
High-speed signatures from standard lattices

Özgür Dagdelen1, Rachid El Bansarkhani1, Florian Göpfert1, Tim Güneysu2,
Tobias Oder2, Thomas Pöppelmann2, Ana Helena Sánchez3, and Peter

Schwabe3 ?

1 Technische Universität Darmstadt, Germany
oezguer.dagdelen@cased.de, elbansarkhani@cdc.informatik.tu-darmstadt.de,

fgoepfert@cdc.informatik.tu-darmstadt.de
2 Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany

thomas.poeppelmann@rub.de
3 Digital Security Group, Radboud University Nijmegen, The Netherlands

ahsanchez@cs.ru.nl, peter@cryptojedi.org

Abstract. At CT-RSA 2014 Bai and Galbraith proposed a lattice-based
signature scheme optimized for short signatures and with a security re-
duction to hard standard lattice problems. In this work we �rst re�ne
the security analysis of the original work and propose a new 128-bit se-
cure parameter set chosen for software e�ciency. Moreover, we increase
the acceptance probability of the signing algorithm through an improved
rejection condition on the secret keys. Our software implementation tar-
geting Intel CPUs with AVX/AVX2 and ARM CPUs with NEON vector
instructions shows that even though we do not rely on ideal lattices, we
are able to achieve high performance. For this we optimize the matrix-
vector operations and several other aspects of the scheme and �nally
compare our work with the state of the art.

Keywords: Signature scheme, standard lattices, vectorization, Ivy Bridge.

1 Introduction

Most practical lattice-based signatures [7, 16, 21], proposed as post-quantum [9]
alternatives to RSA and ECDSA, are currently instantiated and implemented
using structured ideal lattices [30] corresponding to ideals in rings of the form
Z[x]/〈f〉, where f is a degree-n irreducible polynomial (usually f = xn+1). With
those schemes one is able to achieve high speeds on several architectures as well
as reasonably small signatures and key sizes. However, while no attacks are

? This work was supported by the German Research Foundation (DFG) through the
DFG Research Training Group GRK 1817/1, by the German Federal Ministry of Eco-
nomics and Technology through Grant 01ME12025 SecMobil), by the Netherlands
Organisation for Scienti�c Research (NWO) through Veni 2013 project 13114, and
by the German Federal Ministry of Education and Research (BMBF) through EC-
SPRIDE. Permanent ID of this document: c5e2da3f0d05a056a5490a5c9b88baa9.
Date: 2014-09-04.

known that perform signi�cantly better against schemes based on ideal lattices,
it is still possible that further cryptanalysis will be able to exploit the additional
structure4. Especially, if long-term security is an issue, it seems that standard
lattices and the associated problems�e.g., the Learning With Errors (LWE) [34]
or the Small Integer Solution (SIS) problem�o�er more con�dence than their
ring counterparts.

The situation for code-based cryptography [9] is somewhat similar. The use
of more structured codes, such as quasi-dyadic Goppa codes [31], has been the
target of an algebraic attack [15] which is e�ective against certain (but not all)
proposed parameters. This is an indication that the additional structure used to
improve the e�ciency of such cryptosystems might be also used by adversaries
to improve their attack strategies. Moreover, basing a scheme on the plain LWE
or SIS problem seems much more secure than using stronger assumptions on top
of ideal lattices like the discrete-compact-knapsack (DCK) [21] or NTRU-related
assumptions [16] that have not been studied extensively so far.

While results for ideal-lattice-based signatures have been published recently
[11, 22, 32, 33], currently no research is available dealing with implementation
and performance issues of standard-lattice-based signatures. While the large
keys of such schemes might prevent their adoption on constrained devices or
recon�gurable hardware, the size of the keys is much less an issue on current
multi-core CPUs which have access to large amounts of memory. In this context,
the scheme by Bai and Galbraith [6] (from now on referred to as BG signature)
is an interesting proposal as it achieves small signatures and is based on the
standard LWE and SIS problems.

An interesting question arising is also the performance of schemes based on
standard lattices and how to choose parameters for high performance. While
FFT-techniques have been used successfully for ideal lattices on various archi-
tectures [22, 35] there are no fast algorithms to speed up the necessary matrix-
vector arithmetic. However, matrix-vector operations can be parallelized very
e�ciently and there are no direct restrictions on the parameters (for e�ciency
of ideal lattices n is usually chosen as power of two) so that there is still hope
for high speed. The only results currently available dealing with the implemen-
tation of standard lattice-based instantiations rely on arithmetic libraries [7,20]
and can thus not fully utilize the power of their target architectures.

An additional feature of the BG signature is that sampling of Gaussian noise
is only needed during the much less performance-critical key-generation phase
but not for signing5. While there was some progress on techniques for e�cient
discrete Gaussian sampling [16,17,33] it is still not known how to implement the

4 There exists sieving algorithms which can exploit the ideal structure, but the speed-
up is of no signi�cance [24,36]. Some �rst ideas towards attacks with lower complexity
were sketched by Bernstein in his blog [8].

5 Omitting costly Gaussian sampling was also the motivation for the design of the
GLP signature [21].

2

sampling e�ciently6 without leaking information on the sampled values through
the runtime of the signing process (contrary to uniform sampling [22]).

While we cannot present a direct attack, careful observation of the runtime
of software implementations (even remotely over a network) has led to various
attacks in the past and thus it is desirable to achieve constant runtime or at
least a timing independent from secret data [13,25].

Our Contribution. The contribution of this paper is twofold. First, we study
the parameter selection of the BG signature scheme in more detail than in the
original paper and assess its security level7. Based on our analysis of the currently
most e�cient attack we provide a new 128-bit security parameter set chosen for
e�cient software implementation and long-term security. We compare the run-
times of several attacks on LWE with and without a limit on the number of
samples available. Since the behavior of the attacks in a suboptimal attack di-
mension is not well understood at this point, our analysis may be of independent
interest for the hardness assessment of other LWE instances. Additionally, we
introduce an optimized rejection sampling procedure and rearrange operations
in the signature scheme.

The second part of the paper deals with the implementation of this parameter
set on the ARM NEON and Intel AVX architectures optimized for high speed.
By using parallelization, interleaving, and vectorization we achieve on average
1203924 cycles for signing and 335072 cycles for veri�cation on the Haswell
architecture. This corresponds to roughly 2824 signing and 10147 veri�cation
operations per second on one core of a CPU clocked with 3.4 GHz. While we do
not set a speed record for general lattices, we are able to present the currently
fastest implementation of a lattice-bases signature scheme that relies solely on
standard assumptions and is competitive in terms of performance compared to
classical and post-quantum signature schemes.

Availability of software. We will place all software described in this paper
into the public domain to maximize reusability of our results. We will submit
the software to the eBACS benchmarking project [10] for public benchmarking.

Road map. The paper is organized as follows: In Section 3 we introduce the
original BG signature scheme and our modi�cations for e�ciency. The security
analysis is revisited and appropriate parameters are selected in Section 4. In
Section 5 we discuss our NEON and AVX software implementation and �nish
with results and a comparison in Section 6.

6 A software implementation of a constant time discrete Gaussian sampler using the
Cumulative Distribution Table (CDT) approach was recently proposed by Bos et
al. [12]. However, even for the small standard deviation required for lattice-based
encryption schemes, the constant time requirement leads to a signi�cant overhead.

