using DRA we have just one model to be
reported to the sink that represents the behavior of the correlated region. Fig. 1
illustrates an execution example of DRA. For illustrative purposes and simplicity
we removed the duplicated arrows and show the clusters to be non-overlapping.

The DRA may be initiated by multiple clusters simultaneously. Consequently,
multiple regions may grow and merge. However, no special consideration is needed
for this situation, as the condition still holds that if all the clusters around a
cluster are part of the same region then this cluster leaves the border cluster status.
Hence, the previous border clusters within the true border of the new bigger region
will automatically annihilate and the border clusters on the true border will still
persist. However, multiple merging regions will generate multiple clusters having
BTT token. We refer to this as multi-BTT problem and deal with it in BTA.

Border Traversal Algorithm: The information of region constituting clusters
and the single model representing the region needs to be sent to the sink. We
aggregate this information on one cluster head that reports to sink the aggregated
information, instead of each border cluster reporting to the sink. We propose the

Efficient Predictive Monitoring of WSN 9

Border Traversal Algorithm (BTA) to aggregate the complete region information
(Alg. 2). A specific probability of selection of clusters on the boundary could be
set to initiate BTA. However, it might lead to selecting either no or multiple
clusters to initiate border traversal. Only one cluster should send the model and
the region information to the sink in order to optimally reduce the data to be
transported to the sink. This cluster should preferably be the one closest to the
sink to further decrease the message overhead. This is where BTT comes into
play. Only the cluster possessing a BTT can initiate BTA. The DRA algorithm
is biased to initiate away from the sink, so there are higher chances (though not
guaranteed) that it will expand in the direction of the sink. Moreover, the BTT
token is transferred to the cluster closest to the sink in DRA. Though, again it
does not guarantee but biases to select cluster closest to the sink to initiate BTA.

Once the region stops growing around a cluster having BTT token, it initiates
the boundary aggregation. The initiator cluster includes its distance from the sink
in the aggregation message. It helps to eliminate the multi-BTT problem. The
cluster holding the token sends the message to aggregate the region information.
The receiving cluster updates the list by including itself and the list that it holds,
collected during DRA (Alg. 2:L 13-14). However, this list may contain duplicated
cluster information, therefore a cluster receiving the aggregation message runs a
filter to remove the duplicated cluster information (Alg. 2:L 15). If the region has
multi-BTT problem then multiple clusters initiate traversal. However, this is not
difficult to handle as the traversal request initiator closest to the sink will suppress
traversal request initiated by the other clusters (Alg. 2:L 5-7). It is possible that
the region stops growing around the token holding cluster, it enters into stable
phase and initiates BTA. However, in some other part the region may still be
in transition phase and growing. After the aggregation process is triggered and
reaches a cluster in transition phase, this cluster pauses the aggregation process.
This cluster state information is maintained during DRA (Alg. 1:L 25-28, 37). As
soon as a cluster in transition phase enters into the stable phase, it continues the
aggregation process with the next border cluster (Alg. 2:L 8-12). The pause and
resume mechanisms ensure that we collect the accurate border information.
Algorithm 2 BTA: Border Traversal Algorithm (On Sensor Nodes)
1: VAR: aggMsg=[initId=Iditiator cluster id,

initDist= initiator distance from sink,
list=aggregator list of border clusters],
Cs=Sender Cluster

2: Function recievedMsg(aggMsg)
3: if me.Id = aggMsg.initId then
4: sendToSink(aggMsg);
5: else if me.BTT & me.distance <

aggMsg.initDist then
6: suppress(aggMsg);
7: return;

8: else if me.transition = true then
9: while me.transition do

10: pause;
11: end while
12: end if
13: aggMsg.list.addToList(me);
14: agg.list.addToList(me.list);
15: aggMsg.list=filter(aggMsg.list);
16: sendMsg(aggMsg, Ci ∧ ∀Ci ∈ Nci &

Ci.border!=false & Ci!=Cs);

DRA and BTA very effectively reduce the amount of data to be transported
to the sink by transporting only a few models by finding a small number of model
correlated regions for the whole network.

4.2 The Prediction Phase

The prediction phase takes place on the sink. We regenerate the profiles for
the desired attribute using the collected models of regions. Generic time series

10

modeling techniques are then used to model the complete history of each node to
predict the future profiles.

