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Abstract. To ensure uninterrupted cryptographic security, it is impor-
tant to begin planning the transition to post-quantum cryptography. In
addition to creating post-quantum primitives, we must also plan how to
adapt the cryptographic infrastructure for the transition, especially in
scenarios such as public key infrastructures (PKIs) with many partici-
pants. The use of hybrids—multiple algorithms in parallel—will likely
play a role during the transition for two reasons: “hedging our bets” when
the security of newer primitives is not yet certain but the security of older
primitives is already in question; and to achieve security and functionality
both in post-quantum-aware and in a backwards-compatible way with
not-yet-upgraded software.

In this paper, we investigate the use of hybrid digital signature
schemes. We consider several methods for combining signature schemes,
and give conditions on when the resulting hybrid signature scheme is
unforgeable. Additionally we address a new notion about the inability
of an adversary to separate a hybrid signature into its components.
For both unforgeability and non-separability, we give a novel security
hierarchy based on how quantum the attack is. We then turn to three
real-world standards involving digital signatures and PKI: certificates
(X.509), secure channels (TLS), and email (S/MIME). We identify possible
approaches to supporting hybrid signatures in these standards while
retaining backwards compatibility, which we test in popular cryptographic
libraries and implementations, noting especially the inability of some
software to handle larger certificates.

1 Introduction

Since the initial advent of modern symmetric and public key cryptography
in the 1970s, there have only been a handful of transitions from one widely
deployed algorithm to another. These include: from DES and Triple-DES to
AES; from MD5 and SHA-1 to the SHA-2 family; from RSA key transport and
finite field Diffie–Hellman to elliptic curve Diffie–Hellman key exchange; and
from RSA and DSA certificates to ECDSA certificates. Some of these transitions
have gone well: AES is nearly ubiquitous today, and modern communication
protocols predominantly use ECDH key exchange. Transitions involving public
key infrastructure have a more mixed record: browser vendors and CAs have had



a long transition period from SHA-1 to SHA-2 in certificates, with repeated delay
of deadlines; the transition to elliptic curve certificates has been even slower, and
still today the vast majority of certificates issued for the web use RSA.

In the medium-term, we are likely to see another transition to post-quantum
public key cryptography. Some aspects of the post-quantum transition will be
straightforward: using post-quantum key exchange in protocols that support
negotiation such as the Transport Layer has already been demonstrated [9,10],
and can be adopted piecewise. Other migrations will be harder, especially when
it is difficult for old and new configurations to operate simultaneously. A recent
whitepaper [12] discusses some of these issues at a high level.

The transition to post-quantum cryptography is further complicated by the
relative immaturity of some of the underlying mathematical assumptions in
current candidates: because they have not been studied for very long, there is
a higher risk that they might be insecure. This motivates hybrid operation, in
which both a traditional algorithm and one or more post-quantum algorithms
are used in parallel: as long as one of them remains unbroken, confidentiality or
authenticity can be ensured. This leads us to three research questions:

1. What are the appropriate security properties for hybrid digital signatures?
2. How should we combine signature schemes to construct hybrid signatures?
3. How can hybrid signatures be realized in popular standards and software,

ideally in a backwards-compatible way?

1. Security notions for hybrid digital signatures. The widely accepted
security notion for digital signatures is unforgeability under chosen message
attack (EUF-CMA): the adversary interacts with a signing oracle to obtain
signatures on any desired messages, and then must output a forgery on a new
message. Hybrid signatures should retain that property. Boneh and Zhandry [8]
first studied security notions for digital signature schemes against quantum
adversaries, and gave a quantum analogue of EUF-CMA in which a quantum
adversary is able to interact with a quantum signing oracle and thereby obtain
signatures on quantum states of its choosing (which may be in superposition).

As we transition to post-quantum digital signatures, Boneh and Zhandry’s
definition might be overly strong: for example, we might be using a signature
scheme for the next five years, and during this period we are confident that no
adversary has a quantum computer, and moreover we are definitely not signing
anything in superposition; but later, the adversary may eventually be able to
use a quantum computer. We describe several security notions depending on how
quantum the adversary is. We use the notation XyZ to denote the adversary’s
type with respect to three options:

– X: whether the adversary is classical (X = C) or quantum (X = Q) during
the period in which it can interact with the signing oracle;

– y: whether the adversary can interact with the signing oracle classically
(y = c) or quantumly (y = q); and

– Z: whether the adversary is classical (Z = C) or quantum (Z = Q) after the
period in which it can interact with the signing oracle.



Table 1. Combiners for constructing hybrid signatures using schemes Σ1 and Σ2;
max{XyZ,UvW} denotes the stronger unforgeability notion with respect to the natural
hierarchy of security notions.

Combiner Combined signature σ = (σ1, σ2) Unforgeability Non-separability

Single-message combiners

C‖ σ1←$ Sign1(m);σ2←$ Sign2(m) max{XyZ,UvW} no
Cweak-nest σ1←$ Sign1(m);σ2←$ Sign2(σ1) XyZ UcW-2
Cstr-nest σ1←$ Sign1(m);σ2←$ Sign2((m,σ1)) max{XyZ,UvW} UcW-2

Dual-message combiners

Dnest σ1←$ Sign1(m1);σ2←$ Sign2((m1, σ1,m2)) UvW, XyZ∗ UcW-2

Unforgeability: If Σ1 is XyZ-eufcma and Σ2 is UvW-eufcma, then C(Σ1, Σ2) is . . . -eufcma.
Non-separability: If Σ1 is XyZ-eufcma and Σ2 is UvW-eufcma, then C(Σ1, Σ2) is . . . -nonsep.
∗ Unforgeability of Dnest(Σ1, Σ2) under XyZ-eufcma-security of Σ1 in a restricted sense.

These security notions form a natural hierarchy (QqQ =⇒ QcQ =⇒ CcQ =⇒
CcC) with separations between each level of the hierarchy.

We describe a second security property specifically related to hybrid signatures,
called non-separability : for a hybrid signature involving two (or more) signature
schemes, is it possible for an adversary to separate the hybrid signature into
a valid signature in any of the component signature schemes? This security
property is interesting in the context of a transition. Suppose a signer issues
hybrid signatures during a transition. Suppose further that there is a verifier who
can understand both hybrid signatures and single-scheme signatures, but possibly
acts upon them differently. The goal of non-separability is to prevent an attacker
from taking a hybrid signature and turning it into something that the verifier
accepts as coming from a single-scheme signature—thereby misrepresenting the
signer’s original intention. Specifically, if Σ′ = C(Σ1, Σ2) is the hybrid signature
scheme from using combiner C to combine signature schemes Σ1 and Σ2, then
we say Σ′ is XyZ-τ -nonsep if it is hard for an XyZ-adversary to construct a valid
Στ signature given access to a signing oracle for Σ′. Our notions are aided by
a recognizer algorithm, which a verifier can apply to a signature to attempt to
help distinguish separated hybrid signatures.
2. Signature combiners. Having laid out security properties for hybrid signa-
tures, we proceed to investigate how to construct hybrid schemes using combiners.
Table 1 shows the combiners we consider: concatenation and three forms of nested
signatures. These particular combiners are motivated by two factors: that they
are fairly natural constructions, and three of them arise in our applications.
3. Hybrid signatures in standards and software. Our goal is to provide a
guide for how to transition to hybrid post-quantum digital signatures in various
standards and software. We consider three standards: X.509 for certificates [14],
the Transport Layer Security (TLS) protocol for secure channels [15], and Cryp-
tographic Message Syntax (CMS) [20] as part of Secure/Multipurpose Internet
Mail Extensions (S/MIME) [22] for secure email. For each, we ask:

3.a) How can hybrid / multiple signature schemes be used in the standard?



