
On the Security of Long-lived Archiving Systems
based on the Evidence Record Syntax

Matthias Geihs, Denise Demirel, and Johannes Buchmann

Technische Universität Darmstadt?

Abstract. The amount of security critical data that is only available
in digital form is increasing constantly. The Evidence Record Syntax
Specification (ERS) achieves very efficiently important security goals:
integrity, authenticity, datedness, and non-repudiation. This paper sup-
ports the trustworthiness of ERS by proving ERS secure. This is done
in a model presented by Canetti et al. that these authors used to estab-
lish the long-term security of the Content Integrity Service (CIS). CIS
achieves the same goals as ERS but is much less efficient. We also discuss
the model of Canetti et al. and propose new directions of research.

1 Introduction

The amount of data that is only available in digital form is increasing constantly.
Examples include scientific data, medical records, and land registries. Therefore,
digital archives are needed that efficiently and securely preserve this information
for a long period of time.

Important protection goals for archived data objects are authenticity, in-
tegrity, non-repudiation, and datedness. Integrity means that the data object
has not been altered. Authenticity refers to the origin being identifiable. Non-
repudiation prevents an originator from repudiating that he is the origin of a
document. Datedness allows to identify a time reference when a document ex-
isted.

The Evidence Record Syntax Specification (ERS) [5, 2] achieves these pro-
tection goals efficiently and in the long-term. In fact, ERS focuses on datedness.
This is sufficient as integrity follows from datedness. Also, if the data objects are
digitally signed, then datedness also provides authenticity and non-repudiation.

To make ERS trustworthy it is desirable to have a security model and a cor-
responding security proof that establishes the security properties of ERS from a
theoretical point of view. This is what we do in this paper. As a security model,
we use the framework of Canetti et al. for analyzing computational security in
long-lived systems [4]. Using their framework, they analyze the security of the
Content Integrity Service (CIS) proposed by Haber et al. [6] that also ensures
datedness in archives. ERS is a refined, more efficient variant of CIS. The main

? This work has been co-funded by the DFG as part of project Long-Term Secure
Archiving within the CRC 1119 CROSSING.



difference is the intelligent use of hash functions that allow for better perfor-
mance. In this work, we extend their analysis of CIS to ERS. The main idea
is to introduce hash services extending the signature services used by Canetti
et al. They allow to model the ERS evidence records that are used to establish
datedness at any point in time.

The structure of the paper is as follows. In Section 2, we describe the setup of
long-term archiving systems and provide a summary of the ERS specification. In
Section 3, we present the security framework of Canetti et al. and briefly explain
their analysis of CIS. Using their framework, in Sections 4 and 5 we analyze the
security of ERS. In Section 6, we draw conclusions and present future work.

2 ERS Archiving System

In this section, we describe the setup of secure archiving systems and provide a
summary of the ERS specification.

2.1 Setup

A secure archiving system is used to store data objects for a long period of time
while ensuring datedness of stored data. To achieve this, for each data object
d stored at time t, the system maintains an evidence record ed which allows to
prove that data object d was archived at time t.

For maintaining evidence records, archiving systems typically rely on times-
tamp services. Timestamp services are trusted third parties which can be queried
to issue a timestamp on a given bit string. When a timestamp service A is queried
to timestamp bit string x at time t, it responds with timestamp θ. Afterwards,
timestamp θ can be used to verify that timestamp service A indeed timestamped
bit string x for time t.

In this work, we consider signature-based timestamp services. A timestamp
for bit string x and time t issued by a signature-based timestamp service is a
signature on 〈x, t〉.

2.2 ERS specification

We give an overview of the ERS specification [5]. For a set of stored data objects
{d1, . . . , dn}, the ERS specification supports to maintain an evidence record e.
For each data object d ∈ {d1, . . . , dn}, evidence record e can be used to verify
datedness of d.

When the ERS archiving system is initially asked to store a set of data
objects {d1, . . . , dn}, it generates a new evidence record for {d1, . . . , dn} and
stores it together with the data objects. The generation of an evidence record
uses cryptographic primitives. In particular, collision-resistant hash functions
and signature schemes are used. The lifetime of those primitives is limited due to
brute-force attacks, advances in cryptanalysis, or key compromise. Consequently,
in order to remain valid, an evidence record needs to be refreshed periodically.



The ERS specification provides two methods of evidence record refresh,
namely timestamp-refresh and hash-refresh. Timestamp-refresh protects against
the expiration of a signature-based timestamp. Hash-refresh protects against the
expiration of a hash value.

We describe the data structure of an evidence record and how it is generated,
timestamp-refreshed, hash-refreshed and verified.

Structure An evidence record consists of a list of timestamps and the ver-
ification information required for timestamp verification. We refrain from
explicitly describing maintenance of verification information since it is not
fundamental for our analysis of ERS. An initially generated evidence record
contains a single timestamp. Upon evidence record refresh, new timestamps
are added to the list.

Generation Generation of an evidence record e for a set of data objects {d1,
. . . , dn} is done as follows. First, a Merkle hash tree [7] is generated having
the data objects as the leaves. Let r be the hash value corresponding to the
root of that hash tree. A timestamp θ on r is requested from a timestamp
service. The freshly generated evidence record e contains timestamp θ.

Timestamp-Refresh An evidence record e is timestamp-refreshed as follows.
Let θ1, . . . , θn be the timestamps contained in e, where θn is the most recent
timestamp. A new timestamp θ′ on θn is requested. The timestamp-refreshed
evidence record e′ contains timestamps θ1, . . . , θn, θ

′.
Hash-Refresh An evidence record e is hash-refreshed as follows. Let {d1, . . . ,

dn} be the data objects covered by e and let θ1, . . . , θn be the timestamps
contained in e. A new Merkle hash tree is built with d1, . . . , dn, θ1, . . . , θn
as the leaves. Let r′ be the root of that hash tree. A new timestamp θ′ on
r′ is requested. The hash-refreshed evidence record e′ contains timestamps
θ1, . . . , θn, θ

′.
Verification Datedness verification of data object d for time t1 using evidence

record e is done as follows. Let θ1, . . . , θn be the timestamps of e and for
i = 1, . . . , n, let ti be the time when θi was issued. Check the following.

