
The Love/Hate Relationship with the C
Preprocessor: An Interview Study
Flávio Medeiros1, Christian Kästner2, Márcio Ribeiro3, Sarah
Nadi4, and Rohit Gheyi1

1 Federal University of Campina Grande, Brazil
2 Carnegie Mellon University, USA
3 Federal University of Alagoas, Brazil
4 Technische Universität Darmstadt, Germany

Abstract
The C preprocessor has received strong criticism in academia, among others regarding separation
of concerns, error proneness, and code obfuscation, but is widely used in practice. Many (mostly
academic) alternatives to the preprocessor exist, but have not been adopted in practice. Since
developers continue to use the preprocessor despite all criticism and research, we ask how practi-
tioners perceive the C preprocessor. We performed interviews with 40 developers, used grounded
theory to analyze the data, and cross-validated the results with data from a survey among 202
developers, repository mining, and results from previous studies. In particular, we investigated
four research questions related to why the preprocessor is still widely used in practice, common
problems, alternatives, and the impact of undisciplined annotations. Our study shows that de-
velopers are aware of the criticism the C preprocessor receives, but use it nonetheless, mainly
for portability and variability. Many developers indicate that they regularly face preprocessor-
related problems and preprocessor-related bugs. The majority of our interviewees do not see any
current C-native technologies that can entirely replace the C preprocessor. However, developers
tend to mitigate problems with guidelines, even though those guidelines are not enforced consist-
ently. We report the key insights gained from our study and discuss implications for practitioners
and researchers on how to better use the C preprocessor to minimize its negative impact.

1998 ACM Subject Classification D.3.4 Processors

Keywords and phrases C Preprocessor, CPP, Interviews, Surveys, and Grounded Theory

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2015.999

1 Introduction

The C preprocessor is a language-independent tool for lightweight meta-programming that
fills a need, among others, for portability and variability. The preprocessor is widely used in
practice. It is essentially used in all projects written in C and C++, including many well-
known databases and operating systems. In academia, however, the preprocessor has received
strong criticism since at least the early 90s. Researchers have criticized its lack of separation
of concerns [5, 15, 25, 52, 57], its proneness to introduce subtle errors [6, 15, 33, 40, 44, 58], and
its obfuscation of the source code [3, 6, 12,42,52]. Additionally, its complexity hinders tool
support available in other languages, such as automating refactorings [20,28,29,43,66,67].
Many studies have found bugs related to preprocessor use [1, 21, 29, 44, 60, 62]. The C
preprocessor essentially has not changed since the 70s, but researchers have proposed several
alternatives, such as syntactical preprocessors [8, 43, 68], aspect-oriented programming [2, 42]
and various forms of metaprogramming. However, such alternatives have not been adopted

© Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Sarah Nadi and Rohit Gheyi;
licensed under Creative Commons License CC-BY

29th European Conference on Object-Oriented Programming (ECOOP’15).
Editor: John Tang Boyland; pp. 999–1022

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.999
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1000

in practice. Some projects adopt code guidelines such as “code cluttered with #ifdefs is
difficult to read and maintain, don’t do it” in the Linux kernel.1 Although some tools could
enforce such guidelines [6, 40,56,60], researchers show that they are not followed strictly in
practice [12,40].

Since developers continue to use the C preprocessor despite all criticism and research, this
paper asks the basic question: How do practitioners perceive the C preprocessor?
Do developers perceive similar problems as researchers indicate, or are problems exaggerated
in the research literature? How do developers address potential problems and what kind
of alternatives do they seek, if any? Are we possibly faced with a technology-transfer or
education problem? Answering such questions provides guidance on research, tool building,
technology transfer, and education.

To understand how developers perceive the C preprocessor, we interviewed 40 developers
and cross-validated our results with (a) a survey among 202 developers, (b) results mined
from software repositories, and (c) prior studies in this field. Complementing prior studies
that analyzed how the preprocessor is used in source code, we actually talked to developers
to solicit perceptions and opinions. We focus primarily on conditional compilation, because
it is more controversial and error prone than lexical inclusion of files and macro expansion.
In our research, we rigorously follow established empirical methods for interviews [17,36],
surveys [11], and text analysis [32]. Specifically, we follow a research method called grounded
theory [4,10]. We report the key insights gained in our interviews (and validated with the
survey and other empirical data) and derive implications for practitioners and researchers.

Our results suggest that developers perceive the preprocessor as an elegant solution to
handle portability and variability, but they are also well aware of the problems discussed in
the academic literature. Developers typically report that they try to avoid preprocessor use
or follow code guidelines to minimize problems, such as avoiding #ifdef directives inside
function bodies and avoiding nesting of conditional directives beyond three levels. Most
developers (over 80%) particularly agree to avoid #ifdef blocks that do not align with the
code structure (coined undisciplined annotations [40]) because they negatively impact code
comprehension, maintainability and error proneness; we detected that actually only few
developers introduced 85% of all such cases.

Developers often deal with bugs related to preprocessor use. Most developers (67%) agree
these bugs are easier to introduce, and 74% believe that they are harder to detect than other
bugs. Our findings suggest that developers use inefficient testing strategies that normally do
not detect bugs related to conditional compilation. Open-source developers instead rely on
support from end-users to test the source code on different platforms and report bugs.

When asked for alternatives to preprocessor use, developers mainly discussed different
encodings, C-language mechanisms, and build-system mechanisms. In contrast, alternatives
such as syntactical preprocessors [8, 43, 68] and aspect-oriented programming [2, 42] have not
been mentioned by any of our interviewees. Developers argued that new technologies would
hinder adoption, since the C compiler is available for many platforms and the preprocessor is
always there to deal with variability.

In summary, the main contributions of this paper are:
We interviewed 40 developers to better understand how developers perceive the practical
use of the C preprocessor and analyze the results using grounded theory.
We cross-validated our interview findings by surveying 202 developers and comparing
them with results from repository mining and prior studies.

1 Linux kernel guidelines for patch submission in Documentation/SubmittingPatches.

F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi and R. Gheyi 1001

We discuss results and implications of our study for researchers and practitioners.

2 State of the Art

The preprocessor is widely used in practice, in essentially all projects written in C and C++.
It is executed during the compilation process and performs three interacting tasks: (a) it
lexically includes files (#include), (b) it expands macros (defined with #define), and (c)
it conditionally excludes part of the source code depending on which and how macros are
defined (#ifdef, #if, etc). All three functions of the C preprocessor have been criticized.

Lexical inclusion causes large amounts of I/O operations during compilation and slows
down the build process. For example, an average file in the Linux kernel includes over
300 header files [29]. There is movement in the C community towards a proper build
system to replace #include directives [23].
Lexical macros allow all kinds of potential problems [12] since they have no notion of
structure, hygiene, or capture avoidance that advanced macro systems support [9, 16,
31,43,68]. Developers avoid these problems by following certain patterns when defining
macros [12], which are broadly adopted and also checked by a number of static analysis
tools [56]. In addition, C++ introduced several language features to replace common
uses of preprocessor macros [34,46].
Since conditional compilation removes code before compilation, it causes compilers and
many other analysis tools to see only parts of the code. It has been criticized as limiting
separation of concerns, as obfuscating the code, as being error prone, and as preventing
tool support, as we will discuss next. Interactions of conditional compilation with lexical
inclusion and macro expansion make it even harder to reason about the preprocessor
execution.

In the following, we discuss challenges induced by the C preprocessor (especially condi-
tional compilation, because inclusion and macro expansions are relatively well understood)
and available mitigation strategies, as they are discussed in the research literature. These
challenges guided us in the design of our study to analyze whether and how the perception
of developers differs from that in the research literature.

2.1 Readability and separation of concerns
Many research studies criticized the preprocessor regarding its limited separation of concerns
and code obfuscation, which make maintenance and code comprehension difficult [6, 12,
19, 29, 40]. In particular, when conditional directives are used at fine granularity and are
strongly scattered, it can be difficult to follow the control flow logic [3, 52]. Such source
code is sometimes referred to as the “#ifdef hell” by developers [42]. Long and deeply
nested conditional compilation directives also can make it difficult to see when specific
code fragments are included [5, 33, 52]. Several researchers have proposed aspect-oriented
programming as an alternative [2, 42], where optional code would be separated into distinct
code artifacts and woven together at compile time, but we are not aware of any adoption
beyond some research projects.

A specific practice that has been discussed in detail is the use of undisciplined annotations:
conditional compilation directives that do not align with the code structure as illustrated
in Figure 1. Undisciplined annotations have been related to error proneness [12,29,40,44],
hindered code understanding and maintainability [6, 12], and limitations in tool support (see
below) [6, 18, 19, 51]. An empirical study by Liebig et al. [40] revealed that most conditional

ECOOP’15

1002

if (b_ffname != NULL
#ifdef FEAT_NETBEANS
 && netbeansReadFile
#endif
){
 // lines of code
}

 mfp = open(mf_fname
 #ifdef UNIX
 , (mode_t)0600
 #endif
 #if defined (MSDOS)
 , S_IREAD | S_IWRITE
 #endif
);

 #if defined (GUI_W32)
 void msgNetbeansW32(
 #else
 void msgNetbeans(Xt client,
 #endif
 XtInputId *id){
 // lines of code..
 }

Figure 1 Real code snippets taken from Vim with undisciplined annotations.

compilation directives in 40 open source C projects are disciplined, but 15.6% of all #ifdef
blocks do not align with the code structure.

