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Abstract. Data processing within large organisations is often complex,
impeding both the traceability of data and the compliance of processing
with usage policies. The chronology of the ownership, custody, or location
of data — its provenance — provides the necessary information to restore
traceability. However, to be of practical use, provenance records should
include sufficient expressiveness by design with a posteriori analysis in
mind, e.g. the verification of their compliance with usage policies. Ad-
ditionally, they ought to be combined with systematic reasoning about
their correctness. In this paper, we introduce a formal framework for
policy-based provenance audit. We show how it can be used to demon-
strate correctness, consistency, and compliance of provenance records
with machine-readable usage policies. We also analyse the suitability of
our framework for the special case of privacy protection. A formalised
perspective on provenance is also useful in this area, but it must be
integrated into a larger accountability process involving data protection
authorities to be effective. The practical applicability of our approach
is demonstrated using a provenance record involving medical data and
corresponding privacy policies with personal data protection as a goal.

1 Introduction

Data provenance [10,29,30] has been defined disparately, for instance as the origin
and history of data or as process-related metadata. It is often associated with
the semantic web [19], used as a tool to facilitate content curation by restoring
trustworthiness in the quality of digital data, or providing replication recipes [16].
In this work, we adopt the W3C perspective on provenance as (. . .) a record that
describes the people, institutions, entities and activities, involved in producing,
influencing, or delivering a piece of data or a thing [24]. Hence the key idea of
provenance — as taken up here — is to paint a comprehensive picture clarifying
the life cycle of data, from its creation to its destruction, including the way it is
used, and how other data is derived or linked from it.

This makes provenance valuable to verify compliance with usage policies
when sensitive data is collected, stored, and processed by several entities within
enterprises or governmental institutions. In such large networks, data flow easily
becomes opaque, making simple audit methods — such as log analysis limited to
a single component — insufficient and leading to failure to comply with usage
policies. Here provenance has the potential to underpin accountability, i.e. each
data processing entity must not only comply with data protection rules, but



actively demonstrate compliance1. This allows an auditor to detect failures within
the system. Furthermore, these usage policy rules can be part of the provenance
data, making it possible to globally declare them and to prevent inconsistencies.
Thus, provenance allows to build powerful audit tools for large networks, such as
hospitals and research institutions. In addition, systems using cloud computing
typically involve multiple entities, and can therefore benefit from this approach.

An important class of usage policies addresses the privacy of sensitive data [20].
In the context of accountability, such privacy policies are often modelled as
machine-readable sets of rules in a formally specified privacy policy language
such as PPL [32]. While the idea of using provenance as a tool to audit the
compliance with privacy regulations is not new, so far formal approaches have
been lacking. Both the consistency of provenance records and their compliance
with associated privacy policies ought to be stated precisely to pave the way
for automated analyses. Some aspects such as the enforcement of processing
purposes are not fully amenable to automation, but provenance records allow to
collect enough information for complementary manual verification.

Contribution We present a formal framework modelling provenance events and
their compliance with respect to usage policies. We first introduce usage policies
and model them as tuples including forwarding policies, authorised purposes for
different types of operations, deletion delays, and linking and derivation policies
(Sec. 2.1). A data category is not necessarily always associated with the same
usage policy. The relevant policy depends on the component and on the log events
under consideration. Afterwards, we model provenance records as sequences of
discrete events. Each record refers to a single data subject, e.g. a patient in the
eHealth scenario, but can accommodate an arbitrary number of entities and
processed data categories. The granularity of the events is chosen in accordance
with the policies (Sec. 2.2). Next, we establish additional notation (Sec. 3.1)
and formalise the correctness (Sec. 3.2) and compliance of logs of provenance
events when dealing with privacy policies (Sec. 3.3). Correctness pertains to the
internal consistency of the provenance record, independently of the usage policies
under consideration. Conversely, compliance relates to the relation between the
provenance record and the associated usage policies. This formalisation can serve
as a basis for a posteriori provenance analysis by an auditor. Next, we discuss the
limitations of the approach when dealing with privacy policies and show how it
can be included in a global accountability process (Sec. 4). We consider the case
of privacy separately because the guarantees at stake are especially critical when
personal data is involved. Furthermore, the application of provenance records to
this use case immediately raises the question of whether logging creates additional
privacy risks. We show under which conditions our framework for provenance-
based auditing is applicable to privacy policies. The framework is then evaluated

1 In the scope of accountability as a data protection principle [3], this proof-of-
compliance requirement is not limited to high-level statements of intent, but is
often seen as incorporating a practical level as well, i.e. concrete data handling
actions [9].



through a scenario involving personal medical data processed among different
entities (Sec. 5). Finally, we provide a review of related work (Sec. 6) and offer
our conclusions (Sec. 7).

2 Usage Policies and Provenance Events

In this section we introduce the concept of usage policies and provenance events.
We refer to an entity collecting or processing data as component. In the scope
of this paper, a usage policy is assumed to be a machine-readable set of rules
regarding the use of data. Depending on the scenario under consideration, the
values of usage policies are assigned either by a component, or by a data subject2

if the processed data is of personal nature. With respect to the data processed, a
data category is a designation of the type of data in natural language, i.e. postal
address. By purpose, we mean the finality or goal of an operation. Each event is
assigned one or two timestamps, corresponding to the start and (if applicable)
end of the event.

2.1 Usage Policies for Provenance

To evaluate provenance records systematically, we introduce a formalisation of
usage policies. Alternatively, policies can be described involving text in natural
language. However, this approach presents usability challenges, especially in the
subcase of privacy policies [28].

Furthermore, most existing machine-readable policy languages [20] have lim-
ited expressiveness, often impeding automated compliance checking [8]. Thus, to
the best of our knowledge, our method is the first to provide sufficient expressive-
ness to be used in conjunction with provenance records, by covering the broad
range of provenance activities.

