Nearest Planes in Practice

Christian Bischof', Johannes Buchmann!, Ozgiir Dagdelen®, Robert
Fitzpatrick?, Florian Gopfert!, and Artur Mariano!

! Technische Universitit Darmstadt, Germany
2 Academia Sinica, IIS, Taiwan

Abstract. The learning with errors (LWE) problem is one of the most
attractive problems that lattice-based cryptosystems base their security
on. Thus, assessing the hardness in theory and practice is of prime impor-
tance. Series of work investigated the hardness of LWE from a theoretical
point of view. However, it is quite common that in practice one can solve
lattice problems much faster than theoretical estimates predict.

The most promising approach to solve LWE is the decoding method,
which converts an LWE instance to an instance of the closest vector
problem (CVP). The latter instance can then be solved by a CVP solver.
In this work, we investigate how the nearest planes algorithm proposed by
Lindner and Peikert (CT-RSA 2011) performs in practice. This algorithm
improves an algorithm by Babai, and is a state-of-the-art CVP solver.
We present the first parallel version of the nearest planes algorithm.
Our implementation achieves speedup factors of more than 11x on a
machine with four CPU-chips totaling 16 cores. In fact, to the best of
our knowledge, there is not even a single parallel implementation publicly
available of any LWE solver so far. We also compare our results with
heuristics on the running time of a single nearest planes run claimed
by Lindner and Peikert and subsequently used by others for runtime
estimations.

Keywords cryptanalysis, lattices, decoding attack, nearest planes, im-
plementation

1 Introduction

The Learning with Errors (LWE) problem has attracted a considerable amount
of attention since its introduction by Regev [26]. Along with its ‘sister problem’,
the Short Integer Solutions (SIS) problem, LWE enjoys currently unique security
guarantees, in effect asserting that ‘weak’ instances do not exist. Additional rea-
sons for the current popularity of LWE and its more efficient variant (Ring-LWE)
lie in their asymptotic efficiency, conjectured invulnerability to solution by large-
scale quantum computers, the relatively ‘lightweight’ atomic operations required
for their implementation and, lastly, the remarkable flexibility of LWE as a ba-
sis for cryptographic constructions. In consequence, a wide variety of schemes
based on LWE have been proposed in recent years, ranging from basic public

2 Bischof, Buchmann, Dagdelen, Fitzpatrick, Gopfert, Mariano

key encryption [19,22}25,26] and signature schemes [6}/11,1421] to advanced
schemes like fully and somewhat homomorphic encryption, e.g., [8,9,/12].

In contrast to strong theoretical results, however, the hardness of concrete
LWE instances (and of lattice problems in general) in practice is still a remark-
ably unexplored and, at times, bewildering area. Obviously, this comparative
neglect of practical hardness considerations presents a (arguably the principal
such) potential problem with respect to the practical adoption of lattice-based
cryptography in the future.

Restricting our attention to LWE, there are essentially three approaches to
solve LWE instances known at present. The indirect way of solving LWE is
by reducing LWE to a unique Shortest Vector Problem (uSVP) instance, and
solve this derived instance using an (approximate) SVP solver, such as LLL and
BKZ (2.0). This approach is also called the embedding attack |13}/17]. Dedicated
algorithms for solving LWE such as the combinatorial BKW algorithm [7] and
the decoding algorithm [19] have been subsequently proposed. Except for the
BKW algorithm, all of these algorithms for LWE rely on strong lattice reduction
(i.e., BKZ 2.0). We will not consider BKW in the following, since it requires
exponentially many samples and is therefore not practical in realistic scenarios.

While there are a series of works analyzing the embedding attack and the
BKW algorithm in practice |[IH3L[5L/15}/23,[24], the practical behavior of the de-
coding algorithm is still unexplored. In this work, we endeavor to enlighten this
area a little further by showing experiments with a parallel version of the near-
est planes attack proposed by Lindner and Peikert [19] following the decoding
approach.

