
An Efficient Lattice-Based Signature Scheme
with Provably Secure Instantiation

Sedat Akleylek1, Nina Bindel2, Johannes Buchmann2, Juliane Krämer2,
and Giorgia Azzurra Marson2

1 Ondokuz Mayis University, Turkey
sedat.akleylek@bil.omu.edu.tr

2 Technische Universität Darmstadt, Germany
nbindel@cdc.informatik.tu-darmstadt.de,
buchmann@cdc.informatik.tu-darmstadt.de,

jkraemer@cdc.informatik.tu-darmstadt.de, giorgia.marson@cased.de

Abstract. In view of the expected progress in cryptanalysis it is important
to find alternatives for currently used signature schemes such as RSA and
ECDSA. The most promising lattice-based signature schemes to replace these
schemes are BLISS (CRYPTO 2013) and GLP (CHES 2012). Both come with a
security reduction from a lattice problem and have high performance. However,
their parameters are not chosen according to their provided security reduction,
i.e., the instantiation is not provably secure. In this paper, we present the first
lattice-based signature scheme with good performance when provably secure
instantiated. To this end, we provide a tight security reduction for the new
scheme from the ring learning with errors problem which allows for provably
secure and efficient instantiations. We present experimental results obtained
from a software implementation of our scheme. They show that our scheme,
when provably secure instantiated, performs comparably with BLISS and the
GLP scheme.

Keywords. lattice-based cryptography, tightness, ideal lattices, signatures,
ring learning with errors

1 Introduction

Electronic signatures are essential for cybersecurity. For example, they
provide authenticity proofs for billions of software downloads daily on
the Internet. In recent years, lattice-based signatures such as BLISS [?]
or the GLP [?] signature scheme have become an interesting alternative
to the schemes that are currently being used in practice, like RSA and
ECDSA. Providing such alternatives is very important in view of the
expected progress in cryptanalysis of RSA and ECDSA, in particular by
quantum computers.

The lattice-based signature schemes BLISS and GLP have two impor-
tant properties. They have good performance, i.e., they can compete with

RSA and ECDSA. Also, they are provably secure: they allow for security
reductions from lattice problems that are expected to be hard even in the
presence of quantum computers.

Provable security is a very strong security argument. In this paper, we
go one step further and present an R-LWE-based signature scheme which
has a security property which we consider to be even stronger: good per-
formance with provably secure instantiation. By this property we mean
that the parameters are chosen according to the security reduction and
at the same time allow for good performance. This implies the follow-
ing: suppose that parameters are constructed for a certain security level.
By virtue of the security reduction these parameters correspond to an
instance of the ring learning with errors problem (R-LWE). Since the pa-
rameters were chosen according to the security reduction, this reduction
provably guarantees that our scheme has the selected security level as
long as the corresponding R-LWE instance is intractable. In other words,
hardness statements for R-LWE instances have a provable consequence for
the security levels of our scheme. Currently, both BLISS and GLP do not
allow for good performance and provably secure instantiation at the same
time. Choosing parameters according to the security reductions for these
schemes reduces their performance significantly (see for example [?,?]).

We note that our scheme has another potential advantage over BLISS.
BLISS uses Gaussian sampling, which is generally assumed to be vulner-
able to timing attacks [?, ?], while GLP and our scheme use uniform
sampling during signature generation which appears to not have this vul-
nerability.

Our signature scheme is based on the design of Bai and Galbraith [?]
and its optimizations by Dagdelen et al. [?]. The reason why our scheme
allows for good performance with provably secure instantiation is that we
are able to give a tight security reduction from the R-LWE problem to our
scheme. The proof of this result is an optimized adaption of the tightness
proof in [?] to the R-LWE setting which allows for better tightness bounds.
To demonstrate that our scheme has good performance, we present ex-
perimental results which are based on a software implementation. These
results show that our scheme, when provably secure instantiated, per-
forms comparably with BLISS and the GLP scheme without provably
secure instantiation.

Related Work. The first lattice-based signature scheme with tight security
reduction is the GPV signature scheme [?]. Its instantiations are prov-
ably secure, but not efficient. Most of the recent lattice-based signature

2

schemes [?,?,?,?,?] come neither with a tight reduction nor with prov-
ably secure instantiation. The security of all those schemes was proven
by applying the powerful Forking Lemma [?], which inherently results in
a non-tight security reduction.

Abdalla et al. [?] circumvent the Forking Lemma and use an approach
inspired by the proof idea introduced by Katz and Wang [?]. However,
their tight reduction demands an impractically large choice of the modu-
lus. Recently, Alkim et al. [?] also used the approach by Katz andWang [?]
to provide a tight security reduction from the learning with errors problem
over standard lattices (LWE) to an improved variant of the Bai-Galbraith
signature scheme [?,?]. Instantiations of their scheme are provably secure,
but they yield larger key sizes and worse run times than the BLISS and
GLP signature scheme.

