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Abstract. The amount of security critical information that is only avail-
able in digital form is increasing constantly. Some of these data, such
as medical or tax data, need to be preserved for long periods of time.
Thus, several schemes for long-term integrity protection of long-lived and
archived data were developed. However, a comprehensive security anal-
ysis is still missing. In this paper we discuss existing security models for
long lived systems and show to what extend they allow to prove the se-
curity of those schemes. Then, we introduce a new model that overcomes
the shortcomings of the state of the art and allows to formally analyze
timestamp-based long-term integrity schemes. Finally, we show how the
security level of the long-term integrity scheme can be determined for
concrete instantiations.

1 Introduction

1.1 Motivation

The amount of data that is only available in digital form is increasing constantly.
Examples include scientific data, medical records, and land registries. Medical
records, for instance, have to be preserved as long as the respective persons are
alive and even beyond this time. Thus, the protection period of such data easily
may become 100 years. Digital archives are needed that efficiently and securely
preserve this information for a long period of time.

Obviously, an important protection goal for archived data is long-term in-
tegrity. This means that some evidence is needed that data has been archived
at a certain point in time and has not been changed since. Various schemes for
long-term integrity protection have been developed (e.g., [14, 13, 5, 9, 10, 16, 23]).
However, if the security of such schemes is not analyzed, they may be prone to
security failures and attacks. For example, an insecure technique for long-term
integrity protection was described in [15]. Later, the security issue was noticed
and the description was updated [3]. This shows that when developing schemes
for long-term integrity protection their security has to be analyzed and proven.
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1.2 Contribution

In this paper, we study the security of long-term integrity schemes, focusing
on schemes that use timestamps for long-term integrity protection. We start by
describing a widely accepted technique for timestamp-based long-term integrity
protection and also give a brief overview of other existing methods. Then, we
discuss the security of long-term integrity schemes. In particular, we discuss trust
assumptions, cryptographic requirements, and the capabilities of adversaries to
such schemes.

Finally, we formalize our observations in a novel security model for long-term
integrity schemes. In particular, we formally define what a long-term integrity
scheme is and which requirements the scheme has to fulfill to be secure. Then, we
use this security model to analyze the security of the previously described scheme
for timestamp-based long-term integrity protection. We give a reduction-based
security proof, showing that the scheme suffices our security definition.

We also evaluate the results of our security analysis, showing which impli-
cation our result has for using timestamp-based long-term integrity schemes in
practice. In particular, we show how the security level of such a scheme can be
determined for concrete instantiations.

1.3 Related work

In [7], Canetti et al. propose a framework for modeling computational security
in long-lived systems. Their motivation is that an adversary is usually consid-
ered as polynomial-time bounded, but long-lived systems may be running for
exponential time. Thus, they propose a framework for such systems where they
distinguish between computation time and real time. In their framework, an ad-
versary may be active and interact with the scheme for an unbounded period of
time, but has only limited computational power per unit of real time. Using their
framework, they study the security of a concrete construction of a timestamp-
based long-term integrity scheme. In [12], Geihs et al. use the framework of
Canetti et al. to analyze the security of another construction.

However, both papers do not define a notion of security for long-term in-
tegrity schemes in general. In comparison, in this work we formalize the notion
of security for long-term integrity schemes and provide a comprehensive analysis
of their security.

Furthermore, the framework of Canetti et al. does not consider important as-
pects of long-lived systems. For example, the amount of computational work that
can be done per unit of time is fixed. In our novel security model we allow more
general types of adversaries. In particular, we consider adversaries whose com-
putational power may increase and which may use different types of computing
architectures over time (e.g., classical computers and quantum computers).

In [20], modeling real time for analyzing the security of authenticated key
exchange protocols is discussed. Furthermore, the authors propose a model of
real time based on a global clock mechanism. We use a similar model of real
time in our paper, but in a slightly more general version.



1.4 Organization

The paper is organized as follows. In Section 2, we describe techniques for long-
term integrity protection and discuss their security requirements in Section 3. In
Section 4, we present a novel security model for long-term integrity schemes in
general and analyze the security of timestamp-based long-term integrity schemes.
In Section 5, we evaluate the obtained results and look at their implications for
practical use of long-term integrity schemes. In Section 6, we draw conclusions
and suggest open questions for further research.