The models received on the sink in data collection phase for each region
are used to regenerate the attribute history through reverse transformation. It
is rather a simple procedure as sink has the models for each region, so reverse
transformation comprises of solving the region model equation for each node in
each cluster constituting each region. Hence, the reverse transformation generates
many complete profiles of the WSN. The reverse transformation forms a temporal
stack of such profiles as shown in Fig. 2. The regenerated history of each node
contains all the complex dynamics. On the sink we can now take the complete
history of each node and model its complete behavior using time series analysis
for predictions as opposed to on node piecewise modeling. Individual models of
each node can then be used to predict future values by fitting a prediction model,
effectively predicting future profiles. The time series can be modeled in different
ways (Wang et al., 2007). In this paper, we use the widely used time domain
modeling because of its general applicability.

4.2.1 Modeling Time Series:
A time series X(t) can be modeled as a process containing following components

X(t) = Tt + St + Rt (2)

where Tt is a trend, St is a function of the seasonal component with known period,
and Rt is the random noise component. To keep the notion of generality valid
for the framework we use a well known generalized technique termed Box-Jenkins
Model to model a time series containing any of these components.

4.2.2 Box-Jenkins Model:
Box-Jenkins (BJ) model predicts a time series by fitting it an Autoregressive
Integrated Moving Average (ARIMA) process. The term integrated here means
differencing the series to achieve stationarity (Def. 2). To fit an ARIMA process
the model and the order of the model needs to be specified. The BJ model provides
a guideline to select the appropriate model, i.e., either Autoregressive (AR, Eq.
(3.1)) or Moving Average (MA, Eq. (3.2))

X(t) = φ1Xt−1 + · · ·+ φpXt−p {3.1}, X(t) = θ1Zt−1 + · · ·+ θpZt−q {3.2}(3)

or combination of both, i.e., ARMA process as given in Eq. (1). It also gives the
guideline for the model order selection. BJ modeling is a four steps procedure:

i.) Data Preparation: BJ model requires a time series to be stationary (Def. 2).
Therefore, if it contains trends and seasonal components then these should be
appropriately removed. This can be achieved by either Least Square Polynomial
Fitting (LSPF) or differencing as X(t) = X(t)−X(t + u). For a simple linear
trend, u is 1. For higher order trends or seasonal component of period s, u equals
s. This operation is repeated until stationarity is achieved.

ii.) Model Identification: At this stage run-sequence plot or Autocorrelation
Function (ACF) can be used to identify the stationarity of the time series and the
order of the AR model. ACF for k lag is given by

ρk =
∑N−k

i=1

(
Xi − X̄

) (
Xi+k : X̄

)
∑i=1

N

(
Xi − X̄

)2 (4)

Efficient Predictive Monitoring of WSN 11

where X̄ is the mean value. Non-stationarity is often indicated by an ACF plot
with very slow decay. Order of the AR and MA models are determined with
the help of ACF and Partial Autocorrelation Function (PACF) (Montgomery
et al., 2008). To automate the model selection process either Akaike’s Information
Criterion (AIC) or Akaika’s Final Prediction Error (FPE) (Ljung, 1998) can be
used. Various models can be computed and compared by calculating either AIC or
FPE. The least value of AIC or FPE ensures the best fit model.

iii.) Parameter Estimation: In this step the values of the ARMA model
coefficients that give the best estimate of the series are determined. Iterative
techniques are used for model parameter estimation (Ljung, 1998).

iv.) Prediction: Once the modeling is complete, it is simple to predict the series
values using the estimated model. It comprises of calculating the future values at
next time instances and reversing all the transformations applied to the series in
phase 1 for data preparation.

4.3 The Event Detection Phase

We now develop a generic event detection technique. Subsequently, using this
technique we detect events in the predicted profiles of the attribute obtained in
prediction phase, effectively predicting upcoming events in the network.