A number of data handling operations used here are absent from usual policy
languages (such as PPL [32]), but essential to provenance modelling. Provenance
events will be formalised later (Sec. 2.2), but it is already helpful to introduce
these operations intuitively in this section to put the usage policies elements in
context.

In the W3C PROV ontology [21], derivation, is defined as “a transformation
of one entity into another”. We use linking to refer to the combination of different
categories of data from a single source. The forwarding of data refers to the
sending of data from one component to another, with the assumption that the
original component also retains control of the data.

We now define provenance usage policies formally in terms of constraints for
deletion, forwarding, linking, derivation, and use for specific purposes.

Definition 1 (Usage Policy). Provenance usage policies are defined as tuples:
2 In practice, data subjects may delegate the power of negotiating policies to a third
party they trust.



P = Dg × Drf × Fw × Li× De× Puse × Pder

and address rules for deletion, forwarding, linking, derivation, and authorised
purposes. These usage policy components are defined as follows:

Dg The global deletion delay Dg is the maximal delay after which data of any
category must have been deleted. Time is measured from the initial collection
of each piece of data. This deletion does not need to be requested explicitly —
the policy specifies that it should happen unconditionally. However, earlier
deletion may occur following an explicit request.

Drf The request fulfilment delay Drf is the maximal delay for components to fulfil
requests, e.g. deletion requests. The delay is measured from the timestamp
corresponding to the start of the requested event. We do not account for delays
between the moment the request is sent and the moment it is received by the
component(s) holding the data.

Fw The forwarding policy Fw is a pair (rest, List). Possible values for rest are ⊥
(data may be forward to any component), > (data may be forwarded to no
other component), bl (a list of forbidden components is declared) and wl (a
list of authorised components is declared). If rest =⊥ or rest = >, the set
List must be empty. If rest = bl, the set List is a blacklist of components, i.e.
to no component on the list may be forwarded any data. If rest = wl, List is a
whitelist of components, i.e. any data may be forwarded to any components
on the list. List then contains identifiers of all components for which data
forwarding is forbidden or permitted, respectively.

Li The linking policy Li is a set of pairs limiting the linking of different data
categories by components. If two data categories are in the same pair of
this set, pieces of data of these categories may never be linked.3 This policy
component can be used to restrict profiling [4] based on correlation.

De The derivation policy De is a set of data categories. Data categories in De
may never be used to derive new data. This policy component can be used, for
instance, to prevent the derivation of personal data from perturbed data [25].

Puse The authorised use purposes Puse are a set of pairs (data category, acceptable
purpose for use).

Pder The authorised derivation purposes Pder are a set of pairs (data category,
acceptable purpose for derivation).

Purposes are assumed to be taken from a fixed ontology, i.e. a centralised
taxonomy, as in PPL [32]. The adequacy of using a purpose ontology is discussed
in Sec. 4.

As an illustration, we describe in turn the components of a concrete usage
policy π:

3 For instance, a linking policy can prevent de-anonymisation.



– π.Dg = 3 months — data of any category must be deleted within 3
months after its collection;

– π.Drf = 1 day — requests received by components must be fulfilled
within one day;

– π.Fw = (wl, List) with List = {Hospital, ResearchInstitute} — a
(white)list of authorised components is declared: data of any cate-
gory may be forwarded to the components ResearchInstitute and
Hospital. No data exports to other components are allowed;

– π.Li = {(Treatment, Status), (ID, Drug)} — pieces of data with respec-
tive categories Treatment and Status may never be linked, directly or
indirectly. Otherwise, information about the stage of a disease may be
extrapolated. In addition, pieces of data with respective categories ID
and Drug may never be linked, directly or indirectly, so as not to reveal
which patient is taking which drug;

– π.De = {Frequency, Risk, Drug} — new data may never be derived
from pieces of data with category Frequency, Risk, or Drug, directly or
indirectly. This prevents that sensitive information about the frequency,
e.g. of treatments or hospital visits, the risk of getting a certain disease,
or drugs taken by a patient is extracted;

– π.Puse = {(Treatment, Logistic), (ID, Marketing)} — data with cat-
egory Treatment may be used (directly or indirectly) only for the
purpose Logistic. This allows, for instance, hospitals to reserve operat-
ing theaters for patients. Data with category ID, e.g. the name, address,
and family status of patients, may be used (directly or indirectly) only
for the purpose Marketing. Data of other categories may not appear
in Use events;

– π.Pder = {(History, Statistic)} — Data with category History may
be derived from (directly or indirectly) only for the purpose Statistic,
to allow statistical evaluation of medical data. Data of other categories
may not appear as the first argument of a Derive event.

2.2 Provenance Events

The usage policies defined above allow to define requirements that must be fulfilled
by components when processing data. Their compliance with these policies can be
evaluated using the available provenance data. However, to this end, provenance
information ought to be represented in a unified way.

Provenance is often visualised as a graph. Instead, we model it as a sequence
of discrete events, i.e. λ = {λ1, . . . , λn}, allowing us to reason over sets of such
events. Since all events include timestamps, they can be represented a posteriori
in a chronological fashion. However, log indexes are not assumed to be ordered
chronologically, i.e. i < j does not imply that λi occurred before λj .

Definition 2 (Provenance Events). Let Pu be a purpose ontology, seen as a
set of purposes in natural language. Let P(Pu) be the power set of Pu. Similarly,



Ca is an ontology of data categories and P(Ca) is its power set. Furthermore, let
C be a set of components. For all events and independently, Θ ∈ P(Ca), ρ ∈ Pu,
P ∈ P(Pu), C,C ′ ∈ C, and the parameters t, s, and e are timestamps. While t
marks the start of discrete events, s and e is used to specify the start and end time
for the Use event, which occurs over a time period. Data circulates together with
its associated usage policy π ∈ P; we follow the sticky policy approach advocated
by Pearson [27]. In a sequence of discrete events λ = {λ1, . . . , λn} a single event
λi for i ∈ [1, n] can be one of the following provenance events:

(Acquire, Θ,C, π, P, t) A set of data with a corresponding set of data categories
Θ was collected by a component C for a set of specific purposes P . The values
of the data do not appear in the event, only its categories. In addition, this
event contains the usage policy π set for the collected data and a timestamp t.