2 Long-term integrity protection

In this work, we address long-term integrity protection of data objects (e.g.,
documents, images, etc.). By long-term integrity we mean that there is a proof
that the data object existed at a certain point in time and has not been changed
since. In the following, we describe a commonly used technique for generating
long-term integrity proofs using timestamps.

2.1 Initiating integrity protection

To ensure integrity of documents it is common practice to use signatures. More
precisely, assume a user has a data object d. Then, the integrity of d could, for
instance, be ensured as follows. First, the user sends d to a trusted third party,
e.g., a certified time-stamping authority (TSA) [1]. The TSA reads the current
time t and signs d‖t0, i.e., computes s0 = Sign(d‖t0). Finally, the TSA returns
the signature s0 to the user. This signature together with document d and time
t0 serves as a proof of integrity for d. To verify the integrity of d with respect to
time t0, a verifier simply needs to check that the digital signature s0 is valid for
d‖t0.

The security of this integrity protection relies on the security of the signature.
If an adversary is not able to forge the signature of the TSA, it is not able to
compromise the integrity of the document. We stress that TSAs must be trusted
to always use the correct time in the signing process (for approaches how this
trust assumption can be weakened see [22]).

2.2 Prolonging integrity protection

As described in the previous section, the security of the initial integrity protec-
tion relies on the security of a single digital signature. Note that digital signature
schemes are only secure for a limited time for the parameters chosen [17]. Fur-
thermore, it may happen that the private signing key of the TSA is leaked to
an attacker over time. If this happens the attacker can forge signatures, compro-
mising their security. To protect against such security failures, techniques have
been developed that allow to prolong the validity of a digital signature using
signature chains.



In more detail, the validity of a proof of integrity for d and time t0 in form
of a signature s0 can be prolonged as follows. The user sends d, t0, and s0 to the
TSA. The TSA reads the current time t1 and signs (d‖t0‖s0‖t1), i.e., computes
s1 = Sign(d‖t0‖s0‖t1). The new proof of integrity consists of d, t0, s0, t1, and
s1 and shows that signature s0 has been generated before the private signing
key used for s0 got revoked. In other words, the validity of a signature can be
prolonged by protecting its integrity from a point in time when it was still valid.

The validity of an integrity proof can be prolonged multiple times. This is
done by time-stamping the current integrity proof as described above. Whenever
the validity of an integrity proof is prolonged, a new signature is added. Hence,
the integrity proof can be described by a sequence of signatures and times,
denoted as t0, s0, . . . , tn, sn. We visualize the procedure in Figure 1.

Fig. 1. Generation of a long-term integrity proof. The colored bars visualize the security
of the signature schemes.

To verify the integrity of data object d with respect to time t0 using sequence
t0, s0, . . . , tn, sn, the following needs to be checked. First, it needs to be checked
that each signature si is a signature on d‖t0‖s0‖ . . . ‖ti−1‖si−1‖ti. Second, it
needs to be checked that the validity of the signatures was prolonged before the
signature keys were revoked, i.e., signature si was secure from ti to ti+1 and
the latest signature sn is still secure. Finally, it needs to be checked that s0 is a
signature on d and t0.

2.3 Other approaches for long-term integrity protection

There are several approaches for long-term integrity protection based on times-
tamp sequences and notaries. In the following we will briefly summarize the most
important techniques. An exhaustive overview can be found in [24].

Timestamps can be generated by using widely visible media (WVM) or digital
signature schemes. The basic idea of WVM is that a hash of the data is published
on a widely visible medium that has a time reference (e.g., a newspaper). Due to
the public release of the hash value and the collision resistance of hash functions,
the data cannot be altered afterwards. This approach assumes that the WVM
will be available in the future. Furthermore, this approach requires the existence
of witnesses, i.e., people that saw the original data and can testify that the data
has not been changed since.



An alternative approach to long-term integrity protection uses notaries and
digital signature schemes. In notary based schemes a notary generates an attes-
tation by signing the hash of a document together with the current time. When
the attestation is refreshed another notary first evaluates the correctness of the
current attestation. Then, it generates a new attestation to the document using a
fresh signature scheme and replaces the old attestation. Archiving schemes that
are based on this idea are, for example, Cumulative Notarization [16] and At-
tested Certificates [23]. However, for a proof of existence and integrity all these
solutions require that the verifier puts trust in the notaries that they verified
the last timestamp properly. Since old attestations are deleted a verifier cannot
check whether this process has been carried out correctly.