2.2 Combinatorial explosion and parsing unpreprocessed C code

Conditional compilation decides which code fragments to include (including other preprocessor
directives) depending on the values of macros. The number of possible preprocessed variants
explodes exponentially with the number of macros involved in #ifdef and similar directives.
C projects often have a large number of conditional directives depending on many macros; for
instance, which parts of the Linux kernel are compiled depends on more than 12 thousand
macros [38,60].

A separate analysis of every possible preprocessed variant simply does not scale in any but
the smallest systems. A typical strategy to cope with the combinatorial explosion is through
sampling, for example, by analyzing representative or large variants with most conditional
code included. For more systematic sampling, researchers have proposed combinatorial
testing strategies [26, 49] and strategies that maximize configuration coverage [60]. Sampling
is inherently incomplete though and may not discover issues occurring only in few variants
due to interactions or complex #if conditions.

Some researchers have started to investigate tools that can parse unpreprocessed code
and preserve all compile-time choices during the analysis. While earlier tools used unsound
heuristics or supported only specific usage patterns of the preprocessor (e.g., requiring
disciplined annotations) [6,19,51], more recent tools as TypeChef [29,41] and SuperC [22]
can accurately parse and analyze unpreprocessed C code, covering all configurations. In the
product-line community, such analyses are called family-based analyses [64].

2.3 Error proneness and guidelines

Previous studies discussed the error-prone characteristics of the preprocessor [12, 15,58] and
found many bugs related to conditional compilation [1, 12, 21, 30, 44, 53, 60, 61], ranging from
dead code to syntax and type errors and to behavioral issues and memory leaks. Spencer
and Collyer [58] argue that many macro combinations are tested and often do not even make
sense. Others argue that the simplicity of the C preprocessor enables developers to make
ad-hoc extensions instead of restructuring the code, which leads to poor code quality and
bugs related to preprocessor usage [6, 15].

Code guidelines have been developed to prevent certain common problems, e.g., undiscip-
lined annotations or scope issues with macros [12, 40, 56]. Even though some of them can be
enforced automatically by analysis tools [40,56], research shows that such code guidelines
are often but not strictly followed [12,40].

F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi and R. Gheyi 1003

2.4 Difficulty of developing tool support and syntactic preprocessors
Finally, preprocessor directives also make the development of tool support more diffi-
cult [22, 29, 40]. Even simple tasks as removing obsolete macros or identifying dead code
require sophisticated analyses [6, 61]. Developing refactoring engines for C code is extremely
challenging due to the need to parse unpreprocessed code (possibly with undisciplined an-
notations) and the need to deal with macro expansion [18,20,39,67]; it is challenging even
when conditional compilation is not considered [50,59].

Many academic proposals for preprocessor alternatives are driven by a desire to provide
better tool support and analysis. For example, ASTEC is a syntactic preprocessor that
enables precise refactoring [43]. Several other syntactic preprocessors or related environments
have been proposed [8, 9, 13,27,65,68]. Some researchers propose means to refactor existing
C code to alternative implementations [2, 43, 65] or at least undisciplined to disciplined
annotations [19,45,55]. We are not aware of any adoption of these alternatives in practice
though.

All prior studies on the C preprocessor that we are aware of were based on conceptual
arguments or evidence extracted from software repositories. Our study is designed to elicit
the perception of developers by talking to them.

3 Research Method

The goal of our research study is to analyze the strengths, drawbacks, and alternatives to the
C preprocessor, as perceived by C developers. We specifically collect information about the
C preprocessor that cannot be observed by analyzing only artifacts as in previous studies.
We performed this research study primarily by interviewing developers and cross-validating
our results with survey questions, other information from software repositories, and related
studies. In this section, we give an overview of our research method. Details can be found in
the appendix.

For this research, we combine several empirical research methods, including interviews,
surveys, and mining software repositories. Empirical research methods allow us to investigate
how human developers think and behave. We study not only the outcome of the development
process, but assess also their opinions and perceptions. If not conducted carefully, empirical
research can result in biased and superficial results. However, whole communities of research-
ers have investigated how to perform empirical studies that reduce biases and enable reliable
and reproducible research despite potentially vague research materials. For example, following
strict protocols and documenting steps and research results when analyzing transcribed
interviews can mitigate many biases that researchers might otherwise introduce. In addition,
cross-validating results from different sources is essential. This way, results complement and
confirm each other and form a more reliable bigger picture. In this research, we strictly
followed established research methods and cross-validated our results across several sources
and with prior research results, as we will explain.

3.1 Research Questions
Our research is motivated by the mismatch between the critique that the C preprocessor has
received from academics [6, 12,19,29,40,58] and the number of alternatives [2, 8, 42,43,68]
on the one side and the broad use in practice on the other side. Specifically, we raise the
following research questions:
RQ1. Why is the C preprocessor still widely used in practice?

ECOOP’15

1004

RQ2. What do developers consider as alternatives to preprocessor directives?
RQ3. What are common problems of using preprocessor directives in practice?
RQ4. Do developers care about the discipline of preprocessor annotations?
We present the results for each research question separately in Sections 4–7.

3.2 Research Strategy
We performed our research in three phases, designing three studies. In the first phase, we
analyzed the literature and identified the research questions stated above (see also Section 2).
In the second phase, we performed semi-structured interviews with 40 developers (Study 1).
In the third phase, we cross-validated our interview findings by conducting a survey among
developers contributing to open source C projects (Study 2; 202 responses), mining data from
24 software repositories (Study 3), and comparing our results with prior research results.

3.3 Corpus
For all three studies, we use a corpus of 24 open source C systems. With the revision history
of the systems in the corpus, we identified candidate interviewees and survey participants,
and we studied technical aspects. We selected the systems in the corpus based on prior
corpus studies on the C preprocessor [12, 38], covering a range of different domains and sizes
(2.6 thousand to 7.8 million lines of code). We selected only projects for which we could
find developer contact information in commits. The corpus includes the following projects:
Apache, Bash, Bison, Cherokee, Dia, Flex, Fvwm, Gawk, Gnuchess, Gnuplot, Gzip, Irssi,
Libpng, Libsoup, Libssh, Libxml2, Lighttpd, Linux, Lua, M4, Mpsolve, Rcs, Sqlite, and Vim.

3.4 Study 1: Interviews
We started our study by interviewing developers on how they perceive the C preprocessor.
To reduce any potential bias and to make our study replicable, we followed the established
exploratory research method grounded theory [4, 10]. We performed semi-structured inter-
views [17,36], which are informal conversations where the interviewer lets the interviewees
express their perception regarding specific topics. To elicit not only the foreseen information,
but also unexpected data, we avoided a high degree of structure and formality and, instead,
used open-ended questions. To cover the topic broadly, our questions evolved during the
interview process based on gained insights [4, 10]. We followed standard guidelines regarding
how to perform interviews [17,36]. For example, we explained the purpose of the interviews,
we provided clear transitions between major topics, we did not allow interviewees to get
off topic, we allowed interviewees to ask questions before starting the interview, and we
scheduled the interviews beforehand.

The interviews were grounded in research questions RQ1–4. We typically started an
interview by asking developers about their experience with the C preprocessor and then
tried to cover 4-6 different topics. The topics evolved during the interviews, and we asked
different topics to different developers based on their background and answers. This is a
standard approach to cover a topic broadly and qualitatively. Questions included ‘In which
situations do developers use conditional directives?’, ‘How do developers test different macro
combinations in their code?’, and ‘What do developers think about directives that split up parts
of C constructions?’ ; see the appendix for a complete list. In addition to these questions, we
used code snippets to ask developers concrete questions about code to encourage them to
give more concrete answers. For each interviewee, we searched through the code repositories

F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi and R. Gheyi 1005

and selected code snippets related to that specific developer. We sent such snippets by email
before the scheduled interview.

We performed 10 phone and 30 email interviews. We initially contacted developers via
email presenting some information about our project and asked them to participate. We
encouraged developers to perform phone interviews, but we also provided the alternative
to answer our questions via email. When necessary, emails interviews involved back and
forth conversations (i.e., a dialogue between researcher and participant). We sent at least
one additional email with further questions in 19 (63%) out of the 30 email interviews we
conducted. This and the fact that we cover the same questions in both phone and email
interviews allows us to discuss them together as interviews, and not separately as phone
and email interviews. To analyze the interview transcripts, we again followed established
research methods: coding the answers, analyzing keywords, organizing them into concepts and
categories, and writing memos [10]. We met weekly to discuss the memos and noticed that
interviewees progressively started to give similar answers, a situation called saturation [10].
At this point, we considered the topic sufficiently clear and focused on other topics that
needed further elaboration. The specific coding outcome is listed in the appendix.