– For i = 2, . . . , n, verify if timestamp θi covers timestamp θi−1 for time ti.
If θi results from hash-refresh, additionally verify if it covers data object
d and timestamps θ1, . . . , θi−2 for time ti.

– Verify if θ1 covers data object d for time t1.

3 Security Framework

In this section, we provide a high level description of the security framework of
Canetti et al. for modeling computational security in long-lived systems [4]. We
refer to the framework as the long-lived computational security framework, or
short, LCS framework.

In this paper, our goal is to analyze the security of the ERS archiving system.
In cryptography, the security of a system is typically defined in the presence of
a resource bounded adversary, often modeled as a polynomial-time machine. We



must allow the adversary to be active during the whole lifetime of the system.
However, long-lived systems, like the ERS system, are potentially running for
super-polynomial time. Modeling the adversary as a polynomial-time machine
is too restrictive for analyzing the security of systems with super-polynomial
lifetime.

In the context of long-lived systems, we want to allow entities to be active for
unbounded lifetime, while bounding their computational power at any point in
time. To model this behavior, a special kind of automaton model is used, namely
the task-PIOA model [3], augmented with a notion of real time. Combining the
task-PIOA model with a notion of real time allows to put in relationship the
number of automaton steps and the duration of real time required to complete
a task. Computational restrictions on a task-PIOA are imposed in terms of
computation rates, i.e. number of computation steps per unit of real time.

By its nature, a polynomial-time machine uses only a polynomial-bounded
amount of space. There is no such implicit space bound for a machine with
unbounded lifetime, such as a task-PIOA. In addition to specifying a bound on
the computation rate of bounded task-PIOAs, we impose a bound on the space
consumed by a bounded task-PIOA. We allow a bounded task-PIOA to only use
a bounded amount of space at any point in time.

Note that, with respect to the security parameter k, computational bounds
are fixed over the lifetime of the whole protocol. In particular, the LCS framework
does not allow to model systems whose computational power increases over time.

Using the LCS framework, a security proof of a cryptographic system is done
in style of the real-ideal paradigm. In this style, an ideal version of the system
and a real version of the system are defined. Here, the ideal system represents the
functionality of the system, which is secure by definition and usually relies on
a trusted party. The real system represents the implementation of the system,
which uses cryptography to mimic the ideal system’s behavior. To prove the
implementation secure, it is shown that a computationally bounded environment
interacting with the two systems cannot distinguish them. Since the ideal system
implicitly defines the functionality of the secure system, this suffices to show the
security of the real system.

The LCS framework provides a mechanism for long-lived systems to recover
from past security failures. Therefore, an ideal system is allowed to take desig-
nated failure steps. For any polynomial-bounded time interval, the real system
will only have to approximate the ideal system if no failure tasks occur in that
interval.

In Section 3.1 we introduce the task-PIOA model. In Section 3.2 we introduce
the long-term implementation relation which allows to compare an ideal system
to a real system in the presence of a long-lived environment. In Section 3.3 we
briefly describe the CIS archiving system model from [4].



3.1 Task-PIOAs

If we say, a system is described within the LCS framework, we mean that it is
modeled as a task-PIOA [3], which is a version of a probabilistic input/output
automaton (PIOA).

A PIOA A is defined by a tuple 〈V, S, sinit, I, O,H,∆〉. Here, V is a set of
state variables, S is a set of states, sinit ∈ S is the initial state, I is a set of
input actions, O is a set of output actions, H is a set of hidden actions, and ∆ is
a transition relation. The transition relation describes how the automaton, for
a given action, transitions from one state into another. An action transition can
be viewed as an atomic computation step of a PIOA.

Multiple PIOA actions can be grouped into a task. Formally, a task-PIOA is a
pair 〈A,R〉, where A is a PIOA and R is a partition of locally-controlled actions
(i.e., output and hidden actions) of A. The equivalence classes in R are called
tasks. For notational simplicity, we often omit R and refer to the task-PIOA A.

Computational bounds on a task-PIOA are three-fold. Firstly, a step bound
on a task-PIOA limits the turing complexity of every single task-PIOA step.
Secondly, in the LCS framework, task-PIOAs are augmented with a real-time
scheduling mechanism. This allows to impose real-time scheduling constraints on
task schedules. More precisely, real-time scheduling constraints allow to limit the
number of steps performed by a task-PIOA per fraction of real time. Thirdly, step
bound and real-time scheduling constraints are combined to obtain an overall
bound.

Operations. Task-PIOAs are subject to the composition and hiding operation.

Composition. Let A1 and A2 be two task-PIOAs. We say A1 and A2 are com-
patible, if they do not share any state variables or output actions, and hidden
actions of the one automaton do not collide with any actions of the other au-
tomaton (and vice versa). If two task-PIOAs A1 and A2 are compatible, they
can be composed into a new task-PIOA. We denote the composition of A1 and
A2 by A1‖A2. The composition A1‖A2 is itself a task-PIOA which synchronizes
on shared actions of A1 and A2.

Hiding Operator. We define a hiding operator for task-PIOAs. Let A := 〈V,
S, sinit, I, O,H,∆〉 be a task-PIOA and X ⊆ O be a set of output actions.
Then, hide(A, X) is the task-PIOA given by 〈V, S, sinit, I, O\X,H∪X,∆〉. This
prevents other task-PIOAs from synchronizing with A via actions in X: any
task-PIOA with an action in X is no longer compatible with A.