The main objective of our framework is to predict events. In the system model
(Section 3.1) we have described the domain of the events that we are targeting in
our work. These can be exemplified by detection of temperature above a certain
threshold in a certain part of network that is indicative of fire. Similarly, there
are many other events associated with each physical attribute such as pressure,
humidity etc. Our challenge here is to design an event detection mechanism that
is generic and can be ported to wide range of scenarios. To cope with this problem
we use here an abstraction of maps for WSN (Def. 4). For a WSN an eMap is
an energy map that represents the current residual energy of the network (Zhao,
2002), or tMap for temperature etc. Once a WSN is converted to a map for a
certain attribute such as temperature, pressure etc., the events appear as regions
in these maps. For example, in a tMap of WSN the part of the network that is
beyond the given threshold of temperature will appear as a region in a tMap.
Consequently, in our framework we define an event as a region of map whose
values fall in the range of attribute values for which the event is defined. Using
the abstraction of maps for WSN and regions for events we are able to keep
the framework generic enough to be portable to different scenarios. Thus, the
quantification of WSN space and the conversion of a WSN to a map abstraction
is the key to detect generic events.
Definition 4 To quantify the continues space of WSN profile and construct the
map a grid is virtually placed over the WSN profile and each grid cell represents
the aggregated attribute of all the nodes located within the grid cell. We define the
resultant quantification as Grid Map or simply Map.

4.3.1 Map Abstraction
In order to reach an acceptable spatial resolution with higher level
abstraction of network as a map, we considered virtual grids and Voronoi
diagram (Aurenhammer, 1991) techniques to segment WSN profile. Voronoi-
based segmentation depends only on sensor node distribution and is static for

12

a given node distribution. However, we require a segmentation strategy that
allows variable spatial sampling to accommodate both the physical and network
parameters. Such variability also allows us to detect events from a single node to
a region of the network. Grid allows such flexibility therefore, we base our map
construction on grid. The virtual grid or simply grid divides the WSN profile
into fixed size squares or grid cells as shown in Fig. 2. Thus, nodes that fall
within a cell are grouped. For the grid map construction, two parameters must be
specified. The first parameter is the grid cell size γ, which is a spatial sampling or
resolution parameter. The second parameter is the aggregation value ξ that a grid
cell represents. Both parameters are essential for event detection. γ defines the
geographic area covered by the grid cell. The number of nodes being grouped in a
grid cell is dependant on γ. It can also be seen as a zooming parameter. Hence,
it can be used to decide at which level the user intends to detect the event, i.e.,
very detailed (zoomed-in) level of node or an overview at the level of regions. The
grid cell value ξ is an aggregate of the attribute values of the set of nodes in a
cell. The choice of the exact function depends on the application. For example,
for temperature or pressure, it is most appropriate to average the values of the
nodes in the grid cell. If ξij is the grid cell value in the (i, j)th grid cell gij and vn

represents attribute value of node n in gij then ξij is an aggregation function such
as average, min, max of vn:

ξij = f(vn) ∀ n ∈ gij (5)

We do not impose assumptions on the selection of γ and f(.), highlighting the
generality of our framework (requirement on our framework). An illustration for
the selection of both parameters is given in the case study in Section 5.

4.3.2 Centralized Regioning Algorithm
As the events appears as regions in a map, we propose here a centralized regioning
algorithm (CRA) that can detect the regions and their borders in WSN map,
which leads to generic event detection. CRA is conceptually the same as its
distributed counterpart DRA. However, it has been used here for entirely a
different purpose of detecting events. The parallel between the two applications of
conceptually same algorithm is that in DRA the models build correlated regions
based on similarity of models and in CRA the events build regions based on similar
values of attribute for an event.

The regions are formed because the attribute values fall into a certain class of
values. For example, we normally classify the temperature as freezing, low, normal,
high or very high. These classes also contain event class (range of values belonging
to event, e.g., temperature above 500oC for fire). This gives us more acceptable
abstraction than the exact values themselves. Therefore, thresholding of values into
classes becomes logical representation for event detection. Thus, to detect these
events we define the class maps that thresholds the exact values of the cells in
grid map with their class denominations. If we define class map values K as k1,
k2, · · · for the range of the values of grid cell gij between (ξ2, ξ1] and (ξ3, ξ2] · · ·
respectively, then a class map value is defined by

K =





k1 if ξ2 < ξij ≤ ξ1

k2 if ξ3 < ξij ≤ ξ2

· · ·
(6)

Efficient Predictive Monitoring of WSN 13

CRA (Alg. 3) takes the grid map as input and determines border and regions
belonging to different classes and hence events. We refer to the resultant output
as the regions map. CRA essentially needs a class map to group all the same class
cells and determine the boundary. The process of converting to class map and
determining the regions boundary are both carried out concurrently. In order to
merge the cells into regions, we define attribute classes as in Eq. (6). Neighboring
cells are merged to form the same region if they belong to the same class. The
definition of attribute classes and fusion of same class grid cells makes CRA
independent of the shape that a region takes or the number of regions (hence the
number of events) in the map.