We selected participants for the interviews from active developers in the 24 projects
of our corpus. By mining the repositories, we identified the top 10% active developers in
each projects that regularly use conditional compilation (ranked by code churn). We sent
emails to 213 open-source developers, and 32 (15%) participated in our interviews. Even
though many open-source contributors expressed that they primarily worked in industrial
projects, we additionally explored whether interviewees recruited from industrial projects
would provide additional insights. After reaching out to our contacts (convenience sampling),
eight developers from Brazilian companies accepted to participate in our interviews. Most of
our 40 interviewees self-identified as having at least 5 years of experience and many worked
both within open-source and industrial contexts. Our developer selection is biased toward
developers with experience with conditional complication, which we counteracted however
by cross-validating our results with a survey of a broader population. See the appendix
for a characterization of the interviewees. In our result presentation, we refer to individual
anonymized participants as P1–P40.

3.5 Study 2: Survey

Whereas our interviews are designed to elicit qualitative insights into practices and reasons,
our survey is designed to collect quantitative data from a large population. We designed the
survey after completing and evaluating the interviews. It is a standard research approach
to first perform qualitative investigations to identify relevant questions and subsequently
perform a survey to explore them quantitatively in a larger population [24,47].

With the survey, we explored topics that were unclear from the interviews or where we
wanted additional quantitative data. We performed an online survey to reach more developers
and again followed common guidelines for that research method [11]. For several questions,
the survey included code snippets to make questions more concrete. We mention the survey
questions while discussing our results in Sections 4–7. Details on the survey, including the
exact questions, can be found in the appendix.

To select participants for our survey, we aimed at reaching a broader audience of developers
with different levels of experience regarding conditional directives usage. We randomly
sampled from all developers that contributed to the 24 projects in our corpus, excluding our
interviewees. We sent emails to 3,091 developers and 202 (6.5%) filled out our survey.

ECOOP’15

1006

3.6 Study 3: Mining undisciplined annotations
To investigate the issue of undisciplined annotations further, one of the most controversial
and criticized issues in the literature, we mined software repositories to analyze different
versions of the source code and statically detected undisciplined annotations. Specifically,
we analyzed each commit in 14 projects of our corpus. We considered only projects with
at least two active developers to compare their programming style regarding undisciplined
annotations. We used a modified version of Liebig’s Cppstats tool [40]. With this tool, we
identified all commits that introduced undisciplined annotations, data which we analyzed
grouped by developer. Subsequently, we interviewed four developers regarding their reasons
for introducing specific undisciplined annotations. See the appendix for details.

3.7 Threats to validity
We selected interviewees by sending email to developers and only those interested in the
topic participated in our study. From 40 interviews, even though they cross 24 projects of
different sizes and domains and 3 companies, it is difficult to generalize results. Nonetheless,
we alleviated these threats by cross-validating with a survey of a larger population. Our
survey could be filled out in around 10-15 minutes, which encouraged more developers to
participate. Code snippets used in our survey might be misunderstood by developers or
might conflate multiple issues; that is, related results can only be interpreted in the context
of these snippets. To detect undisciplined annotations, we used Cppstats [40], which is based
on heuristics and may miss-classify a small number of annotations, but we expect that this
does not affect the bigger picture collected across multiple projects.

In the following, we report the main findings of our study, structured by our four research
questions. At the end of each research question, we summarize our main findings and the
corresponding data sources used.

4 RQ 1: Why is The C Preprocessor Still Widely Used in Practice?

The C preprocessor has been heavily criticized in previous research, which raises the question
of why it is still used in practice (RQ1). To fully answer this question, we need two pieces of
information. The first is whether developers are actually aware of these (academic) criticisms,
and the second is the set of scenarios in which developers find the C preprocessor useful. If
developers are aware of the potential problems, but still use the C preprocessor, this suggests
that there are cases in which using the C preprocessor is still the preferred or even the only
available alternative. However, to identify such cases, we first need to understand the various
situations in which the C preprocessor is used.

4.1 Developers’ Awareness of C Preprocessor Criticism
We find that developers are aware of the criticism the C preprocessor has received, but
they still believe that it is an elegant solution to handle variability and overcome portability
problems, if properly used (P1-P3, P18, P22, P23, P26). As one developer (P39) explains:
“Every feature of any technology can be abused or misused. When used appropriately, the use
of preprocessor directives is not a problem.” That said, many developers (P1-P3, P5-P8,
P19, P20, P22-P26, P30-P33) are aware that they must follow code guidelines to minimize
problems related to code comprehension, maintainability, and error proneness (C preprocessor
problems are discussed in more detail in Section 6).

F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi and R. Gheyi 1007

4.2 Usage of the C Preprocessor
Our discussion with developers reveals the following fives cases in which they use the C
preprocessor.

Portability. Despite being from different domains, many of the systems we studied need
to support multiple platforms and operating systems. The C preprocessor is perceived as
a convenient way to ensure the system’s portability across these different environments.
For example, developers often use conditional directives to check settings of operating
systems, platforms, compilers, and library versions (P1-P3, P6, P17-P25, P27). Based
on these settings, developers use certain macros, types, and header files that may only
be available when using a specific operating system or compiler. For example, it is not
possible to include Windows specific headers such as windows.h when compiling the
source code on Linux or Mac OS. In addition to handling platform-specific header files,
portability also involves checking for specific system constraints as well as making use
of platform-specific functionality during implementation (P1, P3, P18, P19, P21, P24,
P27). For example, in some operating systems, such as GNU Hurd, there is no imposed
limit on overall file name length, as there is on Windows.
Variability. Developers often repeat that they use conditional directives to provide
optional features or to select between alternative implementations. For example, one
participant (P4) describes his use of variability as follows: “I use conditional directives
to remove parts of the library I do not need, since it makes the binary code much smaller.”
Reducing binary size may influence developers’ decision in using macros to represent
optional functionality (i.e., features). The DEBUG feature is one extreme example of this,
which was mentioned frequently by developers. DEBUG is a common feature developers use
to print messages along the source code to understand what is going on during execution
(P21, P22, P23). Since DEBUG may not be useful for end-users, developers guard debugging
code with the corresponding macro such that end-users can exclude it from the binary
code during compilation. Several developers also state that they commonly use conditional
directives to support alternate implementations (P13, P27, P38-P40). For example, in
Libssh, developers can choose between different cryptographic libraries such as Libcrypt
or Libcrypto, depending on the characteristics of the cryptographic algorithms they want
to use. They find that the C preprocessor provides a convenient way to switch between
such libraries at compile-time
Code Optimization. Some developers explain that, apart from excluding unnecessary
functionality, they also explicitly use conditional directives to optimize the code for
performance or size (P3, P4, P40). Interviewees explain that they often do not trust
that all compilers will properly optimize their code. Thus, in some cases, developers
take the task of optimizing the code into their own hands by implementing known code
optimizations after checking for compiler name and version at compile-time using the C
preprocessor. For example, the Gcc compiler offers some GNU Extensions such as type
discovery and zero-length arrays. Developers explain that they want to make use of such
optimizations if they are aware of their availability as this allows them to actively make
the binary code smaller and faster.
Code Evolution. A few developers state that they also often use conditional directives
during the introduction of new code versions related to critical functionality (P27,
P28, P39). In this context, they introduce new implementations inside conditional
directives, but they remove the previous version only when the new version is stable.
They explain that by using conditional directives, they can switch between the old and
new implementations for testing purposes.

ECOOP’15

1008

#ifdef DEBUG
#define DEBUG_MSG printf
#else
#define DEBUG_MSG (format, args...) ((void)0)
#endif
// Developers do not need to check #ifdef DEBUG multiple times..
DEBUG_MSG ("message..");

Figure 2 Using function-like macros to avoid avoid code duplication (checking if DEBUG is defined
multiple times) and to support encapsulation.

Language Limitations. Several developers mention using conditional directives because of
the limitations of the C language (P6, P14-P16, P20, P36-P38). For example, they use
#ifdef checks to avoid multiple inclusion of header files. Such header guards (or include
guards) are probably one of the few applications of the C preprocessor that is accepted
by critics [58].

Some developers also mentioned using macros and function-like macros to avoid code
duplication and to encapsulate frequently-changing code (P20, P39, P40). This way, de-
velopers need to only change the definition of the macro instead of changing all occurrences
in the code. For example, Figure 2 shows how function-like macros can be used to define
the behavior of DEBUG_MSG. While avoiding duplication and supporting encapsulation are
not specific to the C language, using the C preprocessor is perceived as a convenient way to
change function definitions at compile-time instead of at run-time. Previous studies [35,46]
considered the replacement of preprocessor macros with new features and idioms in the C++
programming language.