7 We note here that there was some vagueness in the parameter selection in the original
work [6], also noticed later by the authors of the paper [5].

3

2 Preliminaries

Notation. We mainly follow the notation of [6] and denote column vectors by
bold lower case letters (e.g., v = (v1, . . . , vn)

T where vT is the transpose) and
matrices by bold upper case letters (e.g., M). The centered discrete Gaussian
distribution Dσ for σ > 0 associates the probability ρσ(x)/ρσ(Z) to x ∈ Z for
ρσ(x) = exp(−x

2

2σ2) and ρσ(Z) = 1 + 2
∑∞
x=1 ρσ(x). We denote by d

$← Dσ the
process of sampling a value d randomly according to Dσ. In case S is a �nite
set, then s

$← S means that the value s is sampled according to a uniform
distribution over the set S. For an integer c ∈ Z, we de�ne [c]2d to be the integer
in the set (−2d−1, 2d−1] such that c ≡ [c]2d mod 2d which is basically extraction
of the least signi�cant bits. For c ∈ Z we de�ne bced = (c− [c]2d)/2

d to drop the
d least signi�cant bits. Both operators can also be applied to vectors.

Lattices. A k-dimensional lattice Λ is a discrete additive subgroup of Rm con-
taining all integer linear combinations of k linearly independent vectors b1, . . . ,bk
with k ≤ m and m ≥ 0. More formally, we have Λ = { B ·x | x ∈ Zk }. Through-
out this paper we are mostly concerned with q-ary lattices Λ⊥q (A) and Λq(A),
where q = poly(n) denotes a polynomially bounded modulus and A ∈ Zn×mq is
an arbitrary matrix. Λ⊥q (A) resp. Λq(A) are de�ned by

Λ⊥q (A) = {x ∈ Zm | Ax ≡ 0 mod q}
Λq(A) = {x ∈ Zm | ∃s ∈ Zm s.t. x = A>s mod q} .

By λi(Λ) we denote the i-th successive minimum, which is the smallest radius
r such there exist i linearly independent vectors of norm r (typically l2 norm)
in Λ. For instance, λ1(Λ) = min

x6=0
||x||2 denotes the minimum distance of a lattice

determined by the length of its shortest nonzero vector.

The SIS and LWE Problem. In the following we recall the main problems
used in order to construct secure lattice-based cryptographic schemes.

De�nition 1 (SIS-Problem). Given a matrix A ∈ Zn×mq , a modulus q > 0,
and a real β, the small-integer-solution problem (l-norm typically l = 2) SISn,m,β
asks to �nd a vector x such that Ax ≡ 0 mod q and ||x||l ≤ β .

Let χ be a distribution over Z. We de�ne by As,χ the distribution of (a,a> ·
s+ e) ∈ Znq ×Zq for n, q > 0, where a

$← Znq is chosen uniformly at random and
e← χ.

De�nition 2 (LWE-Problem). For a modulus q = poly(n) and given vectors
(ai, bi) ∈ Znq × Zq sampled according to As,χ the learning-with-errors problem
LWEχ,q asks to distinguish As,χ, where s is chosen uniformly at random, from
the uniform distribution on Znq × Zq.

It is also possible to sample s according to the error distribution χn [3].

4

Departing from the original de�nition of LWE, that gives access to arbi-
trary many samples, an attacker has often only access to a maximum number
of samples. Typically, this number of samples is denoted by m. In this case, one
typically �collects� all samples ai, bi ∈ Znq × Zq to A,b ∈ Zm×nq × Zmq , and the
LWE problem is to decide whether the entries of b were sampled uniformly at
random and independently from A or according to the LWE distribution.

3 The Bai-Galbraith Signature Scheme

The Bai-Galbraith digital signature scheme [6] (BG signature) is based on the
Fiat-Shamir paradigm which transforms an identi�cation scheme into a signature
scheme [18] and closely follows previous proposals by Lyubashevsky et al. [16,21,
28,29]. The hardness of breaking the BG signature scheme, in the random oracle
model, is reduced to the hardness of solving standard worst-case computational
assumptions on lattices. The explicit design goal of Bai and Galbraith is having
short signatures.

3.1 Description of the BG Signature Scheme

For easy reference, the key generation, signing, and the veri�cation algorithm
of the BG signature scheme are given in Figure 1. Our proposed parameter set
is summarized in Table 1. An analysis of the original parameter sets can be
found in the full online version of this paper. However, the algorithms have been
simpli�ed and redundant de�nitions have been removed (e.g., we just use σ as
standard deviation and do not di�erentiate between σE, σS and set n = k).

During key generation two secret matrices S ∈ Zn×n,E ∈ Zm×n are sampled
from a discrete Gaussian distribution Dn×n

σ and Dm×n
σ , respectively. A rejection

condition Check_E enforces certain constraints on E, which are necessary for
correctness and short signatures (see Section 3.2). Finally, the public key T =
AS+E and the secret key matrices S,E are returned where AS is the only
matrix-matrix multiplication necessary in the scheme. As we choose A ∈ Zm×n
as a global constant, it does not have to be sampled during key generation and
is also not included in the public key and secret key.

For signing, the global constant A as well as secret keys S,E are required
(no usage of T in this variant). The vector y is sampled uniformly random from
[−B,B]n. For the instantiation of the random oracle H (using a hash function)
only the higher order bits ofAy are taken into account and hashed together with
the message µ. The algorithm F (c) takes the binary output of the hash c and
produces a vector c of weight ω (see [16] for a de�nition of F (c)). In a di�erent
way than [6] w is computed following an idea that has also been applied in [21].
Instead of computing w = Az−Tc (mod q) we calculate w = v−Ec (mod q),
where v = Ay (mod q). This is also the reason why E has to be included into
the secret key sk = (S,E) ∈ Zn×n×Zm×n. Thus, the large public key T ∈ Zm×n
is not needed anymore for signing and the operations become simpler (see further
discussion in Section 5). The test whether |[wi]2d | > 2d−1 − LBG (LBG = 7ωσ

5

Algorithm KeyGen Algorithm Sign Algorithm Verify

INPUT: INPUT: INPUT:

A, n,m, q, σ µ,A,S,E, B, U, d, w, σ µ, z, c,A,T, B, U, d
OUTPUT: sk=(S,E), pk=(T) OUTPUT: (z, c) OUTPUT: Accept/Reject

1. S
$←Dn×n

σ 1. y
$← [−B,B]n 1. c=F (c)

2. E
$←Dm×n

σ 2. v=Ay (mod q) 2. w=Az−Tc (mod q)
3. if check_E(E)=0 3. c=H(bved, µ) 3. c′=H(bwed, µ)

thenRestart 4. c=F (c) 4. if c′= c and ||z||∞≤B−U
4. T=AS+E (mod q) 5. z=y+Sc thenreturn1
5. return sk=(S,E), pk=(T) 6. w=v−Ec (mod q) 5. return0

7. if |[wi]2d |>2d−1−L
thenRestart

8. return (z, c)
if ||z||∞≤B−U

Fig. 1: The BG signature scheme [6]; see Section 3.2 for implementations of
check_E.

in [6]) ensures that the signature veri�cation will not fail on a generated signature
(w is never released) and the last line ensures that the signature is uniformly
distributed within the allowed range [−B + U,B − U]n for U = 14 · σ

√
ω.