Organization. After stating notations and definitions in Section ??, we
describe the signature scheme in Section ??. In Section ??, we analyze the
hardness of R-LWE and we explain the derivation of the parameter sets.
Our implementation is described in Section ??. We give our experimental
results and compare them with BLISS and GLP in Section ??.

2 Preliminaries

2.1 Notation

Let k ∈ N. Throughout this paper we define n = 2k ∈ N. Let q ∈ N be a
prime with q = 1 (mod 2n). We denote by Zq the finite field Z/qZ and
identify an element in Zq with its representative in

(
−bq/2c, dq/2e

]
, and

we write (mod q) to denote the unique representative in Zq. We define
the ring R = Z[x]/(xn+1) and denote the set of its units by R×. Further,
we define Rq = Zq[x]/(xn + 1), Rq,[B] = {

∑n−1
i=0 aix

i ∈ Rq | i ∈ [0, n −
1], ai ∈ [−B,B]} for B ∈ [0, q/2], and Bn,ω =

{
v ∈ {0, 1}n | ||v||2 = ω

}
for ω ∈ [0, n]. We denote polynomials by lower case letters (e.g., p) and
(column) vectors by bold lower case letters (e.g., v). Without further
mentioning, we use the symbol p to denote the coefficient vector of a
polynomial p. We denote matrices by bold upper case letters (e.g., M)
and the transpose of a matrix M by MT . We indicate the Euclidean norm
of a vector v ∈ Rn by ‖v‖. All logarithms are in base 2.

Rounding Operators. Let d ∈ N and c ∈ Z. We denote by [c]2d the
unique representative of cmodulo 2d in the set (−2d−1, 2d−1] ⊂ Z. Let b·ed
be the rounding operator defined as b·ed : Z→ Z, c 7→ (c− [c]2d)/2d. We

3

naturally extend these definitions to vectors and polynomials by applying
b·ed and [·]2d to each component of the vector and to each coefficient of
the polynomial, respectively. We abbreviate

⌊
v (mod q)

⌉
d by bved,q.

Algorithms and Distributions. If A is a randomized algorithm we denote
by y ← A(x) the output of A on input x and randomly chosen (internal)
coins. For an oracle O we write AO to indicate that A has access to
that oracle. Let σ ∈ R>0. The centered discrete Gaussian distribution
Dσ on Z with standard deviation σ is defined as follows: for every z ∈ Z
the probability of z is given by ρσ(z)/ρσ(Z), where ρσ(z) = exp(−z2

2σ2)
and ρσ(Z) = 1 + 2

∑∞
z=1 ρσ(z). We denote by d ← Dσ the operation

of sampling an element d with Gaussian distribution Dσ. When writing
v← Dnσ we mean sampling each component of the vector v with Gaussian
distribution. To simplify the notation we indicate sampling all coefficients
of a polynomial a ∈ R with Gaussian distribution by a ← Dnσ as well.
Similarly, for a finite set S we write s ← U(S), or simply s ←$ S, to
indicate that an element s is sampled uniformly at random from S.

Lattices and Gaussian Heuristic. Let n ≥ k > 0. A k-dimensional lat-
tice Λ is a discrete additive subgroup of Rn containing all integer linear
combinations of k linearly independent vectors {b1, . . . ,bk} = B, i.e.,
Λ = Λ(B) = { Bx | x ∈ Zk }. The determinant of a lattice is defined by
det(Λ(B)) =

√
det (B>B).

Throughout this paper we are mostly concerned with q-ary lattices. Λ ∈
Zn is called a q-ary lattice if qZ ⊂ Λ for some q ∈ Z. Let A ←$ Zm×nq .
We define the q-ary lattices Λ⊥q (A) = {x ∈ Zn | Ax = 0 (mod q)} and
Λq(A) = {x ∈ Zn | ∃s ∈ Zm s.t. x = A>s (mod q)}. Furthermore, for
u ∈ Zmq we define cosets Λ⊥u,q(A) = {x ∈ Zn | Ax = u (mod q)}, i.e.,
Λ⊥q (A) = Λ⊥0,q(A). One can consider Λ⊥u,q(A) as a shifted lattice by a
vector u, i.e., Λ⊥u,q(A) = Λ⊥q (A) + y where y ∈ Zm is an integer solution
of Ax = u (mod q).

Let S be a measurable set and let Λ ⊂ Zn be a lattice. The Gaus-
sian heuristic approximates the number of lattice points in the set S by
|S ∩ Λ| = vol(S)

det(Λ) .