3.b) Is this approach backwards-compatible with old software?
3.c) Are there potential problems involving large public keys or signatures?

We identify promising techniques for hybrid X.509 certificates, and hybrid
S/MIME signed messages; using multiple signature algorithms in TLS does not
seem immediately possible, though one mechanism in the current draft of TLS 1.3
seems to allow multiple client authentications and a recent proposal could allow
multiple server authentications. The software we tested had no problems with
certificates or extensions up to ∼10 kB (accommodating ideal lattice schemes),
and some software up to ∼80 kB (accommodating hash-based schemes), but
none could handle the megabyte-plus size public keys of the largest lattice-based
scheme; details appear in Section 5.

2 Signature schemes and unforgeability

Definition 1 (Signature scheme). A digital signature scheme Σ is a tu-
ple Σ = (Σ.KeyGen, Σ.Sign, Σ.Verify) of algorithms:

– Σ.KeyGen() $→ (sk, vk): The probabilistic key generation algorithm that re-
turns a secret or signing key sk and public or verification key vk ∈ VKΣ.

– Σ.Sign(sk,m) $→ σ: The probabilistic signature generation algorithm which
takes as input a signing key sk and a message m ∈ MΣ, and outputs a
signature σ ∈ SΣ. The space of random coins is RΣ.

– Σ.Verify(vk,m, σ)→ 0 or 1: The verification algorithm which takes as input
a verification key vk, a message m, and a signature σ, and returns a bit
b ∈ {0, 1}. If b = 1, we say that the algorithm accepts, otherwise we say that
it rejects the signature σ for message m.

If a proof for Σ is being given in the random oracle model, we use HΣ to denote
the space of functions from which the random hash function is randomly sampled.
We say that Σ is ε-correct if, for every message m in the message space, we
have that Pr [Verify(vk,m, σ) = 1 : (sk, vk)←$ KeyGen(), σ←$ Sign(sk,m)] ≥ 1−
ε where the probability is taken over the randomness of the probabilistic algorithms.

2.1 Unforgeability security definitions

The standard definition of security for signature schemes is existential unforge-
ability under chosen message attack (EUF-CMA). In the traditional formulation
of unforgeability dating back to Goldwasser, Micali, and Rivest [18], the adver-
sary can obtain qS signatures via signing oracle queries, and must output one
valid signature on a message not queried to the oracle. This cannot be directly
quantized: if the adversary is allowed to query oracles in superposition, we cannot
restrain the adversary’s forgery to be on a new message since the experiment
cannot keep a copy of messages queried to the signing oracle for later checking.

An equivalent formulation in the classical setting demands the adversary
output qS + 1 valid signatures on distinct messages. Boneh and Zhandry [8] use



this formulation to give a quantum analogue of EUF-CMA.4 That notion involves
a fully quantum adversary throughout so is quite strong. We envision a hierarchy
of intermediate notions, distinguishing between whether the honest parties are
signing classical or quantum messages (i.e., does the adversary have access to
a classical or quantum signing oracle?) and whether the adversary is classical
or quantum during the period it has access to the signing oracle (i.e., are we
concerned about a quantum adversary only in the future, or also now?).

In our notation XyZ, X denotes the type of adversary (X = C for classical or
Q for quantum) while the adversary is able to interact with the signing oracle;
y denotes the type of access the adversary has to the signing oracle; and Z
denotes the type of adversary after it no longer has access to its signing oracle.
Combinatorially, there are 23 = 8 possibilities, but some do not make sense, such
as CqZ or QyC. Figure 1 shows our unified definition for EUF-CMA parameterized
for any of the four types of adversaries in the standard model, i.e., without access
to a random (or hash) oracle. It follows the EUF-CMA formulation of Boneh
and Zhandry [8] but separates out the adversary to be a two-stage adversary
(A1,A2), where A1 (of type X) interacts with either a signing oracle (of type
y) and outputs an intermediate state st (of type X), which A2 (of type Z) then
processes. The input to A1 and the output of A2 are always classical.

Figure 2 shows how the experiment is altered in the classical or quantum
random oracle model: at the start of the experiment, a random function H is
sampled uniformly from the space of all such functions HΣ . (In the classical
setting, it is common to formulate the random oracle using lazy sampling, but
such a formulation does not work in the quantum setting.) For simplicity, we
assume the adversary has quantum random oracle access whenever it is quantum.

We define advantage as AdvX
yZ-eufcma
Σ (A) = Pr

[
ExptX

yZ-eufcma
Σ (A) = 1

]
.

2.2 Separations and implications

Our family of notions CcC-,CcQ-,QcQ-,QqQ-eufcma form a natural hierarchy.
These implication induce an ordering on security notions, so we sometimes write
CcC ≤ CcQ etc. Note, the stronger the security notion the smaller the advantage
of an adversary A breaking a signature scheme of corresponding security. For
example, let the signature scheme Σ be CcQ-secure. CcQ is stronger than CcC,
i.e., CcQ ≥ CcC. Hence, AdvC

cQ-eufcma
Σ (A) ≤ AdvC

cC-eufcma
Σ (A). Similarly we use

max{·, ·} based on this ordering.
Due to space constraints, we defer details on the results to Appendix B.

The implications are straightforward. Each of the separations A 6=⇒ B follows
from a common technique: from an A-secure scheme Σ, construct a (degenerate)
A-secure scheme Σ′ that is not B-secure, because the additional powers available
to a B-adversary allow it to recover the secret signing key of Σ that was cleverly
embedded somewhere in Σ′.

– CcC-eufcma 6=⇒ CcQ-eufcma: In the public key for Σ′, include a copy of
the signing secret key encrypted using an RSA-based public key encryption

4 A brief overview of notation for quantum computing appears in Appendix A.



ExptX
yZ-eufcma
Σ (A1,A2):

1 qS ← 0

2 (sk, vk)←$Σ.KeyGen()

3 st←$AOS(·)
1 (vk)

4 ((m∗1, σ
∗
1), . . . , (m

∗
qS+1, σ

∗
qS+1))←$A2(st)

5 If (Σ.Verify(vk,m∗i , σ∗i ) = 1 ∀ i ∈ [1, qS + 1])
∧
(
m∗i 6= m∗j ∀ i 6= j

)
:

6 Return 1
7 Else return 0

Classical signing oracle OS(m):

8 qS ← qS + 1

9 σ←$Σ.Sign(sk,m)

10 Return σ to A

Quantum signing oracle OS(
∑
m,t,z ψm,t,z |m, t, z〉):

11 qS ← qS + 1

12 r←$RΣ
13 Return state

∑
m,t,z ψm,t,z |m, t⊕Σ.Sign(sk,m; r), z〉 to A

Fig. 1. Unified security experiment for XyZ-eufcma in the standard model: existential
unforgeability under chosen-message attack of a signature scheme Σ for a two-stage
adversary A1 (of type X), A2 (of type Z) with signing oracle of type y; if y = c then A1

has classical access to the signing orcale, otherwise quantum access.

scheme. Assuming breaking RSA is classically hard, the encrypted signing
key is useless to a CcC-adversary, but a CcQ-adversary will be able to break
the public key encryption, recover the signing key, and forge signatures.