For veri�cation the higher order bits of w = Az−Tc = Ay−Ec are hashed
and a valid signature (z, c) is accepted if and only if z is small, i.e., ||z||∞ ≤ B−U ,
and c = c′ for c′ := H(bwed, µ). For the security proof and standard attacks we
refer to the original work [6].

3.2 Optimizing Rejection Sampling

In the original signature scheme [6] Check_EBG restarts the key generation
if |Ei,j | > 7σ for any (i, j) and the rejection condition in Line 7 of Sign is
|[wi]2d | > 2d−1 − LBG for LBG = 7wσ. This ensures that it always holds that
bAyed = bAy − Eced and thus veri�cation works even for the short signature.
However, in practice the acceptance probability of (1− 14ωσ/2d)m has a serious
impact on performance and leaves much room for improvement. On �rst sight it
would seem most e�cient to test during signing whether bAyed = bAy −Eced
and just reject signatures that would not be veri�able. However, in this case the
proof structure given in the full version of [6] does not work anymore. In Game 1,
sign queries are replaced by a simulation (in the random oracle model) which is
not allowed to use the secret key and later on has to produce valid signatures
even for an invalidly chosen public key (Game 2).

Our optimization (similar to [16]) is to reject E during key generation only if
the error generated by Ec in bAyed = bAy −Eced for the worst-case c is larger
than a threshold L. Thus, our Check_Enew algorithm works the following:
Using maxk(·) which returns the k-th largest value of a vector we compute
thresholds th =

∑ω
k=1 maxk(|Eh|),∀h ∈ [0,m] where Eh is the h-th row of E

6

and reject if one or more th are larger than L. Thus the rejection probability
for the close-to-uniform w is independent of c and E and does not leak any
information. When L is chosen such that only a small percentage of secret keys
are rejected the LWE instances generated by the public key are still hard due
to the same argument on the bounded number of samples as in [6, 16]. The
acceptance probability of w in Line 7 of Sign is (1 − 2L/2d)m. Table 1 shows
concrete values for our choice of Lnew and the original LBG.

4 Security Analysis and Parameter Selection

In the original work [6], Bai and Galbraith proposed �ve di�erent parameter
sets to instantiate their signature scheme. In this section we revisit their se-
curity analysis and propose a new instantiation that is optimized for software
implementations on modern server and desktop computers (Intel/AMD) and
also mobile processors (ARM). The security analysis has been re�ned due to
the following reasons: First, a small negligence in the assessment of the under-
lying LWE instances leads to a slightly wrong hardness estimation, which was
acknowledged by the authors after publication [5]. Second, an important attack,
namely the decoding attack, was not considered in [6]. We justify that indeed
the decoding attack is less e�cient than the one considered if one takes into
account the limited number of samples m given to the attack algorithms.

In Table 1 we propose a parameter set for an instantiation of the signature
scheme from Section 3 with 128 bits of security, for which we provide evidence
in the next section.

4.1 Hardness of LWE

The decoding attack dates back to the nearest-plane algorithm by Babai [4]
and was further improved by Lindner and Peikert in [26] and Liu and Nguyen
in [27]. While it is often the fastest known approach, it turns out that it is not
very suitable for our instances, because an attacker has only access to a few
samples. Thus we concentrate on the embedding approach here and an analysis
of the behavior of the decoding attack can be found in Appendix A.

The embedding approach solves LWE via a reduction to the unique-shortest-
vector problem (uSVP). We will analyze two variants, the standard embedding
approach [26] and the variant that is very suitable for LWE instances with small
m that was already considered in [6]. Unfortunately, it is necessary to re-do
the analysis, because the hardness evaluation in the original work [6] set some
constant � namely τ � in the attack wrong yielding up to 17 bits more security
for their parameters than actually o�ered. We will focus on the security of our
parameter set in this section. Updated values for some of the parameter sets
proposed in the original paper can be found in the full version of this paper.

Embedding approach. Given an LWE instance (A,b) such that As = b
mod q, the idea of the embedding approach proposed in [19] is to use the em-

7

Table 1: The parameter set we use for 128 bits of security. Note that signature
and key sizes refer to fully compressed signature and keys. Our software uses
slightly a larger (padded) signature and keys to support faster loads and stores
aligned to byte boundaries.

Parameter Selection

Parameter Bound Value

n 532

m 840

σ 43

ω 2ω
(
n
ω

)
≥ 2128 18

d d is s.t. (1− 14σω/2d)m ≥ 1/3 23

B power of two ≥ 14
√
ωσ(n− 1) 221 − 1

q ≥
(
2(d+1)m+κ/(2B)n

)1/(m−n)
229 − 3

U
14 · σ

√
ω

(Prob. of acceptance Line 8 of Sign: 0.51)
2554.1

LBG

7wσ
5418(Prob. of acceptance Line 3 of KeyGen: ≈ 1)

(Prob. of acceptance Line 7 of Sign: 0.337)

Lnew

3wσ
2322(Prob. of acceptance Line 3 of KeyGen: 0.99)

(Prob. of acceptance Line 7 of Sign: 0.628)

public-key size m · n · dlog2(q)e 1.54 Mb

secret-key size (n2 + n ·m) dlog2(14 · σ)e 0.87 Mb

signature size n · dlog2(2B)e+ 256 11960 bits

bedding lattice Λq(Ae) de�ned as

Λq(Ae) = {v ∈ Zm | ∃x ∈ Zn : Ae · x = v mod q},

where Ae =

(
A b
0 1

)
. Throughout the paper the subscript stands for the tech-

nique used in an attack such as e denoting the standard embedding approach.
Since

Ae

(
−s
1

)
=

(
A b
0 1

)(
−s
1

)
=

(
−As+ b
0 · s+ 1 · 1

)
=

(
e
1

)
=: v

is a very short lattice vector, one can apply a solver for uSVP to recover e. We
estimate the norm of v via ||v|| ≈ ||e|| ≈

√
mσE , and for the determinant of the

lattice we have det(Λq(Ae)) = qm+1−n with very high probability [9].
It is known that the hardness of uSVP depends on the gap between the �rst

and the second successive minimum λ1(Λ) and λ2(Λ), respectively. Gama and
Nguyen [19] claim that an attack with a lattice-reduction algorithm that achieves
Hermite factor δ succeeds with high probability if λ2(Λ)/λ1(Λ) ≥ τ · δdim(Λ),

8

Table 2: Security of our parameter set

Security Level

Problem Attack Bit Security

LWE
Decoding [26] 271
Embedding [2] 192
Embedding [6] 130

SIS Lattice reduction [6] 159

where τ ≈ 0.4 is a constant that depends on the reduction algorithm used. In
fact, this factor is missing in the analysis by Bai and Galbraith, which causes
too optimistic (i.e., too large) runtime predictions.

The successive minima of a random lattice Λ can be predicted by the Gaus-
sian heuristic via

λi(Λ) ≈
Γ (1 + dim(Λ)/2)1/ dim(Λ)

√
π

det(Λ)1/ dim(Λ).