2.2 The Learning with Errors Problem over Rings

Given the isomorphism Φq : Zn → Rq with (a0, ..., an−1) 7→ a0 + a1x +
... + an−1x

n−1, Rq is isomorphic to Znq as a Z-module. Therefore, we
can identify a polynomial a = a0 + a1x + ... + an−1x

n−1 ∈ Rq with its

4

coefficient vector a = (a0, . . . , an−1)T . We define the rotation of a vector
a = (a0, . . . , an−1)T to be the coefficient vector of ax ∈ Rq, i.e., rot(a) =
(−an−1, a0, . . . , an−2)T . Furthermore, we define the rotation matrix of
a polynomial a as Rot(a) = (a, rot(a), rot2(a), . . . , rotn−1(a)) ∈ Zn×nq .
Polynomial multiplication of a, b ∈ Rq is equivalent to the matrix-vector
multiplication Rot(a)b in Zq. It can be easily shown that a ∈ Rq is
invertible, i.e., a ∈ R×q , if and only if rank(Rot(a)) = n.

We define the learning with errors distribution and the ring learning
with errors problem (R-LWE) in the following.
Definition 1 (Learning with Errors Distribution). Let n, q > 0 be
integers, s ∈ Rq, and χ be a distribution over R. We define by Ds,χ the R-
LWE distribution which outputs (a, 〈a, s〉+ e) ∈ Rq ×Rq, where a←$ Rq
and e← χ.
Since our signature scheme is based on the decisional R-LWE problem,
we omit the definition of the search version and state only the decisional
learning with errors problem.
Definition 2 (Ring Learning with Errors Problem). Let n, q > 0
be integers and q = 2k for some k ∈ N>0 and χ be a distribution over
R. Moreover, define Oχ to be an oracle, which upon input polynomial
s ∈ Rq returns samples from the learning with errors distribution Ds,χ.
The ring learning with errors problem R-LWEn,m,q,χ is (t, ε)-hard if for
any probabilistic polynomial time (PPT) algorithm A, running in time t
and making at most m queries to its oracle, it holds that

AdvR-LWE
n,q,χ (A) =

∣∣∣∣Pr
[
AOχ(s)(·) = 1

]
− Pr

[
AU(Znq×Zq)(·) = 1

]∣∣∣∣ ≤ ε ,
where the probabilities are taken over the random choices of s← U(Rq),
the random choice of the distribution Ds,χ, as well as the random coins
of A.
The R-LWE assumption comes with a worst-case to average-case reduc-
tion to problems over ideal lattices [?]. Furthermore, it was shown in [?]
that the learning with errors problem remains hard if one chooses the
secret distribution to be the same as the error distribution. We write
R-LWEn,m,q,σ if χ is the discrete Gaussian distribution with standard de-
viation σ.

3 Description and Security of the Signature Scheme

In this section, we present our signature scheme and we prove it to be un-
forgeable against a chosen-message attack—shortly ufcma-secure (cf. Ap-

5

pendix ??, Figure ??)—as long as R-LWE is computationally hard. We
recall basic definitions and notations about signatures schemes in Ap-
pendix ??. We name our scheme ring-TESLA since it is based on the
signature scheme TESLA by Alkim et al. [?].

Our signature scheme is parametrized by the integers n ∈ N>0, ω,
d, B, q, U , L, κ, and the security parameter λ with n > κ > λ, by the
Gaussian distribution Dσ with standard deviation σ, by the hash function
H : {0, 1}∗ → {0, 1}κ, and by the encoding function F : {0, 1}κ → Bn,ω.
The encoding function F takes the (binary) output of the hash functionH
and maps it to a vector of length n and weight ω. For more information
about the encoding function see [?]. Furthermore, let a1, a2 ∈ R×q be
two uniformly sampled polynomials which are publicly known as global
constants. They can be shared among arbitrary many signers.

KeyGen(1λ; a1, a2) :
1 s, e1, e2 ← Dn

σ

2 If checkE(e1) = 0 ∨ checkE(e2) = 0
3 Restart
4 t1 ← a1s+ e1 (mod q)
5 t2 ← a2s+ e2 (mod q)
6 sk← (s, e1, e2)
7 pk← (t1, t2)
8 Return (sk, pk)

Verify(µ; z, c′; a1, a2, t1, t2)
19 c← F (c′)
20 w′1 ← a1z − t1c (mod q)
21 w′2 ← a2z − t2c (mod q)
22 c′′ ← H

(⌊
w′1
⌉
d,q
,
⌊
w′2
⌉
d,q
, µ
)

23 If c′ = c′′ ∧ z ∈ RB−U :
24 Return 1
25 Else: Return 0

Sign(µ; a1, a2, s, e1, e2) :
9 y ←$ Rq,[B]

10 v1 ← a1y (mod q)
11 v2 ← a2y (mod q)
12 c′ ← H

(
bv1ed,q , bv2ed,q , µ

)
13 c← F (c′)
14 z ← y + sc
15 w1 ← v1 − e1c (mod q)
16 w2 ← v2 − e2c (mod q)
17 If |[w1]2d |, |[w2]2d | /∈ R2d−L ∨z 6∈ RB−U :
18 Restart
19 Return (z, c′)

Fig. 1: Specification of the signature scheme ring-TESLA

The secret key sk consists of three small polynomials s, e1, and e2; the
public key pk is given by two polynomials t1 = a1s+e1 and t2 = a2s+e2.