Algorithm 3 CRA: Centralized Regioning Algorithm (On the Sink)
1: Var: rB= regionBorder, mB= mapBorders,

nRB= newRegionBorder, rM= regionsMap,
rId= regionId, nL= neighborList, Gcxy=
Grid cell at (x,y)

2: rM[][]=-1;
3: mB[][];
4: while rM(i, j) = −1 do
5: rB[]=(Gcij ∧ rM(i, j) = −1))
6: dilateRegion(map, rB[], rM[], rId)
7: mB[rId][]=rB;
8: rId++;
9: end while

10: Function dilateRegion(map, rB[], rM[], rId)
11: repeat
12: changeInBorder=0;nRB[]=0;
13: for Gcij ∧ ∀Gcij ∈ rB) do

14: nL[] = 8Nbrs(Gcij);
15: for Gckl ∧ ∀Gckl ∈ nL[] do
16: if (class(Gcij) = class(Gckl) &

rM(k, l) = −1 then
17: rM(k,l)=rId;
18: nRB.add(Gckl);
19: changeInBorder=1;
20: end if
21: end for
22: if class(Gcij) 6= class(Gckl) ∧

∀Gckl ∈ nL[]) then
23: nRB.add(Gcij);
24: end if
25: end for
26: rB[]=nRB[];
27: until changeInBorder

The algorithm starts by defining all the cells as not assigned to a region by
initializing the variable rM[]=-1. Next it searches a grid cell that has not been
assigned a class yet and lists it as the border of the region, as the region itself
and region border at this moment consists of a single cell (Alg. 3:L 5), cell with
-1 in rM is not assigned a region yet). CRA then starts expanding/dilating the
region (Alg. 3:L 6). To expand the region, the neighboring eight cells around this
region cell are checked if they already belong to any class (Alg. 3:L 14-16), if not
then they are also classified according to Eq. (6). If they belong to the same region
they are assigned the same region ID and the new qualifying cells are listed as
the region border, otherwise the previous cells retain their status as region border
(Alg. 3:L 17-18). To further expand the region neighboring cells of each cell in
the border cells are searched iteratively until no change occurs in the border of
the region (Alg. 3:L 11,27), which implies the completion of the construction of a
single region with its boundary. The whole process repeats again by searching a
new cell that has not been assigned a region yet. It keeps on repeating until all the
cells in the map are classified into their corresponding regions (Alg. 3:L 4,9).

We maintain the generality of the framework by devising a technique that does
not assume any shape, size or number of events occurring in the WSN.

5 Case Study: Network Partition Prediction

We should formulate the problem according to the abstractions (maps, classes,
etc.) of the framework, to use our framework for network partition prediction.

14

5.1 Problem Formulation

Partition detection is a complex problem as physical and network parameters
are coupled, i.e., energy level of the nodes and communication range necessary
to maintain connectivity. Given that sensor nodes are resource constrained,
eventually a WSN has to consider the depletion of node batteries leading to the
partitioning of the network. The energy dissipation, however, is generally spatially
correlated. Therefore, groups of nodes form hotspots that deplete to coverage
holes. A hole can be defined as a part of the network, which due to the energy
depletion is no longer covered. These holes, when grow, can disconnect a part of
network from accessing the sink, defined as a partition. If the network energy state
can be modeled and predicted, then we can predict the occurrence of the holes
and consequently the partitions. The holes and partitions appear as regions in
an energy map. Our framework has all the necessary tools to profile the energy
dissipation patterns, predict the network future energy state and detect the regions
formed due to partitioning. Therefore, partition prediction becomes a natural
candidate problem to be solved using our framework.

We can now define the problem according to the abstraction of our framework.
A grid cell (cell in a grid map) gets disconnected from the network if it has
energy below a minimum threshold so that it can not communicate anymore. These
depleted grid cells form a region that represents a hole in an eMap. Partition,
however, is a group of non-depleted grid cells that can not access sink due to the
holes. It is therefore sufficient to profile the energy status of the network during its
lifetime by collecting the energy profiles in order to predict network partitioning.
As per definition the adaptation of the framework to predict network partitioning
consists of three phases (Section 4) that we discuss as follows.