– CcQ-eufcma 6=⇒ QcQ-eufcma: In the public key for Σ′, include an RSA-
encrypted random challenge string, and redefine the Σ′.Sign so that, if the
adversary queries the signing oracle on the random challenge string, the
signing key is returned. Assuming breaking RSA is hard for a classical
algorithm, a CcQ-adversary will not be able to recover the challenge while it
has access to the signing oracle, and thus cannot make use of the degeneracy
to recover the signing key; a QcQ adversary can.

– QcQ-eufcma 6=⇒ QqQ-eufcma: Here we hide the secret using a query-
complexity problem that can be solved with just a few queries by a quantum
algorithm making queries in superposition, but takes exponential queries
when asking classical queries. The specific problem we use is a variant of the
hidden linear structure problem [4].

3 Separability of hybrid signatures

In Section 4, we will investigate combiners for constructing one signature scheme
from two. Before looking at specific combiners, an interesting security property
arises in general for combined signature schemes: is it possible for a signature in
a combined signature scheme to be separated out into valid signatures for either
of its individual component schemes?

Let C be a combiner, and letΣ1, Σ2 be signature schemes. LetΣ′ = C(Σ1, Σ2).
The initial idea for the security notion for non-separability is based on the standard



ExptX
yZ-eufcma
Σ (A1,A2):

0 H←$HΣ
1 qH ← 0, qS ← 0

2 (sk, vk)←$Σ.KeyGen()

3 st←$AOS(·),OH (·)
1 (vk)

4 ((m∗1, σ
∗
1), . . . , (m

∗
qS+1, σ

∗
qS+1))

←$AOH (·)
2 (st)

5 // continues as in Figure 1

Classical random oracle OH(x):

14 qH ← qH + 1

15 Return H(x)

Quantum random oracle
OH(

∑
x,t,z ψx,t,z |x, t, z〉):

16 qH ← qH + 1

17 Return state
∑
x,t,z ψx,t,z |x, t⊕H(x), z〉

Fig. 2. XyZ-eufcma experiment in the classical and quantum random oracle models; if
X = C, then A1 has classical access to the random oracle, otherwise quantum access;
similarly for Z and A2.

ExptX
yZ-τ-nonsep
C,Σ1,Σ2,C(Σ1,Σ2).R

(A1,A2):

1 qS ← 0

2 (sk′, vk′)←$ C(Σ1, Σ2).KeyGen()

3 st←$AOS(·)
1 (vk′)

4 (m∗, σ∗)←$A2(st)

5 If (Στ .Verify((vk′)τ ,m∗, σ∗) = 1)
∧ (C(Σ1, Σ2).R(m

∗) = 0)

6 Return 1
7 Else return 0

OS :

8 If y = c, use classical signing oracle
OS from Figure 1 for C(Σ1, Σ2).

9 If y = q, use quantum signing oracle
OS from Figure 1 for C(Σ1, Σ2).

Fig. 3. Unified security experiment for XyZ-τ -nonsep: τ -non-separability of a combiner
C with signature schemes Σ1, Σ2 with respect to a recognizer C(Σ1, Σ2).R for a two-
stage adversary A1 (of type X), A2 (of type Z) with signing oracle of type y. (vk′)τ
denotes the projection (extraction) of the public key associated with scheme Στ from
the combined scheme’s public key vk′, which we assume is possible.

EUF-CMA experiment: given a signing oracle that produces signatures for the
combined scheme Σ′, it should be hard for an adversary to produce a valid
signature for Σ1 (“1-non-separability”) or Σ2 (“2-non-separability”).

However, this approach needs some refinement. In all of the combiners we
consider in Section 4, the combined signature contains subcomponents which
are valid in the underlying schemes. This makes it impossible to satisfy the
naive version of non-separability. For example, suppose we have a signer issuing
signatures from a combined signature scheme. Suppose further we have a verifier
for one of the underlying signature schemes who is also aware of the combined
signature scheme. Given signatures from the combined scheme, it should be hard
to make a signature that is valid in one of the underlying signature schemes and
which is not recognized as being from the combined signature scheme. In sum:
separability is about downgrading.

Figure 3 shows the τ -non-separability security experiment, XyZ-τ -nonsep, with
τ ∈ {1, 2} for signature scheme Σ1 or Σ2. It checks the ability of a two-stage
XyZ-adversary (A1,A2) to create a valid Στ signature; the adversary’s pair has



to “fool” the recognizer algorithm Σ.R which is supposed to recognize values
used in a combined signature scheme Σ.

Formally, a recognizer related to a combined signature scheme Σ = C(Σ1, Σ2)
is a function Σ.R that takes one input and outputs a single bit. For a signature
scheme Στ with message space MΣτ , it may be that Σ.R yields 1 on some
elements of MΣτ and 0 on others: the purpose of R is to recognize whether
certain inputs are associated with a second signature scheme.

Because the XyZ-τ -nonsep experiment is parameterized by the recognizer
algorithm R, each R gives rise to a different security notion. If R is vacuous, it
can lead to a useless security notion. We can make statements of the form “If
〈some assumption on Σ1 and Σ2〉 and R is the algorithm . . . , then C(Σ1, Σ2)
is XyZ-1-non-separable with respect to recognizer algorithm R.” However, a
statement of the form “C is not 1-non-separable” is more difficult: one must
quantify over all (or some class of) recognizer algorithms R. We will say informally
that “C is not τ -non-separable” if the way that Στ is used in C is to effectively
sign the message without any modification, since the only recognizer that would
recognize all signatures from C would cover the entire message space of Στ .

One can view a recognizer algorithm as a generalization of the long-standing
technique of “domain separation”. Starting from scratch, it might be preferable to
build combiners that explicitly include domain separation in their construction,
thereby eliminating the need for recognizer algorithms. Since our combiners are
motivated by existing protocol constraints, we do not have that luxury.

4 Combiners

We now examine several methods of using two signature schemes Σ1 and Σ2

to produce hybrid signatures. For all our combiners, the key generation of the
combined scheme will simply be the concatenation of the two schemes’ keys:
sk′ ← (sk1, sk2); vk′ ← (vk1, vk2). The verification algorithm in each case is
defined in the natural way. Proofs / proof sketches appear in Appendix C.