6

To ensure that signatures are short and verified correctly, we use a pro-
cedure checkE similar to the one introduced by Dagdelen et al. [?]. Let
maxk(·) be a function that takes as input a vector and returns its k-
th largest entry. The key polynomials e1, e2 are rejected during checkE
if
∑ω
k=1maxk(ei) is greater then L for at least one of e1 or e2. Other-

wise e1, e2 are accepted. To sign a message µ, first a random polynomial
y ∈ Rq,[B] is chosen. Afterwards, the most significant bits of a1y and a2y
and the message are hashed to a value c. The signature of µ consists of
the hash value c and the polynomial z = sc+ y. To hide the secret, rejec-
tion sampling is applied. For verification of the signature (c, z), the size
of z and the equality of c and H(ba1z − t1ced , ba2z − t2ced , µ) is checked.
The signature scheme ring-TESLA is depicted in detail in Figure ??. We
present parameter sets in Table ?? and their derivation in Section ??.

In our security reduction we follow an idea introduced by Katz and
Wang [?] that can be summarized at follows: assume there exists an al-
gorithm A that forges a signature given a valid public key, i.e., an LWE
tuple. In contrast, given a random key A forges a signature only with very
small probability. Hence, the security reduction distinguishes whether its
own challenge tuple is an LWE tuple or not by the different behavior of
the algorithm A.

Theorem 1. Let n, ω, d,B, q, U, L, and σ be arbitrary parameters satis-
fying the constraints described in Section ??. Assume that the Gaussian
heuristic holds for lattice instances defined by the parameters above. For
every ufcma-adversary A that runs in time tA, asks at most qs and qh
queries to the signing oracle and the hash oracle, respectively, and forges
a valid signature of the signature scheme ring-TESLA with probability εA,
there exists a distinguisher D that runs in time tD = tA + O(qsκ2 + qh)
and breaks the R-LWEn,2,q,σ problem (in the random oracle model) with
success probability

εD ≥ εA

(
1− qsqh2(d+1)2n

(2B + 1)nqn

)
− qh2dn(2B − 2U + 1)n + (28σ + 1)3n

q2n .

Proof sketch. We show how to turn any successful forger A against the
signature scheme ring-TESLA into a distinguisher D for the R-LWE prob-
lem. The distinguisher obtains two R-LWE samples from its sampling ora-
cle Oχ(s) (cf. Definition ??) and embeds them into a public key pk. Thus,
D simulates the ufcma game (cf. Figure ??, Appendix ??). When A re-
turns a forgery (µ, σ), D checks whether σ is a valid signature for mes-
sage µ under key pk: if so, it outputs 1 as a guess that Oχ(s) presented

7

two R-LWE tuples, otherwise it outputs 0. To derive the explicit relation
between D and A’s success probabilities εD and εA as indicated in the
theorem statement, we show that (i) D provides a good simulation of
the ufcma game for A. In particular, we show that the simulated sig-
natures look like genuine ones. And we prove, (ii) D’s simulation does
not abort too often. Formal proofs of both facts, (i) and (ii), require
several technical lemmas that we state and prove in the full version of
this paper [?]. For proving fact (i), we observe that D simulates signa-
tures σ = (z, c′) by choosing z and c′ uniformly at random from appro-
priate spaces. By applying rejection sampling and the fact that c′ is the
output of a random oracle, we show that simulated signatures are statis-
tically indistinguishable from genuine ones. Concerning fact (ii), we first
note that D’s signing simulation needs to program the random oracle H,
which may lead to inconsistencies in case one of A’s signature requests re-
sults in programming a hash value H(x) for which x was already queried.
Such an occurrence causes a premature termination of the simulation.
In [?], we prove that the latter happens only with small probability. ut

As described in [?, Section 3.3], the probability that a polynomial chosen
uniformly random in Rq is in the subset of multiplicative invertible ele-
ments of Rq is given by Pr

[
a ∈ R×q

]
=
(
1− 1/q

)n
, where the probability

is taken over random choices of a←$ Rq. This probability is overwhelm-
ing for our choices of q and n in the signature scheme presented in this
paper. Thus, it is justified to sample the polynomials a1 and a2 uniformly
random in R×q instead of Rq as defined in the R-LWE problem.