Step Bound. The notion of a step bound is defined to limit the amount of
computation a task-PIOA can perform, and the amount of space it can use, in
executing a single step. For p ∈ N, we say a task-PIOA A has step bound p, if
for every single step of A, p limits the complexity of a turing machine simulating
the step.



Real-time Scheduling Constraints. In the LCS framework, task-PIOAs are
augmented with real-time scheduling constraints. This allows to model entities
with unbounded lifetime but bounded processing rates. Therefore, a task sched-
ule can be associated with a bound map 〈rate, burst, lb, ub〉. Here, rate bounds
the number of task executions per real time, burst allows for a fixed violation
of this bound, and lb and ub are lower and upper real time bounds for the first
and last execution of a task, respectively. We say a real time task schedule is
constrained by p, if it is valid under a p-bounded bound map.

Note that real time is only used to express constraints on task schedules.
Computationally bounded system components are not allowed to maintain real
time information in their states, nor to communicate real-time information to
each other. System components that require knowledge of time will maintain
discrete approximations of time in their states, based on inputs from a global
task-PIOA Clock.

Overall Bound. Step bound and real time scheduling constraints are combined
to obtain an overall bound on a task-PIOA A. We say that a task-PIOA A is
p-bounded, if A has step bound p and real time task scheduling is constrained
by p. We say a task-PIOA A is quasi-p-bounded if A is of the form A′‖Clock,
where A′ is p-bounded.

Task-PIOA Families. Task-PIOAs can be gathered into task-PIOA families,
indexed by a security parameter k. A task-PIOA family Ā is an indexed set
{Ak}k∈N of task-PIOAs. Given a function p : N → N, we say that Ā is p-
bounded if for all k, Ak is p(k)-bounded. If p is a polynomial, then we say Ā is
polynomially bounded.

3.2 Longterm Implementation Relation

The LCS framework allows modeling computational security in long-lived sys-
tems. Traditionally, a system is considered secure if a polynomial-time environ-
ment cannot distinguish the ideal system model (i.e., the functionality) from the
real system model (i.e., the implementation). Restricting environments to be
polynomial-time bounded is not satisfactory in the context of long-lived systems
which potentially run for super-polynomial time.

The LCS framework provides a notion of indistinguishability in the context
of long-lived systems. The idea is to not limit the overall amount of computation
performed by a long-lived environment, but to polynomially bound the amount
of computation performed per fraction of time. Furthermore, long-lived systems
are allowed to recover from past security failures. Therefore, an ideal system is
allowed to take designated failure steps. For a polynomial-bounded time interval,
the real system will only have to approximate the ideal system, if no failure tasks
occur in that interval.



A long-term implementation relation defines indistinguishability of systems
in the context of a long-lived environment. We sketch the definition of the long-
term implementation relations ≤p,q,ε and ≤neg,pt given in [4], Section 5. Task-
PIOAs can only be put in relationship by a long-term implementation relation
if they are comparable. We say task-PIOAs A1 and A2 are comparable, if they
have the same external interface, that is, they have the same input and output
actions. We say task-PIOA families Ā1 and Ā2 are comparable if for every k,
(Ā1)k is comparable to (Ā2)k.

Let A1 and A2 be comparable task-PIOAs. Let F 1 and F 2 be sets of des-
ignated failure tasks associated with A1 and A2, respectively. Let p, q ∈ N and
ε ∈ R≥0. If for every q-bounded time window in which no failure tasks F 1 and
F 2 occur, any quasi-p-bounded environment cannot distinguish A1 and A2 with
probability at most ε, we write (A1, F 1) ≤p,q,ε (A2, F 2).

The ≤p,q,ε definition is extended to task-PIOA families. Let Ā1 and Ā2

be comparable task-PIOA families. Let F̄ 1 and F̄ 2 be sets of designated fail-
ure tasks associated with Ā1 and Ā2, respectively. Let p, q be polynomials
and ε : N → R≥0 be a function. We say (Ā1, F̄ 1) ≤p,q,ε (Ā2, F̄ 2), if ∀k :
((Ā1)k, (F̄

1)k) ≤p(k),q(k),ε(k) ((Ā2)k, (F̄
2)k).

We write (Ā1, F̄ 1) ≤neg,pt (Ā2, F̄ 2), if ∀p, q∃ε : (Ā1, F̄ 1) ≤p,q,ε (Ā2, F̄ 2),
where p, q are polynomials and ε is a negligible function. In this case we say Ā1

implements Ā2 in the sense of the long-term implementation relation. Here, Ā1

is usually referred to as the real system (i.e., the implementation), and Ā2 is
usually referred to as the ideal system (i.e., the functionality).

Composition Theorems. We quote the following statement regarding com-
position theorems from [4], Section 7.

In practice, cryptographic services are seldom used in isolation. Usually,
different types of services operate in conjunction, interacting with each
other and with multiple protocol participants. For example, a participant
may submit a bit string to an encryption service to obtain a ciphertext,
which is later submitted to a timestamping service. In such situations,
it is important that the services are provably secure even in the context
of composition.

Indeed, as described in Section 3.1, single task-PIOAs (e.g., encryption or
timestamp services) can be composed to obtain more complex task-PIOAs (e.g.,
a system composed of communicating services). The following composition the-
orems allow to preserve the longterm implementation relation ≤neg,pt . For a
formal definition of the composition theorems see [4], Section 7.

Parallel Composition Theorem The Parallel Composition Theorem allows
for the parallel composition of polynomially many components.