1.1 Our Contribution

In [19], a brief discussion is given with regard to the parallelization of the nearest
planes algorithm, however, this consisted of largely high-level heuristic observa-
tions with no practical experiments or detailed consideration of such being made
(to the best of our knowledge).

Since the decoding attack is widely believed to be the currently optimal
method of attacking LWE in practice, we believe that a concrete instantiation
and concrete consideration of such issues is of significant importance. We present
experimental and theoretical results with regard to the performance of the near-
est planes algorithm for LWE, with an emphasis on the parallel implementation.
This includes exhaustive experiments with a concrete parallel implementation
of nearest planes that scales very well on multi-core machines. The results from
our experiments are used as a basis to predict the running time of nearest planes
on concrete LWE instances (here we follow the approach by Lindner and Peik-
ert [19]). We compare the results with other attacks and show that nearest planes
is in fact the most promising known attack (in practice and theory) on those
LWE instances.

Our sequential implementation can find up to 22 close lattice vectors per
second. Since the parallel version scales quite well, we can conclude that it should

Nearest Planes in Practice 3

be possible to find more than 2'¢ close lattice vectors per second, which is the
bound given by Lindner and Peikert [19].

1.2 Related Work

Lindner and Peikert [19] proposed the nearest planes algorithm and showed (to
some extent) how to simulate its performance. Albrecht et al. [2] evaluated the
performance of the BKW algorithm on LWE instances. BKW is a combinatorial
attack on LWE that is very suitable for parallelization, but only the sequential
variant was considered in [2]. Another attack on LWE is the embedding approach
by Kannan [17], the application of which was examined by Albrecht, Fitzpatrick
and Gopfert [1], but there is no natural way to parallelize the implementation.
To the best of our knowledge, there are no other studies on the parallelization
of an LWE solver.

Liu and Nguyen [20] presented recently a very interesting work related to
the nearest planes algorithm. They show that nearest planes can be viewed as
an instance of enumeration (more commonly studied with regard to solving the
exact shortest vector problem) and apply known improved variants of enumera-
tion to nearest planes to obtain theoretical and practical improvements over [19].
In particular, those improvements are randomization and pruning. The idea of
randomization is to apply the attack many times with parameters that provide
only a small success probability with random bases. Applying this approach with
a parallel implementation of nearest plane is easily possible. The idea of pruning
is to cut off parts of the search trees that contribute significantly to the run-
ning time but only slightly to the success probability. This leads to unbalanced
search trees and makes parallelization more difficult, but not impossible as the
parallel implementation of the pruned enumeration by Kuo et al. [18] shows (see
also [10,/16]).

While Liu and Nguyen show that their approach outperforms the nearest
planes as proposed in [19], we observe the following. In a nutshell, the goal
of |20] is to minimize the number of “false positives”, i.e the number of vectors
returned by nearest planes that are not close to the target. Our goal, however,
is to maximize the number of vectors we can find by calculating many nodes in
parallel. Hence, the approaches are complementary and a combination of both
approaches (for parallelization) would be very promising for future work.

2 Preliminaries

2.1 Lattice Background

For an integer n, we define [n] = {1,2,...,n}. We denote vectors by bold lower-
case letters and matrices by bold upper-case letters.

A lattice A is a discrete subgroup of the space R™. Lattices are represented by
linearly independent vectors bq,...,b, € R™, where n is called the dimension
of the lattice. If n = m, the respective lattice has full rank. We call a set of

4 Bischof, Buchmann, Dagdelen, Fitzpatrick, Gopfert, Mariano

vectors B = {by,...,b,} a basis of a lattice A(B) if the vectors are linearly
independent and n is equal to the rank of the lattice. The lattice A(B) is defined
by all integer combinations of elements of B, i.e.,

A(B){xeRmHal,...,anel:xZaibz} .
i=1

We are particularly interested in modular integer lattices. These are also the
lattices one considers when solving LWE instances. A modular (or g-ary) lattice,
for a given ¢ € N, is a full-ranked lattice A such that ¢Z™ C A C Z™. The
determinant of a full-ranked lattice A(A) is defined as det(A(A)) = det(A). It is
well known that the determinant of a lattice is well-defined (i.e. does not depend
on the particular basis) and the definition can be generalized for lattices that
are not full-ranked.