4.3 Discussion

We observed that the answers in our interview data reached a saturation point that is why we
did not include this research question in our survey. This is also supported by the fact that
many of the cases of C preprocessor usage we find (apart from the rare case of supporting
code evolution) align with those found in previous work. For example, Ernst et al. [12]
observed that portability accounts for 37% of the use of conditional directives in the systems
they examined, while include guards account for 6.2%. They also found frequent usage of
inline functions or function-like macros. Ernst el al. also argue that in order to eliminate
some of the preprocessor usage, developers must be confident that the compiler will perform
the necessary code optimizations. Our interviews support this and further suggest that, even
after more than a decade, developers still lack this confidence in compiler optimizations.

Summary 1
Developers are aware of the criticism the C preprocessor receives, but still use it in the
following situations: (1) supporting portability, (2) supporting variability, (3) providing
code optimizations, (4) supporting code evolution, and (5) overcoming language limitations.

Data Sources: Interviews (Study 1) and Prior studies [12,40,54,58]

F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi and R. Gheyi 1009

5 RQ 2: What do Developers Consider as Alternatives to
Preprocessor Directives?

We have seen that developers are aware of the problems and risks of using the C preprocessor
but still have several use cases for which they need the C preprocessor’s functionality. While
researchers have proposed alternatives [8, 9, 43, 68], we wanted to see which alternatives
developers are aware of or would recommend. We asked whether developers have thought
about alternatives to the C preprocessor. We did not ask about specific alternatives or tools,
because it was apparent that they usually would not be familiar with them. When we asked
for preferences, we were only comparing different ways of using the C preprocessor. Our main
goal with this question was to identify perceived alternatives, not to judge existing ones.

We generally received three kinds of answers: suggestions to use the C preprocessor in
specific ways (guidelines on how to structure the code), suggestions to use in-language runtime
mechanisms instead of compile-time mechanisms of the preprocessor, and arguments that the
preprocessor cannot be replaced. Equally important is that none of our interviewees mentioned
alternative preprocessors, aspect-oriented programming, or other metaprogramming solutions
suggested by researchers. In the following, we discuss the three kinds of answers we received,
cross-validated with survey findings.

5.1 Guidelines for Structuring Code
The first common suggestion to avoid using the C preprocessor is to separate alternative
and optional code on the function, file and directory structure level (P3, P8, P9, P14,
P18, P24). For functions, the idea is to define alternative implementations of a function in
separate files and to use the build system and the linker to choose the desired one. Figure 3b
shows an example of this. Similarly, grouping related files in the same directory can also
move compilation control to the build system, i.e., the whole directory will be compiled
or not. Such structuring of the code means that no preprocessing is necessary within files.
Additionally, the code structure is portable and requires no special tools. Nonetheless, one
developer (P15) cautions that structuring the code in this way may leave it more difficult
to comprehend. It is also difficult to deal with similar functions and code duplication if
developers do not use helper functions for the common code.

The answers we received align with previous academic discussions [48, 58], but did
not reach a saturation point in our analysis. Therefore, we asked a larger population of
developers whether they prefer this code structuring strategy. In the survey, we present the
two equivalent code snippets shown in Figure 3, asking developers which one they prefer
based on a five-point Likert scale. We find that 30% prefer to use conditional directives
inside function bodies (i.e., Figure 3a), while 60% prefer to use different functions to solve
portability concerns (i.e., Figure 3b). The remaining 10% of respondents had no preference
between both options.

5.2 Alternative In-language Runtime Mechanisms
Another alternative that was suggested frequently during our interviews is the use of run-
time variability binding (i.e., C if Statements) instead of compile-time binding with the
preprocessor (i.e., #ifdef directives). An example of this is shown in Figure 4b.2 Many

2 While the decision here is still made statically, it could also be loaded from command-line options.

ECOOP’15

1010

25%$

35%$

10%$

$$21%$$$$$$$$

9%$

Strongly$
prefer(b)

Prefer(b)

It$does$not$
ma=er$

Prefer(a)

Strongly$
prefer(a)

void function (){

#ifdef OS1
 /* Code 1 here.. */
#endif

#ifdef OS2
 /* Code 2 here.. */
#endif

}
(a)

// FILE: OS1.c
void function (){
 /* Code 1 here.. */
}

// FILE: OS2.c
void function (){
 /* Code 2 here.. */
}

(b)

Survey Results

In (b), only OS1.c or OS2.c is compiled depending on
the platform. It is controlled at makefile level.

Figure 3 (a) Using preprocessor conditional directives inside function bodies to solve portability
concerns. (b) Using different functions to avoid conditional directives inside function bodies.

developers state that they prefer to solve variability at run-time, when possible, since it
is more flexible (P1-P4, P6, P23, P40). One developer (P23) illustrates on this, saying:
“If something can reasonably be done without the preprocessor, I choose [to do it] that way.
[Once the binary is there,] it is much more flexible to enable functions at run-time or with a
configuration file than having to recompile the project again.”

To achieve such run-time variability, interviewees suggest using variables and enumerators
instead of macros with constant values. They also suggest using inline functions to optimize
the source code instead of function-like macros. However, developers also caution that
run-time variability, e.g., the use of global variables and enumerators, is not thread-safe in
C, and that using run-time variability is not possible in some cases. For instance, when
runtime checks are not feasible due to performance reasons. One developer clarifies that
run-time checks would cause performance overheads when checking for debugging mode, for
example. This developer explains that when your goal is to process millions of I/O operations
in the Linux kernel, for example, having run-time (i.e., C if) debug checks to verify certain
assumptions would prevent you from scaling. However, developers still need a mechanism to
easily verify assumptions when checking for code correctness, and they suggest that this can
be cheaply achieved using the C preprocessor at compile-time.

Since developers’ comments about run-time checks were not entirely consistent, we use
the survey to see the preference of a broader population. This time, we present the two code
snippets shown in Figure 4. In Figure 4a, we use conditional directives, while in Figure 4b,
we use run-time variability with C ifs. We again ask survey participants to indicate which
style they prefer using. Surprisingly, 75% mentioned that they prefer to use conditional
compilation directives (i.e., Figure 4a) while only 19% prefer to use run-time variability
(Figure 4b). The remaining 6% of developers did not have a preference.

Based on the results of our interviews, we expected a higher percentage of developers to
prefer using run-time variability in the survey. Accordingly, we went back to our interview
data to see if we can find supporting reasons for why this might be the case. We find that
developers might be inclined to use #ifdefs instead of if checks because of the following
reasons. First, as stated by developer P1, when using conditional directives, it is easier to
see the optional code. In other words, it is clear that the block of code from lines 3 to 8 is
optional in Figure 4a. Second, developers P3 and P4 mentioned that by using variables
instead of macros, developers do not know whether the compiler will optimize the source
code. For instance, if the developer does not define PM3D in Figure 4b, variable PM3D_RT

F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi and R. Gheyi 1011

5%#

14%#

6%#

##32%########

43%#

Strongly#
prefer#(b)#

Prefer#(b)#

It#does#not#
ma=er#

Prefer#(a)#

Stronglh#
prefer#(a)#

1. if (*Y_AXIS.label.text) {
2. #ifdef PM3D
3. if (rot_x <= 90){
4. double step = (end - x);
5. // lines of code..
6. if (map)
7. *t = text_angle;
8. }
9. #endif
10. // lines of code..
11. }

(a)

1. int PM3D_RT = 0;
2. #ifdef PM3D
3. PM3D_RT = 1;
4. #endif
5. if (*Y_AXIS.label.text) {
6. if (PM3D_RT && rot_x <= 90){
7. double step = (end - x);
8. // lines of code..
9. if (map)
10. *t = text_angle;
11. }
12. // lines of code..
13. }

(b)

Survey Results

Figure 4 (a) Code snippet of Gnuplot with preprocessor conditional directives within function
bodies. (b) Using local variables to avoid checking preprocessor macros throughout the code.

is always zero, i.e., false, and the block of code from lines 7 to 10 becomes unreachable.
Developers argue that compilers may perform optimizations to remove such dead code, but
there are no guarantees (i.e., this is compiler specific and depends on the compiler settings).
Additionally, a few developers mention that some compilers may issue warnings about such
unreachable code or about cases where the if condition would always be true which they
find annoying (P3, P29).

5.3 No Perceived Alternatives

Several developers mention that they have not thought about alternatives to the C prepro-
cessor (P17, P19-P21, P25-P28) and that they are comfortable with using the C preprocessor
for the purposes previously discussed. As stated by one developer (P40): “Preprocessor
directives can be used to remove the most tedious and error-prone parts of programming.
It [is] also the only C-native way to conditionally compile when run-time checks are unac-
ceptable [due] to performance [overheads]. There are no alternatives to the C preprocessor
for this type of usage without using some tool outside the language.” Similarly, additional
developers mentioned that in some cases, they really need to remove parts of the source
code (P1, P6, P23, P27). Otherwise, the code will not compile because of platform-specific
parts that have not been removed. This leads them to argue that it does not matter which
alternative one comes up with, one will need the C preprocessor at some point for such
a platform-specific conditional compilation problem. Additionally, developers expressed
concern that new technologies that replace the C preprocessor are likely not going to be
present in all compilers (P1, P6, P20). This shows hesitation to adopt third-party tools or
alternate technologies (e.g., aspect-oriented programming [2, 42] or new macro languages
such as ASTEC [43]) because of portability concerns.