Sequential Composition Theorem The Sequential Composition Theorem al-
lows for the sequential composition of exponentially many components. We
say task-PIOAs are sequential if for every real time t at most one of the
task-PIOAs is not dormant at time t.



d-Bounded Composition Theorem The d-Bounded Composition Theorem
allows for the d-bounded concurrent composition of exponentially many com-
ponents, where d is a positive integer. We say task-PIOAs are d-bounded
concurrent if for every real time t at most d of the task-PIOAs are not
dormant at time t.

We describe application of a composition theorem to sequences of task-PIOAs
associated with a sequence of designated failure task families. Let Ā1

1, Ā1
2, . . . and

Ā2
1, Ā2

2, . . . be comparable sequences of compatible task-PIOA families associated
with sequences of failure task set families F̄ 1

1 , F̄
1
2 , . . . and F̄ 2

1 , F̄
2
2 , . . ., respectively.

Let C := {1, 2, . . . , n} be a set of indices. Define the compositions of task-

PIOA families Â1 := ‖i∈CĀ1
i and Â2 := ‖i∈CĀ2

i , and the unions of failure

task set families F̂ 1 := {
⋃
i∈C(F̄ 1

i )k}k∈N and F̂ 2 := {
⋃
i∈C(F̄ 2

i )k}k∈N. Note
that index set C is subject to the composition theorem to be applied. Then,
(Â1, F̂ 1) ≤neg,pt (Â2, F̂ 2), if ∀p, q∃ε∀i : (Ā1

i , F̄
1
i ) ≤neg,pt (Ā2

i , F̄
2
i ), where p, q are

polynomials and ε is a negligible function.

3.3 CIS System Model

In [4], Canetti et al. propose a model for another long-lived archiving system,
namely the content integrity service (CIS) [6]. We explain briefly how the CIS
system is modeled as the composition of task-PIOAs.

The CIS system model is composed of a dispatcher component and a sequence
of timestamp services. The dispatcher component accepts various timestamp re-
quests and forwards them to the appropriate timestamp service. In [4], Section 8,
it is shown that the composition of the dispatcher and real timestamp services
is indistinguishable from an ideal system, composed of the same dispatcher and
corresponding ideal timestamp services. Specifically, this guarantees that the
probability of a new forgery is small at any given point in time, regardless of
any forgeries that may have happened in the past.

We sketch some of the technicalities of the CIS analysis from [4]. The dis-
patcher component, the real timestamp services and the ideal timestamp services
are modeled as task-PIOAs. It is shown that a real timestamp service imple-
ments its ideal timestamp service counterpart in the sense of ≤neg,pt . Using
the d-bounded composition theorem, it is shown that the d-bounded composi-
tion of real timestamp services implements the d-bounded composition of ideal
timestamp services. Using the parallel composition theorem, it is shown that the
parallel composition of the dispatcher and the real timestamp services (i.e., the
real system) implements the parallel composition of the dispatcher and the ideal
timestamp services (i.e., the ideal system).

4 ERS System Model

In this section, we propose a task-PIOA model of the ERS archiving system by
extending the CIS system model (cf. Section 3.3).



The ERS system extends the CIS system as follows. The CIS system sup-
ports one method for evidence refresh, where data object and evidence are times-
tamped together. In particular, in the CIS system model, no hash functionality is
described. The ERS system supports two methods for evidence refresh, namely
timestamp-refresh and hash-refresh (cf. Section 2). The hash-refresh method is
similar to CIS evidence refresh (i.e., data object and evidence are timestamped
together). The timestamp-refresh method is special to ERS as it allows to re-
fresh the evidence while only part of the current evidence needs to be hashed
and timestamped. This makes ERS more efficient compared to CIS.

4.1 Construction Overview

We give an overview of the ERS model construction. The ERS system is modeled
as the composition of a dispatcher component, a sequence of timestamp services,
and, in particular, a sequence of hash services. The dispatcher component ac-
cepts various evidence record requests and uses appropriate hash and timestamp
services to answer them.

A timestamp service can be queried to produce a timestamp for a bit string.
Here, we consider signature-based timestamp services. When a signature-based
timestamp service is queried for a timestamp on bit string x, it responds with
a signature on 〈x, t〉, where t is the time at timestamp request. Each timestamp
service wakes up at a certain time and is active for a specified amount of time
before becoming dormant again. This can be viewed as a regular update of the
service, which may entail a simple refresh of the timestamp key, or the adoption
of a new timestamp algorithm.

A hash service can be queried to produce a hash of a bit string. When a hash
service is queried for a hash of bit string x, it responds with a fixed-length hash
H(x), where H is a collision-resistant hash function. Because the hash service
offers a collision-resistant hash functionality, it is hard to find a bit string x′,
such that x 6= x′ and H(x) = H(x′). Each hash service starts being available at
a certain time and is available for a specified amount of time before becoming
unavailable again. This can be viewed as a regular update of the hash algorithm.

The real ERS model consists of the dispatcher component, a collection of hash
services, and a collection of real timestamp services. Similarly, the ideal ERS
model consists of the same dispatcher component, a collection of hash services,
and a collection of ideal timestamp services. Note that we do not distinguish
between real and ideal hash services. This is due to the fact that we model
the functionality of a collision-resistant hash algorithm using the random oracle
methodology (cf. Section 4.4).

4.2 Signature Service

We describe the signature service model from [4]. A signature service is identified
by its service identifier. We denote the domain of signature service identifiers by
SIDsign. A signature service is constructed using a signature scheme.



Definition 1 (Signature scheme). A signature scheme consists of three al-
gorithms KeyGen, Sign, and Verify. KeyGen is a probabilistic algorithm that out-
puts a signing-verification key pair 〈sk, vk〉. Sign is a probabilistic algorithm that
produces a signature σ from a message m and the key sk. Finally, Verify is a
deterministic algorithm that maps 〈m,σ, vk〉 to a boolean. The signature σ is
said to be valid for m and vk if Verify(m,σ, vk) = 1.