To reduce this trust assumption a sequence of timestamps can be generated
and stored as introduced by Bayer et al. [3] and outlined in Section 2.2. This
idea has been further developed and several schemes have been published, e.g.,
Advanced Electronic Signatures [9, 10], Content Integrity Service [14], and the
Evidence Record Syntax [13, 5], that basically differ in how the sequence of
timestamps to a document is generated and verified. Evidence Record Syntax,
for instance, is a format which uses Merkle Trees [18] and allows to timestamp
a set of documents. Therefore, this scheme is also efficient for large volumes of
data.

3 Security

Several schemes for long-term integrity protection have been developed. For such
a scheme to be secure, if a data object d did not exist at some point in time t,
then, intuitively, it must be infeasible for anybody to present a proof of integrity
for d and t which passes verification. If a proof of integrity scheme has this
property, then we say it provides unforgeability security. In the following we
present the assumptions regarding trust, cryptographic primitives, and attacker
capabilities under which the long-term integrity schemes presented here provide
unforgeability.

3.1 Trust assumptions

Trusted third parties need to be trusted that they provide a correct reference
to real time. For example, TSAs need to be trusted that they read and sign the
correct time.

3.2 Cryptographic requirements

For generating proofs of integrity, cryptographic primitives, such as digital sig-
nature schemes, are used. Each cryptographic primitive is associated with a
validity period, which depends on the scheme and the parameters chosen. We
require that the cryptographic primitive is secure within its validity period, e.g.,
that a signature scheme is unforgeable and that its security does not break un-
expectedly.



3.3 Security model and adversary capabilities

To analyze the security of a cryptographic solution a rigorous approach is to for-
mulate a security model and prove the security of the solution within that model.
One way to provide long-term security is to require that the scheme is secure
against adversaries that have unlimited computational resources. Such a scheme
is not prone to brute force attacks, e.g., where an attacker tries to identify the
signing key by trying out all possible keys. However, for many cryptographic
tasks, such as creating digital signatures, it is hard or even impossible to con-
struct such cryptographic solutions. The good news is that many tasks become
achievable if adversaries are modeled as computationally bounded, which is the
case in practice.

In a security model, it is common practice to use the Turing Machine Model
to model entities which are computationally bounded. Typically, a cryptographic
system is associated with an integer security parameter. A computationally
bounded adversary is only allowed to perform a number of operations polyno-
mial in the security parameter of the system. For long-lived systems, the Turing
Machine based model of computational security is not adequate. The adversary
may run for a very long time and therefore it is not appropriate to have a bound
on its overall computational power.

In [7], Canetti et al. formulate a security model that considers adversaries
which may be active for an unbounded time, but are computationally bounded
per unit of real time. This is an important step for modeling computational
security in long-lived systems. However, they do not consider other important
aspects of long-lived systems, for example, that new computational architectures
or new algorithms may become available and the computational bound per unit
of time may increase.

In the next section, we present a new framework for modeling computa-
tional security in long-lived systems which considers all of the mentioned aspects.
Within this framework we consider entities with the following capabilities.

Like in the framework proposed by Canetti et al., adversaries may be ac-
tive for an unbounded amount of time, and hence, over their indefinite lifetime
may perform an unlimited amount of computations. At the same time, they are
computationally bounded per unit of time, that is, the amount of computational
work that can be done by an adversary per time interval is limited. In addi-
tion, we extend this notion by considering that computational power increases,
for example, as predicted by Moore’s Law. Note that not only the number of
operations computable per unit of time may increase, but also new and more
efficient algorithms may be discovered. Finally, we also take into account that in
the long-term the computational architecture that is available to an adversary
may change. For example, an adversary may use quantum computers once they
are available. It is conjectured that specific operations can be performed much
more efficiently on quantum computers compared to using classical computers
[21].



4 Formalization

In this section, we formalize the functionalities of long-term integrity schemes
and their security given in Section 2 and Section 3. We start by formally defin-
ing long-term integrity schemes and give an example construction TS-LTIS of
a long-term integrity scheme based on the scheme described in Section 2. The
construction TS-LTIS is timestamp-based and its core functionality is common
to many proposed schemes for long-term integrity protection. Afterwards, we
define which functionality a long-term integrity scheme must provide in order
to provide correctness and show that our timestamp-based construction suffices
this definition.