4.1 C‖: Concatenation

This “combiner” is the trivial combiner, which just places independent signatures
from the two schemes side-by-side:

– C‖(Σ1, Σ2).Sign(sk
′,m): σ1←$Σ1.Sign(sk1,m), σ2←$Σ2.Sign(sk2,m). Re-

turn σ′ ← σ1‖σ2.
Theorem 1 (Unforgeability of C‖). If either Σ1 or Σ2 is unforgeable in the
classical (or quantum) random oracle model, then Σ′ = C‖(Σ1, Σ2) is unforgeable
in the classical (or quantum, respectively) random oracle model. More precisely,
if Σ1 is XyZ-eufcma-secure or Σ2 is UvW-eufcma-secure, then Σ′ = C‖(Σ1, Σ2)
is max{XyZ,UvW}-eufcma-secure.

Clearly, C‖ is neither 1-non-separable nor 2-non-separable: σ1 is immediately
a Σ1-signature for m, with no way of recognizing this as being different from
typical Σ1 signatures. Similarly for σ2.



4.2 Cstr-nest: Strong nesting

For this combiner, the second signature scheme signs both the message and the
signature from the first signature scheme:
– Cstr-nest(Σ1, Σ2).Sign(sk

′,m): σ1←$Σ1.Sign(sk1,m), σ2←$Σ2.Sign(sk2,
(m,σ1)). Return σ′ ← (σ1, σ2).

Theorem 2 (Unforgeability of Cstr-nest). If either Σ1 or Σ2 is unforgeable
in the classical (or quantum) random oracle model, then Σ′ = Cstr-nest(Σ1, Σ2)
is unforgeable in the classical (or quantum, respectively) random oracle model.
More precisely, if Σ1 is XyZ-eufcma-secure or Σ2 is UvW-eufcma-secure, then
Σ′ = Cstr-nest(Σ1, Σ2) is max{XyZ,UvW}-eufcma-secure.

Cstr-nest is not 1-non-separable: σ1 is immediately a Σ1-signature for m, with
no way of recognizing this as being different from typical Σ1 signatures. However,
since the inputs to Σ2 in Cstr-nest have a particular form, we can recognize those
and achieve 2-non-separability:

Theorem 3 (2-non-separability of Cstr-nest). If Σ2 is XyZ-eufcma-secure,
then Σ′ = Cstr-nest(Σ1, Σ2) is XcZ-2-nonsep with recognizer R(m) = (m ∈
{0, 1}∗ × SΣ1

).

4.3 Dnest: Dual message combiner using nesting

Some of our applications in Section 5 require a combiner for two (possibly
related) messages signed with two signature schemes. For example, in our X.509
certificates application, we generate one certificate signed with Σ1, then embed
that certificates as an extension inside a second certificate signed with Σ2.
– Dnest(Σ1, Σ2).Sign(sk

′, (m1,m2)): σ1←$Σ1.Sign(sk1,m1),
σ2←$Σ2.Sign(sk2, (m1, σ1,m2)). Return σ′ ← (σ1, σ2).

This dual-message combiner is not designed to give unforgeability of both
messages under either signature scheme, though it does preserve unforgeabil-
ity of each message under its corresponding signature scheme, as well as give
unforgeability of both messages under the outer signature scheme Σ2.

Theorem 4 (Unforgeability of Dnest). If either Σ1 or Σ2 is unforgeable in
the classical (or quantum) random oracle model, then Dnest(Σ1, Σ2) is unforgeable
(in a certain sense) in the classical (or quantum, respectively) random oracle
model. More precisely, if Σ1 is XyZ-eufcma-secure, then the combined scheme
Dnest(Σ1, Σ2) is XyZ-eufcma-secure with respect to its first message component
only. If Σ2 is UvW-eufcma-secure, then Dnest(Σ1, Σ2) is UvW-eufcma-secure.

Dnest is not 1-non-separable: σ1 is immediately a Σ1-signature for m, with no
way of recognizing this as being different from typical Σ1 signatures. However,
since the inputs to Σ2 in Dnest have a particular form, we can recognize those
and achieve 2-non-separability:

Theorem 5 (2-non-separability of Dnest). If Σ2 is XyZ-eufcma-secure, then
Σ′ = Dnest(Σ1, Σ2) is XcZ-2-nonsep with respect to recognizer algorithm R(m) =
(m ∈ {0, 1}∗ × SΣ1

× {0, 1}∗).



5 Hybrid signatures in standards

We now examine three standards which make significant use of digital signatures—
X.509 for certificates, TLS for secure channels, and S/MIME for secure email—to
identify how hybrid signatures might be used in PKI standards, and evaluate
backwards-compatibility of various approaches with existing software. Source
code for generating the hybrid certificates and messages we used for testing,
as well as scripts for running the tests, are available online at https://www.
douglas.stebila.ca/code/pq-pki-tests/.

5.1 X.509v3 certificates

The X.509 standard version 3 [14] specifies a widely used format for public key
certificates, as well as mechanisms for managing and revoking certificates.

The structure of an X.509v3 certificate is as follows. The body of the certificate
(called a tbsCertificate) contains the name of the certificate authority as well
as information about the subject, including the distinguished name of the subject,
the subject’s public key (including an algorithm identifier), and optionally some
extensions, each of which consists of an extension identifier, value, and a flag
whether the extension is to be considered critical. (If a critical extension can not be
recognized or processed, the system must reject it; a non-critical extension should
be processed if it is recognized and may ignored if it is not.) The tbsCertificate
is followed by CA’s signature over the tbsCertificate signed using the CA’s
private key, along with an algorithm identifier.

Our goal will be to construct a hybrid certificate which somehow includes two
public keys for the subject (e.g., one traditional and one post-quantum algorithm)
and two CA signatures. Notably, the X.509v3 standard says that a certificate
can contain exactly one tbsCertificate, which can contain exactly one subject
public key, and all of this can be signed using exactly one CA signature. This
makes creating backwards-compatible hybrid certificates challenging.
Approach 1: Dual certificates. The simplest approach is of course to create
separate certificates: one for the traditional algorithm, and the other for the post-
quantum algorithms. (This would be a dual-message analogue of the concatenation
combiner C‖ from Section 4.1.) This approach leaves the task of conveying the
“hybrid” certificate (actually, two certificates) to the application, which will suffice
in some settings (e.g., in S/MIME and some TLS settings, see the following
sections), but is unsatisfactory in others. (This approach and the next both
require assigning additional object identifiers (OIDs) for each post-quantum
algorithms, but this can be easily done.)
Approach 2: Second certificate in extension. Since X.509v3 does not pro-
vide any direct way of putting two public keys or two signatures in the same
certificate, one option is to use the standard’s extension mechanism. Let c1 be the
certificate obtained by the CA signing tbsCertificate m1 (containing subject
public key vk1) using signature scheme Σ1. Construct certificate c2 by the CA
signing tbsCertificate m2 (containing subject public key vk2 as well as (an

https://www.douglas.stebila.ca/code/pq-pki-tests/
https://www.douglas.stebila.ca/code/pq-pki-tests/


Table 2. Compatibility of hybrid X.509v3 certificates containing large extensions.