Relation to Former Security Reductions. The scheme ring-TESLA is based
on the signature scheme by Bai and Galbraith [?] with a tight security re-
duction by Alkim et al. [?]. Essentially, we convert the scheme by Bai and
Galbraith to a scheme over ideal lattices. Our security reduction follows
the proof strategy of [?]. We emphasize that lifting the security statements
for the original (lattice-based) scheme to our (ideal lattice-based) scheme
is not trivial. For example, it is unclear whether distributions remain the
same when lemmata are applied on rotation matrices instead of matrices
chosen uniformly random; in some cases even improvements can be made.
Indeed, we could sharpen the bound given in [?, Lemma 2]. Our corre-
sponding result is stated in the full version of this paper [?]. Moreover,
we formulate and prove a similar lemma to [?, Lemma 3] for ideal lattices
and we state explicitly which property related to the Gaussian heuristic is
necessary to prove the statement. Likewise, Bai and Galbraith make use of

8

the Gaussian heuristic in their corresponding proof. The methods used in
our security reduction resemble those formalized by Abdalla et al. [?]. Ab-
dalla et al. define four properties of identification schemes for which they
give a black-box-transformation to signature schemes with tight security
reduction. Applying their black-box-transformation to a lattice-based sig-
nature scheme led to inefficiently large parameters as stated by the au-
thors [?]. Hence, we prove unforgeability of ring-TESLA more directly—
without passing through an intermediate identification scheme—by fol-
lowing the proof technique introduced by Katz and Wang [?]. This yields
practical instantiation as we show in Section ??.

4 Selecting Parameters

The reductionist approach to prove security of a given cryptosystem essen-
tially consists in building an efficient reduction that turns any successful
adversary against the cryptosystem into one that solves some computa-
tionally hard problem. The hardness of breaking the cryptosystem and of
solving the underlying problem are often expressed asymptotically. When
a scheme is to be deployed in the real world, however, for a security anal-
ysis to be realistic it is essential that run times and success probabilities
are estimated in a more explicit way. Moreover, given a (concrete and)
tight security reduction, the security of the scheme is about the same
as the hardness of the underlying computational assumption when the
scheme is instantiated according to the reduction. In contrast, if only a
non-tight reduction is available, larger security parameters shall be used
in order to achieve a specific level of security. As a consequence, it is often
hard to tell whether a provably secure scheme with a non-tight reduction
effectively provides the claimed level of security and performance.

In this section, we propose our choice of provably secure parameters
for different levels of bit-security for the signature scheme presented in this
paper and we explain how we estimate the hardness of the ring learning
with errors problem.

4.1 Derivation of Parameters for Different Security Levels

The security reduction given in Section ?? provides a tight reduction to
the hardness of R-LWE and bounds explicitly the forging probability with
the success probability of the reduction. More formally, let εA and tA
denote the success probability and the runtime of a forger A against our
signature scheme and let εD and tD denote analogous quantities for the

9

reduction D presented in the proof of Theorem ??. We can write the
explicit relations εD ≥ c1εA + c2 and tD ≤ c3tA + c4, where c1, c2, c3, c4
are constants which are fixed for a concrete instantiation of the signature
scheme. We say that R-LWE is n-bit hard if tD/εD ≥ 2n; similarly, we say
that the signature scheme is m-bit secure if tA/εA ≥ 2m.

Given an explicit security reduction and the assumed bit-hardness
of R-LWE, we can compute the bit-security of the signature scheme. In
our case, we instantiate the signature scheme such that the constants
c1, c2, and c3 are less than 2−λ. Thus, the bit-hardness of the R-LWE
instance is the same as the bit-security of our signature instantiated as
described below. To ensure both correctness and security of our signature,
the following dependencies must hold.

Let λ be the security parameter. We choose a hash function H :
{0, 1}∗ → {0, 1}κ with κ > λ to ensure that the hash function gives
at least a bit-hardness of λ. We instantiate the hash function for our pa-
rameter sets with SHA-256. Furthermore, security relies on the encoding
function F : {0, 1}κ → Bn,ω. Following Bai and Galbraith [?], we require
F to be close to an injective function. That means that the probability of
mapping two different values to the same output is smaller than or equal
to 2−λ. We choose ω such that 2κ ≥ |Bn,ω| = 2ω

(n
ω

)
. To use efficient poly-

nomial multiplication, i.e., the number theoretic transform (NTT) in the
ring Rq, we restrict ourselves to a polynomial degree of a power of 2, i.e,
n = 2k for k ∈ N. Choosing the Gaussian parameter σ, we can compute
the system parameters to give a concrete instantiation of ring-TESLA with
λ-bit security.

To apply rejection sampling we choose U = 14
√
ωσ and B ≥ 14(n −

1)
√
ωσ. The rejection probability is given by M =

(
2(B−U)+1

2B+1

)n
. We se-

lect the rounding value d to be larger than log(B) and such that the
acceptance probability in the first part of Step 17 in Figure ?? is greater
than or equal to 0.4, i.e., (1− 2L/2d)m ≥ 0.4. The bound L is important
during the key generation as well as during the sign procedure. We choose
L such that we reject only very few of the possible key pairs in checkE. For
example, we achieve an acceptance probability of almost 100% in KeyGen
and an acceptance probability of 0.34 in Sign for parameter ring-TESLA-II.
At last, the modulus q has to be greater than or equal to

(
2(d+1)2n+κ

(2B)n
)1/n

and greater than or equal to 4B. The theoretical size of the secret key is
given by 3ndlog(14σ)e bits. The public key is represented by 2ndlog(q)e
bits and the length of the signature is ndlog(2B−2U)e+κ bits. Given the
concrete instantiations in Table ??, we get a signature size of 1,488 byte, a

10

public key size of 3,328 byte, and a secret key size of 1,920 byte for param-
eters chosen such that the signature scheme is 128-bit secure. In Table ??
we also propose instantiations for 80 bit of security. For comparison, we
depict our signature and key sizes together with the corresponding values
of BLISS [?] and the GLP [?] signature scheme in Table ??.

