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Abstract

In recent years, many different cryptographic schemes have been invented
which are thought to be difficult to attack, even by quantum computers.
In the case of lattice cryptography, they are based on lattice problems that
have been conjectured to be hard to solve. However, using brute force,
mathematical cryptanalysis, or finding a back door are not the only ways to
attack cryptographic primitives. In many cases it is possible to attack the
hardware on which the cryptographic code runs by introducing faults into
the calculations and gather secret information by analysing the output.

In this work we investigate fault attacks against the ring-TESLA sig-
nature scheme. While possible fault attacks have already been identified,
we provide countermeasures and measure the performance drawback of this
added security against hardware attacks. We consider first order fault at-
tacks, and the countermeasures are implemented in software.
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1 Introduction

Today, public key cryptography is at the heart of secure information ex-
change between computer systems. However, the invention of Shor’s Algo-
rithm 1994 puts all currently used schemes, such as RSAH , DSA, Elliptic
Curve Cryptography, or the Diffie-Hellman key exchange in danger.

The rising threat that powerful quantum computers could in a few years
be a reality calls for new cryptographic primitives. In recent years, many
different schemes have been proposed, which can be classified as code-based,
hash-based, lattice-based, isogeny-based, or multi variate. Lattice-based
cryptographic primitives seem to be very promising in the sense that they
have performance comparable to currently used schemes, and it looks like
they are a candidate for fully homomorphic encryption. A few examples
of lattice based signature schemes invented in recent years are GLP [13],
BLISS [9], ring-TESLA [1], and NTRU-Sign [15].

We investigate ring-TESLA, because it has the fewest vulnerabilities
against fault attacks. These vulnerabilities have all been identified in [6],
with the exception of zeroing the secret polynomial s, which was discov-
ered by the authors of this thesis, and the loop abort attack discovered
by [11]. We differentiate between two major classes, skipping faults and
zeroing faults. Our goal was to implement countermeasures against these
attacks and measure how efficient the countermeasures are, both in terms of
execution time and code size. To that end, we edited the original C imple-
mentation of ring-TESLA and used the GNU Compiler Collection (GCC) to
generate the corresponding assembly code. We then analyzed the generated
code by hand and reasoned why (or why not) it is secure against an attack.
Some of these countermeasures, ideas, and performance measurements have
been included in a conference paper [7].

While we are the first to implement countermeasures in ring-TESLA,
there has already been a lot of work done for more widely used schemes such
as RSA or AES. Some authors have also proposed generic countermeasures,
which can be applied to any cryptographic scheme.

'Recently Bernstein et al. published an instantiation of RSA which can resist an attack
by a quantum computer. This is achieved by choosing a key size of one terabyte, leading
to encryption times on the order of 100 hours on a high performance machine, which is
obviously not practical for day to day usage. [5|



In this work, we will first introduce the basics to discuss this topic: Chapter
2 is concerned with signature schemes, the Ring Learning with Error Prob-
lem, fault attacks, and the ring-TESLA scheme. In Chapter 3 we look at
the fault attacks against ring-TESLA that have been found until now and
provide countermeasures. In Chapter 4 we show the performance impact of
implementing these countermeasures.



2 Preliminaries

2.1 Notation and Definitions

We denote the set of positive natural numbers by N<y and define B = {0, 1}.
Let n = 2F for some k¥ € N and ¢ be a prime with ¢ = 1 (mod 2n). We
denote the field Z/qZ by Z,. We define R = Z[z]/(2™ + 1), as well as
Ry = Zglz]/(z" + 1) and Ry (g = {317 qiz® € Ry | oy € [-B, B} with
B € N. The set of units of R, is written as R;. The euclidean norm
of a vector v € R™ is indicated by ||v]|. We denote the set of all vectors
of length n with exactly w ones and zeroes for all other components by
By = {v €B"| |[v]|> = w}. We do not explicitly differentiate between a
polynomial in R, and its coefficient vector in Zy, because R, is isomorphic
to Zy.

We write [c]ya with d € N to denote the unique representative of ¢ modulo
24 in the set (—2971,2971]. Intuitively, we can think of [c|a as the d least
significant bits of c. Similarly we define |-]q:Z — Z, ¢+ (¢ — [c]44)/2% and
we think of |c]4 as the most significant bits of ¢ (what remains after taking
away the d least significant bits). We use |v]4, as an abbreviation for |v
(mod q)1a.

The centered gaussian distribution D, over Z with standard deviation o
is defined as follows: For z € Z the probability of z is given by p,(2)/p(Z)
with po(2) = exp(—22/20?) and p,(Z) = 1+ 2322 ps(2). For a distribu-
tion D we write d <— D to denote sampling an element d from D. Similarly,
we write v < D" to denote sampling every component of the n-dimensional
vector v from the probability distribution D. The same notation will also
be used to denote sampling each coefficient of a polynomial in R. For a
set S we write s <—g S to indicate we are sampling an element s uniformly
random from S.

All these definitions are the same as in the original ring-TESLA paper [1].

Signature Schemes We only provide an informal definition. A signa-
ture scheme consists of three (probabilistic) algorithms: KeyGen, Sign, and
Verify.

KeyGen takes the unary vector 1* with security parameter A as input and



returns a signing key sk and a verifying key vk.

Sign takes a message i to be signed and the signing key vk. It returns a
signature o for pu.

Verify takes a message u, a possible signature o, and the verifying key vk.
The algorithm either accepts or rejects o as a signature of pu.

The scheme needs to fulfill two properties: A valid signature is always ac-
cepted (correctness) and in polynomial time nobody can create a signature
from a private key vk without knowing vk (security).

The Ring Learning with Errors Problem. We take the following def-
initions from [6].

Definition 1 (Ring Learning with Errors Distribution). Let n,q € Nsg,
s € Ry, and x be a distribution over R. We define by Dy, the R-LWE
distribution which outputs (a,as+e) € Rq xRy, where a <—g Ry and e < x.