Extension size (and corresponding example signature scheme)
1.5KiB 3.5KiB 9.0KiB 43.0KiB 1333.0KiB
(RSA) (GLP [19]) (BLISS [16]) (SPHINCS [6]) (TESLA-416 [2])

GnuTLS 3.5.11 X X X X X
Java SE 1.8.0_131 X X X X X
mbedTLS 2.4.2 X X X X X
NSS 3.29.1 X X X X X
OpenSSL 1.0.2k X X X X X

encoding of) c1 as an extension in m2) using signature scheme Σ2. The extension
containing c1 would use a distinct extension identifier saying “this is an additional
certificate” and would be marked as non-critical. This is an instantiation of
the dual message nested combiner Dnest from Section 4.3. (Alternatively, the
extension could contain a subset of fields, such as just the public key and CA’s
signature, rather than a whole certificate.)

By marking the “additional certificate” extension as non-critical, existing
software (not aware of the hybrid structure) should ignore the unrecognized
extension and continue validating the certificate and using it in applications
without change. Is this really the case—is this approach backwards-compatible
with old software, and do large public keys or signatures cause problems?

Experimental evaluation of approach 2. We constructed hybrid certificates fol-
lowing approach 2. The “outside” certificate c2 contains a 2048-bit RSA public
key, and is signed by a CA using 2048-bit RSA key. The extension for embedding
c1 in c2 is identified by a distinct and previously unused algorithm identifier
(OID), and is marked as non-critical. Because post-quantum public keys and
signatures vary substantially in size, we use a range of extension sizes to simulate
the expected size of an embedded certificate for various post-quantum signature
algorithms; the extension sizes we use are across the columns of Table 2, derived
from public key and signature sizes summarized in Table 5 in the Appendix. For
our purposes of evaluating backwards compatibility, it does not matter whether
the extension actually contains a valid post-quantum certificate, just that it
is the size of such a certificate. The hybrid certificates were created using a
custom-written Java program using the BouncyCastle library.

Table 2 shows the results of using command-line certificate verification pro-
grams in various libraries; all libraries we tested were able to parse and verify
X.509v3 certificates containing unrecognized extensions of all sizes we tested.

5.2 TLS

TLSv1.2 [15] is the currently standardized version and is widely deployed. Cipher-
suites with digital signatures allow servers and (optionally) clients to authenticate
each other by presenting their public key and signing certain messages. While
the parties can negotiate which signature algorithms to use, which public key



Table 3. Compatibility of TLS connections using hybrid X.509v3 certificates containing
large extensions.

Extension size in KiB
1.5 3.5 9.0 43.0 1333.0

Libraries (library’s command-line client talking to library’s command-line server

GnuTLS 3.5.11 X X X X ×
Java SE 1.8.0_131 X X X X X
mbedTLS 2.4.2 X X X × ×
NSS 3.29.1 X X X X ×
OpenSSL 1.0.2k X X X X ×

Web browsers (talking to OpenSSL’s command-line server)

Apple Safari 10.1 (12603.1.30.0.34) X X X X X
Google Chrome 58.0.3029.81 X X X X ×
Microsoft Edge 38.14393.1066.0 X X X × ×
Microsoft IE 11.1066.14393.0 X X X × ×
Mozilla Firefox 53.0 X X X X ×
Opera 44.0.2510.1218 X X X X ×

formats to use, and which CAs to trust, once having done so they can each use
only a single public key and signature algorithm to authenticate.

The current draft of TLSv1.3 [23] does not change how server authentication
works. However, it has a “post-handshake authentication” mode for clients [23,
§4.5.2], where clients can be requested to (further) authenticate using a certificate
for a given algorithm. This would allow client authentication using two (or more)
signature schemes. This is an example of the concatenation combiner C‖ from
Section 4.1, since each client signature is over the same handshake context data
structure. A proposal for “exported authenticators” [24] is currently before the
TLS working group and would allow a similar approach for server authentication,
although it envisions that this takes place out-of-band (e.g., at the application
layer). Neither would require hybrid certificates as in Section 5.1.

TLS data structures allow certificates of size up to 224 bytes = 16MiB, which
would accommodate even very large post-quantum algorithms. However, TLS
record layer fragments can be at most 16KiB; TLS messages can be split across
multiple fragments, but this increases the risk of incompatibility with poorly
implemented software and can be problematic with datagram transport (UDP).

Experimental evaluation of hybrid certificates in TLS. Table 3 shows the results
of testing the compatibility of a variety of TLS libraries and web browsers when
using the hybrid certificates from Approach 2 of Section 5.1.

In the top half of the table, we test whether popular TLS libraries can be used
to establish a TLS 1.2 connection using an RSA certificate with an extension of
the given size. In each case, the experiment is carried out between that library’s
own TLS server and TLS client command-line programs (in the case of Java,
we wrote a simple HTTPS server and client using built-in libraries). Only Java



completes connections with extensions the size of a TESLA-416 [2] certificate
(1.3MiB), and mbedTLS cannot handle certificates with extensions the size of a
SPHINCS [6] certificate (43KiB). (For GnuTLS and OpenSSL, we found they
could handle an 80KiB extension but not a 90KiB extension).

In the bottom half of the table, we test whether popular web browsers can be
used to establish a TLS 1.2 connection to a TLS server run using the OpenSSL
command-line s_server program using an RSA certificate with an extension
of the given size. Microsoft browsers on Windows 10 cannot handle SPHINCS-
sized extensions, and no browser except Safari could handle TESLA-416-sized
extensions (1.3MiB). (Curiously, Safari was able to handle a 1.3MiB extension
with an OpenSSL command-line server despite OpenSSL’s own command-line
client not being able to handle it.)

5.3 CMS and S/MIME

Cryptographic Message Syntax (CMS) [20] is the main cryptographic component
of S/MIME [22], which enables public key encryption and digital signatures for
email. In an S/MIME signed email, a header is used to specify the algorithms
used, and then the body of the email is divided into chunks: one chunk is the body
to be signed, and the other is a Base-64 encoding of a CMS SignedData object.
The SignedData object contains several fields, including a set of certificates and
a set of SignerInfo objects. Each SignerInfo object contains a signer identifier,
algorithm identifier, signature, and optional signed and unsigned attributes.
Approach 1: Parallel SignerInfos. To construct a standards-compliant hybrid
signature in S/MIME, one could put the certificate for each algorithm in the
SignedData object’s set of certificates (with no need for hybrid certificates from
Section 5.1), and then include SignerInfo objects for the signature from each
algorithm. This is an example of the concatenation combiner C‖ from Section 4.1.
Approach 2: Nested signature in SignerInfo attributes. For an alternative
and still standards-compliant approach, we could use the optional attributes
in the SignerInfo object to embed a second signature. We need to convey the
certificate for the second algorithm, as well as the signature (using the second
algorithm) for the message. There are several options based on the standards:

2.a) Put a second certificate in the set of certificates, and put a second
SignerInfo in an attribute of the first SignerInfo.

2.b) Put a hybrid certificate in the set of certificates, and put a second
SignerInfo in an attribute of the first SignerInfo.