Then, we formally define security of long-term integrity schemes. We start by
defining the adversary model. Afterwards, we define unforgeability for long-term
integrity schemes via a game in which the adversary wins if he successfully forges
an integrity proof for a document that did not exist at the claimed point in time.
Note that in our model we assume that TSAs are trusted to read and sign the
correct time and that cryptographic primitives are replaced before they become
insecure. We show that our example construction TS-LTIS provides unforgeabil-
ity security under these assumptions.

4.1 Long-term integrity scheme

Informally, a long-term integrity scheme consists of three algorithms, one for
initially generating integrity proofs, one for prolonging the validity of integrity
proofs, and one for verifying integrity proofs. The following definition captures
this formally.

Definition 1 (Long-term integrity scheme). A long-term integrity scheme
is a tuple of algorithms (Protect, Prolong, Verify) with the following properties.

– Protect(d) → (P, t): On input of data object d, the algorithm generates an
integrity proof P . Additionally, it outputs the time t that the proof refers to.

– Prolong(d, P ) → P ′: When the validity of the existing integrity proof P is
about to become insecure, this algorithm is called. Then, it generates on input
of data object d and integrity proof P a new integrity proof P ′.

– Verify(VD, tver, d, t, P ) → b: On input of verification data VD, current time
tver, data object d, time t, and integrity proof P , the algorithm checks the
integrity of d with respect to time t. It outputs b = 1 if the proof is valid, and
b = 0 otherwise.

Note that, in contrast to many cryptographic schemes in the literature, a
long-term integrity scheme is not associated with a single security parameter κ ∈
N. Typically, this security parameter is used to describe a computational bound
on the adversary with respect to a polynomial in κ. However, in a long-lived
protocol the computational power of an adversary cannot be considered fixed
and cryptographic components may have to be replaced to maintain security.



Hence, imposing a fixed polynomial computational bound on the adversary is
not adequate. Instead, we express computational bounds with respect to real
time. A more detailed description can be found in Section 4.3.

Next, we give an example construction of a long-term integrity scheme that
uses timestamps for generating integrity proofs. It formalizes the description of
the long-term integrity scheme from Section 2. The construction is fundamental
to many existing schemes, such as [13], [5], or [14].

Construction 1 (Timestamp-based long-term integrity scheme) The long-
term integrity scheme TS-LTIS consists of the algorithms (Protect, Prolong, Verify)
as defined below. The scheme is associated with a constant c ∈ N, which affects
the security level as we will see in the security proof.

– Protect(d): The algorithm selects a secure TSA and a hash function H. It
computes the hash h of d using H and requests a timestamp τ on h from
the TSA. It outputs the timestamp τ , which is the initial integrity proof, and
reference time t included in τ .

– Prolong(d, P ): When the hash function or the signature scheme used to gen-
erate the latest timestamp included in P is about to become insecure this
algorithm is called. Then, it selects a secure TSA and a hash function H. It
computes the hash h of (d, P ) using H and requests a timestamp τ on h from
the TSA. It outputs the pair (P, τ), which is the new integrity proof.

– Verify(VD, tver, d, t, P ): The algorithm checks that P is of the form (τ0, . . . , τn)
and that n ≤ c. For i = 0, . . . , n − 1, it checks that the hash function of τi
and the signatures generated by the TSAs were valid at the time when times-
tamp τi+1 was generated using the verification data VD. This verification
data consists of the data needed to verify the signature, i.e., the certificate
chain binding the public key to the TSA, the revocation list (showing that the
signature key pair of the TSA has not been revoked yet), and the trust anchor
in form of the root certificates for the certificate chains. Note that this also
introduces an additional party, the certification authority (CA) generating
the certificates to a private-public key pair of a TSA [6]. Additionally, the
algorithm checks that the certificate chain and the hash function of the last
timestamp τn are valid at time tver. For i = 0, . . . , n, it computes the hash h
of (d, τ1, . . . , τi−1) using the hash function of τi and checks that the signature
of τi is valid for h. Finally, it checks that the time of τ0 equals t. If all checks
succeed, it outputs 1. Otherwise, it outputs 0.

4.2 Correctness

Any long-term integrity scheme must fulfill the following correctness require-
ments. They define what is the intended functionality of a long-term integrity
scheme when no adversary is considered and all cryptographic services are as-
sumed to be secure. Afterwards we show that TS-LTIS satisfies this correctness
definition.



Definition 2 (Correctness). Let (Protect,Prolong,Verify) be a long-term in-
tegrity scheme and n be an integer. A proof of integrity Pn for a data object d
is generated as follows.