In the following, we describe the real signature service model, the ideal sig-
nature service model, and sketch the proof of Theorem 1 from [4]. According
to this theorem, the real signature service, if instantiated with a complete and
existentially unforgeable signature scheme, implements the corresponding ideal
signature service in the sense of the ≤neg,pt definition (cf. Section 4.2).

For every j ∈ SIDsign, suppose that 〈KeyGenj ,Signj ,Verifyj〉 is a signature

scheme. We assume a function alive : T → 2SIDsign such that, for every t, alive(t)
is the set of services alive at discrete time t. The lifetime of each service j is then
given by aliveTimes(j) := {t ∈ T|j ∈ alive(t)}.

Real Signature Service. For k ∈ N and j ∈ SIDsign, we define three task-
PIOAs, KeyGen(k, j), Signer(k, j), and Verifier(k, j), representing the key gener-
ator, signer, and verifier, respectively.

KeyGen(k, j) chooses a signing key mySK and a corresponding verification
key myVK by running the KeyGenj algorithm. It does this exactly once during
its lifetime. It outputs the two keys separately, via actions signKey(sk)j and
verKey(vk)j . The signing key goes to Signer(k, j), while the verification key goes
to Verifier(k, j). Signer(k, j) responds to signing requests by running the Signj
algorithm on message m and the signing key sk. Verifier(k, j) accepts verification
requests and simply runs the Verifyj algorithm.

For k ∈ N and j ∈ SIDsign, we define the real signature service as

RealSig(j)k := hide(KeyGen(k, j)‖Signer(k, j)‖Verifier(k, j), signKeyj) .

Note that the hiding operator prevents the environment from learning the signing
key (cf. Section 3.1).

Ideal Signature Service. We specify an ideal signature functionality SigFunc.
As with KeyGen, Signer, and Verifier, each instance of SigFunc is parametrized
with a security parameter k and an identifier j. The task-PIOA SigFunc(k, j) is
very similar to the composition of Signer(k, j) and Verifier(k, j). The important
difference is that SigFunc(k, j) maintains an additional internal variable history,
which records the set of signed messages. In addition, SigFunc(k, j) has an interal
action failj , which sets a boolean flag failed. If failed = false, then SigFunc(k, j)
uses history to answer verification requests: a signature is rejected if the sub-
mitted message is not in history, even if Verifyj returns 1. If failed = true, then
SigFunc(k, j) bypasses the check on history, so that its answers are identical to
those from the real signature service.



For k ∈ N and j ∈ SIDsign, we define the ideal signature service as

IdealSig(j)k := hide(KeyGen(k, j)‖SigFunc(k, j), signKeyj) .

Implementation Proof. We define standard properties of signature schemes,
namely completeness and existential unforgeability. Afterwards, we show that if a
real signature service is instantiated with a complete and existential unforgeable
signature scheme, it implements the corresponding ideal signature service.

Definition 2 (Completeness). A signature scheme 〈KeyGen,Sign,Verify〉 is
complete if Verify(m,σ, vk) = 1 whenever 〈sk, vk〉 ← KeyGen(1k) and σ ←
Sign(sk,m).

Definition 3 (EUF-CMA). We say a signature scheme 〈KeyGen,Sign,Verify〉
is existentially unforgeable under adaptive chosen message attack if no polynomial-
time forger has non-negligible success probability in the following game.

Setup The challenger runs KeyGen to obtain 〈vk, sk〉 and gives the forger vk.

Query The forger submits message m. The challenger responds with signature
σ ← Sign(m, sk). This may be repeated adaptively.

Output The forger outputs a pair 〈m∗, σ∗〉 and he wins if m∗ is not among the
messages submitted during the query phase and Verify(m∗, σ∗, vk) = 1.

For j ∈ SIDsign, define the ideal signature service family

IdealSig(j) := {IdealSig(j)k}k∈N

and the real signature service family

RealSig(j) := {RealSig(j)k}k∈N .

Theorem 1 from [4] says that if a real signature service is instantiated with
a complete and existentially unforgeable signature scheme, it implements the
corresponding ideal signature service. We quote Theorem 1 from [4].

Theorem 1. Let j ∈ SIDsign be given. Suppose that 〈KeyGenj ,Signj ,Verifyj〉 is

a complete and EUF-CMA secure signature scheme. Then (RealSig(j), ∅) ≤neg,pt

(IdealSig(j), {failj}).

To prove Theorem 1, one needs to show the following for every time t and
polynomials p, q. If task failj is not scheduled in interval [t, t + q(k)], then no
p-bounded environment can distinguish RealSig(j)k from IdealSig(j)k with high
probability between time t and time t + q(k). The full proof of Theorem 1 can
be found in [4].



4.3 Timestamp Service

A timestamp service can be queried to create a timestamp on a bit string. The
timestamp can later be used to verify that the bit string was available at a
certain point in time. More precisely, for bit string x, timestamp service j can
be queried to create a timestamp θ on x. The timestamp θ issued by timestamp
service j is associated with a certain point in time t. Timestamp θ can later be
used to verify that x was in fact timestamped for time t by service j.

We augment signature services to support timestamping. For every security
parameter k and signature service j ∈ SIDsign, we define task-PIOA Stamper(k, j).
When Stamper(k, j) receives a timestamp request for bit string x via action
reqStamp(rid , x), where rid is the request identifier, it computes a signature σ
on 〈x, t〉, where t is the clock reading at reqStamp. Then, Stamper(k, j) responds
with timestamp θ := 〈σ, t〉 via respStamp(rid , θ).