For a set of vectors B, we write mp.n(B)(t) for the projection of the vector t
onto the span of the vectors of B, i.e., Topan(m)(t) = B(BB) !B - t.

The Gram-Schmidt orthogonalization B = {by,...,b,} of a basis B is de-
fined through b; = b; — Tpan(by,....b;_1)(Di) for i € [n]. Note that the Gram-
Schmidt basis is typically not a basis of the lattice. The fundamental paral-
lelepiped of a basis B is given by

=1

and the shifted fundamental parallelepiped by

m 1 1
7)1/2(]3) = {V:Zaibi |VZ S [m] : —5 <oy < 2} .
=1

Analogously, we can consider the fundamental parallelepiped (and shifted paral-
lelepiped) determined by the Gram-Schmidt vectors of a given basis by replacing
b, in the above definitions with b; — we denote these cases by P(f’)) and 771/2(]§),
respectively. Note that, in these cases, the orthogonality of the basis vectors im-
plies that P(B) and P, /5(B) are n-dimensional rectangles.

The quality of a basis is typically measured with the Hermite delta 6. A
basis B = {by,...,b,} of an n-dimensional lattice A has Hermite delta § if
by || = 6™ det(A)/". Below we recall the learning with errors problem formally
whose hardness we investigate in this work.

Definition 1 ((Search) LWE Problem). Let n,q be positive integers, x be
a probability distribution on Z, and s be a secret vector following the uniform

distribution on Zy. We denote by Lé’@i the probability distribution on Zy x Zq
obtained by choosing a from the uniform distribution on Zg, choosing e according
to x and returning (a,c) = (a,(a,s) +e) € Zy x Z,. Search-LWE is the problem

of finding s € Zj; given pairs (a;,c;) € Zy x Zy sampled according to Lén,z

Nearest Planes in Practice 5

Naturally, we can extend this definition to ‘Matrix-LWE’ in which LWE samples
(with a common secret vector) are concatenated to obtain a vector t = As + e
and we are again asked to recover s. By adopting this view, we can now view
the matrix A as determining a g-ary lattice with As being a lattice point and
t being the ‘noisy’ lattice point, the recovery of which is required to solve the
LWE instance.

2.2 Definitions on Parallel Computing

We now recap some concepts pertaining to parallel computing. Threads (of com-
putation) are sequences of instructions that can be executed independently from
one another. Variables that are accessed by all threads are said to be shared
variables, while variables of which each thread has a private copy of are said to
be private variables. A task is computational work that is assigned to a thread.
For the sake of simplicity, we deal with tasks that are never preempted from
one thread to be assigned to another. Barriers are synchronization points for
threads. Threads are only released from a specific barrier when every thread in
the system reaches it. A parallel zone denotes a region of the code that is exe-
cuted by all the threads in the system. Threads are created at the beginning of
the parallel zone and die at the end of the region. Finally, a single zone denotes
a region of the code that is executed by a single, unspecified, thread.

3 The Decoding Attack

3.1 The Idea

Since LWE is essentially a closest vector problem instance (given a modular
lattice L and a target vector t, find the lattice vector that is closest to t), one
natural approach is to apply the well-known nearest plane algorithm (due to
Babai [4]) to recover a lattice point relatively close to the ‘noisy’ target point.
In short, the idea of nearest plane is to solve the problem by dealing with one
dimension after the other. For every basis vector b;, it subtracts the integer
multiple ¢; of b; that minimizes the distance to the hyperplane spanned by the
basis vectors by, ..., b;_; from the target vector and continues with the smaller
basis by,...,b;_; and the new target vector. At the end, it returns the sum of
all vectors ¢;b;, which is obviously a lattice vector.