(Use, Θ,C, ρ,R, s, e) This event marks the use of a set of data categories Θ, e.g.
{Postal address, Age group} by a component C. Reason R is a justifi-
cation of the single chosen purpose designation ρ in natural language. The
timestamps s and e mark the start and the end of this event. Note that for this
to be meaningful Θ must be a subset of previously collected data categories.

(Export, Θ,C,C ′, π, P, t) A set of data, with a corresponding set of data cate-
gories Θ, was sent by component C to component C ′ at time t. The associated
usage policy is π and the data export was performed for a specific set of pur-
poses P .

(Link, θ, θ′, θ′′, C, π, ρ,R, t) At time t component C linked two data elements
with categories θ and θ′. The result is a single piece of data with category θ′′,
now available to component C. θ′′ does not have to be new, but it may be (i.e.
has not appeared before). This event also contains a reason R justifying the
single chosen purpose designation ρ. The usage policy π is associated with
the new data.

(Derive, θ, θ′, C, π, ρ,R, t) At time t, component C derived data with category
θ′ from data with category θ. In addition, the event contains reason R, the
corresponding single purpose ρ, and a usage policy π.

(ReqRemove, Θ, t) At time t, total deletion of the set of data categories Θ was
requested. Removal requests are assumed to be sent simultaneously to all
components relevant to the set of data categories under consideration.

(Remove, Θ,C, t) The set of data categories Θ were deleted by component C at
time t.

As an example, consider the event λ1 = (Export, {Treatment, ID, Status},
Hospital, ResearchInstitute, π1, {Logistic, Statistic}, 2016-05-12T12:17)
and the event λ2 = (Link, Frequency, Treatment, Risk, ResearchInstitute,
π2, Statistic, Correlation study, 2016-05-20T12:14). In λ1, a data set with
categories Treatment, ID, and Status is forwarded from the component Hospital
to the component ResearchInstitute. The associated usage policy π1 restricts
how the component ResearchInstitute can use the forwarded data set, but is
not relevant for this event. The purposes Logistic and Statistic are provided
for this data export, and the timestamp of the event is 2016-05-12T12:17. In



λ2, component ResearchInstitute links two pieces of data with respective
categories Frequency and Treatment. The result of this linking is a piece of data
with category Risk. The usage policy now associated with Risk for the component
ResearchInstitute is π2, which, again, restricts how the research institute can
use the forwarded data set, but is not relevant for this event. The provided reason
for this linking operation is Correlation study, meant to justify the included
purpose designation Statistic. and the last parameter 2016-05-20T12:14 is,
again, the timestamp.

3 Formalising Correctness and Compliance
Having defined both usage policies and provenance events enables two types of
checks:
– Provenance correctness: a number of conditions must be fulfilled for prove-

nance information to be coherent, independently of any usage policy. Sanity
checks are possible and can be seen as a category of minimal guarantees.

– Compliance of provenance with usage policies: the compliance of recorded
provenance can be analysed with regard to the predefined policies.

In the following, we first establish some useful definitions in Sec. 3.1, followed
by rules for internal correctness of logs in Sec. 3.2 and rules for the compliance
of logs with usage policies in Sec. 3.3.

3.1 Definitions
Some formalism is needed to model both aspects: the correctness of logs, and their
compliance with usage policies. Let λ = {λ1, . . . , λn} be a log of n provenance
events and i ∈ [1, n].
Definition 3 (Event type). Let EvType be the function mapping an event
to its type. That is, if X ∈ {Acquire, Use, Export, Link, Derive, ReqRemove,
Remove} and λi = (X, . . .), then EvType(λi) = X.
Definition 4 (Event time). EvTime is defined as the function returning the
starting time of an event. EvTime(λi) = s, if EvType(λi) = Use ∧ λi =
(Use, . . . , s, e). EvTime(λi) = t, if EvType(λi) 6= Use ∧ λi = (EvType(λi), . . . , t).
We assume that different events always feature different starting times, i.e. λi 6=
λj =⇒ EvTime(λi) 6= EvTime(λj).
Definition 5 (Active component). Active(λi) is the acting component for a
given event, i.e.

λi = (Acquire, Θ,C, π, P, t) =⇒ Active(λi) = C

λi = (Use, Θ,C, ρ,R, s, e) =⇒ Active(λi) = C

λi = (Export, Θ,C,C ′, π, P, t) =⇒ Active(λi) = C

λi = (Link, θ, θ′, θ′′, C, π, ρ,R, t) =⇒ Active(λi) = C

λi = (Derive, θ, θ′, C, π, ρ,R, t) =⇒ Active(λi) = C

λi = (Remove, Θ,C, t) =⇒ Active(λi) = C



The active component is undefined for ReqRemove, since this event is not initiated
by any component but triggered externally.
Definition 6 (Set of controllers). Control(λ, θ) is the set of components that
have gained control over data with category θ in log λ, i.e. Control(λ, θ) ={
C | ∃ λi ∈ λ,Θ, θ′, θ′′, π, ρ, P,R, t, C ′ |

(
θ ∈ Θ ∧

(
λi = (Acquire, Θ, C, π, P, t) ∨

λi = (Export, Θ,C ′, C, π, P, t))) ∨ λi = (Derive, θ′, θ, C, π, ρ,R, t) ∨ λi =
(Link, θ′, θ′′, θ, C, π, ρ,R, t)

}
.