When Stamper(k, j) receives a verification request for timestamp θ := 〈σ, t〉
and bit string x via reqVerTs(rid , x, θ), it verifies if signature σ is a valid signa-
ture for 〈x, t〉. If verification is successful, it answers with respVerTs(rid , true).
Otherwise, it answers with respVerTs(rid , false).

We use Stamper(k, j) and the signature service task-PIOAs defined in Sec-
tion 4.2 (i.e., KeyGen(k, j), Signer(k, j), Verifier(k, j), and SigFunc(k, j)) to build
the real and ideal timestamp service. For k ∈ N and j ∈ SIDsign, we define the
real timestamp service RealStamp(j)k as

RealStamp(j)k := hide(KeyGen(k, j)‖Signer(k, j)‖Verifier(k, j)‖
Stamper(k, j), signKeyj)

and the ideal timestamp service IdealStamp(j)k as

IdealStamp(j)k := hide(KeyGen(k, j)‖SigFunc(k, j)‖Stamper(k, j), signKeyj) .

We gather the real and ideal timestamp services into families. For j ∈ SIDsign,
we define the real timestamp service family

RealStamp(j) := {RealStamp(j)k}k∈N ,

and the ideal timestamp service family

IdealStamp(j) := {IdealStamp(j)k}k∈N .

Theorem 2. Let j ∈ SIDsign be given. Suppose that 〈KeyGenj ,Signj ,Verifyj〉 is a

complete and EUF-CMA secure signature scheme. Then (RealStamp(j), ∅) ≤neg,pt

(IdealStamp(j), {failj}).

Proof. By Theorem 1 we have (RealSig(j), ∅) ≤neg,pt (IdealSig(j), {failj}). Ob-
serve that RealSig(j) and IdealSig(j) are modified in the same way (i.e., point-
wise composition with Stamper(k, j)) to obtain RealStamp(j) and IdealStamp(j).
It follows that (RealStamp(j), ∅) ≤neg,pt (IdealStamp(j), {failj}).



4.4 Hash Service

Generation of evidence records in the ERS system involves using hash algorithms.
A hash algorithm H : M → H is an efficient deterministic algorithm mapping
a message m ∈ M to a fixed-length hash H(m) ∈ H. We call M the message
space and H the hash space. We say a hash algorithm H is collision resistant if
it is hard to find two messages m and m′ such that m 6= m′ and H(m) = H(m′).

In order to model the functionality of a collision resistant hash algorithm
we make use of the random oracle methodology [1]. A random oracle can be
thought of as a public, randomly-chosen function H : M → H that can be
evaluated only by querying an oracle that returns H(x) when given input x.
It can easily be seen that a random oracle serves as a collision-resistant hash
algorithm. In the following, we use a random oracle in place of a collision-resistant
hash functionality.

We identify a hash service by its hash service identifier. We denote the domain
of hash algorithm identifiers by SIDhash. For security parameter k ∈ N and hash
identifier j ∈ SIDhash, we define task-PIOA Hasher(k, j). Hasher(k, j) has access
to a random oracle Hk,j : Mk,j → Hk,j , where |Hk,j | ≥ 2k. When Hasher(k, j)
receives a hash request on message m ∈ Mk,j via input action reqHash(rid ,m)
it queries oracle Hk,j with m and returns the hash Hk,j(m) ∈ Hk,j via output
action respHash(rid , Hk,j(m)).

In addition, Hasher(k, j) has an internal action failj , which sets a boolean flag
failed. If failed = false, then Hasher(k, j) uses the random oracle to answer hash
requests as specified above. If failed = true, then Hasher(k, j) denies to answer
hash requests: in that case, to every request reqHash(rid ,m), it responds with
respHash(rid ,⊥).

For j ∈ SIDhash and security parameter k, define the hash service

Hash(j)k := Hasher(j, k) .

For j ∈ SIDhash, define the hash service family

Hash(j) := {Hasher(j, k)}k∈N .

4.5 Service Times

Hash services and timestamp services have limited lifetime. During protocol
execution a service can be in various service states, namely being alive, being the
preferred service, or being a usable service. Let T := N be the domain of discrete
time and define the union of all service identifiers as SID := SIDhash∪SIDsign. We
assume the following.

– alive : T → 2SID. For every t, alive(t) is the set of services alive at discrete
time t.

– aliveTimes : SID→ T. For every service j, aliveTimes(j) denotes the lifetime
of service j, aliveTimes(j) := {t ∈ T : j ∈ alive(t)}.



– prefhash : T → SIDhash. For every t ∈ T, the hash service prefhash(t) is the
designated hasher for time t, i.e., any hash request sent by the dispatcher at
time t goes to hash service prefhash(t).

– prefsign : T→ SIDsign. For every t ∈ T, the signature service prefsign(t) is the
designated signer for time t, i.e., any signature request sent by the dispatcher
at time t goes to signature service prefsign(t).

– usable : T→ 2SID. For every t ∈ T, usable(t) specifies the set of services that
are accepting new requests.

4.6 Dispatcher

We describe the task-PIOA Dispatcherk for each security parameter k. In par-
ticular, we describe evidence record generation, timestamp-refresh, hash-refresh,
and verification. In our model, an evidence record is a tuple 〈i, χ, θ, j〉, where i
is the currently used hash service, χ is the previously timestamped data, θ is the
most recent timestamp, and j is the corresponding timestamp service.

Generation. If the environment requests evidence record generation for bit
string x via action reqEviGen(rid , x), Dispatcherk requests a hash of x from
hash service i = prefhash(t), where t is the clock reading at the time of the
request. After hash service i returned hash h, Dispatcherk requests a times-
tamp on 〈i, h〉 from service j = prefsign(t). After timestamp service j returned
timestamp θ, Dispatcherk issues a new evidence record 〈i, x, θ, j〉 via action
respEvi(rid , 〈i, x, θ, j〉).