5.2 The Data Collection Phase

The nodes start the formation of 1-hops clusters as in (Tulone and Madden,
2006). During the 1-hop cluster formation cluster heads are selected, the cluster
heads learn about their neighboring clusters. All cluster heads start aggregating
the energy values. AR3 model is fitted and our proposed DRA (Alg. 1) is executed
based on these models. The models for regions are aggregated using our proposed
BTA (Alg. 2). Consequently, models are periodically sent to the sink.

5.3 The Prediction Phase

The sink regenerates the time series (energy values of cluster and hence the nodes)
by applying reverse transformation. The data regeneration of the reporting nodes
actually generates the energy profiles. The energy profiles of each node are modeled
and predicted as described in Section 4.2. Energy dissipation is a decaying process
so the time series contains trends but no seasonal components. The trends are
removed by fitting polynomials. ARMA models are fitted to random components,
selecting the best fit model using AIC criteria. After completion of modeling the
node energy values are predicted and hence the future WSN energy profiles.

5.4 The Event (Holes and Partition) Detection Phase

The first step towards the abstraction of the WSN profile as a grid map (eMap
in this case) is the selection of resolution, i.e., grid cell size at which this
event (network partitioning or holes) is to be detected. From the formulation

Efficient Predictive Monitoring of WSN 15

of the problem we know that we have two coupled parameters, i.e., energy and
communication range. Therefore, an upper bound for γ is the communication
range (R). To accommodate a worst case scenario of two nodes lying on opposite
corners of two grid cells, γ is given by γ < R/2

√
2, as shown in Fig. 3. The lower

bound can be obtained from the node density, it should be selected such that the
network area is not over sampled, as we show in simulation Section 6.2. A cell is
connected to the neighboring cells until at least a single node has enough energy
to communicate. The node having the highest energy level is selected as reporting
node and Eq. (5) becomes ξij = max(vn) ∀ n ∈ gij .

The predicted energy profiles are converted to the eMaps. CRA developed in
Section 4.3 is used for both partition and hole detection on these eMaps. As per
the given scheme we define two energy classes at 10% and below as the partition
(or hole) class, and above 10% as non-partition class. This definition of energy
classes gives the areas that are vulnerable to partitioning because of low energy.

6 Evaluation - Viability of our Approach

To evaluate how well our framework meets the design requirements, we use the
problem of partition prediction as formulated in the case study. To determine
accuracy and efficiency of the framework we compare the modeled and then
regenerated energy values with the actual sensed energy values generated on the
nodes during simulations. We predict the future energy states of every node and
hence the future profiles of the network. The future profiles are then converted to
maps. We denote these predicted maps as future grid maps Gf .

6.1 Evaluation Metrics

The transformation of a value spatial distribution into a map is a three stage
process, i.e., a grid map, then a class map and finally a regions map. The regions
map is physically same as a class map with additional information of region
borders. Hence, we use two error criteria for the grid map and the class map. We
use two more metrics to assess the accuracy of regions and efficiency in terms of
number of packets generated for models in the network. Our first metric is the
mean square error (Eq. (7.1)) between the reference grid map Gr (the actual
data generated on the nodes) and the test grid map Gf , defined as

Ge =

∑
i

∑
j(ξrij − ξfij)2

m
{7.1},Ke =

∑

i

∑

j

count(Krij −Kfij){7.2} (7)

where (i, j) are grid cell coordinates, Ge is the mean square sum of error, ξrij is
the grid cell value of Gr and ξfij is the grid cell value of Gf and m is the number
of occupied grid cells. Gr is the true data generated on the nodes, while Gf is the
predicted map from the gathered data from network, which undergo local modeling
and hence will deviate from true data due to modeling. Ge determines the relative
accuracy of our approach against the ideal case.

The second metric misclassification cell count (Eq. (7.2)) counts the
misclassified cells between the reference and the test class map. Ke is the total
count of class cells that differ between the reference Kr and test class map Kf .
’count’ function returns ’1’ if the two cells do not belong to the same class else
it returns ’0’. Ke is the direct measure of correct classification of the grid cells
into the classes and indirect measure of the accuracy of area and border of the

16

detected event area. Our third metric is the misclassified cells percentage for each
region to assess the accuracy the framework on regions level that we call regional
percentile error . The fourth metric message count is the efficiency metric,
where we count the messages required to collect all the profiles of the network.