Summary 2
Developers do not see any current technologies that can entirely replace the C preprocessor.
However, some developers routinely use alternate coding styles such as dividing functionality
into separate files or functions (preferred by 60%) and using run-time checks instead of
#ifdef checks (preferred by 19%).

Data Sources: Interviews (Study 1), Survey (Study 2), and Prior studies [48,58]

ECOOP’15

1012

6 RQ 3: What are Common Problems of Using Preprocessor
Directives in Practice?

We now try to understand what problems, if any, do developers face while using the C
preprocessor. We find that developers’ comments generally align with the problems raised in
the research literature. Specifically, developers mention the following problems: (1) dealing
with preprocessor-related bugs, (2) testing an exponential number of configurations, and (3)
difficulty with understanding code with too many #ifdefs.

6.1 Preprocessor-related Bugs
A number of developers confirm that bugs related to conditional compilation occur frequently
(P7, P18, P23, P35-P37) or at least sometimes (P8-P10, P13, P14, P27). Our interviewees
list different types of bugs related to the use of preprocessor directives, such as: incompatible
macro selection (P17); macros resulting in erroneous control flow (P20, P22, P26); incorrect
macro expansion (P9); misspelled macro names (P22, P23); missing variables and functions
such as defining a variable in optional code and using it in mandatory code (P13); type
errors (P8, P18, P23); syntax errors like missing control flow tokens, e.g., opening and
closing brackets (P24); linking problems (P24); behavioral changes due to macro interactions
(P1, P9); memory and resource leaks, memory corruption, and race conditions (P14); and
incorrect use of #else and #elif. For instance, #else clause incorrectly treating some
configurations, or use of #elif without an #else at the end to treat the default case (P14).

Some interviewees (P3, P20, P27) argue that it is hard to deal with a high number of
different macro combinations, which may ease the introduction of bugs. Developer P1 points
out that code that does not compile is easy to deal with, but the runtime bugs are the
harder ones to detect. On the other hand, some developers (P8, P10, P13, P20) mention
that even to detect simple compiler errors, someone has to compile the source code using
the specific configuration that contains errors which is not that easy. The types of bugs
developers mentioned align with various results from previous studies [7, 14, 37, 44, 61, 62]
that we discussed in more detail in Section 2. Additionally, the fact that dealing with macro
combinations is one of the sources of bugs is consistent with the findings of Iago et al. [1].

Since the data from our interviews is qualitative, we used our survey to quantify the
frequency of C preprocessor-related bugs. We also asked developers about the difficulty
of introducing preprocessor-related bugs when compared to other types of bugs as well as
difficulty of detection. We present the results in Figure 5a-d, which can be summarized as
follows. Even though developers believe that preprocessor-related bugs do not occur very
frequently (Figure 5a), they find that they are slightly more critical than non-prerprocessor
related bugs (Figure 5b) and that they are easier to introduce (Figure 5c) and harder to
detect (Figure 5d). Our survey findings are consistent with our prior work [29] that parsed
all code of a Linux kernel (release x86, only) and did not find any syntax errors. On the
other hand, when the same authors analyzed BusyBox, they only found a few type and linker
errors that they reported to developers and which were fixed in subsequent releases [30].
This supports our findings that such types of errors may be rare, but are still important to
fix nonetheless.

Both our interview and survey results suggest that, similar to researchers [1, 29, 40],
practitioners perceive the C preprocessor as error-prone. However, developers did not
mention having any tools that help them with avoiding such errors. Our findings suggest that
we need further research on developing tool support to minimize bugs related to preprocessor
usage and finding ways to make such tools attractive for developers to use.

F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi and R. Gheyi 1013

Which nesting level of conditional directives is acceptable?a)

b)

c)

d)

e)

f)

20%$
30%$ 30%$

17%$
3%$

Rarely$ Ocasionally$ Some6mes$ O7en$ Very$o7en$

How often do you encounter bugs related to the use of
preprocessor directives?

1%# 7%#
49%# 35%#

8%#

Very#
uncri2cal#

Uncri2cal# Normal# Cri2cal# Very#cri2cal#

How critical or uncritical are bugs related to the use of
preprocessor directives?

26%$
41%$

26%$
7%$ 0%$

Much$easier$ Easier$ Neither$
easieror
harder$

Harder$ Much$harder$

How easier or harder is it to introduce a bug related to
preprocessor usage compared to other bugs?

1%# 5%#
20%#

52%#

22%#

Much#easier# Easier# Neither#
easier#or#
harder#

Harder# Much#harder#

How easier or harder is it to detect a bug related to
preprocessor usage compared to other bugs?

14%$
53%$

18%$ 5%$ 10%$

No$nes.ng$ Upto2$ Upto3$ Upto4$ Upto5or
higher$

34%$
54%$

9%$ 3%$ 0%$

Totally$
nega1ve$

Nega1ve$ Neither$
nega1veor
posi1ve$

Posi1ve$ Totally$
posi1ve$

How negative or positive is the impact of using directives that
split up parts of C constructions on code understanding?

31%$
50%$

12%$ 7%$ 0%$

Totally$
nega2ve$

Nega2ve$ Neither$
nega2veor
posi2ve$

Posi2ve$ Totally$
posi2ve$

How negative or positive is the impact of using directives that
split up parts of C constructions on code maintainability?

32%$
54%$

10%$ 3%$ 1%$

Totally$
nega2ve$

Nega2ve$ Neither$
nega2veor
posi2ve$

Posi2ve$ Totally$
posi2ve$

How negative or positive is the impact of using directives
that split up parts of C constructions on error proneness?

h)

g)

Figure 5 Results of our survey to quantify some findings of our interviews.

6.2 Combinatorial Testing

Developers explain that another problem with using the C preprocessor is dealing with
combinatorial explosions. As mentioned by developer P19, the use of conditional directives
makes the code hard to test and debug since it increases the testing matrix. The number of
configurations to test grows exponentially when developers add new preprocessor macros
in #ifdefs. Assuming that there are n optional and independent macros, developers have
2n different configurations. Furthermore, developers explain that they also need to consider
different compilers, operating systems, and platforms, which is time-consuming and makes
automation difficult. For these reasons, many developers (P1-P6, P9, P17, P19, P20, P22,
P23, P25) mentioned that they normally do not test all different macro combinations due to
time and resource constraints. They explain that they do not have an easy way to test all
possible combinations.

Many developers (P9, P17, P19, P20, P22, P23, P25) mention that what happens in
practice is that they check only a few configurations of the source code. Furthermore, some
developers (P11, P18, P24) check only the default configuration on their own machine
with all optional macros active. However, a few developers (P1, P37) mention that they
additionally consider different platforms besides their own. They say that by compiling the
source code with two or three different compilers and using 32 and 64-bit platforms, they are
comfortable enough that the code is portable. Similarly, some developers (P19, P20, P22)
said that they select specific configurations to test by setting different macro combinations
manually.

ECOOP’15

1014

This variation in testing style tells us that there is no systematic way to fully test such
systems. We find that developers (P2, P26) often rely on end-users to test the source code
using different platform configurations. Developer P26 explains this as follows: “I check
whatever combinations I can, and some combinations can only be tested on systems to which
I have no access. I rely on others to help out or just cross my fingers.” Developer P2 echoes
this, also stating that he heavily relies on his user base to report back errors. This result
aligns with a recent study on testing in the Eclipse platform by Greiler et al. [24]. Some
developers (P4, P10, P13) realize that they use a narrow testing strategy and perceive it as
a problem, expecting to find additional bugs if they are able to test more configurations. For
example, one developer (P26) tell us: “I do not find bugs related to preprocessor usage by
running tests, but when running the tests with different combinations of macros.”

We find that testing in industry and open-source projects are different. While our open-
source interviewees repeatedly mention testing only a few configurations and relying on user
testing, industry developers (P31, P32, P38) mention that they test the source code on
all supported platforms with all macros active. Additionally, some industrial developers
(P33-P36) state that they check all combinations and platforms supported. This difference
can be explained by the lack of community involvement in the industry context and that
the number of used configurations tends to smaller (companies can restrict the number of
supported configurations).

To overcome some of the challenges above, several developers (P8-P12, P14, P31-P34)
mention that they use style checkers and static-analysis tools that often help them avoid
bugs. This is especially true in industry projects. Our interviewees used the following tools:
Checkpath, Vera++, Coverity, Cppcheck, Valgrind, Coccinelle, and Lint. Other developers
(P7, P13) mentioned that they use at least Gcc with all warnings active. However, these
tools consider only one configuration at a time, after preprocessing. Thus, these tools do
not focus on bugs related to preprocessor usage. Some tools, e.g., Cppcheck, try to deal
with many configurations by activating one macro at a time and performing the analysis
several times, which is time-consuming. Coccinelle also handles variability to some extent
by building a control-flow graph per function, where statement-level #ifdefs are taken into
consideration. During the interviews, only one Linux developer (P9) mentioned a research
tool, Undertaker [63], that can detect dead #ifdef-guarded blocks. However, developers
did not mention any of the research tools that could analyze all configurations, such as
TypeChef [29] or SuperC [22].