Table 1: Parameter sets for our signature scheme in comparison; the
hardness of the LWE instance is defined by the dimension n, the modulus
q, and the Gaussian parameter σ; derivation of L, ω,B,U, d is explained
in Section ??; pk and sk denote the public and private key, resp.

Parameter selection

Parameter Security n σ L ω B U d q
Set (bit)

ring-TESLA-I 80 512 30 814 11 221 − 1 993 21 8399873
ring-TESLA-II 128 512 52 2766 19 222 − 1 3173 23 39960577

Acceptance prob. pk Size sk Size Signature Size
KeyGen Sign (byte) (byte) (byte)

ring-TESLA-I 80 0.5 0.23 3,072 1,728 1,418
ring-TESLA-II 128 0.99 0.34 3,328 1,920 1,488

4.2 Hardness Estimation of the R-LWE Problem

Since the introduction of the learning with errors problem over rings [?],
it is an open question whether the R-LWE is as hard as the LWE prob-
lem. Recently, the cyclic structure of ideal lattices has been exploited
by Garg et al. [?], by Campbell et al. [?], by Cramer et al. [?], and by
Elias et al. [?]. However, up to now, these novel results are not known to be
directly applicable to most of the proposed ideal-lattice-based signature
schemes. Hence, as the R-LWE problem can be seen as an instantiation of
the LWE problem, we estimate the hardness of R-LWE via state-of-the-art
attacks against LWE. We explain four basic attacks on LWE: the embed-
ding approach, the decoding attack, the algorithm by Blum, Kalai, and
Wassermann [?], and the Arora-Ge-Algorithm [?]. We briefly describe the
algorithms next. The most efficient practical approaches to solve LWE are
the embedding approach and the decoding attack.

During the decoding attack, an LWE instance (A,As + e) is seen as
an instance of the bounded distance decoding problem (BDD). The idea
of the attack is to reduce the lattice by algorithms such as the BKZ

11

algorithm [?] first, and to find the closest lattice vector to a target vector
via the nearest plane algorithm by Babai [?] (or improved variants such as
by Linder and Peikert [?] or Liu and Nguyen [?]) afterwards. The closest
vector corresponds to As of the LWE instance, such that the secret can
be easily discovered.

The embedding approach is to solve an LWE instance by reducing it to
an instance of the (unique) shortest vector problem. There are different
ways to define a lattice that contains the error term of an LWE instance
(e.g., [?,?,?]). In the end, the short error term is found as a shortest vector
of the constructed lattice via basis reductions such as BKZ [?] and LLL [?,
?], or directly via sieving algorithms [?, ?] or enumeration [?]. Recent
results [?, ?, ?] exploit the cyclic structure of ideal lattices to improve
sieving algorithms. However, the improved sieving algorithms are still
slower than the enumeration approach on instances currently used for
signatures.

Further, there are two non-lattice approaches to solve LWE, namely
the attack based on the algorithm by Blum, Kalai, and Wassermann
(BKW) [?] and the algorithm by Arora and Ge [?]. Both algorithms re-
quire a (very) large number of LWE samples to be applied efficiently.
Although the number of required samples was crucially reduced, for both
BKW [?, ?, ?] and the Arora-Ge algorithm [?], our proposed instances
give far less LWE samples than required for the attacks. Hence, we only
take the decoding attack and the embedding approach into account when
estimating the bit-security of our instances.

We estimate the hardness of our chosen LWE instances based on [?,?,
?]. We propose parameters for two different levels of security: 80-bit secu-
rity (ring-TESLA-I) and 128-bit security (ring-TESLA-II). The embedding
attack yields 166 bit of security and the result of the decoding attack is
a bit security of 139 on the instances in ring-TESLA-II.

5 Software Implementation

The implementation of the proposed scheme targets the Intel Haswell
micro architecture. We perform benchmarks on a machine with an Intel
Core i7-5820K (Haswell) CPU at 3300MHz and 16GB of RAM. In our
software we use the benefits of AVX2 instructions, where multiplication,
addition, and subtraction instructions have one cycle throughput for eight
doubles. The software is compiled with gcc-4.7 with optimization code.
The experimental results are obtained by using gcc-4.7 with “-Ofast” op-
timization since it enables all “-O3” optimizations together with turning

12

on “-ffast-math”. This optimization helps us to reduce the timing results
significantly. The performance of our implementation mainly depends on
the number of rejections during Sign and KeyGen and on the time a single
polynomial multiplication takes. The derivation of the number of rejec-
tions is explained in Section ??. We optimized the time for multiplication
by choosing the most suitable multiplication algorithm for different cases
as it is explained below.