Definition 2 (Decisional Ring Learning with Errors Problem). Let n,q €
Nso and n = 2% for some k € Nsg and x be a distribution over R. Given
n,q, and samples (a1,b1), ..., (am,bm) € Ry X Ry, the decisional ring learn-
ing with errors problem is to decide, whether by, ..., b, are chosen with the
R-LWE distribution or whether they are chosen uniformly random over R,.

There is also a search variant of R-LWE, where the problem is to find the
polynomial s, however, the search variant can be reduced to the decision
variant [16]. The R-LWE problem has been conjectured to be hard to solve,
even by quantum computers.

2.2 Description of ring-TESLA

The ring-TESLA scheme was presented by Akleylek et al. [1]. It is a ring
variant of the signature scheme TESLA by Alkim et al. [2], which in turn
is based on a scheme first developed by Bai and Galbraith [3] and improved
by Dagdelen et al. [§].

It is parametrized by the lattice dimension n, security parameter A,
discrete gaussian distribution D, with standard deviation ¢ and mean 0,
modulus ¢ and the integers x,w,d, B, L,U. The condition n > k > A has
to be fulfilled. Two polynomials a,as € Ry are needed as global constants
and can be shared among all users. Furthermore we require a hash function
H :B* — B" and an encoding function F': B* — B, .. More information
about the encoding function can be found in [14].
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Figure 2.1: Pseudocode of the algorithms for ring-TESLA

Algorithm 2.1: Sign

input: p;a,as,s, e, e
output: (z,c)

Y < Rq,B]
v1 4 a1y (mod q)
vy <= apy (mod q)
¢ < H(|vi]a.q: [v2]a,q, 1)
¢+ F(d)
Z <4< y+sc
wy < v — erc (mod q)
wg — Vg — egc (mod q)
If [wi]aa, [walpa & Roa_p,
Vz ¢ Re_U
Viwlloo > la/2] — L ©
Restart at line 4
Return (z,c)

(*) This check is not present in the origi-
nal ring-TESLA paper. It was adapted from
TESLA to eliminate a few cases where valid
signatures would not verify.
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Algorithm 2.2: KeyGen

input: 1), ay,as
output: (sk,pk)

s,e1,e3 < D7

If checkE(e;) = 0 V checkE(eg) = 0
Restart at line 4

t1 < a1s + e (mod q)

to < ags + eo (mod q)

sk + (s,e1,€2)

pk — (tl,tz)

Return (sk, pk)

Algorithm 2.3: Verify

7 . e /.
wput: [z, ¢ a1, 02,1, 12

c+ F(d)

w) + a1z — tic (mod q)

wh + azz — tac (mod q)

¢ B0 ]ag [10]ag: )

Ifd=cd'"NzeRp_y
Return 1

Else
Return 0

We now provide descriptions of the algorithms in Figure [2.1

Key Generation.

During key generation the secret polynomials s, eq, es €

R are sampled from the Gaussian distribution D}. The polynomials e; and
eo have to fulfil the property that the sum of their w largest coefficients are
less or equal than the rejection parameter L. This is checked in checkE()
and the key generation is restarted if either polynomial does not satisfy this
property. Then the signing key (s, e1, e2) and the verification key (¢1,t2) =
(a1s + e1,aa2s + e2) are returned. Calculating the signing key from the
verification key directly would require solving the R-LWE problem with the

two given samples (a1,t1) and (ag, t2).



Signing. The signing algorithm takes the message p € B* to be signed,
the publicly known constants aj, a2, and the secret key (s, ey, e2). First,
y is sampled uniformly random from R, p). Then the polynomials vy, vy
are calculated as the products of the random polynomial y and the public
constants a; and ag respectively, and hashed together with the message p
to produce the challenge /. The response z is calculated as the sum of the
random polynomial y and the product sc of the secret polynomial and the
encoded challenge. This is characteristic for a Fiat-Shamir construction [12].
The algorithm returns a signature (z,c’) of u with z € R and ¢ € B*.

Verification. The algorithm receives the message u, a possible signature
(z,c") of p, the constants ay, as and the public key (t1,t2). First, it encodes
the hash ¢’ to a polynomial ¢. Then the values w),w} are calculated. If
the signature is authentic, w}, w) will have the same most significant bits as
v1,ve during signing. So if ¢ = ¢’ <~ H(|w}]aq, [wh]aq, 1) and z € Rp_py
the algorithm accepts (z, ') as a signature of the message p.

2.3 Fault Attacks and our Attacker Model

A (hardware) fault attack is an attack targeting a processor, which is ex-
ecuting cryptographic code. By introducing faults in the calculations, the
device may output erroneous data, which can be analyzed in order to gather
secret information. In the case of signature schemes, common goals for an
attacker include — but are not limited to — getting access to the signing key,
forging a signature, or convincing a victim that an invalid signature is valid.
Common faults that have been shown to be possible are skipping faults and
randomization faults [4]. During a skipping fault, a single machine code in-
struction is skipped. This can be achieved for example by “clock glitching”,
where the processor gets an irregular clock signal. Randomizing faults set
variables or parts of the memory to random values. They can for example
be introduced by heating the processor outside of its normal operating tem-
perature range, or shining strong electromagnetic or ionizing radiation at it.
Zeroing faults, where a variable is set to zero, can sometimes be achieved
via skipping faults. Of course, physical access to the device is needed in all
cases. In light of these and more possible attacks, key generation should
happen on a secure machine, so this attack vector is somewhat unlikely. Be-
cause of this, it may be easier to extract the secret key from a smart card,
because an attacker can have physical access to the device. Key verification
is also of interest, because the smart card may have to verify the identity of
whatever device it is communicating with.