6.3 Code Comprehension
Our interviews suggest that many developers find it hard to understand code that is filled
with #ifdefs. Developers (P1, P5) mentioned that the mixing of C code and directives
interrupts the code logic since they are two independent languages. Developers (P1, P5,
P6, P19, P21, P25, P26) believe that this mixing can obfuscate the source code making it
harder to read, comprehend, and maintain since it is difficult to determine which parts of the
code are going to be compiled under which conditions. For example, some developers (P1,
P5, P23, P24) complain about the use of fine-grained directives within function bodies. It
requires the analysis of control flow structures (if, while, switch, and goto statements) as
well as #ifdef, #ifndef, #if, #else, and #elif directives. In addition, it becomes harder
to understand the control flow, more difficult to check whether opening and closing brackets
match, increases code complexity, and may lead to bugs. Additional developers (P10, P18,
P20, P24) confirm this, saying that they often avoid preprocessor directives because of
readability problems. One developer (P6) specifically comments on this, saying “My main

F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi and R. Gheyi 1015

1. if (user_callbacks == NULL) {
2. #ifdef HAVE_PTHREAD
3. callbacks=&ssh_pthread;
4. }
5. #else
6. return SSH_ERROR;
7. }
8. #endif

1. if (user_callbacks == NULL) {
2. #ifdef HAVE_PTHREAD
3. callbacks=&ssh_pthread;
4. #else
5. return SSH_ERROR;
6. #endif
7. }

(a) (b)

Figure 6 (a) Undisciplined annotation. (b) One possible equivalent/disciplined version.

problem is that [if] there are macros 7 layers deep[,] I don’t understand them.”
We used our survey to gain further insight into the impact of C preprocessor directives

on code comprehension and maintainability as shown in Figure 5e. We find that 14% of
our interviewees state that they prefer to avoid nesting preprocessor conditional directives
altogether, 53% do not mind using nesting up to level 2, and only 18% find that three levels
of nesting is still acceptable. Note that only a few developers find that deep nesting levels
(i.e., those beyond three) are acceptable. Overall, implicitly, 85% of the developers see that
nesting levels beyond three should be avoided. This aligns with previous work that finds
that the average nesting level across 40 analyzed C systems is approximately 1 [38].

Summary 3
Developers face three preprocessor-related problems: (1) preprocessor-related bugs (do
not appear often, but are perceived as more critical than other bugs), (2) combinatorial
testing (conditional directives increase number of configurations to test), and (3) code
comprehension (due to deep nesting of #ifdefs).

Data Sources: Interviews (Study 1), Survey (Study 2), and Prior studies [1,7,14,29,37,38,
40,44,61,62]

7 RQ 4: Do Developers Care About the Discipline of Preprocessor
Annotations?

The feasibility of introducing undisciplined annotations (see Section 2) is one of the most
criticized aspects of the C preprocessor [6, 12, 18, 19, 22, 29, 40, 44], which is why we dedicate
a separate research question for it. Our goal is to find out whether developers also view
undisciplined annotations as problematic.

The majority of interviewees (P1, P5, P17-P28, P32) agree that the use of preprocessor
directives to encompass individual tokens or parts of C syntactical units impacts the quality of
code negatively. Such developers emphasize that they would not use undisciplined annotations
because they hinder source code readability (P5, P17, P18, P22, P25, P26, P28), obfuscate
control flow (P1, P24), and make the code difficult to evolve and maintain (P20, P22,
P23). One developer (P20) elaborates on this, saying: “I avoid this kind of directives, they
make the source code hard to understand and maintain. My gut feeling keeps screaming
possible bugs when I’m faced with a code like that.” Along the same lines, one of these
developers recommends to discourage or disallow undisciplined annotations through code
guidelines to avoid the aforementioned problems (P26). Another developer (P30) stated
that code guidelines are important for the homogeneity of the project and that he often asks
contributors to rewrite patches to follow the guidelines.

Despite the criticisms we received from most interviewees as shown above, some developers

ECOOP’15

1016

(P4, P22, P31) mention that they would still use undisciplined annotations in very specific
cases. In such cases, they would also document the code to let others understand their
reasoning. Furthermore, some developers (P5, P7) are reluctant to change undisciplined
annotations once they exist. For instance, one developer (P5) states that: “One thing is to
not fix what is not broken. The problem is that to refactor a code, you have to understand
[it]. If you do not understand [it], it is not easy to refactor. Many developers would say: I
am not going to touch that.” Developer P39 mentioned that while he believes it is good to
fix undisciplined annotations, it has a very low priority. It is worth noting that none of the
developers mentioned using tools to enforce disciplined annotations or identified a lack of
tool support in general.

To generalize our findings, we use the survey to quantify the impact of undisciplined
annotations on code understanding, maintainability, and error proneness as shown in Fig-
ure 5f-h. Our results show that developers generally agree that undisciplined annotations
have a negative impact on code understanding (88%), maintainability (81%), and error
proneness (86%). However, in a previous study, Schulze et al. [55] could not establish
significant differences between disciplined and undisciplined annotations from a program com-
prehension perspective in a controlled experiment. Nevertheless, they observed that finding
and correcting errors is a time-consuming and tedious task in the presence of preprocessor
annotations. Additionally, although developers see undisciplined annotations negatively,
other researchers [40] detected that almost 16% of conditional directives are undisciplined
annotations.

To investigate this gap between developer preferences and perceptions and the reality
in the code base, we performed an additional analysis of software repositories to identify
the reasons why developers introduce undisciplined annotations. By analyzing 14 software
repositories of our corpus, we detected that only 21 (7%) out of 299 developers introduced
almost 85% of all undisciplined annotations we found in the software repositories. When we
tried to contact these developers, some got defensive and excused their use of undisciplined
annotations. For instance, one developer argues that, “The code was actively rewritten at the
time, and it often happens that first drafts of an idea ends up in poor code.”

Figure 6a presents an example of an undisciplined annotation introduced in one of the C
projects we examined. When we discussed this code fragment with its author, the author
mentioned to prefer the equivalent code snippet in Figure 6b as a replacement. Another
developer who we contacted about undisciplined annotations stated to use such annotations
to avoid cloning the source code as well as compiler warnings. Figure 7a presents the
undisciplined annotation introduced by this developer. When discussing the code, the
developer showed us the alternative in Figure 7b that clones the source code (see lines 5 and
8) and another that generates compiler warnings as shown in Figure 7c, both of which seemed
unacceptable to that developer. In this latter case, variable failed is always true when
macro USE_NTLM_AUTH is not defined. In addition, this developer mentioned that since the
undisciplined annotation in the original code was not repeated in many places, this minimizes
potential problems. Such examples show that there may be situations where developers
would prefer to use undisciplined annotations. In a previous study, We proposed alternatives
to discipline annotations without cloning the source code [45]. However, they did not take
compiler warnings into consideration. According to our data, compiler warnings seem to be
a problem that may hinder the adoption of syntactical preprocessors despite of the existence
of compiler attributes to ignore specific warnings.

F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi and R. Gheyi 1017

1. #ifdef USE_NTLM_AUTH
2. if (priv->sso_available) {
3. conn->state = SSO_FAILED;
4. } else {
5. #endif
6. conn->state = NTLM_FAILED;
7. #ifdef USE_NTLM_AUTH
8. }
9. #endif

1. #ifdef USE_NTLM_AUTH
2. if (priv->sso_available) {
3. conn->state = SSO_FAILED;
4. } else {
5. conn->state = NTLM_FAILED;
6. }
7. #else
8. conn->state = NTLM_FAILED;
9. #endif

1. boolean failed = TRUE;
2. #ifdef USE_NTLM_AUTH
3. if (priv->sso_available) {
4. conn->state = SSO_FAILED;
5. failed = FALSE;
6. }
7. #endif
8. if (failed){
9. conn->state = NTLM_FAILED;
10.}(a) (b) (c)

Figure 7 (a) Undisciplined annotation. (b) Alternative that clones code. (c) Alternative that
generates compiler warnings.

Summary 4
Most developers agree that undisciplined annotations impact code understanding, maintain-
ability, and error proneness. However, there are cases where developers use undisciplined
annotations to avoid code clones and compiler warnings.

Data Sources: Interviews (Study 1), Survey (Study 2), Mining Repositories (Study 3),
and Previous work [40,45,55]

8 Concluding Remarks

We performed interviews with 40 developers about their perceptions of the C preprocessor,
used grounded theory to analyze the data, and cross-validated the results with data from a
survey with 202 developers, repository mining, and previous studies. Our study makes a step
toward understanding how developers perceive the C preprocessor, enabling new perspectives
on practices, guidelines, tools and technology transfer, and possible research directions. We
found that the C preprocessor is still widely used in practice mainly to solve portability
and variability problems. Developers are aware of problems and follow guidelines and adopt
runtime variation, but they see no alternatives to the preprocessor; developers are skeptical
about using new technologies outside the language. In addition, preprocessor-related bugs
are perceived as less frequent, but easier to introduce, harder to fix, and more critical than
other bugs. We also find that more than 80% of developers do not like to use undisciplined
annotations because they negatively impact code maintainability, comprehension and error
proneness.