2.c) Put a second SignedData in an attribute of the first SignerInfo.

These approaches require defining a new attribute type, but this is easily done. The
CMS standard indicates that verifiers can accept signatures with unrecognized
attributes, so this approach results in backwards-compatible signatures that
should be accepted by existing software.)

If the extra data is put in the signed attribute of the first SignerInfo, then
we are using the strong nesting combiner Cstr-nest from Section 4.2; if the extra



Table 4. Compatibility of hybrid S/MIME approaches.

Approach
0 1 2.a 2.b (attribute size in KiB) 2.c

1.5 3.5 9.0 43.0 1333.0

Apple Mail 10.2 (3259) X X X X X X X X X
BouncyCastle 1.56 with Java SE 1.8.0_131 X – X X X X X X X
Microsoft Outlook 2016 16.0.7870.2031 X × X X X X X X X
Mozilla Thunderbird 45.7.1 X × X X X X X × X
OpenSSL 1.0.2k X × X X X X X X X

Approach 0: both RSA-2048.
Approach 1: one RSA-2048, one with unknown algorithm of similar key and signature size; unable
to test Approach 1 on BouncyCastle.
Approach 2.a, 2.c: both RSA-2048.
Approach 2.b: outer RSA-2048, inner random binary extension of given size.

data is put in the unsigned attribute of the first SignerInfo, then we are using
the concatenation combiner C‖ from Section 4.1.

Experimental evaluation of CMS and S/MIME approaches. We tested five
S/MIME libraries/applications for acceptance of S/MIME messages from each
approach above. The configurations and results appear in Table 4.

Regarding approach 1, the S/MIME and CMS standards appear to be silent
on how to validate multiple SignerInfo objects: should a signed message be
considered valid if any of the SignerInfo objects is valid, or only if all of them
are? Apple Mail accepted in this case, whereas the three others we were able to
test rejected, so approach 1 is not fully backwards-compatible. In principle all
the tested libraries support approaches 2.a–2.c. We only tested multiple attribute
sizes in one of these three approaches (2.b), but the results should generalize to
2.a and 2.c. Only Thunderbird struggled with very large attributes.

5.4 Discussion

Summarizing our experimental observations, backwards compatibility is most
easily maintained when post-quantum objects can be placed as non-critical
extensions (attributes in the S/MIME case) of pre-quantum objects. These
constructions end up leading to one of our nested combiners, eitherDnest for X.509
certificate extensions or Cstr-nest for S/MIME and CMS. Both these combiners
offer unforgeability under the assumption that either scheme is unforgeable. For
non-separability, the pre-quantum algorithm would be the “outside” signature Σ2

in both Dnest and Cstr-nest, and so we get 2-non-separability under unforgeability
of the pre-quantum scheme, not the post-quantum scheme. Extensions up to
43.0KiB were mostly (but not entirely) handled successfully, which covers many
but not all post-quantum schemes; the largest schemes such as TESLA-416 would
be more problematic to use in hybrid modes with existing software.
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A A brief review of quantum computation

A full explanation of quantum computation is beyond the scope of this paper;
see a standard text such as Nielsen and Chuang [21]. We can rely on a subset of
quantum computation knowledge.

A quantum system is a complex Hilbert space H with an inner product.
Vectors in H are typically denoted using “ket” notation, such as |x〉, and the
complex conjugate transpose of |y〉 is denoted by 〈y|, so that their inner product
of |x〉 and |y〉 is given by 〈y|x〉. A quantum state is a vector in H of norm 1.
For two quantum systems H1 and H2, the joint quantum system is given by the
tensor product H1 ⊗H2; for two states |x1〉 ∈ H1 and |x2〉 ∈ H2, the joint state
is denoted by |x1〉 |x2〉, or more compactly as |x1, x2〉.

Some quantum states can be represented as superpositions of other quantum
states, such as |x〉 = 1√

2
|0〉+ 1√

2
|1〉. More generally, if {|x〉}x is a basis for H,

then we can write any superposition in the form |y〉 =
∑
x ψx |x〉 where ψx are

complex numbers such that |y〉 has norm 1.
Quantum operations on H can be represented by unitary transformations U.

A side effect of the fact that quantum operations are unitary transformations is
that quantum computation (prior to measurement) is reversible, imposing some
constraints on how we quantize classical computations. In particular, suppose we
want to quantize a classical algorithm A which takes an input x ∈ {0, 1}a and gives
an output y ∈ {0, 1}b. First, we would imagine the classical reversible mapping
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{0, 1}a × {0, 1}b → {0, 1}a × {0, 1}b : (x, t) 7→ (x, t⊕ A(x)). Then we construct
the corresponding unitary transformation A which acts linearly on superpositions
of such states: A :

∑
x,t ψx,t |x, t〉 7→

∑
x,t ψx,t |x, t⊕A(x)〉. For full generality,

we may allow a workspace register alongside the input and output registers, and
thus we in fact use A :

∑
x,t,z ψx,t,z |x, t, z〉 7→

∑
x,t,z ψx,t,z |x, t⊕A(x), z〉.

B Unforgeability separations and implications

Theorem 6 (QqQ =⇒ QcQ =⇒ CcQ =⇒ CcC). If Σ is a QqQ-eufcma-secure
signature scheme, then Σ is also QcQ-eufcma-secure. If Σ is a QcQ-eufcma-secure
signature scheme, then Σ is also CcQ-eufcma-secure. If Σ is a CcQ-eufcma-secure
signature scheme, then Σ is also CcC-eufcma-secure.

Theorem 7 (CcC 6=⇒ CcQ). If the RSA problem is hard for classical computers
and there exists a signature scheme Σ that is CcC-eufcma-secure, then there exists
a signature scheme Σ′ that is CcC-eufcma-secure but not CcQ-eufcma-secure.

Proof. Let Π be a public key encryption scheme that is IND-CPA-secure against
classical adversaries and whose security relies on the hardness of the RSA problem,
e.g., [17] or OAEP [5]. However, a quantum adversary could use Shor’s algorithm
to factor the modulus and decrypt ciphertexts encrypted using Π. We construct
a scheme Σ′ that is based on Σ, but the public key of Σ′ includes a Π-encrypted
copy of the Σ secret key:

– Σ′.KeyGen(): (sk, vk)←$Σ.KeyGen(). (dk, ek)←$Π.KeyGen().
c←$Π.Enc(ek, sk). vk′ ← (vk, ek, c). Return (sk, vk′).

– Σ′.Sign(sk,m): Return Σ.Sign(sk,m).
– Σ′.Verify(vk′ = (vk, ek, c),m, σ): Return Σ.Verify(vk,m, σ).

The theorem then follows as a consequence of the following two claims, the
proofs of which are immediate. ut

Claim. IfΠ is IND-CPA-secure against a classical adversary and Σ is CcC-eufcma-
secure, then Σ′ is CcC-eufcma-secure.

Claim. If there exists an efficient quantum adversary A against the message
recovery of Π, then Σ′ is not CcQ-eufcma-secure.