Consequently, a particular short vector v of length ||v|| = l can be found if

δdim(Λ) ≤ λ2(Λ)

λ1(Λ) · τ
≈ Γ (1 + dim(Λ)/2)1/ dim(Λ)

l ·
√
π · τ

det(Λ)1/ dim(Λ). (1)

We can therefore estimate the necessary Hermite delta to break LWE with the
embedding approach to be

δ ≈

(
Γ (1 + m+1

2)1/(m+1)

√
π ·m · τ · σE

q
m+1−n
m+1

)1/(m+1)

,

where the dimension is set to dim(Λq(Ae)) = m + 1. Note that it is possible
to apply this attack in a smaller subdimension. In fact, there exists an optimal
dimension that minimizes δ in Equation (1). Our parameters, however, do not
provide enough LWE samples to allow an attack in the optimal dimension, and
in this case choosing the highest possible dimension seems to be optimal.

To achieve a small Hermite delta, it is necessary to run a basis-reduction
algorithm like BKZ [37] or its successor BKZ 2.0 [14]. Lindner and Peikert [26]
proposed the function

log2(T (δ)) = 1.8/ log2(δ)− 110

to predict the time necessary to achieve a given Hermite delta by BKZ. More
recently, Albrecht et al. [2] proposed the prediction

log2(T (δ)) = 0.009/ log2(δ)
2 − 27

9

based on data taken from experiments with BKZ 2.0 [27]. We will stick to this
estimation in the following, since it takes more recent improvements into consid-
eration. Combining it with the fact that they run their experiments on a machine
that performs about 2.3 · 109 operations per second, we estimate the number of
operations necessary to achieve a given Hermite factor with

T (δ) =
2.3 · 109

227
· 20.009/ log(δ)

2

. (2)

We can therefore conclude that our LWE instance provides about 192 bits of
security against the embedding attack, which corresponds to a Hermite delta of
approximately 1.0048.

The e�cacy of the standard embedding approach decreases signi�cantly if
the instance does not provide enough samples for the attack to run in the optimal
dimension. Another attack, which is very suitable for LWE instances with few
samples, reduces LWE to an uSVP instance de�ned by the lattice Λ⊥q (Ao) =

{v ∈ Zm+n+1 | Ao · v = 0 mod q} for Ao =
[
A | I | b

]
(we use the index

o because this attack runs in the lattice of the vectors that are orthogonal to
Ao). The main advantage of this attack is that it runs in dimension n+m+ 1
(recall that the standard embedding approach runs in dimension m + 1). For

v =
(
s , e , −1

)T
, we have Ao ·v = A ·s+e−b = 0 and therefore v ∈ Λ⊥q (Ao) is

a small vector in the lattice. We estimate its length via ||v|| ≈
√
||s||2 + ||e||2 ≈√

m+ n · σ. Since det(Λq(Ao)) = qm with high probability [9], Equation (1)
predicts the necessary Hermite delta to be approximately

δ ≈

(
Γ (1 + n+m+1

2)1/(n+m+1)

√
n+mσ ·

√
π · τ

q
m

n+m+1

)1/(n+m+1)

.

Using Equation (2), we can estimate the hardness of our instance against this
attack to be about 130 bits (the Hermite delta is close to 1.0059).

4.2 Hardness of SIS

Instead of recovering the secret key, which corresponds to solving an instance of
LWE, an attacker could also try to forge a signature directly and thus solve an
SIS instance. We predict the hardness of SIS for the well-known lattice-reduction
attack (see for example [9]) like it was done in [6]. This attack views SIS as a
variant of the (approximate) shortest-vector problem and �nds the short vector
by applying a basis reduction. Forging a signature through this attack requires
to �nd a reduced basis with Hermite factor

δ = (D/qm/(m+n))1/(n+m+1), (3)

with D = (max(2B, 2d−1)+ 2E′ω) for E′ satisfying (2E′)m+n ≥ qm2132. Apply-
ing Equation (2), we estimate that a successful forger requires to perform about
2159 operations (see Table 2).

10

4.3 An Instantiation for Software E�ciency

Choosing optimal parameters for the scheme is a non-trivial multi-dimensional
optimization problem and our �nal parameter set is given in Table 1. Since
the probability that the encoding function F maps two random elements to
the same value must be negligible (i.e. smaller than 2−128), we choose ω such
that 2ω

(
n
ω

)
≥ 2128. Since Sc is distributed according to a Gaussian distribution

with parameter
√
ωσ, we can bound its entries by 14

√
ωσ. Consequently, B−U

is lower bounded by 14
√
ωσ(n − 1) such that the acceptance probability of a

signature Pacc (Line 8 in Figure 1) is at least

Pacc =

(
2(B − U) + 1

2B

)m
=

(
2 · 14

√
ωσ(n− 1) + 1

2 · 14
√
ωσn+ 1

)m
≈
(
1− 1

n

)m
≈ 1/e .

The next important choice to be made is the value for the parameter d. It has a
determining in�uence on the trade-o� between runtime and key sizes: The success
probability in the signing algorithm (Line 7 in Figure 1) is given by (1−2L/2d)m,
which means that large values for d lead to a high success probability, and
thereby to fewer rejections implying better running times. On the other hand,
the security proof requires (2B)nqm−n ≥ 2(d+1)m+κ to be satis�ed, which means
that increasing d implies larger values for q, hence, worsening runtime and key
sizes.

Our goal is to come up with a parameter set that ensures at least 128 bits of
security. We will focus on n,m and σ in this paragraph, since the other parame-
ters depend on them. For easy modular reduction we choose a modulus slightly
smaller than a power of two (like 229−3). Furthermore, dimensions n resp.m are
multiples of 4 to support four parallel operations in vector registers. In a way, n
determines the overall security level, and the choice of σ and n can be used to
balance the security of the scheme and the size of the second-order parameters
q and B. Using our parameters we have set L = Lnew = 3ωσ and thus reject
a secret key with probability 0.025 and accept with probability (1 − 2L/2d)m

where we get ≈ 0.63 instead of ≈ 0.34 for LBG = 7σω.
For instance, Figure 2 shows for n = 532 how the lower bound on q depends

on σ for various values of m. Since too small values of σ lead to LWE-instances
that are signi�cantly easier than 128 bits, the best possible choice that allows
q = 229 − 3 is m = 840 and σ = 43. We further choose n = 532 which leads to
ω = 18. This results in the lower bound log2(B) ≥ 20.4, which allows our choice
B = 221 − 1.

5 Implementation Details

In this section we discuss our techniques used for high performance on modern
desktop and mobile CPUs with fast vector units. More speci�cally, we optimized
the signature scheme for Intel Ivy Bridge CPUs with AVX, for Intel Haswell
CPUs with AVX2 and for ARMv7 CPUs with NEON vector instructions. We �rst
describe various high-level (platform-independent) optimizations for signing and

11

20 25 30 35 40 45 50 55 60 65 70
0

1

2

3

4

5
·109

σ

lo
w
er

b
o
u
n
d
o
n
q

m = 868
m = 840
m = 812

q = 229 − 3

Fig. 2: Lower bound on q for n = 532 and various values of m

veri�cation and then detail the low-level implementation techniques for the three
target platforms. Our implementation only optimizes signing and veri�cation
speeds; our implementation includes a (slow) routine for key generation but we
will not discuss key generation here.