At time t0, the algorithm Protect is executed with input d. Let integrity proof
P0 and reference time t be the output of that execution. Then, for i = 1, . . . , n,
at time ti > ti−1, the algorithm Prolong is executed with input data object d
and integrity proof Pi−1 at a point in time when the cryptographic primitives
used to generate Pi−1 are still valid. Let integrity proof Pi be the output of that
execution. Finally, at time tver, the verification algorithm Verify is executed. Let
VD denote the verification data provided by the environment at that time.

For a long-term integrity scheme (Protect,Prolong,Verify) to be correct we
require that for any data object d if proofs P1, . . . , Pn were generated as described
above, then the equation Verify(TA, tver; d, t0, Pn) = 1 must hold.

The next theorem states that our construction TS-LTIS presented in Sec-
tion 4.1 provides correctness.

Theorem 1 (Correctness of TS-LTIS). The long-term integrity scheme TS-LTIS
is correct.

Proof. Assume that Pn is an integrity proof generated as follows. First, algorithm
Protect is executed at time t0 with data object d as input returning integrity
proof P0. Then, for i = 1, . . . , n, algorithm Prolong is executed with Pi−1 as
input returning a new proof Pi. For correctness it is required that assuming a
series of valid cryptographic services (i.e., TSAs and CAs) is used, then it must
hold that Verify(VD, d, t0, Pn) = 1, where VD is the verification data. Indeed,
proof Pn generated as described above verifies for d and t0, as can be seen as
follows. We observe that the certificate and hash function validity checks in
Verify succeed because we assume that the cryptographic services were chosen
correctly. Furthermore, we observe that the signature checks during verification
also succeed because Pn is constructed by executing algorithm Protect followed
by multiple executions of algorithm Prolong, and thus, the data structure of the
proof has the correct format.

4.3 Adversary model

In this section, we describe the adversary model for adversaries of long-term
integrity schemes. First, we describe the computational model, that is, the com-
putational capabilities of an adversary. Second, we describe the model of real
time. Third, we describe how we impose computational bounds on the adver-
sary with respect to real time.

Computational model. We model adversaries as universal computing ma-
chines [8]. A computing machine models the behavior of any computational de-
vice. That is, it has an internal state, and given an input, it performs a series
of operations based on its internal program, and after the program is finished,



it outputs a result. A computing machine has a certain set of supported states
and operations. For example, a Turing Machine is a computing machine which
operates on classical bits using boolean arithmetic. Another example is a Quan-
tum Turing Machine [8] which operates on quantum states using quantum gates.
The computational effort performed by a computing machine can be measured
based on the number of operations that it performs in order to obtain an output
by evaluating its program on a given input.

Real time. In our formal model we use a notion of real time. This allows
us to express computational bounds on the adversary with respect to time as
discussed in Section 3.3. Various approaches for modeling real time exist [7, 20].
In [20], real time is modeled using a global clock which is incremented whenever
the adversary makes a query. This imposes a strict order on any sequence of
interactions of the adversary with its environment. Similar to [20], we also use
a global clock which is incremented each time the adversary makes a query to
advance time. We stress that our model is more general than [20] as the order of
events imposed by our clock mechanism is non-strict. For example, this allows
the adversary to request and obtain multiple timestamps with the same time
reference.

Computational bounds with respect to time. In our model, the computa-
tional power of an adversary may be restricted with respect to time in various
ways. First, we may restrict the number of operations performed by the adver-
sary per unit of time. For example, an adversary in year 1980 may be capable
of performing 1 Gigaflops while an adversary in year 2010 may be capable of
performing 1 Petaflops. Second, we may restrict the set of programs known to an
adversary at a certain point in time. For example, in year 1980 no polynomial-
time deterministic algorithm for primality testing was known, while later such
an algorithm was found [2]. Third, we may consider that the computational ar-
chitecture available to an adversary may change. For example, today computers
are only able to perform binary operations. However, in the near future quantum
computers may be built that are able to perform operations on qubits. For cer-
tain problems, much more efficient algorithms are known for quantum computers
compared to classical computers.

4.4 Adversary environment

In Section 4.5 we use a security game to define security of long-term integrity
schemes. In such a game the adversary interacts with its environment. For ex-
ample, it may request timestamps from TSAs or compromise TSAs after their
validity period. In the following, we first describe several cryptographic primi-
tives that are used in the context of long-term integrity schemes. Then, we define
queries that the adversary can make to interact with cryptographic services in
its environment.