Understanding why the result is (to some extent) close to the target vector
requires more effort, but fortunately there is an easy geometric interpretation of
the output: When called on an LWE instance t = As+ e, the (polynomial-time)
algorithm nearest plane returns the unique lattice point v such that t —v = e
lies in the shifted Gram-Schmidt fundamental parallelepiped P;,2(B).

One phenomenon which arises when examining lattices bases is that the
logarithms of the norms of the Gram-Schmidt vectors appear to decline linearly,
this phenomenon being known as the ‘Gram-Schmidt Log Assumption’. As noted
in 19|, this phenomenon also manifests in the case of the modular lattices arising

6 Bischof, Buchmann, Dagdelen, Fitzpatrick, Gopfert, Mariano

from LWE. If the last vectors in the Gram-Schmidt basis are too short, the
‘search rectangle’ Py ,5(B) will be long and narrow and the returned point will
in general be far from the actual closest lattice point.

One natural way to improve the success probability is to apply a basis re-
duction (typically BKZ) before running nearest plane. This will lead to “more
orthogonal” basis vectors, which leads to a smaller gradient being for the log of
norms of the Gram-Schmidt vectors and therefore to a search rectangle that is
less narrow in the last dimension.

Another natural improvement and forming the crux of the Lindner-Peikert
algorithm is to recurse on more than one plane at each step, i.e., instead of
subtracting one multiple of the last basis vector, we subtract several, each leading
to a vector close to the span of the other basis vectors. Each such vector value
then leads to a further set of recursive calls as opposed to just one. Clearly,
however, if we even deviate from the nearest plane algorithm by recursing on
not just the closest plane but the closest and second-closest plane at each level,
we obtain exponential complexity. In the nearest planes algorithm, the number
of such branches at each level is specified by a vector d, leading a generalization
with the original nearest plane algorithm corresponding to d = (1,1,...,1).
Similarly to Py /o (]~3), the search rectangle of nearest plane, we define

_ m _ d; d;
P(li/2(B) = {V = Zaibi | Vi € [m] : —5 <a; < 2}
=1

as the search rectangle of nearest planes.

To find the optimal choice of the vector d, assuming the Gram-Schmidt
Log assumption holds, we can observe that, to minimize the probability of the
exact closest vector not being found through our projections, we should recurse
on more planes when ||b;|| is small and on fewer planes when |/b;|| is large.
In general, as observed in [19], the entries of d should be chosen to maximize
min;(d; - ||b;]])- Such issues are dealt with in the work of Lindner and Peikert,
with natural optimal conditions being arrived at. However, since this work is
concerned only with the nearest planes algorithm and not with obtaining the
optimal distribution of time between the pre-processing and the main algorithm,
we do not discuss such issues further.

3.2 Variants of Nearest Planes

Nearest planes traverses the tree as follows: for a given target vector t, it calcu-
lates a new target vector t' and calls nearest planes with the new target vector
(i.e. goes down the tree by one level). In every node, a part of the result is calcu-
lated. To get the final results, the algorithm goes up the tree again, combining
the partial results of every level. In contrast to this, we have implemented a
variant which has a slightly different workflow. Instead of going up and down
on the tree in a depth-first manner, we go down and right in a breadth-first
manner. This implies that we do not accumulate the target vector when we go

Nearest Planes in Practice 7

)
O
Adequate
level

./o\oo<J
|

AL
]

Fig. 1. Map of the algorithm’s workflow on a tree, partitioned into tasks, for d =
{1,2,4}, for a number of threads > 4.

~
)
-
—~
s

—~

O 0 O O

@)

) (

up in the tree, but we pass the parts of the target vector to the lower nodes and
accumulate while we go down on the tree. In the next section we describe in
more detail our chosen variant for implementation.