5.1 High-Level Optimizations

Regarding platform independent high-level optimizations we follow the approach
from [22] and would like to emphasize the changes to the algorithm (adding E
to the private key and choosing A as global constant) and improved rejection
sampling (usage of Lnew) as discussed in Section 3. For uniform sampling of y

$←
[−B,B]n during signing we rely on the hybrid approach of seeding the Salsa20
stream cipher using true randomness from the Linux random number [22]. As
B = 221−1 we sample 3n+68 uniform bytes at once using Salsa20 and construct
a sample r′ from 3 bytes each. By computing r = r′ mod 222 we bring r into the
range [0, 222−1], reject if r = 222−1 and return r− (222−1). The probability to
discard an element is 2−22 and by oversampling 68 bytes it is highly unlikely that
we have to sample additional randomness. We also exploit that c is sparse with
weight ω. Thus, we store c not as a vector but as list with ω tuples containing
the position and sign bits of entries which are non zero. Additionally, when
multiplying c with S and E, only a small subset of coe�cients from S,E is
actually needed. As a consequence, we do not unpack the whole matrices S,E
from the binary representation of the secret key (which is the usual approach) but
just the coe�cients that are required in this case. Additionally, during signing

12

we perform rejection sampling on w before we actually compute v in order to
be able to abort as early as possible (without leaking timing information). For
hashing H(bved, µ) and H(bwed, µ), respectively, we pack the input to the hash
function after extraction of higher-order bits in order to keep the input bu�er to
the hash function as small as possible.

5.2 Low-Level Optimizations in AVX and AVX2

With the Sandy Bridge microarchitecture, Intel introduced the AVX instruction
set. AVX extends the 16 128-bit XMM vector registers of the SSE instruction set
to 256-bit YMM registers. Arithmetic instructions treat these registers either as
vectors of 4 double-precision or 8-single precision �oating-point numbers. Each
cycle, the Intel Sandy Bridge and later Ivy Bridge CPUs can issue one addition
instruction and one multiplication instruction on those vectors. The power of
these vector-arithmetic units was exploited by [22] to achieve very high speeds
for GLP signatures. We also use these �oating-point vector operations for our
software. With the Haswell microarchitecture, Intel introduced AVX2, which ex-
tends the AVX instruction set. There are two notable additions. One is that
vector registers can now also be treated as vectors of integers (of various sizes);
the other is that Intel added �oating-point multiply-accumulate instructions.
Haswell CPUs can issue two �oating-point multiply-accumulate vector instruc-
tions per cycle.

The basic approach for our implementation is that all elements of Zq are rep-
resented as double-precision �oating-point numbers. The mantissa of a double-
precision �oat has 53 bits and a 29-bit integer can thus obviously be represented
exactly. One might think that 53 bits are still not enough, because products of
elements of Zq do not �t into the mantissa. However, the signature scheme never
computes the product of two full-size �eld elements. The largest products ap-
pear in the matrix-vector multiplications Ay and Az. The coe�cients of A are
full-size Zq elements in the interval [−(q − 1)/2, (q − 1)/2], but the coe�cients
of y are in [−B,B] and the coe�cients of z are in [−(B − U), B − U]. With
B = 221 − 1 each coe�cient multiplication in Ay produces a result of at most
49 bits.

Matrix-vector multiplication. The matrix-vector multiplicationsAy andAz
are not only the operations which produce the largest intermediate results, they
are also the operations which dominate the cost for signing and veri�cation,
respectively. The AVX and AVX2 implementations store the matrix A in trans-
posed form which allows more e�cient access to the elements of A in vector
registers. One can think of the whole computation as a sequence of multiply-
accumulate instructions, where one factor is a vector register containing 4 co-
e�cients of A, the other factor is a vector register containing 4 copies of the
same coe�cient of y (or z) and the accumulator is a vector register containing
4 result coe�cients. Loading the same coe�cient of y into all 4 elements of a
vector register can be done e�ciently through the vbroadcastsd instruction.
Latencies can be hidden by interleaving instructions from the computation of
independent vectors of result coe�cients.

13

One might think that n · m = 532 · 840 = 446880 multiplications and ac-
cumulations translate into 111720 AVX and 55860 AVX2 cycles (because AVX
handles 4 vectorized multiplications and 4 vectorized additions per cycle and
AVX2 handles 2× 4 vectorized multiply-accumulates per cycle), but this is not
the case. It turns out that arithmetic is not the bottleneck but access to matrix
coe�cients. Note that if we store A as 446880 double-precision �oats, the ma-
trix occupies about 3.5 MB of storage � way too much for the 32 KB L1 cache.
Also note that each matrix coe�cient is used exactly once, which is the most
cache-unfriendly access pattern possible. We overcome this bottleneck to some
extent by storing the coe�cients of A as 32-bit integers. We then load 4 coef-
�cients (and convert to double-precision �oats on the �y) using the vcvtdq2pd

instruction of the AVX instruction set. An additional cost stems from reduc-
tions modulo q of coe�cients. We can use lazy-reduction, i.e., we do not have
to reduce after every multiply-accumulate. For example in the computation of
Ay we have to reduce after 16 multiply-accumulate operations. Our software is
currently overly conservative and reduces after 7 multiply-accumulates in both
cases. We perform modular reduction of �oating-point coe�cients in the same
way as [22]: We produce a �carry� by multiplying by a �oating-point approxima-
tion of q−1, then use the vroundpd instruction to round that carry to the nearest
integer, multiply by q and then subtract the carry from the original value.

In total, the matrix-vector multiplication takes 278912 cycles on a Haswell
CPU and 488474 cycles on an Ivy Bridge CPU.

5.3 Low-Level Optimization in NEON

Fast vector units are not only present in large desktop and server CPUs but
also in mobile CPUs. Most ARM Cortex-A processors include the NEON vector
extensions. These extensions add 16 128-bit vector registers. The most powerful
arithmetic instructions are addition and subtraction of vectors of 4 32-bit integers
or 2 64-bit integers (one per cycle) and multiplication of vectors of 2 32-bit
integers producing as a result a vector of 2 64-bit integers (one every two cycles).
The NEON instruction set also includes multiply-accumulate at the same cost
of a multiplication.

For our optimized NEON implementation we represent elements of Zq as 32-
bit signed integers. Products of coe�cients in the matrix-vector multiplications
Ay and Az are represented as 64-bit signed integers. Lazy reduction can go
much further than in AVX and AVX2; we only have to perform one reduction
modulo q at the very end of the computation.

In most aspects, the NEON implementation follows the ideas of the AVX and
AVX2 implementations, but two aspects are di�erent. One aspect is that simply
storing the transpose of A is not su�cient for e�cient vectorized access to the
elements of A. The reason is that the ARM-NEON addressing modes are by far
not as �exible as the Intel addressing modes. Therefore, we store the matrix A
such that each vector load instruction can simply pick up the next 4 coe�cients
of A and then increment the pointer to A as part of the load instruction.

14

The other aspect is modular reduction. In NEON we are operating on integers
so the modular reduction technique we use for �oats in AVX and AVX2 does not
work. This is where the special shape of q = 229 − 3 comes into play. Reduction
modulo q on integers can be achieved with various di�erent approaches, we
currently use one shift, a logical and, and three additions to reduce modulo q.
Obviously we always reduce two coe�cients in parallel using vector instructions.

The penalty for access to coe�cients of A is even higher than on the Intel
platforms. Instead of 446880 cycles which one might expect from an arithmetic
lower bound, matrix-vector multiplication takes 2448008 cycles.