Polynomial Multiplication. In the presented scheme two types of poly-
nomial multiplication occur: standard and sparse polynomial multiplica-
tion. For standard polynomial multiplication we use the number theoretic
transform (NTT) since NTT performs polynomial multiplication with a
quasilinear complexity, i.e., O(n logn). Thus, the parameter sets are se-
lected in such a way that NTT is applicable, i.e., q = 1 (mod 2n), where
n is a power of 2. In our implementation, we store the integer in double
format in a word. Then, after arithmetic operations in NTT, it is expected
to fit in a double, i.e., log(log(n)q) + log(q) < 54. To avoid an overflow
one needs to make extra reduction operations when using ring-TESLA-II
because log(q) is represented by 26 bits. This, of course, results in a draw-
back of the performance. NTT with extra modulo q reduction would need
almost 28383 cycles for n = 512 and ω = 19 as chosen in ring-TESLA-II.
Without extra reductions, the average cycle count of NTT developed for
ring-TESLA-I is 10625. Barrett reduction is preferred over reducing the
coefficients because of the modular structure. The hybrid approach of
using NTT and sparse polynomial multiplication requires more inverse
NTT operations since sparse polynomial multiplication is applicable only
in the integer domain.

Input: array d = [i1, ..., iω], poly a(x) =
∑n−1

i=0 aix
i, poly b(x) =

∑n−1
i=0 bix

i; with
ai ∈ Zq, bi ∈ {0, 1}, d[k] = ik such that bik = 1
Output: poly c(x) = a(x)b(x)

1 Set all coefficients of c(x) to 0
2 for i = 0, ..., ω − 1:
3 for j = 0, ..., n− 1:
4 cj+d[i] ← cj+d[i] + aj
5 for i = 0, ..., n− 1
6 ci ← ci − ci+n (mod p)
7 Return c(x)

Fig. 2: Sparse Polynomial Multiplication

13

Recall that the weight of c, i.e., the number of 1’s, is ω. Then, the mul-
tiplication operations in the signature generation phase (Step 14, 15, and
16: sc, e1c, and e2c) and in the signature verification phase (Step 20 and
21: t1c and t2c) can be considered as sparse polynomial multiplications
because of the number of nonzero elements in c. In order to speed up,
we use the sparse polynomial multiplication given in Algorithm ??. The
complexity of Algorithm ?? depends on the nonzero coefficients of b(x).
Note that polynomial multiplication is performed by using only additions
if one of the multiplicands is sparse. The required number of additions
and subtractions is (ωn+n). The last for-loop is designed for polynomial
reduction modulo xn+1. There is only one reduction modulo q of the coef-
ficients. This improves the runtime and complexity. Sparse multiplication
requires almost 3650 cycles.

We place our implementation of ring-TESLA in public domain. It can
be found under https://www.cdc.informatik.tu-darmstadt.de/cdc/
personen/nina-bindel.

6 Performance Analysis

We performed our benchmarks on a machine with an Intel Core i7-5820K
(Haswell) CPU at 3300MHz and 16 GB of RAM, while disabling Turbo
Boost and hyper threading. In our measurement we considered two pa-
rameter sets: ring-TESLA-I and ring-TESLA-II with 80 and 128 bits of
security, respectively. Our benchmarks are averaged3 over 10,000 runs of
Sign and Verify. We summarize benchmarks for our proposed parameter
sets and state-of-the-art ideal-lattice-based signature schemes in Table ??.
We emphasize once more that our parameter sets are the only ones in Ta-
ble ?? which are chosen according to the given security reduction, cf.
Section ??. Nevertheless, we achieve good performance with respect to
time and space. In the following, we compare sizes and run times for 80
and 128 bits of security.
For low security of 80-bit, key and signature sizes of GLP-I are smaller
than those of our proposed parameters. Our run time of Sign is a factor
of 1.19 faster than GLP. As Table ?? indicates, the software implemen-
tations of ring-TESLA and of the GLP signature scheme are optimized
for micro architectures. For medium security of 128-bit the instantiation
of our scheme gives smallest key sizes. Signature sizes are comparably

3 Sometimes benchmarks are given as the median instead of the average value. Due to
the rejection sampling, taking the median value of our experiments would be overly
optimistic for Sign.

14

https://www.cdc.informatik.tu-darmstadt.de/cdc/personen/nina-bindel
https://www.cdc.informatik.tu-darmstadt.de/cdc/personen/nina-bindel

Table 2: Comparison of our results with the software implementations of
the signature schemes BLISS [?,?] and GLP [?,?,?]. To indicate the con-
sidered platforms Intel Core i5-3210M (Ivy Bridge), Intel Core i7-5820K
(Haswell), and Intel Core 3.4 GHz we use shortcuts A, B, and C, respec-
tively. Sizes of signatures, signing and verification keys are indicated in
Bytes. We abbreviate ’Decisional Compact Knapsack problem’ by DCK.
In the benchmarks of GLP we include the improvements by Dagdelen et
al. presented in [?]. In the benchmarks of BLISS we include the improve-
ments by Ducas presented in [?].