Cryptographic primitives. We consider the following cryptographic primi-
tives in the environment.

Digital signature schemes. A digital signature scheme consists of three algo-
rithms KeyGen, Sign, and Verify, and is associated with a security parameter κ
[19]. Algorithm KeyGen, on input κ outputs a secret signing key sk and a pub-
lic verification key pk. Algorithm Sign, on input a secret key sk and a message
m, outputs a signature σ. Algorithm Verify, on input a verification key pk, a
message m, and a signature σ, outputs 1 if σ is valid for pk and m, and 0 oth-
erwise. A digital signature scheme is considered secure, if it provides existential
unforgeability against any polynomial-time adversary [19]. That is, the adver-
sary, given only the public key pk and access to a signing oracle, must not be
able to output with non-negligible probability a message-signature pair (m,σ)
such that Verify(pk,m, σ) = 1 if the signing oracle was not queried with m.

Hash functions. A hash function is a deterministic function mapping input
strings of arbitrary length to output strings of fixed length. There are vari-
ous security properties that can be desirable to be provided by a hash function.
For example, a hash function H can be required to be collision resistant. That
is, it must be infeasible to find a pair of strings (x, x′) such that H(x) = H(x′).
It is common practice to model hash functions as random oracles [4]. A random
oracle is associated with a hash value space {0, 1}λ and a table of assigned hash
values T . For any string x, let T [x] denote the entry of table T for string x. On
input of a string x, the random oracle checks if x has been queried before and is
already in table T . If this is the case, it returns T [x]. If not, a random string h
is sampled from the hash value space {0, 1}λ. Then, h is inserted in table T at
position x, i.e., T [x] := h, and returned.

Interaction with the environment. We describe the queries that the adver-
sary uses to interact with the environment.

Set time. As described in Section 4.3, the adversary may only go forward in time.
Formally, this is modeled as follows. The environment has a global variable tcur ∈
N0. At initialization, the time is set to zero, i.e., tcur := 0. The adversary may
advance time via the following query. Note that because the computational power
of the adversary is bounded with respect to time, the adversary is eventually
forced to advance time via a SetTime query in order to continue its operation.

– SetTime(t): If time t is larger than the current time tcur (i.e., t > tcur), tcur is
set to t (i.e., tcur := t).

Request timestamps. In the environment of the adversary TSAs are active. Each
TSA is associated with a signature scheme S, security parameter κ, and a va-
lidity period, that is, a time interval [t1, t2]. At the beginning of the validity
period, at time t1, the TSA is initialized as follows. First, it generates a key
pair, S.KeyGen(κ)→ (sk, pk). Second, it obtains a public key certificate from a



CA with validity until the end of its validity period (i.e., time t2). The adver-
sary interacts with TSAs in its environment. In particular, the adversary may
request timestamps from them. In addition, after the validity period of a TSA
has passed, it can compromise the TSA. In this case, the adversary obtains
the private signing key. This is modeled by allowing the adversary to make the
following queries.

– Timestamp(i,H, h): The adversary makes a timestamp query Timestamp with
input the identifier of a TSA i, a hash function identifier H, and a hash value
h of the data object to be timestamped. If the current time tcur lies within
the validity period of TSA i, then a signature σ on the current time, the
hash function identifier H, and the input hash value h is generated, i.e.,
Sign(tcur,H, h) → σ. Afterwards, the tuple (tcur, σ, cert) is returned to the
adversary, where cert is the public key certificate chain of TSA i.

– CompromiseTSA(i): The adversary makes a query CompromiseTSA with in-
put the identifier of a TSA i, to compromise a TSA. Upon such a query, it
is checked whether the validity period of TSA i is over, and in this case, the
private signing key of TSA i is given to the adversary.

Random oracles. In our security model, the usage of hash functions is modeled by
access to random oracles (cf. Section 4.4). A random oracle is associated with a
security parameter λ ∈ N, which specifies the length of the output hash values.
Additionally, a random oracle has access to a table T that stores previously
sampled hash values. Similar to TSAs, a random oracle is also assigned with
a validity period [t′1, t

′
2], which determines the validity period of the respective

hash function. After this validity period, the adversary may program the oracle to
values of its choice. However, as hash functions are deterministic, the adversary
may not redefine previously determined hash values. The adversary interacts
with random oracles via the following queries.

– Hash(j, x): If bit string x is not in the table T of random oracle j, i.e., has
not been queried before, sample {0, 1}λ →$ h and set T [x] := h. Return
T [x].