Definition 7 (Associated data categories). The function DataCat takes as
input an event different from ReqRemove or Remove and returns the set of data
categories appearing in the event, in any form:
– λi = (Acquire, Θ, . . .) ∨ λi = (Use, Θ, . . .) ∨ λi = (Export, Θ, . . .) =⇒

DataCat(λi) = Θ.
– λi = (Link, θ, θ′, θ′′, . . .) =⇒ DataCat(λi) = {θ, θ′, θ′′}.
– λi = (Derive, θ, θ′, . . .) =⇒ DataCat(λi) = {θ, θ′}.

Definition 8 (Descended data categories). The function Dsc(λ, θ) returns
the set of data categories generated from the data category θ, directly or indirectly,
through linking or derivation. It is defined recursively as follows:

θ ∈ Dsc(λ, θ)
λi = (Derive, X, θ′, C, π, ρ,R, t) ∧X ∈ Dsc(λ, θ) =⇒ θ′ ∈ Dsc(λ, θ)
λi = (Link, X,X ′, θ′, C, π, ρ,R, t) ∧X ∈ Dsc(λ, θ) =⇒ θ′ ∈ Dsc(λ, θ)
λi = (Link, X,X ′, θ′, C, π, ρ,R, t) ∧X ′ ∈ Dsc(λ, θ) =⇒ θ′ ∈ Dsc(λ, θ)

Definition 9 (Relative strength of usage policies). Let π and π′ be two
usage policies as defined in Def. 1. π′ is said to be stronger or equal than π, denoted
π′ ≥ π, if all of the following conditions hold: (1) π′.Dg ≤ π.Dg; (2) π′.Drf ≤ π.Drf ;
(3) π′.Fw = (>,∅) ∨ π′.Fw = π.Fw = (⊥,∅) ∨

(
π′.Fw = (bl, List′) ∧ π.Fw =

(bl, List) ∧ List ⊆ List′
)
∨
(
π′.Fw = (wl, List′) ∧ π.Fw = (wl, List) ∧ List′ ⊆ List

)
;

(4) π.Li ⊆ π′.Li; (5) π.De ⊆ π′.De; (6) π′.Puse ⊆ π.Puse; (7) π′.Pder ⊆ π.Pder.
In particular, π = π′ ⇐⇒ π ≥ π′ ∧ π′ ≥ π.
Definition 10 (Extracting the usage policy associated with a data cat-
egory). The usage policy relevant for a data category θ depends both on the
component C under consideration and on the latest relevant event of the log
λ = {λ1, . . . , λn}. We define λ∗(λ, θ, C) to be the latest event defining a usage
policy for θ. It is the event such that EvTime(λ∗(λ, θ, C)) = max

{
t | ∃ λi ∈

λ,Θ, θ1, θ2, C, C
′, π, P, ρ,R |

(
λi = (Acquire, Θ,C, π, P, t) ∧ θ ∈ Θ

)
∨
(
λi =

(Export, Θ,C ′, C, π, ρ,R, t) ∧ θ ∈ Θ
)
∨ λi = (Link, θ1, θ2, θ, C, π, ρ,R, t) ∨

λi = (Derive, θ1, θ, C, π, ρ, R, t)
}
. Based on the value of this event λ∗, we now

define the associated usage policy π∗(λ, θ, C) as follows.
λ∗ = (Acquire, Θ,C, π, P, t) =⇒ π∗ = π

λ∗ = (Export, Θ,C ′, C, π, ρ,R, t) =⇒ π∗ = π

λ∗ = (Link, θ1, θ2, θ, C, π, ρ,R, t) =⇒ π∗ = π

λ∗ = (Derive, θ1, θ, C, π, ρ,R, t) =⇒ π∗ = π



Since different events feature different timestamps (Def. 4), λ∗ and consequently
π∗ are uniquely defined for a given triple (λ, θ, C).

The following correctness and compliance rules are stated ∀ λi ∈ λ.

3.2 Rules for Internal Correctness of Logs

Correctness rules ensure the internal consistency of event logs and are independent
of the associated usage policy.

(Cor1) For every Use or Export event and for every data category appearing in the
event the data was acquired, derived, or linked somewhere. Note that we only
consider “complete” provenance histories. λi = (Use, Θ,C, ρ,R, t, e) ∨ λi =
(Export, Θ,C,C ′, π, P, t) =⇒ ∀ θ ∈ Θ,∃ λj ∈ λ,C ′′, Θ′, θ1, θ2, θ3, ρ

′, P ′, R′, t,
π′ | (λj = (Acquire, Θ′, C ′′, π′, P ′, t′) ∧ θ ∈ Θ′) ∨ λj = (Derive, θ1, θ, C

′′,
π′, ρ′, R′, t′) ∨ λj = (Link, θ2, θ3, θ, C

′′, π′, ρ′, R′, t′) ∧ ( t′ < t).
(Cor2) A similar rule holds for Derive events: λi = (Derive, θ, θ′, C, π, ρ,R, t) =⇒

∃ λj ∈ λ,Θ,C ′, π′, ρ′, P ′, t′, θ′′, R′, θ1, θ2 |
(
λj = (Acquire, Θ,C ′, π′, P ′, t′)

∧ θ ∈ Θ
)
∨ λj = (Derive, θ′′, θ, C ′, ρ′, R′, t′) ∨ λj = (Link, θ1, θ2, θ, C

′, π′, ρ′,
R′, t′) ∧ (t′ < t).