4 Parallel Implementation

In this section we explain the mapping of the algorithm’s workflow on a weighted
tree and the parallelization of the traversal and computation of the tree.

4.1 Mapping of the Workflow on a Weighted Tree

The workflow of the algorithm can be viewed as a traversal of a tree, with
[T, _, d; is the number of nodes in level k. The values in d dictate the number
of branches per level on a reversed order: position d,, indicates the number of
branches on the first level, d,,_; indicates the number of branches on the second
level, and so on.

Figure [1] shows a tree with an array d = {1,2,4}. A new target vector is
calculated for each node, on a certain level k, and used in the level k£ + 1 by its
child nodes. The processing of vectors in a given level k + 1, after the execution
of nodes in the level k, is a process referred to as going down in the tree.

As opposed to direct implementation of nearest planes [19], which does not
need to carry vectors from one level of the tree to the other, our implementation
hands error vectors from a given level k to its subsequent level k + 1. This is
equivalent to process the tree in a depth-first manner, versus to process the tree
in a breadth-first manner, in our implementation. This has a direct impact in
data collection, further discussed in Section [4.3]

4.2 Approach

Our parallel implementation is based on creating a task for each branch of the
tree, starting at some level, as seen in Figure 1| (tasks are in different colors).

8 Bischof, Buchmann, Dagdelen, Fitzpatrick, Gopfert, Mariano

Tasks are very well suited for the parallelization of this algorithm because, un-
like other abstractions, such as threads, it is easy to specify parallel workload
(branches of the tree). Our parallelization scheme is based on sequentially exe-
cuting (and going down) a certain number of levels on the tree, until an adequate
level is reached. Conceptually, an adequate level k is a level which satisfies:

1. The number of nodes and child nodes on the level provide enough computa-
tion to utilize the capacity of all running threads

2. The computation associated to the levels between 1 and & is not a significant
part of the overall computation of the tree.

This means that the adequate level depends on the number of running threads
and on the amount of computation required by the nodes on the levels that
precede it. Then, once the adequate level has been reached, the implementation
defines as many tasks as the number of nodes on the level. Each task entails
the computation of each node on the adequate level and its child nodes. Tasks
can then be executed in parallel, by unspecified computation units, without any
need for synchronization. There are a couple of data structures and variables
that need to be initialized accordingly. For example, each task receives its own
target vector and has his own variable for len.

Each task traverses itself a tree, rooted by the node that is on its starting
level. All tasks receive the value of the adequate level, so that they can calculate
the number of child nodes that they have, by accessing the vector d accordingly.

4.3 Implementation

In our implementation, we calculate the adequate level as the first level on the
tree that has at least as many nodes as the number of running threads. Since the
adequate level, as it is defined by us, is straightforward to compute, we split the
original loop into two different loops, as shown by steps 6 and 16 in Algorithm
From here on, we refer to these loops as loops 1p1 and 1p2, respectively. Note
that it is also trivial to compute the number of nodes #nodes in the adequate
level.

In addition to this, our parallel implementation differs from the Lindner and
Peikert implementation in two other ways. The first difference is that, instead
of going through the tree in a recursive depth-first manner, we traverse it iter-
atively in a breadth-first manner. The second difference is that we do not add
up multiples of the basis vectors to find a lattice vector. Instead, we update the
target vector by subtracting a multiple of a basis vector. This leads to an error
vector (i.e., a vector e such that the original target vector subtracted by e is
a lattice vector), which can easily be used to calculate the desired close lattice
vector.