Theorem 8 (CcQ 6=⇒ QcQ). If the RSA problem is hard for classical computers
and there exists a signature scheme Σ that is CcQ-eufcma-secure, then there exists
a signature scheme Σ′ that is CcQ-eufcma-secure but not QcQ-eufcma-secure.

Since the basic idea for the proof of Theorem 8 is similar to that of Theorem 7,
and due to space constraints, we leave details to the full version [7]. Briefly, the
idea of the construction of the scheme for the separation is as follows. Here, we
put an encrypted random challenge in the public verification key, and if the
adversary asks for that challenge to be signed, we have the signing oracle return
the signing key. Intuitively, only an adversary that can break the challenge while
it has access to the signing oracle (i.e., a quantum stage-1 adversary) can solve
the challenge. The scheme Σ′ is shown below.



– Σ′.KeyGen(): (sk, vk)←$Σ.KeyGen(). (dk, ek)←$Π.KeyGen(). s∗←$ {0, 1}256.
ch← Π.Enc(ek, s∗). vk′ ← (vk, ek, ch). sk′ ← (sk, s∗). Return (sk′, vk′).

– Σ′.Sign(sk′ = (sk, s∗),m): If m = s∗, return sk. Else, return Σ.Sign(sk,m).
– Σ′.Verify(vk′ = (vk, ek, ch),m, σ): Return Σ.Verify(vk,m, σ).

Theorem 9 (QcQ 6=⇒ QqQ). Assuming there exists a quantum-secure pseudo-
random family of permutations, and a signature scheme Σ that is QcQ-eufcma-
secure, then there exists a signature scheme Σ′ that is QcQ-eufcma-secure but
not QqQ-eufcma-secure.

Similar to Theorem 8, we will construct a signature scheme where the secret
key is hidden behind a problem which is hard for some adversaries and easy
for others. Here the hidden problem will be on oracle problem where a small
number of queries suffices to retrieve a secret string when the oracle is queried in
superposition, but a large number of queries is required if the oracle is queried
classically. We will use the hidden linear structure problem [4].

Definition 2 ([4]). The hidden linear structure problem is as follows: given
oracle access to Bs,π(x, y) = (x, π(y ⊕ sx)), where x, y, s ∈ GF (2n) and π ∈
Perm({0, 1}n) with s and π chosen uniformly at random, determine s. (Here,
Perm(S) denotes the set of all permutations on a set S.)

The hidden linear structure problem requires 2b classical queries to solve with
probability 22b−n+1 (i.e. O(2n/2) queries to solve with a constant probability),
and one query to solve with quantum queries [4]. Unfortunately, describing π
requires an exponential number of bits in n, but we can replace the random
permutation π with a family of quantum-safe pseudo random permutation with
a short key. This results in an oracle with a short description. Supposing that
the PRP is indistinguishable from a random permutation in time cP except with
advantage pP , the resulting restricted oracle problem is indistinguishable from
the hidden linear structure problem except with advantage pP . From now on we
assume that π is implemented by a PRP.

Our construction starts with a QcQ-eufcma-secure signature scheme Σ. For
our purposes, we will need Σ.Sign to be deterministic. That is, for a particular
message and signing key the signature should always be the same. If this is not
the case, then we can use standard techniques to make it so, for example by
providing randomness through a quantum-secure PRF applied to the signing key
and the message. Let us suppose that it takes at least time cΣ for an adversary
to win the QcQ-eufcma security game with probability at least pΣ .

We will need to address several parts of messages for signing. For a message
m we will define m.x,m.y,m.z to be bits 1 to 256, bits 257 to 512, and bits 513
to 768 of m, respectively. In particular, m must be at least 768 bits long. Bits
beyond 768 will play no special role in the signing algorithm, but remain part of
the message. Also let δa,b be the Kronecker delta, which is 1 when a = b and 0
otherwise.

We now define our signature scheme Σ′ as follows:



– Σ′.KeyGen(): (sk, vk)←$Σ.KeyGen(). s←$ {0, 1}256. t←$ {0, 1}256. vk′ ←
(vk). sk′ ← (sk, s, t). Return (sk′, vk′).

– Σ′.Sign(sk′,m): Return (Σ.Sign(sk,m),Bs,t(m.x,m.y), sk · δs,m.z).
– Σ′.Verify(vk′,m, (σ, u, v, w)): If Σ.Verify(vk,m, σ) accepts, (u, v) = Bs,t(m.x,
m.y) and w = sk · δm.z,s then accept, otherwise reject.

Since we are interested in the case of quantum access, we define the quantum
version of the signing oracle by UΣ′,sk, which has the action

UΣ′,sk |m, a, b, c, d〉 = |m, a⊕ σ, b⊕ u, c⊕ v, d⊕ w〉

where σ = Σ.Sign(sk,m), (u, v) = Bs,t(m.x,m.y), and w = sk · δs,m.z. Note that
UΣ′,sk is its own inverse.

Lemma 1. Suppose that, with classical queries, at least cB queries to Bs,t are
required to determine s with probability pB, and that it takes at least time cΣ for
an adversary to win the QcQ-eufcma security game for Σ with probability at least
pΣ. If a (possibly quantum) adversary A with classical access to a Σ′.Sign oracle
and vk runs for time c < min{cB, cΣ}, then A wins the QcQ-eufcma security
game for Σ′ with probability at most p ≤ pB + pΣ + 2−256c.

The lemma can be proven by noting Bs,t and Σ are not related, so we can
basically add the probabilities of determining s through Bs,t, producing valid
signatures without s, and guessing s directly.

Lemma 2. Suppose Σ.Sign is deterministic. If, given quantum query access to
Bs,t it is possible to recover s with 1 query, then 3 quantum queries to UΣ′,sk
suffice to efficiently generate any polynomial number of valid signatures for Σ′.

The basic mechanism here is to use a standard technique in quantum com-
puting called uncomputing to construct a quantum oracle for Bs,t(x, y) out of
two calls to UΣ′,sk. Then it is possible to determine s and recover sk with one
more call to UΣ′,sk.

We are now in a position to prove Theorem 9.

Proof (Proof of Theorem 9). We use Σ′ as defined earlier, with Bs,t being the
oracle for a quantum safe hidden linear structure problem, which exists by the
existence of P. By Lemma 2, Σ′ is not QqQ-eufcma-secure since a quantum
adversary allowed quantum oracle access to Σ′.Sign can efficiently generate a
polynomial number of signatures using a constant number of oracle queries.