We consider the following threat model: An attacker can introduce a
single skipping fault with perfect precision at any point during code exe-
cution. In some cases we also consider the ability to induce two skipping



faults. The attacker can randomize any variables at any time, but they can-
not set a variable to any predefined value or restrict its value to a predefined
small range. They can however (by means of a skipping fault) set a variable
to a value, which depends on the content of the memory, which will either
contain values from previous computations, different processes, or may even
be zero. Because of this, we also consider the possibility of zeroing faults,
although our tests suggest this may only be possible on some architectures.
Countermeasures can be applied to the hardware as well as on the software
side, but in this work we only focus on the software. Here are some examples
of possible software countermeasure:

e Redundant code execution: Perform the same computation multiple
times, then make sure all results are equal. Of course, if you do the
same work twice it is going to take twice as long, which is not very
efficient.

e Additional correctness checks: Introduce additional checks to make
sure, that all invariants of the code are true. For example, if during
normal code execution a variable will never be zero, you can add an
if-statement which makes sure the variable is nonzero even after a fault
attack.

e Infectious computations: Introducing a fault progagates through the
rest of the computation, rendering affected values unusuable.

e Branchless implementations: A branch (for example an if-statement)
always depends on comparing two values and then jumping to a dif-
ferent part of the code based on the value of the zero flag or carry flag.
When skipping the comparing instruction, there is a good chance that
the body of the if-statement is skipped. In most cases, it is even pos-
sible to skip one of the jump instructions so that the desired branch
is executed every time.

Out of these four, infectious computations and a branchless implementation
seem to be the most promising options for ring-TESLA, because they are
inexpensive and more resistant to higher order fault attacks. Hence, we will
use these approaches to secure ring-TESLA, as described in the following
chapter.
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3 Fault Attacks against ring-TESLA
and Countermeasures

The following vulnerabilities of ring-TESLA were identified in |6]. We name
them here first, the exact explanations follow in the corresponding sections.
To get a sense of the relevance of each variable, or at what point in the
scheme these attacks can be mounted, we direct your attention to Figure

21

e Zeroing the error polynomial e; or es during key generation

Skipping the addition of e; or ey during key generation

Zeroing the random polynomial y during signing

Skipping the rejection sampling during signing

Zeroing the hash ¢ during verification

Skipping the hash comparison ¢’ = ¢’ during verification

e There are no known vulnerabilities to randomization faults

Although not mentioned in [6], we discovered that ring-TESLA is also vul-
nerable to zeroing the secret polynomial s during key generation. Further-
more, the possibility to zero a polynomial with a loop abort fault has been
described by Espitau et al. [11].

We received the C implementation from Sedat Akleylek and our modified
version is available on https://www.cdc.informatik.tu-darmstadt.de/en/
cdc/staff/nina-bindel/.

3.1 Skipping Faults

In some cases skipping faults lead to uninitialized values. The prominent
example of this in ring-TESLA is skipping a function call which initializes
a variable, for example when sampling a polynomial. Another possibility,
which is more readily visible in assembly code, is the skipping of some in-
struction, which initializes a variable, such as a register. As an example

11
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let us have a look at the instruction movl $-1, %eax: If it is skipped, the
register %eax will not contain -1, but rather whatever value it held before
the assignment.

We make the following assumptions about the distribution of these unini-
tialized values: In the case of registers, the value they take on depends on
the previously executed code. In the case of more complex variables, such as
polynomials, it depends on whatever was stored previously in that memory
location on the heap. We also consider the possibility that the resulting
variable is zero, as may be the case on a system where the entire memory is
initialized to zero. However our experiments suggest that the probability of
setting an entire polynomial to zero on a personal computer is low, although
we have seen cases, where all but three coefficients were zero.

A generic countermeasure to prevent the skipping of a function call is to
inline it by prefixing the definition with the __attribute__((always_inline))
directive of GCC. That way the compiler will not generate a call instruction
which can be skipped. This comes at no additional computational cost, but
it will increase the size of the compiled binary, which is often a drawback
when working with embedded systems with very small memory. Also it does
not prevent fault attacks that can occur during the execution of the function
or attacks that target branches which depend on the result of the function.
For example when inlining a function fun(), the following code if (fun() ==
2) can still be attacked by a skipping fault. We are not providing a more in
depth analysis of this countermeasure, because in ring-TESLA GCC could
not inline the critical functions.

3.1.1 Skipping the addition of the error polynomials during
key generation

In ring-TESLA during key generation the public key is calculated to be
t; = a;s + e; (mod ¢) with ¢ € {1,2}. If ¢; is not added, the public key
will contain t; = a;s. Because a; is public and a unit in R, anyone can
compute s = a;lti and thus obtain the secret polynomial s. Then the
error polynomials e; = t; — a;s can be calculated and we have retrieved
the signing key (s,e1,e2). Listing shows the implementation for the
calculation a;s + e; (mod ¢) during key generation.

12



Listing 3.1: KeyGen: Polynomial multiplication and addition to
compute the public key

poly_mul_fixed(poly_T1, poly_S, poly_al);
poly_add(poly_T1, poly _T1, poly E1);
poly_mul_fixed(poly_T2, poly_S, poly_a2);
poly_add(poly_T2, poly_T2, poly E2);

o U A W N

compress_pk(pk, poly_T1, poly_T2);

If an attacker manages to skip the function call

poly_add(poly T1, poly T1, poly E1), one half of the public key will be
t1 = a1s. A simple countermeasure against this is to introduce two new
variables poly_A1S, poly_A2S to hold the results of the multiplication, as
suggested by [6] and shown in Listing

Listing 3.2: KeyGen: Countermeasure against skipping the addition,
using new variables

poly poly_A1S, poly_A2S;

poly_mul_fixed(poly_A1S, poly_S, poly_al);
poly_add(poly_T1, poly_A1S, poly_E1);
poly_mul_fixed(poly_A2S, poly_S, poly_a2);
poly_add(poly_T2, poly_A2S, poly_E2);
[...]

compress_pk(pk, poly_T1, poly_T2);

0o N9 O g s W N

Now, if either addition is skipped, the value of ¢1 or 5 is uninitialized and the
private and public key do not correspond to each other anymore. Signatures
will most probably fail to verify, because if t; = 0 then w} = a1z during
verification, which is very unlikely to have the same most significant bits
as a1y during signing. If ¢; has random coefficients, it is still very unlikely
and so the hash values ¢’ and ¢”” will be different with very high probability.
This leads to a rejection by the verifier.