This parallel execution is implemented with OpenMP. Our implementation
has a parallel region, that creates as many threads as defined by the user. Inside
the parallel region, a single region (region executed by one, unspecified, thread)
embodies both loops 1p1 and 1p2. These regions are represented in Algorithm

Nearest Planes in Practice 9

Algorithm 1: Nearest Planes
Input: B={by,...,b,} CR™,dc (Z")™, t € R™, al €N, #nodes € N
Output: All error vectors e € 73‘11/2({1317 ..., b, }) such that t —e € A({b1,...,b,})
1 begin
2 calculate Gram-Schmidt basis B = {Bl, ey f)m};
3 OpenMP parallel region
4 OpenMP single region
5 len =1; -
6 fork=n; k>n—al; k=k—1do
7 for i =0;i<len; i=1i+1do
8 Let {cl, N Cdk} € 7% be the distinct integers closest to <g:‘;gli>;
9 for j=1;j<dp;j=jj+1do
10 |t ida,+s5 =ti —cj by
11 end
12 end
13 t=1t"
14 len = len - dg;
15 end
16 for node = 0; node < #nodes; node = node + 1 do
17 create task
18 len = 1;
19 fork=n—-al—-1;k>1;k=k—1do
20 for : =0;i<len; i=1+1do
21 Let {c1,...,¢ca,} € 7% be the distinct integers closest to
(by.t) .
(by,by)’
22 for j=1;j<dg; j=jj+1do
23 ‘ t*?‘é‘iﬂrj =t; —cj - by
24 end
25 end
26 t=1t",
27 len = len - dg;
28 end
29 end
30 end
31 end
32 end
33 return t;
34 end

steps 3 and 4. While both loops are executed sequentially, by a given thread ¢, ¢
creates #nodes tasks in 1p2, each of which entailing the body of the 1p2 loop.
As soon as tasks are created, they are assigned to one thread, which means that
the issue of tasks is, very likely, overlapped with the execution of other tasks, by
a different thread. The OpenMP runtime manages the task scheduling among
the running tasks.

Workload balance. The adequate level is defined to be the first level on the tree
that contains a number of nodes that is at least as big as the number of threads.
This is because all the tasks are, computationally speaking, very well balanced
(in terms of FLOPS they are, in fact, equal). This means that, as long as (1)
the number of nodes in the adequate level is a multiple of the computing units,
(2) the computing units compute the same number of tasks and (3) computing
units are equally capable, the workload distribution is balanced.

10 Bischof, Buchmann, Dagdelen, Fitzpatrick, Gopfert, Mariano

Data collection. A vector of #nodes pointers is allocated outside of the parallel
region, and defined as shared in the parallel region, which means that every
thread has access to it. As tasks have an id (from 1 to #nodes), it is easy for
threads to write in a different location, that will be available outside of the
parallel region. Once the parallel region is finished, which means that every task
is also finished (there is an implicit barrier at the end of the parallel region), the
structure is accessed and the shortest (error) vector among all the stored vectors
is chosen.

5 Results

m = 404 | m =517
number of enumerations
912 ‘ 215 ‘ 918 ‘ 912 ‘ 915 ‘ 918
Threads| R S R S R S R S R S R S
1 7.04|1.00 |56.03| 1.00 (446.93| 1.00 {11.65| 1.00 [92.63| 1.00 |736.19| 1.00
2 3.61| 1.95 [28.54| 1.96 [227.43| 1.97 | 5.93 | 1.96 [47.14| 1.96 |373.78| 1.97
4 1.87|3.77 |14.88| 3.77 |117.18| 3.81 | 3.06 | 3.81 |24.19| 3.83 |192.71| 3.82
8 1.01] 6.99 | 8.04 | 6.97 | 63.81 | 7.00 | 1.65 | 7.07 |13.16| 7.04 |104.20| 7.06
16 0.66|10.71| 5.36 |10.45| 42.01 |10.64| 1.08 |10.75| 8.64 |10.72| 67.93 |10.84