6.2 Simulation Settings

As two phases of the framework are carried out on the sink, therefore we performed
our simulations in Matlab. It is a very well known simulation tool and suits our
work as it facilitates to model energy dissipation patterns of very huge number
of nodes. The network that we used in our simulations is generated as a random
non-uniform distribution of nodes. The node distribution, as shown in Fig. 4, was
selected to cover many possible scenarios in a real deployment. It contains some
areas with high node density and some with low node density. It also contains
two narrow bridges between two parts of the network that may lead to network
partitioning. For energy dissipation modeling the common hotspot model (Zhao,
2002) was used. The energy dissipates in a spatially correlated manner around the
hotspot. The nodes nearest to the hotspot are more active and hence dissipate
more energy. The parts of the network that act as the coverage-bridge between two
parts of the network and around the sink show relatively high energy dissipation
rates. Subsequently these areas are modeled as hotspots.

We used a network containing 5000 sensor nodes that span in an area of 50×
100 unit2, each node having a communication range R = 2 units. For R = 2 the
upper bound for grid cell size is 0.7 units. We found 0.3 as the lower bound because
if we take a grid size smaller than 0.3 then we have more occupied grid cells than
the number of nodes that over samples the network area. We therefore selected
three grid sizes between upper and lower bounds 0.3, 0.5 and 0.7 units. Energy
dissipation history of 164 profiles was collected from all the nodes. To evaluate
the statistics we divided the history of profiles into two parts. 139 profiles were
used for modeling purposes and 25 used for validation. 164 profiles represent the
network lifetime history. If we scale 164 lifetime profiles to 164 days then 139 days
of network operation are used to predict the next 25 days network status. 139
profiles of WSN were used to predict next 25 profiles. Each predicted profiles of
the network was transformed to grid map.

6.3 Simulation Results

Fig. 5(a) shows the mean square sum of error for 25 prediction steps for 3 different
grid sizes.The low values of mean square error show that the predictions are very
accurate. The increasing trend is natural, as an increasing number of prediction
steps makes the prediction model less accurate.

Fig. 5(b) shows the misclassified cells count. The mean square error results
(Fig. 5(a)) imply that we can not expect much inaccuracy in misclassification. The
highest count is naturally in the case of grid size 0.3, which reaches 88 at the
peak. The total number of occupied grid cells at this resolution is 4196, so a worst
case misclassification of 88 cells accounts to around 2% of the total cells. We also
see a an increasing trend in the misclassification for each prediction step because
of the increasing error between model approximation and the actual data. The
oscillations in the graph give interesting insight. We have defined two classes of
energy and as soon as the grid cells cross the class threshold (10% of energy) they

Efficient Predictive Monitoring of WSN 17

are classified into the partitioned class. The crests appear when cells in the actual
data (Kr) cross the threshold of 10% but the cells from the modeled data (Kt),
due to the lag in value, do not cross the threshold at the same time. Therefore, cells
from the reference class are classified in the partitioned class but corresponding
cells in the test class are still in the non-partitioned class, which increases the
count of difference cells. As soon as the modeled data crosses the threshold the
error decreases and troughs appear but a clear trend in increase of error continues.

Fig. 6 gives account of the error in the detected regions predicted through
profiles of the WSN. To summarize the results we have selected prediction maps
separated by five prediction steps. On first prediction step there are only three
regions with less than 2% max percentile error. With each next prediction step
the number of regions increases and errors distribute between the different regions.
In the worst case scenario a region has a maximum percentile error of less than
2.7%. The results however show that each region is very accurately detected.
Misclassification per region on the average is less than 3% which shows the
accuracy of our approach to detect the regions and their boundaries.