We call this countermeasure new_variable.

3.1.2 Skipping the hash comparison during verification

The verification of ring-TESLA in part depends on the code in Listing
where ¢ and c_sig represent the hash values ¢ and ¢”. Listing shows
the generated assembly of the same code (without compiler optimizations).

13



Listing 3.4: Assembly code of the
hash verification in Listing

1 leaq -112(%rbp), %rcx
2 leaq -48(%rbp), %rax
Listing 3.3: The last few lines of 3 movl $32, %edx
Verify: comparing the hashes ¢ 4 movq %rex, %rsi
and ¢’ 5 movq %rax, %rdi
L if(nencm(c, c_sig, 32)) ! el Heon, Heax
2 return -1; s je L139
3 9 movl $-1, %eax
+ L] 0 jmp L140
5 11 L139:
6 return 0; e o [L.]
13 movl $0, %eax
14 L140:
15 [...]
16 ret

An attacker who wants its victim to accept an invalid signature can attempt
to force the verify function to return zero, which signifies a valid signature.
This can be achieved by skipping the jump in line 10, so that movl $0, %eax
in line 13 is executed independently of the result of memcmp().

But actually, Listing [3.3] looks like this:

Listing 3.5: Verify: comparing the hashes (without omitted code)

if(memcmp(c, c_sig, 32))
return -1;

*mlen = smlen - CRYPTO_BYTES;
memcpy(m, sm, *mlen);

B B | B N

return 0;

Line 4 and 5 in Listing are responsible for copying the signed message
into a memory location, which is accessed from outside the function for
further use. We can safely rewrite that as shown in Listing completely
dropping the if-statement and making this part of the code a branchless
implementation. There is not any real harm in returning a message and
forged signature, if the verifier cannot be tricked into believing it is genuine.

14



Listing 3.7: Generated assembly
of Listing line 4

Listing 3.6: Rewritten code for

Listing [3.3] which is secure against l Et‘e:aé]—HZ(%rbp), %urex
a skipping attack s leaq -48(%rbp), %rax
1 *mlen = smlen-CRYPTO_BYTES; 4 movl $32, %edx
2 memcpy(m, sm, *mlen); 5 movq %rcx, %rsi
3 6 movq %rax, %rdi
4 return memcmp(c,c_sig,32); 7 call _memcmp
g [...]
9 ret

The function now still returns zero if the signature is valid and a nonzero
value otherwise, albeit not -1. This stems from the fact that the memcmp ()
function returns 0 if the memory locations are equal. If they are unequal,
the index of the first byte where they differ is returned. The disassembled
code in Listing shows that failing to call memcmp() returns the content
of %eax, which is modified in line 3 and is unlikely to be zero. Because zero
is the value that is returned to indicate a valid signature, it is unlikely that
the verifier can be convinced that an invalid signature is valid, even when
employing a fault attack.

We call this countermeasure rewrite_branchless.

15



3.1.3 Skipping the rejection sampling during signing

In [6] an attack is described, where skipping the rejection sampling during
signing leaks a small amount of information about the secret. The authors
did not provide an estimate how many faults would have to be induced, but
a similar attack on NTRU needs about 8000 signatures [10]. Listing
shows the part of the code, where the attack could take place.

Listing 3.8: Last lines of Sign: Rejection sampling and returning the

signature
1 while(1) {
2 L...]
3
4 // Rejection sampling
5 if (test_rejection(vec_y) != 0) {
6 continue;
7 3
8
9 //Copy the message into the signature package
10 for(i = 0; i < mlen; i++) {
11 sm[i] = m[i];
12 }
13
14 // Length of the output
15 *smlen = CRYPTO_BYTES + mlen;
16
17 // Put the signature into the output package
18 compress_sig(sm+mlen, c, vec_y);
19 return 0;
20

If the rejection sampling in line 2 would be skipped, every signature could
leak a small amount of information about the secret key. To prevent this,
we could apply rejection sampling again before the signature is compressed
into its output package, but that is a somewhat inelegant solution, especially
because we can imagine that an attacker that is powerful enough to induce
a precise skipping fault in the first line could do it again a few lines down
and thwart the countermeasure.

In Listing the function compress_sig() in line 15 copies the hash ¢
and the polynomial vec_y coefficient by coefficient into an array of bytes, so
there is a possibility of applying rejection sampling a second time, but in a
way that cannot easily be subverted. Listing shows the implementation
of compress_sig(). The function fmodb_u() (called in line 15) was added to
the original code. It is comparable to test_rejection() in Listing line

16



5, but modifies only a single coefficient: A coefficient a of the polynomial is
turned into a (mod B — U). Listing shows the implementation of this
modulo function.
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Listing 3.9: Additional rejection sampling with fmodb_u() when com-
pressing the signature into its output package

static void compress_sig(unsigned char xsm,

unsigned char *c,
double vec_z[PARAM_NI)

int i,k;
int ptr =0;
int32_t t=0;

//store the hash value
for (i=0; i<32; i++){
smlptr++] =c[i];

}
for(i=0; i < PARAM_N; i++)
{
t = (int32_t) fmodb_u(vec_z[il]);
for(k=0;k<4;k++)
smlptr++] = ((t>>(8*(k))) & 0Oxff);
3

Listing 3.10: The rejection sampling function fmodb_u()

static double fmodb_u(double x) {

int modulus = PARAM_B - PARAM_U;
if(x < -modulus) {
return x + modulus;
} else if (x > modulus) {
return x - modulus;
} else {
return x;

}

Under normal circumstances, fmodb_u() is not going to alter the coeffi-
cients, because such a polynomial would have been rejected by the call to
test_rejection() in line 5 of Listing Suppose this first rejection sam-
pling had been skipped. Now those coefficients whose absolute values are

17



bigger than B — U are modified by fmodb_u() and prevented from leaking
secret information. This results in an invalid signature, which will most
likely not be accepted.