Our study has several implications for practitioners and researchers:
1. Guidelines and enforcement. Practitioners use guidelines to avoid common well-

known pitfalls of the C preprocessor. In addition to information mined from repositor-
ies [12, 40, 44], our study provides a first step to develop guidelines grounded in data and
taking into account developer preferences and acceptance. For example, we found strong
evidence that developers support separating portable code at functions or files granular-
ity, avoiding deep nesting of #ifdef directives, and avoiding undisciplined annotations.
Whereas many developers routinely use analysis tools and respond to their warnings,
there are currently few tools to enforce preprocessor-related guidelines systematically.

2. Quality assurance. Configurations are rarely tested systematically or even exhaustively,
and developers perceive this as a problem. Restriction on configurations (especially in
industrial projects) and community involvement (especially in open source projects) are
current pragmatic strategies to cope with large configuration spaces (similar to plug-in
systems [24]). We argue that systematic sampling [49, 60] and family-based analyses [64]
are promising directions.

ECOOP’15

1018

3. Tool design and technology transfer. The cross-platform availability with every
compiler is an asset of the C preprocessor that developers are not willing to give up
and that limits the adoption of alternative tools. Changes at the standardization level
seem more effective, as done with module systems [23] and C++ extensions to replace
the need for lexical includes and macros [34,46]. Researchers might want to make their
tools more attractive to developers by taking their perspective and needs into account.
Low awareness of research tools indicates a communication problem. External tools that
automatically detect guideline violations (such as undisciplined annotations) and propose
fixes (e.g., refactorings) can likely have a larger impact on practice and simplify work
for downstream analysis or refactoring tools that can take advantage of limited usage
patterns.

The purpose of this study is not to design new language mechanisms, but we discussed
preferable alternatives, many of which have been adopted in modern languages. Still, the
large amount of existing C code (and also Fortran and C++ code which frequently use the C
preprocessor) and the difficulty of analzying and porting it due to the particularities of the
C preprocessor make it worth studying the problem both from a technical perspective and
also as a technology transfer problem. While the results do not directly generalize beyond
the C preprocessor, it demonstrates perceptions of developers that might be of interest also
to other language and tool designers.

Acknowledgements We thank all participants of our interviews and surveys for their time
and open discussions. We are grateful for constructive feedback from Sven Apel, Jörg Liebig,
Janet Siegmund, and Iago Abal on earlier drafts of this paper. This work was supported
by CNPq grants 573964/2008-4 (INES), 306610/2013-2, 477943/2013-6 and 460883/2014-3,
NSF grant CCF-1318808, NSERC CGS-D2-425005 and the DFG Project E1 within CRC
1119 CROSSING.

References
1 Iago Abal, Claus Brabrand, and Andrzej Wasowski. 42 Variability bugs in the Linux Ker-

nel: A qualitative analysis. In Proceedings of the International Conference on Automated
Software Engineering, ASE. IEEE/ACM, 2014.

2 Bram Adams, Wolfgang De Meuter, Herman Tromp, and Ahmed E. Hassan. Can we
refactor conditional compilation into aspects? In Proceeding of the International Conference
on Aspect-Oriented Software Development, AOSD. ACM, 2009.

3 Bram Adams, Kris De Schutter, Herman Tromp, and Wolfgang De Meuter. The evolution
of the Linux build system. Electronic Communications of the European Association for the
Study of Science and Technology, 2008.

4 Steve Adolph, Wendy Hall, and Philippe Kruchten. Using grounded theory to study the
experience of software development. Empirical Software Engineering, 16(4), 2011.

5 Michalis Anastasopoules and Critina Gacek. Implementing product line variabilities. In
Proceedings of the Symposium on Software Reusability, SSR. ACM, 2001.

6 Ira Baxter and Michael Mehlich. Preprocessor conditional removal by simple partial eval-
uation. In Procedings of the Working Conference on Reverse Engineering, WCRE. IEEE,
2001.

7 Michael D. Bond and Kathryn S. McKinley. Tolerating memory leaks. In Proceedings
of the International Conference on Object-oriented Programming Systems Languages and
Applications, OOPSLA. ACM, 2008.

F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi and R. Gheyi 1019

8 Quentin Boucher, Andreas Classen, Patrick Heymans, Arnaud Bourdoux, and Laurent De-
monceau. Tag and prune: A pragmatic approach to software product line implementation.
In Proceedings of the International Conference on Automated Software Engineering, ASE.
ACM, 2010.

9 Claus Brabrand and Michael I. Schwartzbach. Growing languages with metamorphic syn-
tax macros. In Proceedings of the Workshop on Partial Evaluation and Semantics-based
Program Manipulation, PEPM. ACM, 2002.

10 JulietM Corbin and Anselm Strauss. Grounded theory research: Procedures, canons, and
evaluative criteria. Qualitative Sociology, 13(1), 1990.

11 Don A. Dillman, Jolene D. Smyth, and Leah Melani Christian. Internet, Phone, Mail, and
Mixed-Mode Surveys: The Tailored Design Method. Wiley, 2014.

12 Michael Ernst, Greg Badros, and David Notkin. An empirical analysis of C preprocessor
use. IEEE Transactions on Software Engineering, 28(12), 2002.

13 Martin Erwig and Eric Walkingshaw. The choice calculus: A representation for software
variation. ACM Transaction on Software Engineering and Methodology, 21(1), 2011.

14 David Evans. Static detection of dynamic memory errors. In Proceedings of the Inter-
national Conference on Programming Language Design and Implementation, PLDI. ACM,
1996.

15 Jean-Marie Favre. Understanding-in-the-large. In Proceedings of the International Work-
shop on Program Comprehension, IWPC, 1997.

16 Matthew Flatt. Composable and compilable macros:: You want it when? In Proceedings
of the International Conference on Functional Programming, ICFP. ACM, 2002.

17 Uwe Flick. An Introduction to Qualitative Research. SAGE Publications, 2014.
18 Alejandra Garrido and Ralph Johnson. Challenges of refactoring C programs. In Proceed-

ings of the International Workshop on Principles of Software Evolution, IWPSE, 2002.
19 Alejandra Garrido and Ralph Johnson. Analyzing multiple configurations of a C program.

In Proceedings of the International Conference on Software Maintenance, ICSM. IEEE,
2005.

20 Alejandra Garrido and Ralph E. Johnson. Embracing the c preprocessor during refactoring.
Journal of Software: Evolution and Process, 25(12), 2013.

21 Brady J. Garvin and Myra B. Cohen. Feature interaction faults revisited: An exploratory
study. In Proceedings of the International Symposium on Software Reliability Engineering,
ISSRE. IEEE, 2011.

22 Paul Gazzillo and Robert Grimm. SuperC: parsing all of C by taming the preprocessor. In
Proceedings of the International Conference on Programming Language Design and Imple-
mentation, PLDI. ACM, 2012.

23 Doug Gregor. A module system for the C family, 2012. Remarks by Doug Gregor at The
sixth general meeting of LLVM Developers and Users.

24 M. Greiler, A. van Deursen, and Margrete-Anne Storey. Test confessions: A study of testing
practices for plug-in systems. In Proceedings of the International Conference on Software
Engineering, ICSE, 2012.

25 Ying Hu, Ettore Merlo, Michel Dagenais, and Bruno Laguë. C/C++ conditional compila-
tion analysis using symbolic execution. In Proceeding of the International Conference on
Software Maintenance, ICSM. IEEE, 2000.

26 Martin Fagereng Johansen, Oystein Haugen, and Franck Fleurey. An algorithm for gener-
ating t-wise covering arrays from large feature models. In Proceedings of the International
Software Product Line Conference, SPLC, 2012.

27 Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in software product
lines. In Proceedings of the International Conference on Software Engineering, ICSE. ACM,
2008.

ECOOP’15

1020

28 Christian Kästner, Sven Apel, and Martin Kuhlemann. A model of refactoring physic-
ally and virtually separated features. In Proceedings of the International Conference on
Generative Programming and Component Engineering, GPCE. ACM, 2009.

29 Christian Kästner, Paolo Giarrusso, Tillmann Rendel, Sebastian Erdweg, Klaus Ostermann,
and Thorsten Berger. Variability-aware parsing in the presence of lexical macros and condi-
tional compilation. In Proceedings of the Object-Oriented Programming Systems Languages
and Applications, OOPSLA. ACM, 2011.

30 Christian Kästner, Klaus Ostermann, and Sebastian Erdweg. A variability-aware module
system. In Proceedings of the International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA. ACM, 2012.