– ProgramHash(j, s, h): If the validity period of random oracle j has passed
(i.e., tcur > t′2), and x is not in the table T of j, set T [x] := h.

4.5 Unforgeability

We formalize unforgeability security of long-term integrity schemes. We first
describe the security game that an adversary has to win in order to compromise
the security of a long-term integrity scheme. The game definition is followed by
the unforgeability security definition of long-term integrity schemes. Finally, we
prove that the scheme TS-LTIS is secure with respect to that definition.

Definition 3 (Unforgeability game). Let LTIS = (Protect,Prolong,Verify) be
a long-term integrity scheme, A be an adversary as defined in Section 4.3, and
Env be an environment as defined in Section 4.4.



The forgery game is defined as follows. The adversary interacts with its en-
vironment and, at some point in time tver, outputs (d, t, P ). Let VD denote the
verification data provided by the environment at time tver. The adversary wins
the game if Verify(VD, tver, d, t, P ) = 1 and it did not query a hash oracle with
d until time t. That is, the adversary is able to output an integrity proof for
data object d and time t, without knowing d at time t. We denote the winning
probability of A in this game as AdvintegrityLTIS,A,Env.

The game described above is used in the following definition of unforgeable
security of long-term integrity schemes. Here, we use the following notation to
refer to the security of cryptographic services, such as TSAs or CAs. Let i be a
TSA or CA and B be an adversary. By Advsignaturei,B we denote the probability that
B wins the signature unforgeability game for the signature scheme and security
parameter used by authority i (cf. Section 4.4). For a random oracle j we denote
by Advhashj the probability that an adversary guesses a hash value for a string x

without making a query for x. This probability is equal to 2−λ.
Furthermore, we use the following notation with respect to an environment

Env. Let I denote the set of TSAs and CAs of Env. For any point in time t, we
denote by It the TSAs and CAs that are available until time t. Likewise, by Ht
we denote the random oracles that are available until time t. Let B = {Bi}i∈I
be a set of adversaries attacking signature schemes used by the TSAs and CAs
of Env. We define AdvservicesB,Env,t as the probability of a security failure of any of the
cryptographic services (i.e., signature schemes and random oracles) that have
been active until time t,

AdvservicesB,Env,t :=

(∑
i∈It

Advsignaturei,Bi

)
+

∑
j∈Ht

Advhashj

 .

Definition 4 (Unforgeability). Let LTIS = (Protect,Prolong,Verify) be a long-
term integrity scheme and Env be an environment as defined in Section 4.4. We
say LTIS is unforgeable secure if there exists a constant c such that for any ad-
versary A as described in Section 4.3, there exist adversaries B = {Bi}i∈I , such
that for any point in time tver,

AdvintegrityLTIS,A,Env,tver ≤ c · Adv
services
B,Env,tver ,

where Bi has computational resources comparable to A until the end of the va-
lidity of service i.

The following theorem states that the long-term integrity scheme TS-LTIS
provides unforgeable security.

Theorem 2. The long-term integrity scheme TS-LTIS is unforgeable secure.

Proof. We have to show that for every point in time tver, the probability of
A forging a proof of integrity at time tver is smaller than the probability that



a similar adversary forges certificates or timestamps, or correctly guesses hash
values for the random oracles.

Let I be the TSAs and CAs, andH be the random oracles in the environment
Env of an adversary A. Furthermore, let (d, t, P ) be the output of A at time tver
such that Verify(VD, d, t, P ) = 1, where VD is the verification data at that time.
Write P = (τ0, . . . , τn). We know that the signature of the last timestamp τn
is a signature that is secure at time tver, i.e., refers to a certificate chain where
each CA is valid at time tver.

We start with bounding the probability that the adversary A forges the
certificate chain of τn. Let i1, . . . , im be the identities of the CAs of that chain.
For each authority i, we construct an adversary Bi against authority i, as follows.
The adversary Bi runs A, simulating the environment of A. In particular, when
A asks for the signature verification key of authority i, Bi provides the public
verification key of its forgery game, and when A asks for a certificate of that
authority, then Bi creates that certificate using its signature oracle. When A
makes a query that contains a forged certificate of authority i, then Bi outputs
that forgery. It is obvious that the computational resources required by Bi are
comparable to that of A until time tver. We conclude that the probability of the
certificate chain being forged is at most

∑m
j=1 Adv

signature
ij ,Bij

.