In order to circumvent this countermeasure, the call to fmodb_u() would
have to be skipped in every iteration of the loop in Listing line 15, which
is executed n timesﬂ If the entire loop is skipped, the signature will be
empty, because this loop is responsible for copying the signature into the
output array. This does not help the attacker either. The only information
they get from that is the fact that they can induce a skipping fault.

We call this countermeasure additional_rejection.

3.2 Zeroing Faults

First, let us define a function, which we are going to use to prevent zeroing
attacks. Let z € N, p = Z?;()l a;x' and H be the Heaviside function with
H(0) = 0. We define | - |2, as follows:

| - gz Ry — B
: —1
P 1, if Z?:O H(Odz) <z
0, otherwise

So for a polynomial p the function | p|g . is 1, if the number of zero coefficients
is strictly less than z, otherwise 0.

3.2.1 Zeroing the random polynomial during signing
Preventing first order fault attacks

Since ring-TESLA relies on a Fiat-Shamir construction [12], a random value
(the ‘commitment’) has to be sampled during signing. Listing shows
the code for this, where poly is an array of type double.

Listing 3.11: The first lines of Sign: Sampling the random polyno-
mial y

1 poly vec_y;
2 sample_y(vec_y);

Firstly, sampling (which in assembly is just a single call instruction) could
be skipped. Secondly, the polynomial or parts of it could otherwise be

In this instantiation of ring-TESLA n = 512
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zeroed, for example by a loop abortion fault inside sample_y(), as described
by Espitau et al. [11]. If y = 0 the signature will instantly leak the secret
key, because then z = sc, ¢ is known (because it is part of the signature)
and s can be calculated. But even if only some coefficients of y are set to
zero, an adversary only needs a fewE| faulty signatures and can derive the
key from them [6]. There is a way to prevent a first order fault attack on
this code, simply by checking if too many coefficients of y are zero, as shown
in Listing We show the code, which is responsible for counting the
number of zero coeflicients in Listing |3.14

Listing 3.12: Sign: Sampling with ~ Listing 3.13: Disassembly of line 3
countermeasure ‘count_zeroes’ in Listing [3.12

1 poly vec_y; 1 leaq -4176(%rbp), %rax
2 sample_y(vec_y); 2 movq %rax, %rdi

3 1if (count_zeroes(vec_y) > 8) { 3 call _count_zeroes

4 // restart key generation 4 cmpl $8, %eax

5 3 5 Jjg L134

Listing 3.14: The function count_zeroes(): Counting how many
coefficients of the polynomial are zero

1 int count_zeroes(poly p) {

2 int zeroes = 0;

3 for (int i = @; i < PARAM_N; i++) {
4 if (plil == 0.9) {

5 zeroes++;

6 }

7 3

8 return zeroes;

9

To make the attack more difficult, one might be tempted to disallow any zero
coefficients at all, because the chances of a coefficient being zero are only 1
in 4,194,303. But this would change the distribution too much and might
invalidate the security proof. We chose to forbid any polynomials with 8 or
more zero coefficients, because that rejects less than 1 in 2!?® polynomials,
meaning the change in the probability distribution is negligable, as shown
in the following:

2If the attacker can set 12 bytes to zero during each attack, they need 384 signatures
to recover the signing key, as shown in [6].
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The polynomial y in ring-TESLA has 512 integer coefficients, which are
sampled uniformly random from [—2097151,2097151]. Let z be the number
of zero coefficients in y. We denote the probability of a single coefficient
being zero by p = m. Then the probability Pr(z > 8) of y having
more than 8 zero coefficients is
°L/512) 4
1—Pr(z<8)=1- Z < i >pz(1 P12 = 154 x 1071 < 27128,
i=0

However, this does not stop a more powerful attacker, which is able to induce
two or more precise skipping faults, from recovering the secret key. Line 5
in Listing shows the jump instruction, which restarts the signature
generation. Simply skipping this instruction with a second fault would lead
to a successful attack.

We call this countermeasure count_zeroes.

Preventing second order fault attacks

We use the previously defined function | - |%4, which returns 1, if there are
strictly less than 8 coefficients which are zero, otherwise 0.

Algorithm 3.2: Sign pseudocode,
Algorithm 3.1:  Original Sign  which is secured against first order

pseudocode attacks
1 y(—Rq’[B] 1Y (—Rq,[B]
2 2 .
3 z4+y+sc 3 A Jy[%
4[] 4z y+Asc
5 Return (z,c) 5[]
6 Return (z,c)

Listing 3.18: Sign: Secured com-
Listing 3.17: Sign: sampling y and putation of z = y + sc
computing z = y + sc

1 sample_y(vec_y);
1 sample_y(vec_y); 2 [...]
2 [...] 3 long lambda = check_zeroes(vec_y);
3 poly_add(vec_y, vec_y, Sc); 4 poly_mul_constant(1Sc, Sc, lambda);
4 [...] 5 poly_add(vec_y, vec_y, 1Sc);
5 return 0; 6 [...]

7 return 0;
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To circumvent the countermeasure in Listing the adversary could skip
line 1 and somehow make lambda be 1 in order to return a faulty signature.
Skipping line 3, 4 or 5 would result in returning an uninitialized or random
value instead of a faulty signature, which does not reveal anything about
the secret key. If the adversary only attacks line 1, the function will return
z = 0 by design, which does not leak information about the secret s.

However, in order for that countermeasure to work, check_zeroes () must
resist a single fault attack, which is not trivial to achieve. Let us first
examine the insecure implementation in Listing|3.19

Listing 3.19: Implementation of | -|%4 that is not secure against first
order attacks

1 long check_zeroes(poly p) {
2 int zeroes = 0;

3 for (int i = @; i < PARAM_N; i++) {
4 if (pli] == 0.0) {
5 zeroes++;

6 }

7 3

8 if (zeroes > 8) {

9 return 0;

10 } else {

11 return 1;

12 }

There is an inherent problem with counting zeroes like that: No matter
what follows the for-loop, if the loop is skipped, we think we have no zero
coefficients. In that case check_zeroes() would return 1, even though y
might actually have too many zeroes. Also, if-statements can be skipped,
because they always compile to some variation of a compare and a jump
instruction.