6 Results and Comparison

Our software follows the eBACS API [10] and we will submit the software to
eBACS for public benchmarking. In this section we do not report cycle counts
obtained by running the eBACS benchmarking framework SUPERCOP. The
reason is the same as in [22]: eBACS reports median cycle counts which is much
too optimistic for the signing procedure which includes rejection sampling. In-
stead, we benchmark 10, 000 signature generations and report the average of
those measurements. Veri�cation does not include any rejection sampling and
we thus report the more stable median of 10, 000 measurements.

We benchmarked our software on three machines, namely

� A machine with an Intel Core i7-4770K (Haswell) CPU running Debian
GNU/Linux with gcc 4.6.3. Compilation used compiler �ags -msse2avx

-march=corei7-avx -O3 -std=gnu99.
� A machine with an Intel Core i5-3210M (Ivy Bridge) CPU running Ubuntu
GNU/Linux with gcc 4.6.3. Compilation used compiler �ags -msse2avx

-march=corei7-avx -O3 -std=gnu99.
� A Beaglebone Black development board with a TI Sitara AM335x (ARM
Cortex-A8) CPU running Debian GNU/Linux with gcc 4.6.3. Compilation
used compiler �ags -O3 -flto -march=armv7-a -Ofast

-funroll-all-loops -marm -mfpu=neon -fprefetch

�loop-arrays-mvectorize-with-neon-quad -mthumb-interwork

-mtune=cortex-a15.

All benchmarks were carried out on just one core of the CPU and we followed
the standard practice of turning o� TurboBoost and hyperthreading.

Table 3 reports performance results of our software and compares it to pre-
vious implementations of lattice-based signatures. As an additional contribution
of this paper we improved the performance of the software presented in [22]. We
report both the original and the improved cycle counts in Table 3. For details on
the improvement we refer to the full version of this paper. Compared with our
work it becomes clear that usage of standard lattices only incurs a small perfor-
mance penalty. This is remarkable, as no e�cient and quasi-logarithmic-runtime
arithmetic like the number-theoretic transform (NTT) is available for standard
lattices. Moreover, for a security level matching the security level of GLP we

15

expect our implementation to be much faster (m,n, q could be decreased). For
BLISS performance we rely on the implementation given in [16]. However, an im-
plementation of BLISS which uses techniques similar to those described in [22],
should be much faster due to smaller parameters and lower rejection rates than
in GLP. The main problem of BLISS is that it requires e�cient (and secure)
sampling of Gaussian noise not only for key generation but also for signing. All
e�cient techniques for Gaussian sampling rely heavily on secret branch condi-
tions or lookup tables, which are both known to create timing leaks (see [12]).

Table 3: Comparison of lattice-based-signature software performance

Software CPU Security Cycles

Software using standard lattices
This work Intel Core i7-4770K 128 bits sign: 1203924

(Haswell) verify: 335072
This work Intel Core i5-3210M 128 bits sign: 1973610

(Ivy Bridge) verify: 608870
This work TI Sitara AM335x 128 bits sign: 10264721

(ARM Cortex-A8) verify: 2796433
GPV-matrix [7] AMD Opteron 8356 100 bits sign: 287500000
(n = 512, k = 27) (Barcelona) verify: 48300000

Software using ideal lattices
GLP [22] Intel Core i5-3210M 75�80 bits sign: 634988

(Ivy Bridge) verify: 45036
GLP [22] Intel Core i5-3210M 75�80 bits sign: 452223
(see full version) (Ivy Bridge) verify: 34004
GPV-poly [7] AMD Opteron 8356 100 bits sign: 71300000
(n = 512, k = 27) (Barcelona) verify: 9200000
BLISS [16] Intel Core i7 128 bits sign: ≈ 421600
(BLISS-I) verify: ≈ 102000
PASS [23] Intel Core i7-2640M 130 bits sign: 584230
(N = 1153) (Sandy Bridge) verify: 172641

Conclusion and future work. With this work we have shown that the per-
formance impact of using standard lattices over ideal lattices for short digital
signatures is only small for signing and manageable for veri�cation. Possible fu-
ture work might consist in evaluating the performance of an independent time
implementation of vectorized BLISS or PASS. Moreover, NTRUsign might be-
come interesting again if it is possible to �x the security issues e�ciently, as
proposed in [1].

16

Acknowledgment

We would like to thank Patrick Weiden, Rafael Misoczki, Shi Bai, and Steven
Galbraith for useful discussions. We would further like to thank the anonymous
reviewers for their suggestions and comments.

References

1. Carlos Aguilar-Melchor, Xavier Boyen, Jean-Christophe Deneuville, and Philippe
Gaborit. Sealing the leak on classical NTRU signatures. In Michele Mosca, editor,
Post-Quantum Cryptography, volume 8772 of LNCS, pages 1�21. Springer, 2014.
http://eprint.iacr.org/2014/484/. 16

2. Martin R. Albrecht, Robert Fitzpatrick, and Florian Göpfert. On the e�cacy of
solving LWE by reduction to unique-SVP. Cryptology ePrint Archive, Report
2013/602, 2013. http://eprint.iacr.org/2013/602/. 9

3. Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast crypto-
graphic primitives and circular-secure encryption based on hard learning prob-
lems. In Shai Halevi, editor, Advances in Cryptology � CRYPTO 2009, volume
5677 of LNCS, pages 595�618. Springer, 2009. http://www.research.rutgers.

edu/~dc789/kdm-learning.pdf. 4

4. László Babai. On Lovász' lattice reduction and the nearest lattice point prob-
lem. Combinatorica, 6(1):1�13, 1986. http://www.csie.nuk.edu.tw/~cychen/

Lattices/On%20lovasz%20lattice%20reduction%20and%20the%20nearest%

20lattice%20point%20problem.pdf. 7, 20

5. Shi Bai and Steven Galbraith. Personal communication and e-mail exchanges,
2014. 3, 7

6. Shi Bai and Steven D. Galbraith. An improved compression technique for signa-
tures based on learning with errors. In Josh Benaloh, editor, Topics in Cryptology

� CT-RSA 2014, volume 8366 of LNCS, pages 28�47. Springer, 2014. Full version:
https://eprint.iacr.org/2013/838.pdf. 2, 3, 4, 5, 6, 7, 9, 10, 20

7. Rachid El Bansarkhani and Johannes Buchmann. Improvement and e�cient im-
plementation of a lattice-based signature scheme. In Tanja Lange, Kristin Lauter,
and Petr Lisonek, editors, Selected Areas in Cryptography, volume 8282 of LNCS,
pages 48�67. Springer, 2014. http://eprint.iacr.org/2013/297.pdf. 1, 2, 16

8. Daniel J. Bernstein. A sub�eld-logarithm attack against ideal lattices, Feb 2014.
http://blog.cr.yp.to/20140213-ideal.html. 2

9. Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen, editors. Post-

quantum cryptography. Mathematics and Statistics. Springer, 2009. 1, 2, 8, 10

10. Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT benchmarking of crypto-
graphic systems. http://bench.cr.yp.to (accessed 2013-01-25). 3, 15

11. Ahmad Boorghany and Rasool Jalili. Implementation and comparison of lattice-
based identi�cation protocols on smart cards and microcontrollers. IACR Cryp-
tology ePrint Archive, 2014. http://eprint.iacr.org/2014/078/. 2

12. Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-
quantum key exchange for the TLS protocol from the ring learning with errors prob-
lem. IACR Cryptology ePrint Archive, 2014. http://eprint.iacr.org/2014/599.
3, 16

17

http://eprint.iacr.org/2014/484/
http://eprint.iacr.org/2013/602/
http://www.research.rutgers.edu/~dc789/kdm-learning.pdf
http://www.research.rutgers.edu/~dc789/kdm-learning.pdf
http://www.csie.nuk.edu.tw/~cychen/Lattices/On%20lovasz%20lattice%20reduction%20and%20the%20nearest%20lattice%20point%20problem.pdf
http://www.csie.nuk.edu.tw/~cychen/Lattices/On%20lovasz%20lattice%20reduction%20and%20the%20nearest%20lattice%20point%20problem.pdf
http://www.csie.nuk.edu.tw/~cychen/Lattices/On%20lovasz%20lattice%20reduction%20and%20the%20nearest%20lattice%20point%20problem.pdf
https://eprint.iacr.org/2013/838.pdf
http://eprint.iacr.org/2013/297.pdf
http://blog.cr.yp.to/20140213-ideal.html
http://bench.cr.yp.to
http://eprint.iacr.org/2014/078/
http://eprint.iacr.org/2014/599

13. David Brumley and Dan Boneh. Remote timing attacks are practical. In SSYM'03

Proceedings of the 12th conference on USENIX Security Symposium. USENIX As-
sociation, 2003. http://crypto.stanford.edu/~dabo/pubs/papers/ssl-timing.
pdf. 3

14. Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security esti-
mates. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptol-

ogy � ASIACRYPT 2011, volume 7073 of LNCS, pages 1�20. Springer, 2011.
http://www.iacr.org/archive/asiacrypt2011/70730001/70730001.pdf. 9

15. Alain Couvreur, Ayoub Otmani, and Jean-Pierre Tillich. Polynomial time attack
on Wild McEliece over quadratic extensions. In Phong Q. Nguyen and Elisabeth
Oswald, editors, Advances in Cryptology � EUROCRYPT 2014, volume 8441 of
LNCS, pages 17�39. Springer, 2014. https://eprint.iacr.org/2014/112/. 2

16. Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice
signatures and bimodal Gaussians. In Ran Canetti and Juan A. Garay, editors,
Advances in Cryptology � CRYPTO 2013, volume 8042 of LNCS, pages 40�56.
Springer, 2013. https://eprint.iacr.org/2013/383/. 1, 2, 5, 6, 7, 16

17. Nagarjun C. Dwarakanath and Steven D. Galbraith. Sampling from discrete Gaus-
sians for lattice-based cryptography on a constrained device. Appl. Algebra Eng.

Commun. Comput., 25(3):159�180, 2014. https://www.math.auckland.ac.nz/

~sgal018/gen-gaussians.pdf. 2
18. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-

ti�cation and signature problems. In Andrew M. Odlyzko, editor, Advances in

Cryptology � CRYPTO '86, volume 263 of LNCS, pages 186�194. Springer, 1987.
http://www.cs.rit.edu/~jjk8346/FiatShamir.pdf. 5

19. Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In Nigel P.
Smart, editor, Advances in Cryptology � EUROCRYPT 2008, volume 4965 of
LNCS, pages 31�51. Springer, 2008. ftp://ftp.di.ens.fr/pub/users/pnguyen/

Euro08.pdf. 7, 8
20. Norman Göttert, Thomas Feller, Michael Schneider, Johannes Buchmann, and

Sorin A. Huss. On the design of hardware building blocks for modern lattice-
based encryption schemes. In Emmanuel Prou� and Patrick Schaumont, editors,
Cryptographic Hardware and Embedded Systems � CHES 2012, volume 7428 of
LNCS, pages 512�529. Springer, 2012. 2

21. Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical lattice-
based cryptography: A signature scheme for embedded systems. In Emmanuel
Prou� and Patrick Schaumont, editors, Cryptographic Hardware and Embedded

Systems � CHES 2012, volume 7428 of LNCS, pages 530�547. Springer, 2012.
http://www.di.ens.fr/~lyubash/papers/signaturechess.pdf. 1, 2, 5

22. Tim Güneysu, Tobias Oder, Thomas Pöppelmann, and Peter Schwabe. Soft-
ware speed records for lattice-based signatures. In Philippe Gaborit, editor,
Post-Quantum Cryptography, volume 8731 of LNCS, pages 67�82. Springer, 2013.
http://cryptojedi.org/papers/#lattisigns. 2, 3, 12, 13, 14, 15, 16

23. Je�rey Ho�stein, Jill Pipher, John M. Schanck, Joseph H. Silverman, and William
Whyte. Practical signatures from the partial Fourier recovery problem. In Ioana
Boureanu, Philippe Owesarski, and Serge Vaudenay, editors, Applied Cryptogra-

phy and Network Security, volume 8479 of LNCS, pages 476�493. Springer, 2014.
https://eprint.iacr.org/2013/757. 16

24. Tsukasa Ishiguro, Shinsaku Kiyomoto, Yutaka Miyake, and Tsuyoshi Takagi. Par-
allel Gauss sieve algorithm: Solving the SVP challenge over a 128-dimensional ideal
lattice. In Hugo Krawczyk, editor, Public-Key Cryptography � PKC 2014, volume

18

http://crypto.stanford.edu/~dabo/pubs/papers/ssl-timing.pdf
http://crypto.stanford.edu/~dabo/pubs/papers/ssl-timing.pdf
http://www.iacr.org/archive/asiacrypt2011/70730001/70730001.pdf
https://eprint.iacr.org/2014/112/
https://eprint.iacr.org/2013/383/
https://www.math.auckland.ac.nz/~sgal018/gen-gaussians.pdf
https://www.math.auckland.ac.nz/~sgal018/gen-gaussians.pdf
http://www.cs.rit.edu/~jjk8346/FiatShamir.pdf
ftp://ftp.di.ens.fr/pub/users/pnguyen/Euro08.pdf
ftp://ftp.di.ens.fr/pub/users/pnguyen/Euro08.pdf
http://www.di.ens.fr/~lyubash/papers/signaturechess.pdf
http://cryptojedi.org/papers/#lattisigns
https://eprint.iacr.org/2013/757

8383 of LNCS, pages 411�428. Springer, 2014. https://eprint.iacr.org/2013/

388/. 2

25. Paul C. Kocher. Timing attacks on implementations of Di�e-Hellman, RSA, DSS,
and other systems. In Neal Koblitz, editor, Advances in Cryptology � CRYPTO '96,
volume 1109 of LNCS, pages 104�113. Springer, 1996. http://www.cryptography.
com/public/pdf/TimingAttacks.pdf. 3

26. Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based
encryption. In Aggelos Kiayias, editor, Topics in Cryptology � CT-RSA 2011,
volume 6558 of LNCS, pages 319�339. Springer, 2011. http://eprint.iacr.org/
2010/613/. 7, 9, 20

27. Mingjie Liu and Pong Q. Nguyen. Solving BDD by enumeration: An update. In
Ed Dawson, editor, Topics in Cryptology � CT-RSA 2013, volume 7779 of LNCS,
pages 293�309. Springer, 2013. http://hal.archives-ouvertes.fr/docs/00/86/
43/61/PDF/LiuNguyen.pdf. 7, 10, 20

28. Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and
factoring-based signatures. In Mitsuru Matsui, editor, Advances in Cryptology