(Cor3) Similar rules hold for both source arguments of Link events:
• λi = (Link, θ, θ′, θ′′, C, π, ρ,R, t) =⇒ ∃ j,Θ,C ′, π′, ρ′, P ′, t′, R′, θ1, θ2,
θ3 |

(
λj = (Acquire, Θ,C ′, π′, P ′, t′) ∧ θ ∈ Θ

)
∨λj = (Derive, θ1, θ, C

′,
π′, ρ′, R′, t′) ∨ λj = (Link, θ2, θ3, θ, C

′, π′, ρ′, R, t′) ∧ (t′ < t).
• λi = (Link, θ, θ′, θ′′, C, π, ρ,R, t) =⇒ ∃ j,Θ,C ′, π′, ρ′, P ′, t′, R′, θ1, θ2,
θ3 |

(
λj = (Acquire, Θ,C ′, π′, P ′, t′) ∧ θ′ ∈ Θ

)
∨λj = (Derive, θ1, θ

′, C ′,
π′, ρ′, R′, t′) ∨ λj = (Link, θ2, θ3, θ

′, C ′, π′, ρ, R′, t′) ∧ (t′ < t).
(Cor4) For non-instantaneous events (i.e. data use), starting and ending timestamps

are well-formed: λi = (Use, Θ,C, ρ,R, s, e) =⇒ s < e.
(Cor5) Successive data derivations exhibit monotonous timestamps: λi = (Derive, θ,

θ′, C, π, ρ,R, t) ∧ λj = (Derive, θ′, θ′′, C ′, π′, ρ′, R′, t′) ∧ i 6= j ∧ λj ∈
λ =⇒ t′ > t.

(Cor6) For a given component, the usage policies for a partial log λ of log λ′ associated
with a given data category are consistent, i.e. the policy may not become
weaker. λ ⊆ λ′ =⇒ π∗(θ, C, λ′) ≥ π∗(θ, C, λ).

(Cor7) Data of a given category is not processed in any form after the data with
this category has been removed: λi = (Remove, Θ,C, t) ∧ λj ∈ λ ∧ θ ∈
Θ ∧ θ ∈ DataCat(λj) ∧ EvType(λj) ∈ {Use, Export, Link, Derive} =⇒
EvTime(λj) < t.

(Cor8) No data forwarding is permitted once a removal request has been received,
even before the request fulfilment delay is reached: λi = (ReqRemove, Θ, t) ∧
θ ∈ Θ ∧ λj ∈ λ ∧ λj = (Export, Θ′, C, C ′, π, P, t′) =⇒ θ /∈ Θ′ ∨ t′ < t.

(Cor9) Similarly, no data use may start after a removal request has been sent:
λi = (ReqRemove, Θ, t) ∧ θ ∈ Θ ∧ λj ∈ λ ∧ λj = (Use, Θ′, C, ρ,R, s, e)
=⇒ θ /∈ Θ′ ∨ s < t.



(Cor10) Likewise, new data may not be derived from data for which deletion has
already been requested: λi = (ReqRemove, Θ, t) ∧ θ ∈ Θ ∧ λj ∈ λ ∧
λj = (Derive, θ, θ′, C, π, ρ,R, t′) =⇒ t′ < t.

(Cor11) The new usage policy affecting data generated by linking must be stronger
or equal than the policies associated with each of the source data elements:
λi = (Link, θ1, θ2, θ, C, π, ρ,R, t) ∧ λj = (Acquire, Θ1, C, π1, P,R

′, t′) ∧ θ1 ∈
Θ1 ∧ λk = (Acquire, Θ2, C, π2, P

′, R′′, t′′) ∧ θ2 ∈ Θ2 =⇒ π ≥ π1 ∧ π ≥
π2 ∧ t′ < t ∧ t′′ < t.

(Cor12) A similar property holds for derived data: λi = (Derive, θ, θ′, C, π, ρ,R, t) ∧
λj = (Acquire, Θ,C, π′, P,R′, t′) ∧ θ ∈ Θ =⇒ π ≥ π′ ∧ t′ < t.

Definition 11 (Correctness). A log λ is said to be correct if all correctness
properties Cor1 . . . Cor12 hold for λ.

To illustrate this notion, consider the following example log λ = λ1 . . . λ7:

λ1: (Acquire, {Treatment, ID, Frequency}, Hospital, π2,
{Logistic, Statistic}, 2016-05-01T08:07)

λ2: (Use, {Treatment, ID}, Hospital, Logistic,
Patient registration mandatory, 2016-05-01T10:25,
2016-05-09T17:54)

λ3: (Export, {Treatment, ID, Frequency}, Hospital,
ResearchInstitute, π1, {Logistic, Statistic},
2016-05-12T12:17)

λ4: (Link, ID, Treatment, History, ResearchInstitute, π1,
Statistic, Insurance billing requested, 2016-05-14T22:33)

λ5: (Derive, History, Frequency, ResearchInstitute, π1, Statistic,
Quantitative research, 2016-05-18T09:41)

λ6: (Use, {Treatment, Frequency}, ResearchInstitute, Logistic,
Workflow optimisation, 2016-05-19T14:41, 2016-05-19T15:03)

λ7: (Link, Frequency, Age, Risk, ResearchInstitute, π1, Statistic,
Correlation study, 2016-05-20T12:14)

λ is not correct, since Cor3 is violated. No acquisition, derivation or linking
event yielding data category Age, appearing in λ7, is part of λ. Thus, Age cannot
be linked with Frequency in λ7.

Note that provenance for a category of data may not necessarily extend over
the entire data life cycle. In particular, the fact that the data may not have
been deleted at the end of a log does not falsify the correctness of the log. From
this perspective, the existence of deletion events become policy-dependent and is
therefore covered by compliance rules, not by correctness rules.

3.3 Rules for Compliance of Logs with Usage Policies

Compliance rules depend on the values of associated usage policies.