m = 597 ‘ m = 667
number of enumerations
912 ‘ 915 ‘ 218 ‘ 912 ‘ 915 ‘ 918
Threads| R S R S R S R S R S R S
1 15.54| 1.00 [124.31| 1.00 {979.78| 1.00 |19.36| 1.00 |156.34| 1.00 |1229.38| 1.00
2 7.88 | 1.97 | 63.03 | 1.97 [499.26| 1.96 | 9.91 | 1.95 | 78.20 | 2.00 | 624.76 | 1.97
4 4.07 | 3.82 | 32.37 | 3.84 |257.64| 3.80 | 5.07 | 3.82 | 40.36 | 3.87 | 321.76 | 3.82
8 2.21|7.05|17.45 | 7.12 (140.85| 6.96 | 2.75 | 7.04 | 21.83 | 7.16 | 173.44 | 7.09
16 1.43 |10.86| 11.46 |10.85| 92.28 |10.62| 1.79 |10.80| 14.22 |10.99| 112.54 |10.92

Table 1. Runtime in seconds (R) and speed-up (S) for our implementation for LWE
instances proposed in [19]

We evaluated the running time of nearest planes on LWE instances proposed
by Lindner and Peikert [19] for their encryption scheme. For a given secret size
n, we selected the optimal lattice dimension m for a basis that is reduced with
Hermite delta 6 = 1.006, i.e., m = y/nlog(g)/log(1.006).

Given the runtime of our nearest planes implementation, we can estimate the
time we require to solve LWE instances of practical dimensions with high prob-
ability. To this end, we select the encryption scheme by Lindner and Peikert [19]
and revisit the proposed security with respect to our practical algorithm. We
consider the sequential attack and attackers that are in possession of 128 and
221 cores.

There are two main reasons to consider 128 cores. Firstly, it is not common
that shared memory CPU system have higher core counts. Secondly, our exper-
iments show that the sequential runtime of nearest planes is about 272 seconds,
which means that 128 cores can output 128 - 2° = 26 close vectors per second,
which is exactly the bound proposed by Lindner and Peikert [19]. Those values

Nearest Planes in Practice 11

180
160
140

2 120

Execution Time (s)

Execution Time (s)
-
238
288
l/ l/ |

=

2 4 8 16 1 2 4 8 16

y

Number of threads Number of threads Number of threads

(a) #enum = 2'? (b) #enum = 25 (c) #enum = 2'®

Fig. 2. Performance of our implementation executing the nearest planes algorithm on
random lattices, for dimensions 404, 517, 597 and 667, with #enum = 2'% in (a),
#enum = 2" in (b) and #enum = 2'% in (c). Runtime in seconds (less is better).

can therefore be used to predict the security of the instances with their runtime
assumption against the decoding attack with randomization and a perfect bal-
ance between the basis reduction and the decoding step. For an adversary with
many resources, we consider a parallel attack on 22! cores, which is about the
number of cores of the leading supercomputer in the last top500 listﬂ a rank
for high-performance computers.

Our experiments confirmed that the runtime of nearest planes is nearly linear
to the number of returned vectors (#enum in the following), see Table |1 and
Figure[2] Considering the fact that our implementation is not optimal, it is rea-
sonable to assume that an attacker has an implementation that scales (almost)
perfectly linear. It is not surprising that the time for nearest planes depends
on the dimension of the lattice. Nevertheless, we choose the runtime of nearest
planes for our smallest parameter set as a lower bound, which renders our es-
timates very conservative. Together with the prediction of nearest planes given
in [19], it is possible to find the Hermite delta and number of enumerations that
distribute the computational amount equally between nearest planes and BKZ
and minimize the expected computational effort.

Acknowledgments. Ozgiir Dagdelen is supported by the German Federal Min-
istry of Education and Research (BMBF) within EC-SPRIDE. This work has
been co-funded by the DFG as part of project P1 within the CRC 1119 CROSS-
ING.