It is better to count the nonzero coefficients and do not use if-statements.
Let us look at the code in Listing We rewrote the critical if-statement
in assembly, doubling each instruction so that skipping a single one has no
effect on the computation. The compiler replaces %@ with the input and %1
with the output register. The keyword volatile makes sure that the rest of
the assembly code is not optimized. This ensures the redundant statements
and our protection against first order fault attacks are preserved and not
removed by the compiler’s optimization. The inline assembly code makes
sure that 1 is returned if the number of nonzero coefficients is between 505
and 512. These values arise, because the polynomials have 512 coefficients
and we allowed strictly less than 8 of those to be zero.
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Listing 3.20: A way of checking the coefficients of y that is more
robust against fault attacks

int check_zeroes(poly p) {
int nonzeroes = 0;
for (int i = @; i < PARAM_N; i++) {
if (p[il !'= 0.0) {
nonzeroes++;

3

© 0 9 O o W N

asm volatile (
"cmpl $504, %0;"
"cmpl $504, %0;"
"setg %%bl;"
"setg %%bl;"
"cmpl $513, %0;"
"cmpl $513, %0@;"
"setl %%bh;"
"setl %%bh;"
"andb %%bh, %%bl;"
"andb %%bh, %%bl;"
"movzbl %%bl, %1;"
"movzbl %%bl, %1;"
:"=r" (nonzeroes)
:"r"(nonzeroes)
:"%ebx”

s

NN NN NN NN R R R e s e e s
N0 R W N R O N G A W N = O

return nonzeroes;

[
3]
e

If an attacker can only induce one fault, they could skip the initialization in
line 2, or skip some instruction inside the loop, which would essentially be
a randomizing fault. Because the probability is very low that the resulting
value of nonzeroes will be in the range [505,512], the attack has a low
probability of success.

We call this countermeasure zero_signature.

3.2.2 Zeroing the secret or error polynomial during key gen-
eration

An attacker could also attempt to recover s from the public key. Normally,
this is an instance of R-LWE and will be hard to solve, however, if part of the
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—= e
= o

public key would be ¢; = ays, it becomes very easy. This could be achieved
by zeroing the error polynomial e; during key generation. One possibility
is skipping the call to sample_gauss_poly() in Listing which will leave
e1 uninitialized and potentially zero on some architectures. Alternatively
they could induce a loop aborting fault in Listing line 7, by skipping
the instruction jne L18. This has been conjectured to be easier, because it
is easier to detect the repeating pattern of the loop |11]. Both methods can
also be applied to zero ey and s, which are sampled in the same way.

Listing 3.21: During KeyGen: Listing 3.22: KeyGen: Generated
Sampling the error polynomial e; assembly code for sampling e
do 1 L54:
{ 2 [...]

sample_gauss_poly(poly_E1); 3 call _sample_gauss_poly
} 4 [inlined code of check_E()]
while(check_E(poly_E1) != 0); 5 Jja Lb54

Listing 3.23: sample.c: Gaussian
sampling function Listing 3.24: sample.c: Disassem-
bled sampling function

void sample_gauss_poly(poly x)
{ 1 _sample_gauss_poly:
unsigned int j; 2 [...]
double gauss; 3 L18:
4 call _sample_gauss
for(j=0; j<PARAM_N; j++) 5 [...]
{ 6 cmpq %rbx, %rbp
gauss = fmodq(sample_gauss()); 7 jne L18
x[j]1 = gauss; s [...]
} 9 ret
3

We present two possible countermeasures in the following.

Additional sampling to prevent a key from being zero

One countermeasure which falls under the category of redundant code exe-
cution works as follows.
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Listing 3.25: KeyGen: sampling the error polynomial multiple times

1 sample_gauss_poly(poly_E1);

2 do {

3 sample_gauss_poly(poly_E1);
4 3} while(check_E(poly_E1) != 0);

Listing shows the sampling of e; during key generation. Line 1 was
added to the original code. Even if the attacker can skip the sampling of e;
in line 1, it is performed a second time in line 3, this time making sure that e;
satisfies the necessary conditions. If the attacker skipped only the sampling
in line 3, then e; would already contain some nonzero values. However, in
this case signatures may not always verify, because the polynomial sampled
in line 1 may not satisfy the condition for e; that is necessary for signatures
to verify correctly. But either way, t; # a1s and the public key does not
leak the secret s. The same things apply to es. The obvious downside to
this is that gaussian sampling is expensive, so the execution time of the key
generation algorithm will increase by almost a third. We refer to Section
4.2 for exact numbers.

We call this countermeasure sample_twice.

Setting the public key to zero in case of a fault attack

We can also prevent this zeroing attack by checking the coefficients of each
polynomial, just like in the case of zeroing y during signing. First, we
determine how many coefficients we can allow to be zero, without changing
the probability distribution too much:

The probability p of a single coefficient being zero is p = p,(0)/ps(Z)
with p,(0) = exp(0) = 1 and p,(Z) = 1+ 2> 7, ps(2) = 75.1988. This
works out to p = 0.013298085. Let z be the number of zero coefficients in a
ring-TESLA polynomial. Then the probability Pr(z > 62) of more than 62
coefficients being zero is

62
512\ . »
1-Pr(z2<62)=1- Z ( . >pZ(1 — p)P12= = 7.75 x 10740 < 27128,
i—o N !
We can now introduce the following countermeasure to the signature scheme,

which sets the public key to zero in case of a fault attack. For the purpose
of legibility we use the shorthand z, instead of |p|%4, with p € R,.
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Algorithm 3.3:  Original Key-  Algorithm 3.4: KeyGen: Counter-
Gen: Sampling the polynomials  measure against zeroing the poly-
and computation of the public key nomials

s,e1,eg < DI 1 S,e1,eg < D7

-] —

t1 < a1s+ €1 (mod q) 3 t] < Ze, - 25 (18 + €1) (mod q)
to < ass + es (mod q) 4ty < Ze, - 25+ (azs + e3) (mod q)