Global and requested data deletion

(Com1) The global deletion delay Dg of usage policy π∗(λ, θ, C) extracted as defined
in Def. 10 holds for all categories of data. No category of data can therefore
appear in a log λ after the expiration of this global delay:
• λi = (Acquire, Θ,C, π, P, t) ∧ θ ∈ Θ ∧ θ ∈ DataCat(λj) ∧ λj ∈ λ ∧
Active(λj) = C =⇒ EvTime(λj)− t < π∗(λ, θ, C).Dg.
• λi = (Export, Θ,C,C ′, π, P, t) ∧ θ ∈ Θ ∧ θ ∈ DataCat(λj) ∧ λj ∈ λ ∧
Active(λj) = C ′ =⇒ EvTime(λj)− t < π∗(λ, θ, C).Dg.
• λi = (Link, θ′, θ′′, θ, C, π, ρ,R, t) ∧ θ ∈ DataCat(λj) ∧ λj ∈ λ ∧
Active(λj) = C ′ =⇒ EvTime(λj)− t < π∗(λ, θ, C).Dg.

(Com2) Deletion requests are fulfilled in a delay compatible with the associated
policy’s request fulfilment delay Drf : λi = (ReqRemove, Θ, t) ∧ θ ∈ Θ =⇒
∀ C ∈ Control(λ, θ), ∃ λj ∈ λ,Θ′, t′ | λj = (Remove, Θ′, C, t′) ∧ θ ∈ Θ′ ∧
t′ − t < π∗(λ, θ, C).Drf .

Data forwarding

(Com3) If all forwarding is forbidden, no data exports are allowed to take place:
π∗(λ, θ, C).Fw = (>,∅) ∧ λj ∈ λ ∧ EvTime(λj) ≥ EvTime(λ∗(λ, θ, C)) ∧ θ ∈
DataCat(λj) =⇒ EvType(λj) 6= Export, where λ∗(λ, θ, C) is the latest event
defining a usage policy for θ (see Def. 10).

(Com4) If the associated forwarding policy defines a whitelist, all data exports are
destined to components on the list: λi = (Export, Θ,C,C ′, π, P, t) ∧ θ ∈
Θ ∧ π∗(λ, θ, C).Fw = (wl, List) ∧ EvTime(λi) ≥ EvTime(λ∗(λ, θ, C)) =⇒
C ′ ∈ List.

(Com5) In case a blacklist is defined by the associated forwarding policy, no data
exports towards components in the list take place: λi = (Export, Θ,C,C ′,
π, P, t) ∧ θ ∈ Θ ∧ π∗(λ, θ, C).Fw = (bl, List) ∧ EvTime(λi) ≥ EvTime(λ∗(λ,
θ, C)) =⇒ C ′ /∈ List.

Data linking

(Com6) If the first data category in the argument list of a Link event also appears
directly or indirectly in the data category set of the associated linking
policy, then the second data category in the argument list of the event
may not appear directly or indirectly in the same set of the linking policy:
λi = (Link, θ′, θ′′, θ, C, π, ρ,R, t) ∧ ∃ A ∈ π∗(λ, θ, C).Li | θA ∈ A ∧ θ′ ∈
Dsc(λ, θA) ∧ EvTime(λi) ≥ EvTime(λ∗(λ, θ, C)) =⇒ ∀ θ′A ∈ A | θ′A 6=
θA, θ

′′ /∈ Dsc(λ, θ′A).

Data derivation

(Com7) Data categories in the associated derivation policy may neither be used to
directly derive new data, nor indirectly: λi = (Derive, θ′, θ′′, C, π, ρ,R, t) ∧
θ′ ∈ Dsc(λ, θ) ∧ EvTime(λi) ≥ EvTime(λ∗(λ, θ, C)) =⇒ θ /∈ π∗(λ, θ, C).De.



Purposes for data use and derivation

(Com8) Only data categories for which use is authorised for a specific purpose appear
in Use events: λi = (Use, Θ,C, ρ,R, s, e) ∧ θ′ ∈ Θ ∧ θ′ ∈ Dsc(λ, θ) ∧
EvTime(λi) ≥ EvTime(λ∗(λ, θ, C)) =⇒ (θ, ρ) ∈ π∗(λ, θ, C).Puse.

(Com9) Similarly, data is only derived, directly or indirectly, for purposes authorised
by the associated derivation policy: λi = (Derive, θ′, θ′′, C, π, ρ,R, t) ∧ θ′ ∈
Dsc(λ, θ) ∧ EvTime(λi) ≥ EvTime(λ∗(λ, θ, C)) =⇒ (θ, ρ) ∈ π∗(λ, θ, C).Pder.

We can now define compliance for an entire log of provenance events:

Definition 12 (Compliance). A log λ is said to be compliant if all compliance
properties Com1 . . . Com9 hold for λ.

To illustrate this notion, we first show in Sec. 4 the applicability of our
framework to privacy accountability, and then provide an example in Sec. 5.

4 Applicability to Privacy Accountability

We now discuss under which conditions our framework can be applied to the
particular case of personal data protection. We argue that, while provenance can
be of great benefit here, special care must be taken due to the sensitive nature
of the involved data. Furthermore, it is necessary to combine the framework
with a global accountability process, since not all verification aspects can be
automated. In the following we use the wording introduced in Sec. 2, making three
exceptions. We refer to an entity collecting or processing data as data controller,
following the usual European terminology. Since personal data is usually assigned
to an individual, we call this data owner data subject. Furthermore, to reflect the
specificities of dealing with personal data, the usage policies under consideration
are named privacy policies.

Motivation The large-scale dissemination of personal data rightfully causes grave
concerns. As data subjects are not informed clearly about the processing and
distribution of their data, loss of control prevails [22]. The case of outsourced
medical data is particularly problematic. It combines highly sensitive categories
of personal data with strong data sharing incentives for data controllers such
as hospitals, pharmacies, research institutes, and private firms [6]. With an
audit-centric approach, provenance can be not only a tool for (non-personal)
data processing fault detection, but can also help restoring some clarity to data
subjects regarding the whereabouts of their personal data. In this specific context,
provenance can support privacy, and more precisely accountability [7].