� ASIACRYPT 2009, volume 5912 of LNCS, pages 598�616. Springer, 2009.
http://www.di.ens.fr/~lyubash/papers/FSAbortAsiacryptconf.pdf. 5

29. Vadim Lyubashevsky. Lattice signatures without trapdoors. In David Pointcheval
and Thomas Johansson, editors, Advances in Cryptology � EUROCRYPT 2012,
volume 7237 of LNCS, pages 738�755. Springer, 2012. https://eprint.iacr.

org/2011/537. 5

30. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In Henri Gilbert, editor, Advances in Cryptol-

ogy � EUROCRYPT 2010, volume 6110 of LNCS, pages 1�23. Springer, 2010.
http://www.cims.nyu.edu/~regev/papers/ideal-lwe.pdf. 1

31. Rafael Misoczki and Paulo S. L. M. Barreto. Compact McEliece keys from Goppa
codes. In Michael J. Jacobson Jr., Vincent Rijmen, and Reihaneh Safavi-Naini,
editors, Selected Areas in Cryptography, volume 5867 of LNCS, pages 376�392.
Springer, 2009. http://eprint.iacr.org/2009/187/. 2

32. Tobias Oder, Thomas Pöppelmann, and Tim Güneysu. Beyond ECDSA and RSA:
Lattice-based digital signatures on constrained devices. In DAC '14 Proceedings of

the The 51st Annual Design Automation Conference on Design Automation Con-

ference, pages 1�6. ACM, 2014. https://www.sha.rub.de/media/attachments/

files/2014/06/bliss_arm.pdf. 2

33. Thomas Pöppelmann, Léo Ducas, and Tim Güneysu. Enhanced lattice-based sig-
natures on recon�gurable hardware. In Lejla Batina and Matthew Robshaw, edi-
tors, Cryptographic Hardware and Embedded Systems � CHES 2014, volume 8731
of LNCS, pages 353�370. Springer, 2014. https://eprint.iacr.org/2014/254/.
2

34. Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. In Harold N. Gabow and Ronald Fagin, editors, STOC '05 Proceedings of

the thirty-seventh annual ACM symposium on Theory of computing, pages 84�93.
ACM, 2005. http://www.cims.nyu.edu/~regev/papers/qcrypto.pdf. 2

35. Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen,
and Ingrid Verbauwhede. Compact ring-LWE cryptoprocessor. In Lejla Batina
and Matthew Robshaw, editors, Cryptographic Hardware and Embedded Systems

� CHES 2014, volume 8731 of LNCS, pages 371�391. Springer, 2014. http://

eprint.iacr.org/2013/866/. 2

19

https://eprint.iacr.org/2013/388/
https://eprint.iacr.org/2013/388/
http://www.cryptography.com/public/pdf/TimingAttacks.pdf
http://www.cryptography.com/public/pdf/TimingAttacks.pdf
http://eprint.iacr.org/2010/613/
http://eprint.iacr.org/2010/613/
http://hal.archives-ouvertes.fr/docs/00/86/43/61/PDF/LiuNguyen.pdf
http://hal.archives-ouvertes.fr/docs/00/86/43/61/PDF/LiuNguyen.pdf
http://www.di.ens.fr/~lyubash/papers/FSAbortAsiacryptconf.pdf
https://eprint.iacr.org/2011/537
https://eprint.iacr.org/2011/537
http://www.cims.nyu.edu/~regev/papers/ideal-lwe.pdf
http://eprint.iacr.org/2009/187/
https://www.sha.rub.de/media/attachments/files/2014/06/bliss_arm.pdf
https://www.sha.rub.de/media/attachments/files/2014/06/bliss_arm.pdf
https://eprint.iacr.org/2014/254/
http://www.cims.nyu.edu/~regev/papers/qcrypto.pdf
http://eprint.iacr.org/2013/866/
http://eprint.iacr.org/2013/866/

36. Michael Schneider. Sieving for shortest vectors in ideal lattices. In Amr Youssef,
Abderrahmane Nitaj, and Aboul Ella Hassanien, editors, Progress in Cryptology

� AFRICACRYPT 2013, volume 7918 of LNCS, pages 375�391. Springer, 2013.
https://eprint.iacr.org/2011/458/. 2

37. Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved practical
algorithms and solving subset sum problems. Math. Program., 66:181�199,
1994. http://www.csie.nuk.edu.tw/~cychen/Lattices/Lattice%20Basis%

20Reduction_%20Improved%20Practical%20Algorithms%20and%20Solving%

20Subset%20Sum%20Problems.pdf. 9

A Decoding Attack

An approach for solving LWE that has not been considered in the original
work [6] is the decoding attack. It is inspired by the nearest plane algorithm
proposed by Babai [4]. For a given lattice basis and a given target vector, it
returns a lattice vector that is relatively close to the target vector. Hence, im-
proving the quality of the lattice basis yields a vector that is closer to the target
vector. Lindner and Peikert [26] proposed the nearest planes algorithm, a gener-
alization of the former that returns more than one vector and thereby enhances
the previous algorithm with a trade-o� between its runtime and the probability
of returning the actual closest vector within the set of obtained vectors.

There is a continuous correspondence between the success probability of this
attack and the Hermite delta. We follow the approach proposed by Lindner and
Peikert [26] to predict this success probability. In short, they show how one can
use the Geometric Series Assumption (GSA) in order to predict the length of
the Gram-Schmidt vectors of a reduced basis, and this estimation in turn serves
to predict the success probability of the attack. Together with an estimation
of the running time of nearest plane � the authors propose 2−16 seconds � and
the runtime estimation for basis reduction (see Equation (2)), it is possible to
predict the runtime and success probability of nearest planes.

Optimizing the trade-o�s between the time spent on the attack and its suc-
cess probability is not trivial, but simulations of the attack show that it is in
most cases preferable to run multiple attacks with small success probabilities.
This technique is called randomization and was investigated by Liu and Nguyen
(see [27]), together with a further improvement called pruning. In comparison
to the big improvement achieved with randomization, pruning leads only to a
moderate speedup. The maximal speedup achieved in [27] is about 26, while
randomization can reduce the cost by a factor of 232. Since it turned out that
the decoding-attack is outperformed by other attacks by far (and pruning is
furthermore very hard to analyze), we focused on the randomized version.

Brie�y speaking, [26] provides the tools necessary to estimate the expected
runtime of the attack for a given set of attack parameters, and [27] proposed
to minimize the expected runtime (i.e. the time for one attack divided by the
success probability of the attack). We applied this technique to our instance (cf.
Table 2).

20

https://eprint.iacr.org/2011/458/
http://www.csie.nuk.edu.tw/~cychen/Lattices/Lattice%20Basis%20Reduction_%20Improved%20Practical%20Algorithms%20and%20Solving%20Subset%20Sum%20Problems.pdf
http://www.csie.nuk.edu.tw/~cychen/Lattices/Lattice%20Basis%20Reduction_%20Improved%20Practical%20Algorithms%20and%20Solving%20Subset%20Sum%20Problems.pdf
http://www.csie.nuk.edu.tw/~cychen/Lattices/Lattice%20Basis%20Reduction_%20Improved%20Practical%20Algorithms%20and%20Solving%20Subset%20Sum%20Problems.pdf

	High-speed signatures from standard lattices