If either eq, e, or s in Algorithm 3.4 contain too many zero coefficients then
either t1, to, or both are zero respectively. We now provide the implemen-
tation of the above pseudocode in Listing |3.28|

© 0 9 O s W N =

e =
w N o= O

Listing 3.28: KeyGen with countermeasure against zeroing in line
6-10

poly_mul_fixed(poly_A1S,poly_S,poly_al);
poly_add(poly_T1,poly_A1S,poly_E1);
poly_mul_fixed(poly_A2S,poly_S,poly_a2);
poly_add(poly_T2,poly_A2S,poly_E2);

int zs = check_zeroes_62(poly_S);

int zel = check_zeroes_62(poly_E1);

int ze2 = check_zeroes_62(poly_E2);
poly_mul_constant(poly_T11, poly_T1, zsxzel);
poly_mul_constant(poly_T22, poly_T2, zsxze2);

compress_pk(pk, poly_T11, poly_T22);
compress_sk(sk, poly_S, poly_E1, poly_E2);
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Listing 3.29: Implementation of | - |%4, that can resist a single fault
attack

int check_zeroes_62(poly p) {
int nonzeroes = 0;

for (int i = @; i < PARAM_N; i++) {
if (p[il !'= 0.0) {
nonzeroes++;
1
}

© 0 9 O s W N -

asm volatile (
"cmpl $450, %0;"
"cmpl $450, %0;"
"setg %%bl;"
"setg %%bl;"
"cmpl $513, %0;"
"cmpl $513, %0;"
"setl %%bh;"
"setl %%bh;"
"andb %%bh, %%bl;"
"andb %%bh, %%bl;"
"movzbl %%bl, %1;"
"movzbl %%bl, %1;"
:"=r"(nonzeroes)
:"r"(nonzeroes)
1 "%ebx”

);

NN N NN NN NN R e s s e s e
®© N O A W RN = O © 0 N kA W N = O

return nonzeroes;

[
©
A ad

Note: Due to what looks like a bug in GCC 7.1.0, we actually had to pre-
fix the entire function definition with the __attribute__((optimize(”00")))
directive, which turns off all optimization for this function. Otherwise it
would in some cases not return 0 or 1, but rather a random integer.
Even a second fault would not suffice for a successful attack, because the
attacker has to get the value of poly_T1 into poly_T11 and the same is true
for poly_T2 and poly_T22. For that, the product zs*zel in Listing line
9 would have to be 1, which requires both zs and ze1 to be 1 or -1. Because
check_zeroes_62() can resist a fault attack, this is rather difficult in our
model.

There is one disadvantage to this approach: Zeroing s leads to s =t; =
to = 0 (because s = 0, so |s|%¢, = 0 and thus both ¢; and ¢y are multiplied
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by 0), which makes it trivial for anyone to forge signatures that can be
verified with the public key (¢1,t2) = (0,0): For any message u the forger
creates the signature (0, H(0,0, 1t)). The verifier computes w} = ajz —tic =
a;-0—0-c=0 and similarly w5, = 0. In that case ¢ = ¢’ and the verifier
believes they are looking at a genuine signature. This makes it necessary
to forbid the public key (0,0). We did not implement this in the code of
ring-TESLA, because such a check would inevitable require an if-statement,
which can readily be attacked with a skipping fault. We believe that for
additional security this check should be applied when transferring keys or
saving them on a key server.

We call this countermeasure zero_key.

3.2.3 Zeroing the hash during verification

The following attack is described in [6]: Suppose Eve wants to pretend to
be Alice during a communication with Bob. So she has to forge a signature
(z,c) for a message p and make Bob believe, that message was signed by
Alice. In order to achieve this, she selects a random z € Rp_y and calculates
d = H(lai1z]aq, |a22]d,q, 1t). She then sends the signature (z,c’) to Bob.
When Bob verifies the signature, Eve mounts a fault attack and zeroes the
hash ¢ + F(¢’), for example by skipping the function call F().

Now Bob computes w] = a1z2—t1¢ = a1z—1t1-0 = a1z and similarly w) =
azz. He then computes ¢’ = H(|waq, [wh]aq, 1) = H(|a12]aq, [a22]d,q: 11)-
This means that ¢ = ¢’ and 2 € Rp_y and he believes that the signature
is valid and was indeed created by Alice.

However, this attack only works in theory, in the current implementation
it is not actually possible to set ¢ = 0, even when intending to do so: The
polynomial ¢ is defined to have exactly w = 11 coeffcients which are one, and
the rest is zero. In code this is implemented as uint32_t pos_1ist[PARAM_W],
which encodes the polynomial p(x) = Z?;ol a;x' where o = 1 if i is con-
tained in the array pos_list.

This means that if we set pos_list = {@,. . . ,0}, in theory we get
p(z) = 1, not p(z) = 0. In practice this is an ill-formed polynomial and
the multiplication tic via computeEc() returns neither 0 nor t;, but some
polynomial whose coefficients are close to t1. So w| # a1z, wh # aszz, and
thus ¢ # ¢”. Bob will not accept the signature. Because of this, we do not
propose or implement a countermeasure.
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4 Efficiency of the countermeasures

The following benchmarks were recorded on a 4.0 GHz Intel Core i7-6700k.
GCC 7.1.0 was used for compilation. The time it took to run the code is
given in clock cycles, code sizes are given in number of instructions. The
code was optimized using the following compiler flags: -msse2avx -mfma
-march=corei7-avx -Ofast -fomit-frame-pointer.

4.1 Execution time of the algorithms

Figure shows the execution time for each algorithm of ring-TESLA.
The execution time was averaged over 2000 runs for the key generation and
20,000 runs for the other two algorithms. Note that even when averaging
over 20,000 runs, the execution times for Verify vary up to around 2000
cycles. The difference is even bigger for KeyGen, often differing around
500,000 cycles.