Policies One specificity of privacy-oriented scenarios is the choice of the ap-
plicable policies. Even for a given data processing use case, a one-size-fits-all
approach is not possible here. Privacy preferences are a matter of personal choice,
since data subjects exhibit varying levels of sensitivity with respect to data
protection, leading some privacy frameworks to incorporate different trust models
corresponding to typical user profiles [14].



Time In addition, temporal aspects become indispensable in the privacy case.
While provenance models do not always include time [23], our framework in-
corporates this aspect. Once a data subject requests deletion of their data, the
applicability of this decision depends on a clear distinction between prior and
ulterior events. Note that also other established models, such as PROV-O [21],
include temporal aspects.

Logs A common concern about privacy protection through log auditing is that
the log itself may become a threat to privacy. One mitigating feature of our
framework is the fact that only data categories, not actual values, are logged.
This reduces the threat of leaks to metadata. However, even metadata is known
to be potentially sensitive [18]. This raises the question of secure log storage for
which solutions do exist [5].

Process integration The provenance record constitutes the evidence at the centre
of the accountability process, but the panoramic view provided by provenance
records goes hand in hand with limited guarantees about their trustworthiness.
Since numerous entities are involved, there can be no mapping, realised in a
controlled environment, between system events and log items. Adopting an
external view as we do, provenance records cannot be guaranteed to match actual
system processing. For such a decentralised perspective, inclusion in a wider
process is critical and pressure on entities to declare data handling truthfully
must come from a different direction. The legal implementation of the principle
of accountability, a core principle in the recently adopted European General Data
Protection Regulation [15], would help to address this issue. Contributing to
correct provenance records is a way for data controllers to be accountable to data
subjects.

Processing purposes in the privacy case Another specificity of privacy-oriented
use cases is the central importance of stated data processing purposes. Since
personal data is involved, processing purposes are actually data handling finalities.
Declaring such finalities is legally required in the European Union. It is demanded
that the purpose designations be in line with actual processing purposes, but
the verification of this coupling is not amenable to automation. We assumed
the existence of a purpose ontology, but in the case of personal data protection,
no convincing real-world and broadly accepted equivalent of such an ontology
exists. As a result, there is a realistic risk of data controllers employing purpose
designations abusively, stretching commonly accepted meanings to give the
appearance of compliance. Data Protection Authorities such as the UK ICO,
the Swedish Data Inspection Board, or the French CNIL can play an active role
in enforcing a reasonable mapping between processing purposes and involved
categories of personal data. Principles such as the legitimacy of processing
finalities have already been put forward in this context [2]. More stringent and
systematic checks must be enforced for data subjects to fully trust declared
processing purposes.



5 Evaluation: A Medical Scenario

To evaluate our formal model, we describe a scenario involving medical data
about an individual. Real provenance logs involving multiple components are
expected to be much more complex than this simple example.

Personal data from the patient is processed by health professionals from three
different organisations on different occasions. The data controllers involved are
a hospital Hospital, a research institute ResearchInstitute, and a pharmacy
Pharmacy. The following categories of personal data are involved: a patient’s
full name ID, treatment Treatment, treatment frequency Frequency, status of
the treated pathology Status, medical history History, drug group Drug, and
risk categorisation Risk. Used purpose designations include logistics Logistic,
statistics Statistic, business operations Business and marketing Marketing.
Let π1 and π2 be two privacy policies, with values as in Fig. 1 (the process leading
to the definition of these values is beyond the scope of this scenario).



π1.Dg = 3 months
π1.Drf = 1 day
π1.Fw = (wl, List)
List = {Hospital,
ResearchInstitute}
π1.Li = {(Treatment, Status),
(ID, Drug)}
π1.De = {Frequency, Risk, Drug}
π1.Puse = {(Treatment, Logistic),
(ID, Logistic),
(Frequency, Logistic),
(History, Logistic),
(Status, Logistic)}
π1.Pder = {(History, Statistic)}



π2.Dg = 6 months
π2.Drf = 2 days
π2.Fw = (wl, List)
List = {Hospital,
ResearchInstitute,
Pharmacy}
π2.Li = {(Treatment, Status),
(ID, Drug)}
π2.De = {Frequency, Drug}
π2.Puse = {(Treatment, Marketing),
(Treatment, Logistic),
(ID, Logistic),
(Frequency, Logistic),
(History, Logistic),
(Status, Logistic)}
π2.Pder = {(History, Statistic),
(ID, Logistic),
(Treatment, Business)}

Fig. 1. Example privacy policies π1 and π2.

Note that π1 ≥ π2, but ¬π2 ≥ π1, i.e. π1 is strictly stronger than π2. We now
consider the log λ = λ1 . . . λ15 in Fig. 2. Its corresponding provenance graph is
depicted in Fig. 3.



λ1: (Acquire, {Treatment, ID, Status}, Hospital, π2, {Logistic, Statistic},
2016-05-01T08:07)

λ2: (Use, {Treatment, ID}, Hospital, Logistic, Patient registration
mandatory, 2016-05-01T10:25, 2016-05-09T17:54)

λ3: (Export, {Treatment, ID, Status}, Hospital, ResearchInstitute, π1,
{Logistic, Statistic}, 2016-05-12T12:17)

λ4: (Link, ID, Status, History, ResearchInstitute, π1, Statistic, Insurance
billing requested, 2016-05-14T22:33)

λ5: (Derive, History, Frequency, ResearchInstitute, π1, Statistic,
Quantitative research, 2016-05-18T09:41)

λ6: (Use, {Treatment, Frequency}, ResearchInstitute, Logistic, Workflow
optimisation, 2016-05-19T14:41, 2016-05-19T15:03)

λ7: (Link, Frequency, Treatment, Risk, ResearchInstitute, π1, Statistic,
Correlation study, 2016-05-20T12:14)

λ8: (Export, {Treatment}, Hospital, Pharmacy, π2, {Logistic},
2016-05-22T16:37)

λ9: (Derive, Treatment, Drug, Pharmacy, π2, Business, Stock estimation,
2016-05-22T23:12)

λ10: (ReqRemove, {ID, Status}, 2016-06-02T18:23)
λ11: (Remove, {ID, Status}, ResearchInstitute, 2016-06-03T10:46)
λ12: (Remove, {ID, Status}, Hospital, 2016-06-03T11:17)
λ13: (Remove, {Treatment}, Hospital, 2016-06-17T15:40)
λ14: (Remove, {Treatment, History, Frequency, Risk}, ResearchInstitute,

2016-07-02T08:35)
λ15: (Remove, {Treatment}, Pharmacy, 2016-07-25T04:32)

Fig. 2. The provenance log λ = λ1 . . . λ15 for our example.