Now, we summarize the results w.r.t. efficiency metric, i.e., number of packets
needed to create energy profile of the whole network. To profile the whole network
of 5000 nodes and to collect 164 profiles over the entire lifetime requires nearly
1 million data points. This overhead is reduced dramatically with the help of our
DRA. Models are constructed for clusters and regions are formed based on the
models using DRA. We fix the length of history that can be represented by a
model. We chose 8, 14 and 20 values to be modeled by a single model. The graphs
in Fig. 7 (a) and (b) represent cumulative sum of region formed and outliners
respectively that we require over the lifetime of network using DRA. To observe
the impact of ∆Nci (the max: outliners allowed for DRA) we chose values from
0 to 4 to allow the clusters to form regions. As a model does not approximate
100% accurately all the data, therefore in addition to ∆Nci, we allow outliners for
each cluster head to build its model and fit to its data. Therefore, we will observe
outliners even when we set ∆Nci = 0. From Fig. 7(a) we can conclude that the
number of regions being formed decreases as we allow more outliners. Allowing
more outliners relaxes the neighboring clusters to fit to a given model. Similarly
from Fig. 7(b) the number of outliners to be reported naturally increases also.
The length of data to be represented by a model also affects the regions to be
formed. The shorter length (8) forms more cumulative regions over the lifetime
as it has to report more often than the longer length models that manage to fit
more data within one model. However, shorter length model has to report very
few outliners first, but shoots immediately as shorter length has more regions.
Longest length models (20) have least regions initially again because it reports
the complete data in less cycles of sending the models but increases to maximum
as its very hard for the neighboring clusters to agree for a very long length of
attribute. These long length models also have the maximum number of outliners
to be reported even ∆Nci=0. Therefore, maximum number of regions are formed
but decreases afterwards as it has to make less updates. The data length to be
modeled is a very important factor in this whole compression scheme. We found
from our analysis that there is a compromise between the two extremes, which
in our case was around 14. At this value the number of regions formed and the
number of outliners to be reported is balanced between the two extremes.

18

Each region in Fig. 7(a) is equivalent to sending a message to the sink as a
region is represented by this model. Three outliners are grouped in one packet, the
number of packets for outliners is equivalent to 1/3rd of the outliners. With the
settings of modeled data length=14 and ∆Nci=1, we have to send 40499 packets,
which is 4.93% of the total raw data to be reported otherwise.The results obtained
in the evaluation are in accordance with the design requirements of the framework.
It is lightweight as DRA and BTA cumulatively reduce the data to less than 5%
of the raw data needed to profile all nodes. The achieved predictions are long-
term and accurate, represented by the maximum prediction error of approximately
3% in misclassification of the regions of the map for 25 prediction steps. CRA
detect energy holes that will partition the network in 22nd days (in scaled time as
explained in Section 6.2). From Fig. 6, we conclude that the partition prediction
is more than 97% reliable (because of 97% region accuracy).

7 Conclusion and Future Directions

We developed a generalized framework for efficient predictive monitoring to
forecast events in order to support an autonomic self* system for WSN. We
demonstrated that it can be effectively used to predict events related to different
attributes. We described it as a three phase strategy. In the data collection phase
we proposed efficient algorithms to spatio-temporally compress the attribute values
and transport them to the sink. In the prediction phase, we long-term predicted
the attribute states. In the event detection phase, we proposed a generalized event
detection algorithm. We demonstrated the feasibility and validity of approach
by predicting the network partitioning as a case study. We were able to predict
multiple holes and the resulting partitioned area of the network; information
necessary to initiate proactive self* actions. Simulations support the practicality
of our approach by showing its high accuracy and low monitoring overhead on the
network. In order to further increase the efficiency, we propose to adapt the spatio-
temporal data compression to the occurrence probability of events. For instance
sensor nodes should increase data model accuracy if they are located in areas where
events frequently occur or when an event is suspected. We also plan to extend our
approach for proactive reconfiguration of network entities to enhance functionality
and dependability through the predicted events.

References

F. Aurenhammer. Voronoi diagrams - A survey of a fundamental geometric data

structure. ACM Comput. Surv., 23(3):345–405, 1991.

T. Banerjee et al. Fault tolerant multiple event detection in a wireless sensor network.

J. Parallel Distrib. Comput., 68(9):1222–1234, 2008.

B. Gedik et al. ASAP: An adaptive sampling approach to data collection in sensor

networks. IEEE Transactions on Parallel and Dist. Systems, 18(12):1766–1783, 2007.

T. He et al. Range-free localization and its impact on large scale sensor networks. Trans.

on Embedded Computing Sys., 4(4):877–906, 2005.

O. Landsiedel et al. Accurate prediction of power consumption in sensor networks. In

IEEE Workshop on Embedded Networked Sensors, pages 37–44, 2005.

Efficient Predictive Monitoring of WSN 19

L. Ljung. System Identification: Theory for the User (2nd Edition). Prentice Hall PTR,
December 1998. ISBN 0136566952.

R. A. F. Mini et al. A probabilistic approach to predict the energy consumption in
wireless sensor networks. In In IV Workshop de Comunicao sem Fio e Computao
Mvel. So Paulo, pages 23–25, 2002.