Timestamp-Refresh. If the environment requests timestamp-refresh of evi-
dence record 〈i, χ, θ, j〉 via action reqEviTs(rid , 〈i, χ, θ, j〉), Dispatcherk first checks
to see if hash service i and timestamp service j are still usable. If not, it responds
with an error message. Otherwise, it requests a hash of χ from hash service i.
After hash service i returned hash h, Dispatcherk checks if θ is a valid timestamp
for 〈i, h〉. If not, it responds with an error message. Otherwise, it requests a hash
of 〈i, θ〉 from hash service i. After hash service i returned hash h′, Dispatcherk
requests a timestamp on 〈i, h′〉 from service j′ = prefsign(t), where t is the clock
reading at the time of the request. After timestamp service j′ returned times-
tamp θ′, Dispatcherk issues the refreshed evidence record 〈i, θ, θ′, j′〉 via action
respEvi(rid , 〈i, θ, θ′, j′〉).

Hash-Refresh. If the environment requests hash-refresh of evidence record
〈i, χ, θ, j〉 via action reqEviHash(rid , 〈i, χ, θ, j〉), Dispatcherk first checks to see
if hash service i and timestamp service j are still usable. If not, it responds
with an error message. Otherwise, it requests a hash of χ from hash service i.
After hash service i returned hash h, Dispatcherk checks if θ is a valid timestamp
for 〈i, h〉. If not, it responds with an error message. Otherwise, it requests a
hash of 〈i, 〈x, θ〉〉 from hash service i′ = prefhash(t), where t is the clock reading



at the time of the request. After hash service i′ returned hash h′, Dispatcherk
requests a timestamp on 〈i′, h′〉 from service j′ = prefsign(t). After timestamp
service j′ returned timestamp θ′, Dispatcherk issues the refreshed evidence record
〈i′, 〈x, θ〉, θ′, j′〉 via action respEvi(rid , 〈i′, 〈x, θ〉, θ′, j′〉).

Verification. If the environment requests evidence verification of evidence
record 〈i, χ, θ, j〉 via action reqCheck(rid , 〈i, χ, θ, j〉), Dispatcherk first checks
to see if hash service i and timestamp service j are still usable. If not, it
responds with respCheck(rid , false). Otherwise, it requests a hash of χ from
hash service i. After hash service i returned hash h, Dispatcherk checks if θ
is a valid timestamp for 〈i, h〉. If the verification request fails, Dispatcherk re-
sponds with respCheck(rid , false). Otherwise, Dispatcherk responds via action
respCheck(rid , true).

4.7 ERS Service

We describe how the ideal ERS service and the real ERS service are composed
of the previously described components.

Let SIDhash, the domain of hash service names, be {hash} × N. Likewise, let
SIDsign, the domain of timestamp service names, be {sign} × N. We limit the
number of service components by some exponential in security parameter k. For
every k and polynomial p, let N<2p(k) ⊆ N denote the set of p(k)-bit numbers. For
every k, define service identifier subsets (SIDhash)k ⊆ SIDhash and (SIDsign)k ⊆
SIDsign as (SIDhash)k := {hash} × N<2p(k) and (SIDsign)k := {sign} × N<2q(k) ,
respectively, for some polynomials p and q.

For security parameter k, define the composition of hash services

Hashk := ‖j∈(SIDhash)kHasher(k, j) .

Ideal ERS Service. The ideal ERS service is composed of a dispatcher com-
ponent, a sequence of hash services, and a sequence of ideal timestamp services.
For security parameter k, define the composition of ideal timestamp services
IdealStampk := ‖j∈(SIDsign)k IdealStamp(j)k. The ideal ERS service IdealSysk is de-
fined as

IdealSysk := Dispatcherk‖Hashk‖IdealStampk .

Real ERS Service. The real ERS service is composed of a dispatcher compo-
nent, a sequence of hash services, and a sequence of real timestamp services.
For security parameter k, define the composition of real timestamp services
RealStampk := ‖j∈(SIDsign)kRealStamp(j)k. The real ERS service RealSysk is de-
fined as

RealSysk := Dispatcherk‖Hashk‖RealStampk .



5 ERS Security Proof

In Section 4.7, we specified the real ERS system and the ideal ERS system.
In this section, we first define a concrete time scheme according to which hash
and timestamp services are active. Then, we show that the real ERS system
implements the ideal ERS system in the sense of the longterm-implementation
relation ≤neg,pt .

We assume a concrete time scheme for timestamp and hash services. Let
d ∈ N>0. Each signature service 〈sign, j〉 ∈ SIDsign is in alive(t) for t = (j −
1)d, . . . , (j + 2)d − 1, is preferred signer for times (j − 1)d, . . . , jd − 1, and is
usable for times (j − 1)d, . . . , (j + 1)d− 1. Each hash service 〈hash, j〉 ∈ SIDhash

is in alive(t) for t = (j − 1)de, . . . , (j + 2)de − 1, is preferred hasher for times
(j − 1)de, . . . , jde− 1, and is usable for times (j − 1)de, . . . , (j + 1)de− 1. Note
that, at any real time t, at most three signature services and three hash services
are concurrently alive.

Define the ideal ERS service family IdealSys := {IdealSysk}k∈N, and the real
ERS service family RealSys := {RealSysk}k∈N. Let SIDk := (SIDhash)k∪(SIDsign)k.
Define the family of empty failure sets as ∅̄ := {∅}k∈N and the family of signature
failure sets as F̄ := {Fk}k∈N, where Fk :=

⋃
j∈SIDk

{failj}.
Theorem 3 states that the real ERS system, RealSys, implements the ideal

ERS system, IdealSys, in the sense of the long-term implementation relation
≤neg,pt .