Figure shows a histogram of how the actual execution times of the
Verify algorithm are distributed. The time it takes to verify two messages
can differ up to 4000 cycles. In theory, verifying signatures for messages
of the same length should always take the same amount of time, so the
multimodal distribution of verification times is likely due to scheduling of
the operating system and varying system load. Figure [4.3| shows that the
execution time of KeyGen varies more than an order of magnitude, which is
due to gaussian sampling.

Figure 4.1: Execution times of ring-TESLA’s algorithms in clock cycles

’ H KeyGen \ Sign ‘ Verify ‘
| Cycles || 33,429,812 | 335,735 | 71,299 |
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Figure 4.2: Distribution of the execution time for 2000 runs of Verify (with-
out a handful of outliers that took up to 120,000 cycles)
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4.2 Performance impact of the countermeasures

The change in code size was calculated by compiling all relevant files with gcc
-S -0Ofast with and without the countermeasure and counting the difference
in the number of instructions. The change in execution time was measured
by calling the function in Listing right before and after the code that
was timed and calculating the difference between the return values. The
function was provided to us together with the original ring-TESLA code.

Figure [£.4] shows the overhead that the countermeasures introduce. We
write “~ 10” if the change in execution time or file size is on the order of
around 10 instructions. All other execution times are given in cycles. They
are averaged over 100 runs and rounded to one or two significant digits.
The numbers in brackets are the subsections in which we introduced the
respective countermeasures.

We do not employ the countermeasure sample_twice, because it is fairly
inefficient (due to gaussian sampling) and less secure against higher or-
der attacks than zero_key. Similarly, we do not use count_zeroes, because
zero_signature is more secure against higher order attacks. Of the remain-
ing countermeasures the most expensive one in absolute terms is zero_key in
KeyGen, which takes around 3000 clock cycles. However, the natural fluctu-
ation of the execution time of KeyGen is many orders of magnitude bigger,
so the drawback of introducing this countermeasure is negligable. The most
expensive countermeasure in relative terms is zero_signature, which only in-
creases the execution time by around 0.45%, which again is well within the
expected natural variation. When looking at the number of cycles the coun-
termeasures count_zeroes, zero_signature and zero_key take, we noticed that
they are slightly lower than what we would expect, given the number of
polynomial coefficients that have to be checked or multiplied. This is most
likely due to the heavy compiler optimization.

A fully functioning code snippet, which creates and verifies a signature
compiles to an executable of 95 kilobytes size. The addition of at most 300
instructions per countermeasure will not be a problem on most architectures,
however on some embedded systems with very small memory this may be a
disadvantage.
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Figure 4.4: Increase in execution time (given in clock cycles) and binary size
(given in machine instructions) for each countermeasure

’ Countermeasure ‘ Section ‘ Algorithm H Time (cyc.) ‘ Size (instr.) ‘

new_variable 3.1.1 KeyGen ~ 10 ~ 10
rewrite_branchless 3.1.2 Verify ~ 10 ~ 10
additional rejection | [3.1.3 Sign 1100 241

count_zeroes 3.2.1 Sign 40qﬂ 167

zero_signature 3.2.1 Sign 1500 237
zero_key 3.2.20 | KeyGen 3000°] 286
sample_twice 3.2.2 | KeyGen || 9,000,000 ~ 10

Listing 4.1: Function used to count the number of CPU cycles

1 long long cpucycles(void)

2 {

3 unsigned long long result;

4 asm volatile(”.byte 15;.byte 49;shlq $32,%%rdx;orq %%rdx,%%rax”
5 "=3" (result) :: "%rdx");

6 return result;

7}

1The time is for one execution of the count_zeroes() function. Due to rejection sam-
pling, this function is usually executed two to four times.

2Due to the apparent bug in GCC 7.1.0, mentioned in Section 3.2.2, we had to turn off
the compiler optimization for the code used in this countermeasure. This does not affect
optimization of the rest of the code. The actual non-optimized execution time is around
4100 cycles.

3This is the approximate time it takes to sample all three polynomials a second time.
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5 Conclusion

In this work, we presented countermeasures against first order fault attacks
on ring-TESLA. The vulnerabilities were described by [6]. We analyzed the
generated assembly code of the C implementation of ring-TESLA, to show
how an attacker might actually perform these attacks. We distinguished
zeroing and skipping faults, and presented countermeasures for each vulner-
ability. For each countermeasure we showed why it is successful in hamper-
ing an attack. In some cases we also presented countermeasures that can
resist higher order attacks. Lastly, we measured how each countermeasure
increases the execution time and binary size of the signature scheme.

Of the countermeasures we implemented the following could be applied
to other signatures schemes as well:

e Define new variables to hold the result of every arithmetic operation.
This leads to uninitinialized values, if the operation is skipped. How-
ever you have to make sure, that a random or zero result does not
easily permit a security breach.

e The function check_zeroes() was a valuable asset in this work. It
can be easily adapted to resist high order fault attacks, which is due
to instruction level redundancy. However, not all instructions can be
executed multiple times without changing the output, for example add,
or mul.

e Inlining functions prevents skipping the corresponding function call.
However they do not prevent attacks on the inlined code that have the
same effect, for example a loop abortion fault.

o If-statements should be avoided, especially when they check the cor-
rectness of a signature, key, or security critical invariant. That is be-
cause they can always be attacked by a simple skipping fault. Loops
can also be problematic, so for every loop you have to consider what
happens if it is skipped.

However, when implementing a countermeasure against a fault attack, we
always have to make sure that the countermeasure itself does not introduce
a new vulnerability. Except for sampling a polynomial multiple times, all
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countermeasures we investigated are very efficient, both in terms of exe-
cutable size as well as execution time.

We only provided countermeasures against the faults described in [6].
However the authors only analyzed possible fault attacks against the high
level code of ring-TESLA, not fault attacks against low-level mathematic
operations, such as the polynomial multiplication or addition. Whether or
not this code contains vulnerabilities is something that could be investigated
in the future. Furthermore it would be interesting to investigate higher order
fault attacks, since we only covered these in some cases.
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