Now suppose we have a quantum adversary A which has classical oracle
access to Σ′.Sign and runs in time 2b < max{2n/2−2, cΣ}. A obtains s through
classical oracle access to B with probability at most 22b−n+1 + pP . Then we can
set pB = 22b−n+1 + pP and apply Lemma 1 to find that A breaks unforgeability
of Σ′ with probability at most pΣ+22b−n+1+ δ+2b−256. If A runs in polynomial
time, then b ∈ O(log(poly(n)) and hence Σ′ is QcQ-eufcma-secure. ut



C Proofs for combiners

C.1 C‖: Concatenation

Proof (Proof of Theorem 1 – unforgeability of C‖). Suppose A is an RsT-adversary
that finds a forgery in Σ′ = C‖(Σ1, Σ2) — in other words, it outputs qS +1 valid
signatures under Σ′ on distinct messages. We can construct an RsT algorithm
B1 that finds a forgery in Σ1. B1 interacts with an RsT challenger for Σ1 which
provides a public key vk1. B1 generates a key pair (sk2, vk2)←$Σ2.KeyGen() and
sets the public key for Σ′ to be (vk1, vk2). When A asks for

∑
m,t,z ψm,t,z |m, t, z〉)

to be signed using Σ′, we treat t as consisting of two registers t1‖t2, B1 proceeds
by passing the m, t1, and z registers to its signing oracle for Σ1, then runs the
quantum signing operation from Figure 1 for Σ2.Sign on the m, t2, and z registers.
There is a one-to-one correspondence between A’s queries to its signing oracle
and B1’s queries to its signing oracle.

If Σ1 is proven to be secure in the random oracle (rather than standard) model,
then this proof of C‖(Σ1, Σ2) also proceeds in the random oracle model: B1 relays
A’s hash oracle queries directly to its oracle, giving a one-to-one correspondence
between A’s queries to its hash oracle and B1’s queries to its hash oracle. This
holds in either the classical or quantum random oracle model.

If A wins the RsT-eufcma game, then it has returned qS + 1 valid signatures
σ′i = (σ′i,1, σ

′
i,2) on distinct messagesmi such that Σ1.Verify(vk1,mi, σ

′
i,1) = 1 and

Σ2.Verify(vk2,mi, σ
′
i,2) = 1. B1 can extract from this qS+1 valid signatures under

Σ1 on distinct messages. Thus, AdvR
sT-eufcma
Σ′ (A) ≤ AdvR

sT-eufcma
Σ1

(B1). Similarly
it holds for Σ2: AdvR

sT-eufcma
Σ′ (A) ≤ AdvR

sT-eufcma
Σ2

(B2).
It follows that AdvR

sT-eufcma
Σ′ (A) ≤ min{AdvR

sT-eufcma
Σ1

(B1),AdvR
sT-eufcma
Σ2

(B2)}.
Thus, if either AdvR

sT-eufcma
Σ1

(B1) or AdvR
sT-eufcma
Σ2

(B2) is small, then so too is
AdvR

sT-eufcma
Σ′ (A).

C.2 Cstr-nest: Strong nesting

Proof (Proof of Theorem 2 – unforgeability of Cstr-nest). This proof follows the
same approach as the proof of unforgeability for C‖ (Theorem 1). Details appear
in the full version [7]. ut

Proof (Proof sketch of Theorem 3 – 2-non-separability of Cstr-nest). We can
construct a reduction B2 which is an XcZ-eufcma adversary for Σ2. B2 generates
a keypair (vk1, sk1) for Σ1, and interacts with an XcZ-eufcma challenge for
Σ2. When A classically queries its signing oracle to obtain a signature under
Σ′ of mi, B2 signs mi with Σ1 to obtain σi,1. Afterwards, B2 passes (m,σi,1)
to its Σ2 signing oracle and returns the resulting σi,2 to A. Eventually, A
returns (µ∗, σ∗) such that Σ2.Verify(vk2, µ

∗, σ∗) = 1 but Σ′.R(µ∗) = 0, i.e.,
µ∗ 6∈ {0, 1}∗ × SΣ1 . This means in particular that µ∗ 6= (mi, σ1,i) for all i.
Moreover, all the (mi, σ1,i) are distinct, since all mi are distinct. This means we
have qS + 1 valid message-signature pairs under Σ2, yielding a successful forgery
for the XcZ-eufcma experiment for Σ2. Thus, Pr[S1] ≤ AdvX

cZ-eufcma
Σ2

(B2). ut



C.3 Dnest: Dual message combiner using nesting

Proof (Proof sketch of Theorem 4 – unforgeability of Dnest). This theorem con-
tains two statements. The first statement is: If Σ1 is XyZ-eufcma-secure, then
Dnest(Σ1, Σ2) is XyZ-eufcma-secure with respect to its first message component
only. Dnest(Σ1, Σ2), when restricted to its first message component only, is just
Σ1, so the first statement follows vacuously.

Now consider the second statement: Dnest(Σ1, Σ2) is UvW-eufcma-secure if
Σ2 is UvW-eufcma-secure. Suppose A is a UvW algorithm that outputs a forgery
for Σ′ = Dnest(Σ1, Σ2) — in other words, it outputs qS+1 valid signatures under
Σ′ on distinct messages. We can construct an UvW algorithm B2 that finds a
forgery in Σ2. B2 interacts with an UvW challenger for Σ2 which provides a public
key vk2. B2 generates a key pair (sk1, vk1)←$Σ1.KeyGen() and sets the public
key for Σ′ to be (vk1, vk2). When A asks for

∑
m,t,z ψm,t,z |m, t, z〉) to be signed

using Σ′, we treat t as consisting of two registers t1‖t2, B2 proceeds by passing
the m, t2, and z registers to its signing oracle for Σ2, then runs the quantum
signing operation from Figure 1 for Σ1.Sign on the m, t1, and z registers. There
is a one-to-one correspondence between A’s queries to its oracle and B2’s queries
to its oracle. As before in the proof of Theorem 1, if Σ1 is proven to be secure in
the random oracle model, then this proof of Cweak-nest(Σ1, Σ2) also proceeds in
the random oracle model: B2 relays A’s hash oracle queries directly to its hash
oracle, giving a one-to-one correspondence between A’s queries to its (classical or
quantum) hash oracle and B2’s queries to its (classical or quantum, respectively)
hash oracle.

If A wins the UvW-eufcma game, then it has returned qS + 1 distinct tuples
(m1,i,m2,i, σ1,i, σ2,i) such that Σ1.Verify(vk1,m1,i, σ1,i) = 1 and Σ2.Verify(vk2,
(m1,i, σ1,i,m2,i), σ2,i) = 1.

Hence, B2 can extract qS +1 valid signatures under Σ2 and thus it holds that
AdvR

sT-eufcma
Σ′ (A) ≤ AdvR

sT-eufcma
Σ2

(B2). ut

Table 5. Post-quantum signature schemes; keys and signature sizes, estimated certificate
sizes, and claimed security level

Scheme Size (bytes) Security
public key secret key signature certificate (bits)

Lattice-based

GLP [19] 1 536 256 1 186 3.0KiB 100
Ring-TESLA-II [1] 3 328 1 920 1 488 5.1KiB 128
TESLA#-I [3] 3 328 2 112 1 616 5.2KiB 128
BLISS [16] 7 168 2 048 1 559 9.0KiB 128
TESLA-416 [2] 1 331 200 1 011 744 1 280 1 332.8KiB 128

Hash-based

XMSS [11] 912 19 2 451 3.6KiB 82
SPHINCS [6] 1,056 1,088 41,000 42.3KiB >128
Rainbow [13] 44 160 86 240 37 44.5KiB 80
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