D. C. Montgomery et al. Introduction to Time Series Analysis and Forecasting. Wiley,
2008.

S. Rost and H. Balakrishnan. Memento: A health monitoring system for wireless sensor
networks. In Sensor and Ad Hoc Communications and Networks (SECON), 2006.
Third Internatinal Conference on, volume 2, pages 575–584, 2006.

F. K. Shaikh et al. TRCCIT: Tunable Reliability with Congestion Control for
Information Transport in Wireless Sensor Networks. In International Wireless
Internet Conference (WICON), (to appear), 2010.

K.-P. Shih et al. PALM: A Partition Avoidance Lazy Movement Protocol for Mobile
Sensor Networks. In Proc. of the IEEE Wireless Communications and Networking
Conference (WCNC), pages 2484 – 2489, 2007.

N. Shrivastava et al. Detecting cuts in sensor networks. In Proc. of the 4th int.
symposium on Info. processing in sensor networks (IPSN), pages 210–217, 2005.

I. Solis and K. Obraczka. Isolines: energy-efficient mapping in sensor networks. In IEEE
Symposium on Computers and Communications (ISCC), pages 379 – 385, 2005.

D. Tulone and S. Madden. Paq: Time series forecasting for approximate query answering
in sensor networks. In European Conf. on Wireless Sensor Networks (EWSN), pages
21–37, 2006.

X. Wang, J.-J et al. Robust forecasting for energy efficiency of wireless multimedia
sensor networks. Sensors, 7(11):2779–2807, 2007.

W. Xue, Q. Luo et al. Contour map matching for event detection in sensor nets. In
Proc. of the Int. Conf. on Management of data (SIGMOD), pages 145–156, 2006.

J. Yick et al. Wireless sensor network survey. Comput. Netw., 52(12):2292–2330, 2008.

L. Yu et al. Real-time forest fire detection with wireless sensor networks. In Proceedings
of International Conference on Wireless Communications, Networking and Mobile
Computing (WiCOM)., volume 2, pages 1214–1217, 2005.

Y. J. Zhao. Residual energy scan for monitoring sensor networks. In Wireless
Communications and Networking Conference (WCNC), pages 356–362, 2002.

M. Mamei and R. Nagpal. Macro programming through bayesian networks: Distributed
inference and anomaly detection. In Proc. of the Fifth IEEE Int. Conf. on Pervasive
Comp. and Comm. (PERCOM), pages 87-96, 2007.

Figure 1 Execution of DRA

WSN Spatial
Distribution

X
Y

Regions

P
re

d
ic

te
d

 M
a

p
s

C
o

ll
e

c
te

d
 M

a
p

s

Grid Cell Value

Figure 2 Temporal stack of the grid
maps

20

R

2 2

Rγ<

Figure 3 Max grid size

Bridges
High activity

 hotspotSink

Figure 4 Node distribution

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20 25

M
e

a
n

 S
q

u
a

re
 E

rr
o

r

Prediction Steps

Grid Size 0.3

Grid Size 0.3

Grid Size 0.5

(a) Mean square error

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 0 5 10 15 20 25

M
is

cl
a

ss
if

ie
d

 C
e

ll
 C

o
u

n
t

Prediction Steps

Grid Size 0.3

Grid Size 0.5

Grid Size 0.7

(b) Misclassification cell count

Figure 5 Predictability and accuracy measures of the framework

0

0.5

1

1.5

2

2.5

3

1 5 10 15 20 25
Prediction Steps

R
e

g
io

n
a

l
P

e
rc

e
n

til
e

 E
rr

o
r

1 2 3 4Region

Figure 6 Misclassification percentile error per region

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 1 2 3 4

C
u

m
u

la
ti

v
e

 R
e

g
io

n
s

Allowed Outliners for Distributed Regioning

Modeled Length 8
Modeled Length 14
Modeled Length 20

(a) Cumulative Regions

 50000

 100000

 150000

 200000

 250000

 300000

 0 1 2 3 4

C
u

m
u

la
ti

v
e

 O
u

tl
in

e
rs

Allowed Outliners for Distributed Regioning

Modeled Length 8
Modeled Length 14
Modeled Length 20

(b) Cumulative Outliners

Figure 7 Regions and outliners for data compression using DRA