References

1. Albrecht, M., Fitzpatrick, R., Gopfert, F.: On the efficacy of solving LWE by
reduction to unique-SVP. In: to appear at ICISC. Lecture Notes in Computer
Science (2013)

2. Albrecht, M.R., Cid, C., Faugére, J.C., Fitzpatrick, R., Perret, L.: On the com-
plexity of the BKW algorithm on LWE. Designs, Codes and Cryptography (2013)

3 http://wuw.top500.org/

http://www.top500.org/

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Bischof, Buchmann, Dagdelen, Fitzpatrick, Gopfert, Mariano

Albrecht, M.R., Faugere, J.C., Fitzpatrick, R., Perret, L.: Lazy modulus switching

for the BKW algorithm on LWE. In: PKC, vol. 8383, pp. 429-445 (2014)

Babai, L.: On Lovasz’ lattice reduction and the nearest lattice point problem.
Combinatorica 6(1), 1-13 (1986)

Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary LWE. Cryptology

ePrint Archive, Report 2013/839 (2013), http://eprint.iacr.org/

Bai, S., Galbraith, S.D.: An improved compression technique for signatures based

on learning with errors. In: CT-RSA. pp. 28-47 (2014)

Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM 50(4), 506-519 (2003)

Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic en-

cryption without bootstrapping. In: ITCS. pp. 309-325 (2012)

Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-lwe
and security for key dependent messages. In: Advances in Cryptology - CRYPTO
2011, pp. 505-524 (2011)

Dagdelen, O., Schneider, M.: Parallel enumeration of shortest lattice vectors. In:
Euro-Par 2010 - Parallel Processing, vol. 6272, pp. 211-222 (2010)

Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal gaussians. In: Advances in Cryptology - CRYPTO 2013. pp. 40-56 (2013)
Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford, CA,
USA (2009)

Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice
reduction problems. In: CRYPTO, vol. 1294, pp. 112-131 (1997)

Giineysu, T., Lyubashevsky, V., Péppelmann, T.: Practical lattice-based cryptog-
raphy: A signature scheme for embedded systems. In: CHES. pp. 530-547 (2012)
Han, D., Kim, M.H., Yeom, Y.: Cryptanalysis of the paeng-jung-ha cryptosystem
from PKC 2003. In: PKC, vol. 4450, pp. 107-117 (2007)

Hermans, J., Schneider, M., Buchmann, J., Vercauteren, F., Preneel, B.: Parallel
shortest lattice vector enumeration on graphics cards. In: AFRICACRYPT 2010,
vol. 6055, pp. 52-68 (2010)

Kannan, R.: Minkowski’s convex body theorem and integer programming. Mathe-
matics of operations research 12(3), 415-440 (1987)

Kuo, P.C., Schneider, M., Dagdelen, O., Reichelt, J., Buchmann, J., Cheng, C.M.,
Yang, B.Y.: Extreme enumeration on GPU and in clouds. In: CHES (2011)
Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption.
In: Topics in Cryptology — CT-RSA 2011. pp. 319-339 (2011)

Liu, M., Nguyen, P.: Solving BDD by enumeration: An update. In: Topics in Cryp-
tology — CT-RSA 2013, pp. 293-309 (2013)

Lyubashevsky, V.: Lattice signatures without trapdoors. In: Advances in Cryptol-
ogy - EUROCRYPT 2012. pp. 738-755 (2012)

Micciancio, D.; Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: Advances in Cryptology — EUROCRYPT 2012, pp. 700-718 (2012)

Nguyen, P.: Cryptanalysis of the goldreich-goldwasser-halevi cryptosystem from
crypto '97. In: CRYPTO, vol. 1666, pp. 288-304 (1999)

Plantard, T., Susilo, W.: Broadcast attacks against lattice-based cryptosystems.
In: ACNS, vol. 5536, pp. 456-472 (2009)

Poppelmann, T., Giineysu, T.: Towards practical lattice-based public-key encryp-
tion on reconfigurable hardware. In: Selected Areas in Cryptography. pp. 68-85
2013

](?{egeg, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC. pp. 84-93 (2005)

http://eprint.iacr.org/

	Nearest Planes in Practice