31 Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce Duba. Hygienic
macro expansion. In Proceedings of the International Conference on LISP and Functional
Programming, LFP. ACM, 1986.

32 Klaus H. Krippendorff. Content Analysis: An Introduction to Its Methodology. SAGE
Publications, 2014.

33 Maren Krone and Gregor Snelting. On the inference of configuration structures from source
code. In Proceedings of the International Conference on Software Engineering, ICSE. IEEE,
1994.

34 Aditya Kumar, Andrew Sutton, and Bjarne Stroustrup. Rejuvenating C++ programs
through demacrofication. In Proceedings of the International Conference on Software Main-
tenance, ICSM. IEEE, 2012.

35 Aditya Kumar, Andrew Sutton, and Bjarne Stroustrup. Rejuvenating C++ programs
through demacrofication. In Proceedings of the International Conference on Software Main-
tenance, ICSM. IEEE, 2012.

36 Steinar Kvale. InterViews: An Introduction to Qualitative Research Interviewing. SAGE
Publications, 1996.

37 David Larochelle and David Evans. Statically detecting likely buffer overflow vulnerabilities.
In Proceedings of the USENIX Security Symposium. USENIX Association, 2001.

38 Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael Schulze. An
analysis of the variability in forty preprocessor-based software product lines. In Proceedings
of International Conference on Software Engineering, ICSE. ACM, 2010.

39 Jörg Liebig, Andreas Janker, Florian Garbe, Sven Apel, and Christian Lengauer. Morpheus:
Variability-aware refactoring in the wild. In Proceedings of the International Conference
on Software Engineering, ICSE. ACM, 2015.

40 Jörg Liebig, Christian Kästner, and Sven Apel. Analyzing the discipline of preprocessor
annotations in 30 million lines of C code. In Proceedings of the International Conference
on Aspect-Oriented Software Development, AOSD. ACM, 2011.

41 Jörg Liebig, Alexander von Rhein, Christian Kästner, Sven Apel, Jens Dörre, and Christian
Lengauer. Scalable analysis of variable software. In Proceedings of the Joint Meeting of
the European Software Engineering Conference and the Symposium on the Foundations of
Software Engineering, FSE. ACM, 2013.

42 Daniel Lohmann, Fabian Scheler, Reinhard Tartler, Olaf Spinczyk, and Wolfgang Schröder-
Preikschat. A quantitative analysis of aspects in the eCos kernel. In Proceedings of the
European Conference on Computer Systems, EuroSys. ACM, 2006.

43 Bill McCloskey and Eric Brewer. Astec: A new approach to refactoring C. In Proceed-
ings of the European Software Engineering Conference and International Symposium on
Foundations of Software Engineering, ESEC/FSE. ACM, 2005.

44 Flávio Medeiros, Márcio Ribeiro, and Rohit Gheyi. Investigating Preprocessor-Based Syn-
tax Errors. In Proceedings of the International Conference on Generative Programming:
Concepts and Experiences, GPCE. ACM, 2013.

F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi and R. Gheyi 1021

45 Flávio Medeiros, Márcio Ribeiro, Rohit Gheyi, and Baldoino Fonseca. A catalogue of
refactorings to remove incomplete annotations. Journal of Universal Computer Science,
2014.

46 Christopher A. Mennie and Charles L. A. Clarke. Giving meaning to macros. In Proceedings
of the International Conference on Program Comprehension, ICPC. IEEE, 2004.

47 Emerson Murphy-Hill, Thomas Zimmermann, and Nachiappan Nagappan. Cowboys, ankle
sprains, and keepers of quality: How is video game development different from software
development? In Proceedings of the International Conference on Software Engineering,
ICSE. ACM, 2014.

48 Sarah Nadi and Ric Holt. The Linux kernel: A case study of build system variability.
Journal of Software: Evolution and Process, 26(8), 2014.

49 Changhai Nie and Hareton Leung. A survey of combinatorial testing. ACM Computer
Surveys, 43(2), 2011.

50 Jeffrey L. Overbey, Farnaz Behrang, and Munawar Hafiz. A foundation for refactoring C
with macros. In Proceeding of the International Symposium on the Foundations of Software
Engineering, FSE. ACM, 2014.

51 Yoann Padioleau. Parsing C/C++ code without pre-processing. In Compiler Construction,
volume 5501 of Lecture Notes in Computer Science. Springer, 2009.

52 T. Troy Pearse and Paul W. Oman. Experiences developing and maintaining software in a
multi-platform env. In Proceedings of the International Conference on Software Mainten-
ance, ICSM. IEEE, 1997.

53 Márcio Ribeiro, Paulo Borba, and Christian Kästner. Feature maintenance with emergent
interfaces. In Proceedings of the International Conference on Software Engineering, ICSE,
2014.

54 Márcio Ribeiro, Felipe Queiroz, Paulo Borba, Társis Tolêdo, Claus Brabrand, and Sér-
gio Soares. On the impact of feature dependencies when maintaining preprocessor-based
software product lines. In Proceedings of the International Conference on Generative Pro-
gramming and Component Engineering, GPCE. ACM, 2011.

55 Sandro Schulze, Jörg Liebig, Janet Siegmund, and Sven Apel. Does the discipline of prepro-
cessor annotations matter?: A controlled experiment. In Proceedings of the International
Conference on Generative Programming: Concepts and Experiences, GPCE, 2013.

56 Robert C. Seacord. The: 98 Rules for Developing Safe, Reliable, and Secure Systems.
Addison-Wesley, 2014.

57 Nieraj Singh, Celina Gibbs, and Yvonne Coady. C-CLR: A tool for navigating highly con-
figurable system software. In Proceedings of the AOSD Workshop on Aspects, Components,
and Patterns for Infrastructure Software, ACP4IS. ACM, 2007.

58 Henry Spencer and Geoff Collyer. #ifdef considered harmful, or portability experience
with C news. In USENIX Annual Technical Conference, 1992.

59 Diomidis Spinellis. Global analysis and transformations in preprocessed languages. IEEE
Transactions on Software Engineering, 29(11), 2003.

60 Reinhard Tartler, Christian Dietrich, Julio Sincero, Wolfgang Schröder-Preikschat, and
Daniel Lohmann. Static analysis of variability in system software: The 90,000 #ifdefs
issue. In USENIX Annual Technical Conference, 2014.

61 Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolfgang Schröder-Preikschat. Fea-
ture consistency in compile-time-configurable system software: facing the Linux 10,000
feature problem. In Proceedings of the Conference on Computer systems, EuroSys. ACM,
2011.

62 Reinhard Tartler, Julio Sincero, Christian Dietrich, Wolfgang Schröder-Preikschat, and
Daniel Lohmann. Revealing and repairing configuration inconsistencies in large-scale sys-

ECOOP’15

1022

tem software. International Journal on Software Tools for Technology Transfer, 14(5),
2012.

63 Reinhard Tartler, Julio Sincero, Wolfgang Schröder-Preikschat, and Daniel Lohmann. Dead
or alive: finding zombie features in the linux kernel. In Proceedings of the International
Workshop on Feature-Oriented Software Development, FOSD, 2009.

64 Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake. A classific-
ation and survey of analysis strategies for software product lines. ACM Computing Surveys,
47(1), 2014.

65 Federico Tomassetti and Daniel Ratiu. Extracting variability from C and lifting it to
mbeddr. In Proceedings of the International Workshop on Reverse Variability Engineering,
REVE, 2013.

66 Salvador Trujillo, Don Batory, and Oscar Diaz. Feature refactoring a multi-representation
program into a product line. In Proceedings of the International Conference on Generative
Programming and Component Engineering, GPCE. ACM, 2006.

67 Marian Vittek. Refactoring browser with preprocessor. In Proceedings of the European
Conference on Software Maintenance and Reengineering, CSMR. IEEE, 2003.

68 Daniel Weise and Roger Crew. Programmable syntax macros. In Proceedings of Intern-
atinoal Conference on Programming Language Design and Implementation, PLDI. ACM,
1993.

	Introduction
	State of the Art
	Readability and separation of concerns
	Combinatorial explosion and parsing unpreprocessed C code
	Error proneness and guidelines
	Difficulty of developing tool support and syntactic preprocessors

	Research Method
	Research Questions
	Research Strategy
	Corpus
	Study 1: Interviews
	Study 2: Survey
	Study 3: Mining undisciplined annotations
	Threats to validity

	RQ 1: Why is The C Preprocessor Still Widely Used in Practice?
	Developers' Awareness of C Preprocessor Criticism
	Usage of the C Preprocessor
	Discussion

	RQ 2: What do Developers Consider as Alternatives to Preprocessor Directives?
	Guidelines for Structuring Code
	Alternative In-language Runtime Mechanisms
	No Perceived Alternatives

	RQ 3: What are Common Problems of Using Preprocessor Directives in Practice?
	Preprocessor-related Bugs
	Combinatorial Testing
	Code Comprehension

	RQ 4: Do Developers Care About the Discipline of Preprocessor Annotations?
	Concluding Remarks