80-bit security GLP [?, ?, ?] ring-TESLA-I
(this paper)

Assumption DCK R-LWE
CPU A B
Signing key size 256 1,728
Verification key size 1,536 3,072
Signature size 1,186 1,568
Sign cycle counts 452,223 370,880
Verify cycle counts 34,004 94,124

128-bit security BLISS [?, ?] ring-TESLA-II
BLISS-I BLISS-II (this paper)

Assumption R-SIS, NTRU R-LWE
CPU C B
Signing key size 2,048 2,048 1,920
Verification key size 7,168 7,168 3,328
Signature size 1,559 1,514 1,568
Sign cycle counts 351,333 582,857 510,981
Verify cycle counts 102,000 102,000 167,791

good. We emphasize that we report the signature size used in the pub-
licly available software implementation of BLISS-I and BLISS-II 4. Those
sizes differ from the theoretical signature sizes presented in [?], which are
700 and 625 bytes for BLISS-I and BLISS-II, respectively, because signa-
tures are not compressed in the BLISS software. To our knowledge, there
is no implementation of BLISS available that compresses the signature
sizes. The signature size of ring-TESLA are also obtained from our imple-

4 bliss.di.ens.fr

15

bliss.di.ens.fr

mentation.
The time-optimized implementation of BLISS-I by Ducas [?] is only a
factor of 1.45 faster than our implementation. We note that our signa-
ture scheme uses uniform sampling during Sign. In contrast, BLISS uses
Gaussian sampling, which might be vulnerable to timing attacks [?, ?].
Up to now, available implementations of BLISS do not protect against
timing-attacks. It would be very interesting to compare our implemen-
tation with an optimized and timing-attack-protected implementation of
BLISS.

In summary, our signature scheme has good performance compared
to state-of-the-art ideal-lattice-based signature schemes, while it is in-
stantiated provably secure. Hence, when real world security matters our
presented scheme is a very interesting choice.

Acknowledgment

This work has been cofunded by the DFG as part of project P1 and P2
within the CRC 1119 CROSSING.

A Extended Definitions and Security Notions

A.1 Syntax, Functionality, and Security of Signature Schemes

A signature scheme with key space K, message space M, and signature
space S, is a tuple Σ = (KeyGen,Sign,Verify) of algorithms defined as
follows.

– The (probabilistic) key generation algorithm on input the security
parameter 1λ returns a key pair (sk, pk) ∈ K. We write (sk, pk) ←
KeyGen(1λ) and call sk the secret or signing key and pk the public or
verification key.

– The (probabilistic) signing algorithm takes as input a signing key sk,
a message µ ∈ M, and outputs a signature σ ∈ S. We write σ ←
Sign(sk, µ).

– The verification algorithm, on input a verification key pk, a mes-
sage µ ∈ M, and a signature σ ∈ S, returns a bit b: if b = 1 we
say that the algorithm accepts, otherwise we say that it rejects. We
write b← Verify(pk, µ, σ).

We require (perfect) correctness of the signature scheme: for every se-
curity parameter λ, every choice of the randomness of the probabilistic

16

algorithms, every key pair (sk, pk)← KeyGen(1λ), every message µ ∈M,
and every signature σ ← Sign(sk, µ), Verify(pk, µ, σ) = 1 holds.

We target the standard security requirement for signature schemes,
namely unforgeability under chosen-message attack (ufcma). The corre-
sponding experiment involving an adversary A against a signature scheme
Σ is depicted in Figure ??. Since we prove security of the scheme presented
in Section ?? in the random oracle model, we reproduce a corresponding
ufcma experiment which grants A access to a random oracle H. Given the
experiment, we say that a signature scheme Σ is (t, qs, qh, ε)-unforgeable
under chosen-message attack if every adversary A which runs in time t
and poses at most qs queries to the signing oracle and qh queries to the
random oracle has advantage

Advufcma
Σ (A) = Pr

[
Exptufcma

Σ,A = 1
]
≤ ε .

Exptufcma
Σ,A (1λ) :

1 (sk, pk)← KeyGen(1λ)
2 (µ∗, σ∗)← A(1λ, pk)OSign(·),H(·)

3 If Verify(pk, µ∗, σ∗) = 1 ∧ µ∗ /∈ QS :
4 Return 1
5 Else: Return 0

If A queries OSign(µ) :
6 QS ← QS ∪ {µ}
7 σ ← Sign(sk, µ)
8 Return σ to A

Fig. 3: Security experiment of unforgeability under chosen-message attack
for an adversary A against a signature scheme Σ = (KeyGen,Sign,Verify)
in the random oracle model (i.e., all parties including A have access to a
public function H with uniformly distributed output).

17