Theorem 3. Assume the concrete time scheme described above and assume that
every signature scheme used in the timestamping protocol is complete and exis-
tentially unforgeable. Then (RealSys, ∅̄) ≤neg,pt (IdealSys, F̄ ).

Proof. Observe that RealSys and IdealSys are 7-bounded concurrent and polyno-
mially bounded. We apply the d-Bounded Composition Theorem to

Dispatcher,Hash(1),Hash(2), . . . ,RealStamp(1),RealStamp(2), . . .

and

Dispatcher,Hash(1),Hash(2), . . . , IdealStamp(1), IdealStamp(2), . . .

to obtain (RealSys, ∅̄) ≤neg,pt (IdealSys, F̄ ).

6 Conclusions

The Evidence Record Syntax specification allows to ensure datedness for data
objects stored in a long-lived archiving system. We have described the Evidence
Record Syntax specification and given a high level description of the LCS security
framework, which is a framework for analyzing security properties of long-lived
systems. Extending the CIS analysis by Canetti et al., we have analyzed the
security of ERS using the LCS framework and obtained a security argument for



ERS analogous to the security argument for CIS given in [4]. This was possible
because ERS is a refined, more efficient variant of CIS. In particular, we have ex-
tended the CIS analysis by introducing hash services and allowing cryptographic
primitives with different lifetimes.

We now discuss in how far the security analysis of CIS and ERS establishes
the expected security properties of these schemes. CIS and ERS allow for dat-
edness verification of stored data objects. Verifiers just verify digital signatures
on time stamps. They are required to trust the time stamping authorities to
properly issue time stamps. They also need to trust the PKI to allow for correct
signature verification.

However, the model of Canetti at al. [4] requires more trust by the retriever,
namely in the archiving system to act as a trustworthy notary. This notary ver-
ifies previous time stamps and attests their validity by its signature while in
the original versions of CIS and ERS all these time stamps are verified by the
retrievers. Therefore, the security proof only refers to these modified versions
of CIS and ERS. This is a big step forward as no security models for long-
lived archiving systems were known previously. But it also raises the question of
whether there is a model that allows a security proof for the original CIS and
ERS. This is challenging, as the task-PIOA model only allows to process a poly-
nomial amount of data at each point in time but over time, a super polynomial
chain of time stamps may be generated.

We also discuss a few other research directions. As suggested in [4], it would
be desirable to specify an abstract archiving system suiting the specification
of various archiving systems such as the ERS system and the CIS system. This
would allow to analyze security properties of archiving systems in a more generic
way.

In this work we have been concerned with signature-based timestamping.
However, other methods for timestamping exist, such as hash-linking-based times-
tamping. It would be worthwhile to analyze the security of such solutions.

As it has been stated in Section 8 of [4], the analysis of Canetti et al. and
our results do not imply that any data object is reliably certified for super-
polynomial time. This is closely related to the fact that the security parameter
is fixed over the lifetime of the protocol. We would like to know if it is possible to
reliably certify a document for super-polynomial time while keeping the security
parameter fixed.

As it has been observed in [4] and we have stated in Section 3, the LCS
framework does not allow to model components whose computational power
increases over time. Since in reality, according to Moore’s law and as observed
over the last 40 years, computational power doubles roughly every 18 months,
this seems to be a shortcoming of the framework. It might be useful to modify
the framework such that it tolerates an increase of computational power over
time.



Acknowledgments

This work has been co-funded by the DFG as part of project Long-Term Secure
Archiving within the CRC 1119 CROSSING.

In addition, we thank Robert Künnemann for the interesting discussions.

References

[1] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) CCS ’93, Proceedings of the 1st ACM Conference on Computer and
Communications Security, Fairfax, Virginia, USA, November 3-5, 1993. pp. 62–73.
ACM (1993), http://doi.acm.org/10.1145/168588.168596

[2] Blazic, A.J., Saljic, S., Gondrom, T.: Extensible Markup Language Evidence
Record Syntax (XMLERS). RFC 6283 (Proposed Standard) (Jul 2011), http:

//www.ietf.org/rfc/rfc6283.txt

[3] Canetti, R., Cheung, L., Kaynar, D.K., Liskov, M., Lynch, N.A., Pereira, O.,
Segala, R.: Time-bounded task-pioas: A framework for analyzing security pro-
tocols. In: Dolev, S. (ed.) Distributed Computing, 20th International Sympo-
sium, DISC 2006, Stockholm, Sweden, September 18-20, 2006, Proceedings. Lec-
ture Notes in Computer Science, vol. 4167, pp. 238–253. Springer (2006), http:
//dx.doi.org/10.1007/11864219_17

[4] Canetti, R., Cheung, L., Kaynar, D.K., Lynch, N.A., Pereira, O.: Modeling compu-
tational security in long-lived systems, version 2. IACR Cryptology ePrint Archive
2008, 492 (2008), http://eprint.iacr.org/2008/492

[5] Gondrom, T., Brandner, R., Pordesch, U.: Evidence Record Syntax (ERS) (2007),
http://www.ietf.org/rfc/rfc4998.txt

[6] Haber, S.: Content Integrity Service for Long-Term Digital Archives. In: Archiving
2006. pp. 159–164. IS&T, Ottawa, Canada (2006)

[7] Merkle, R.C.: Protocols for public key cryptosystems. In: IEEE Symposium on
Security and Privacy. pp. 122–134 (1980)

http://doi.acm.org/10.1145/168588.168596
http://www.ietf.org/rfc/rfc6283.txt
http://www.ietf.org/rfc/rfc6283.txt
http://dx.doi.org/10.1007/11864219_17
http://dx.doi.org/10.1007/11864219_17
http://eprint.iacr.org/2008/492
http://www.ietf.org/rfc/rfc4998.txt

	On the Security of Long-lived Archiving Systems based on the Evidence Record Syntax