Assuming that the certificate chain is genuine, we observe that the probability
of the timestamp τn being forged is bounded by Advsignaturei,B , where i is the identity
of the corresponding TSA and B is an adversary constructed similar to the CA
adversary described in the previous paragraph.

Let H denote the random oracle of τn. We observe that given τn is gen-
uine and H is not compromised, the probability that H has not received query
(d, τ0, . . . , τn−1) before time tn is AdvhashH , where tn is the time assigned to τn.

In summary, we obtain thatA did not request a hash value for (d, τ0, . . . , τn−1)
from random oracle H with probability at most

AdvhashH + Advsignaturei,B +

m∑
j=1

Advsignatureij ,Bij
.

Assuming that the adversary output the data object d and timestamps
τ0, . . . , τn−1 at time tn, we apply the previous reasoning recursively for i =
n− 1, . . . , 0.

In summary, we obtain that the probability that the adversary has queried
a random oracle with data object d before time t0 is smaller than(∑

i∈IP

Advsignaturei,Bi

)
+

 ∑
j∈HP

Advhashj

 ,

where HP denotes the set of random oracles, IP denotes the set of TSAs and
CAs which integrity proof P refers to, and for i ∈ I, Bi denotes an adversary
attacking authority i as described above.

For now, we only considered the case where the adversary outputs an integrity
proof that refers to a fixed subset of cryptographic services. If we allow the



adversary to present integrity proofs referring to any sequence of TSAs and
random oracles, and take into account that the length of an integrity proof is
bounded by the constant parameter c, then we obtain the desired result.

We remark that this reduction-based security proof is substantially different
from typical reduction-based security proofs. Typically, the security of a scheme
is based on the hardness of a specific computational problem. In contrast, the
security of TS-LTIS is based on the security of a set of cryptographic services.
Another important difference is that the reduction algorithm is required to be
successful within the validity period of the respective service which is in most
cases before the long-term adversary has finished its computation.

5 Evaluation

Given the security analysis in Section 4 and the result of Theorem 2, we eval-
uate the security level Lint of the timestamp-based long-term integrity scheme
TS-LTIS.

We observe that this value mainly depends on three parameters. The first
parameter Lserv is the common minimum on the security level of cryptographic
services. For example, Lserv = 80 means that any service has at least 80 bit
security against the considered adversary. The second parameter n corresponds
to the total number of services. The third parameter c corresponds to the number
of hash values used in the integrity proof.

In Table 1 we show the security level Lint of TS-LTIS for different values of
Lserv, n = 216, and c = 28. Note that there is a constant factor ∆ of security loss
between the common security level of the cryptographic services Lserv and the
security level of the long-term integrity scheme Lint.

Table 1. Security of long-term integrity protection as a function of the security of
cryptographic services.

n c Lserv Lint ∆ = Lserv − Lint

216 28
80 56

24128 104
192 168

Now we show the dependency between Lserv and the number of hash values
c contained in the integrity proof. The scheme TS-LTIS only requires one hash
value per element of the timestamp chain. However, we remark that some existing
schemes for long-term integrity protection use a much higher number of hash
values per timestamp. Table 2 shows that for a fixed common security level of
the cryptographic services and a fixed number of services, the long-term security
level decreases as c increases.



Table 2. Security of long-term integrity protection as a function of the length param-
eter.

Lserv n c Lint

128 216
28 104
216 96
232 80

6 Conclusions

Long-term integrity protection is an important aspect of long-term storage. In
this paper, we have studied the security of timestamp-based techniques for long-
term integrity protection. We have formalized a notion of security for such
schemes and analyzed their security with respect to that notion. This is the
first comprehensive security analysis of such schemes, providing a basis for the
trustworthy usage of them. We have also shown some practical consequences
of our analysis, such as, how the security level of the involved cryptographic
services affects the security level of the long-term integrity scheme.

For future work, we plan to provide a security model for long-term integrity
schemes similar to ours, but without making use of the random oracle method-
ology. The random oracle model is widely used, but the criticism remains that
random oracles cannot be instantiated in the real world.

Furthermore, it would be interesting to analyze the security of other tech-
niques that promise long-term security. For example, one can chain multiple
unconditionally hiding commitments, similar to chaining multiple timestamps,
in order to obtain a long-term binding and unconditionally hiding commitment
chain. The results from our paper could be used as a basis to formulate a security
model for such a construction and analyze its security.
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