This log is correct, since it is straightforward to verify that Cor1 . . . Cor12
are all respected. However, log λ is not compliant with respect to the in-
volved privacy policies. Indeed, the Link event in λ7 contradicts Com6. The
latest policy-defining event, as in Def. 10, for the data category Risk for the
data controller ResearchInstitute is λ∗(λ, Risk, ResearchInstitute) = λ7
= (Link, Frequency, Treatment, Risk, ResearchInstitute, π1, Statistic,
Correlation study, 2016-05-20T12:14). As a consequence, the associated pri-
vacy policy is π∗(λ, Risk, ResearchInstitute) = π1. Now recall Def. 8, and
notice that Dsc(λ, Treatment) = {Treatment, Risk, Drug} because of the linking
in λ7 and the derivation in λ9. On the other hand, Dsc(λ, Status) = {Status,
History, Frequency, Risk} because of the linking in λ4, the derivation in λ5 and
the second linking in λ7. We have Frequency ∈ Dsc(λ, Status), and Frequency
is the first data category being linked by λ7. Furthermore, Treatment ∈ Dsc(λ,
Treatment) and Treatment is the second data category being linked by this same
event.

Since (Treatment, Status) ∈ π1.Li = π∗(λ, Risk, ResearchInstitute),
Com6 is violated and global compliance does not hold as a consequence (Def. 12).



Fig. 3. A provenance record graph depicting the log from Fig. 2. Timestamps and
Remove events have been omitted for clarity. Different shapes symbolise different data
controllers, as shown in the legend. Dotted lines represent Use events. Some of the used
identifiers are abbreviations.

6 Related Work

The W3C specifies constraints [11] for the PROV data model [24], both for
correctness and compliance. Since the PROV data model strives for maximal
generality, it is more suited to the semantic web than to the scenario of data
processing within an organisation. A high-level discussion (without concrete
modelling) of the use of provenance records to support accountability via privacy
policies can be found in work by Gil and Fritz [17]. Aldeco-Pérez and Moreau zoom
into the specific case of personal data provenance. They introduce a compliance
framework for provenance [1], sticking to the usual graph modelling, but only
consider simple privacy policies that do not account for derivation, linking, or
temporal aspects. Their approach is exemplified by an online shopping scenario
and includes a partial implementation in SPARQL. Data handling logs are
analysed with respect to privacy policies by Butin and Le Métayer [9], outside of
the scope of provenance. Their approach is based on records generated from actual
system events, providing stronger assurance with respect to the trustworthiness
of logs, but simultaneously limiting the analysis to the evidence made available
by a single data controller and losing the panoramic view (encompassing several
data controllers) provided by provenance records. Their modelling of purposes
is less fine-grained than in our framework, since they do not support different



acceptable purposes for different categories of data. Chong [12] discusses the
security of provenance itself, providing semantics to restrict which (potentially
sensitive) provenance information is available for consultation. A related issue, the
problem of provenance records possibly leaking sensitive or proprietary module
information when used in scientific workflows, is tackled by Davidson et al. [13].
Tharaud et al. [31] describe the implementation of a usage control system using
provenance in the context of electronic health records, but do not describe policy
formats or compliance semantics.

7 Conclusion

We have introduced a formal correctness and compliance framework for prove-
nance, based on a linear view of provenance events and the definition of sticky
usage policies. The presented format for policies and rules for correctness and
compliance are not meant to be exhaustive or applicable to all scenarios. However,
our framework serves as a basis allowing to include other policy components and
event types. For instance, authorised purposes can be defined for other event
types as well, such as data linking; and more fine-grained policy components
can be considered e.g. for data forwarding or derivation. As an example, one
could restrict the target data categories of data derivation instead of the source
categories. Therefore, the choices presented here in terms of policy components,
event types, and rules should only be seen as an instantiation of the framework.

We discussed the possibility of applying our approach to the special case of
personal data processing, and pointed out the necessity of combining the formal
framework with a global accountability approach involving pressure from data
protection authorities and new legal tools. A scenario involving the processing of
medical data by different, communicating data controllers was used to exemplify
the framework. The use of such a compliance framework is only meaningful within
a wider accountability process, since provenance records cannot be intrinsically
trustworthy. In combination with such an accountability process it can however
contribute to increase transparency about personal data handling, ultimately
benefiting data subjects.

Future work In privacy-oriented scenarios, while unconditionally enforcing the
global correctness of provenance records seems out of reach, a certification-based
approach in coordination with data protection authorities could help improve
the accuracy of records provided by data controllers, ultimately leading to
differentiated levels of assurance for data handling evidence. Taking into account
varying levels of data quality in a provenance-based compliance framework
could lead to a more granular analysis of global correctness and compliance.
Another open question is how the global provenance record is aggregated securely
from the different involved components when they are not all trusted. It would
also be interesting to estimate the complexity of correctness and compliance
checking. Finally, modelling correctness and compliance rules in a theorem prover
like Isabelle/HOL [26] would provide additional guarantees in term of overall
consistency.
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