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Abstract: We give three variants and improvements of Bleichenbacher’s low-exponent
attack from CRYPTO 2006 on PKCS#1 v1.5 RSA signatures. For each of these three
variants the fake signature representatives are accepted as valid by a flawed imple-
mentation. Our attacks work against much shorter keys as Bleichenbacher’s original
attack, i.e. even for usual 1024 bit RSA keys.

The first two variants can be used to break a certificate chain for vulnerable im-
plementations, if the CA uses a public exponent of 3. Such CA certificates are indeed
deployed in many browsers like Mozilla, Opera and Konqueror. The third attack works
against the Netscape Security Services only, and requires the public exponent 3 to be
present in a site’s certificate, not the CA certificate.

Using any of these attack vectors, an active adversary can mount a full man-in-the-
middle attack on any SSL connection initiated by a vulnerable client.

1 Introduction

RSA is the most widely used public key crypto-system, used both for digitally signing and
encrypting messages. Its security relies on the problem of extracting d-th roots modulo a
composite number N , which is believed to be hard if N is composed of large primes.

In order to boost the efficiency of public-key operations, the public exponent e is usually
chosen to be of low Hamming weight: common public exponents are e ∈ {3, 17, 65537}.
Although well-known attacks exist on certain padding formats when a small public expo-
nent is used for RSA encryption [Bon99], small public exponents such as 3 are sometimes
even recommended for RSA signatures for the sake of efficiency [Eas01] – provided that
the key is used for signatures only.

Recently Bleichenbacher exposed (see [Fin06a]) a critical problem arising from a common
flaw in implementations of the RSA signature verification as specified in PKCS #1 v1.5.
This flaw can lead to faked signatures being accepted as valid, hence rendering the scheme
insecure. This attack requires a large modulus (more than 3000 bits) compared to the
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exponent size. As a consequence, the choice of small exponents for RSA signatures is
considered problematic as well.

CONTRIBUTION. In this paper we first show how Bleichenbacher’s low-exponent attack
on PKCS#1 RSA signatures can be modified to work for key sizes used commonly by cer-
tificate authorities, namely 1024 to 2048 bits and e = 3. It works against older versions of
Firefox, Opera, and Konqueror. The second attack highlights how to exploit a similar but
different implementation flaw in signature verification, which is present in older versions
of OpenSSL for example. Our attack algorithms is general enough to work for a large
number of different parameter sets. A third attack is presented that exploits a flaw in older
versions of the Netscape Security Services (NSS). All three attacks produce fake signa-
tures, i.e. message representatives that do not conform to the standard but are accepted as
valid by flawed implementations nevertheless.

The impact of the first two attacks is that they break the certificate chain authenticating
a site’s certificate and allows an adversary to set up its own false certificates which are
accepted as valid. The third attack breaks the authentication included in the SSL / TLS
protocol. Thus all of these attacks allow to mount man-in-the-middle impersonations to
intercept and decrypt arbitrary SSL/TLS-encrypted sessions, including HTTPS, POP3S,
or IMAPs, without the user being warned.

Security advisories about the underlying implementation flaws have been published soon
after their discovery. Thus, affected software should be fixed by now.

STRUCTURE. The structure of the paper is as follows: We briefly describe the PKCS#1
v1.5 signature format in Section 2 and Bleichenbacher’s attack in Section 3. In Section 4
we describe our variant that works for RSA moduli of commonly used bit lengths, in
Section 5 we describe a variant that exploits an unchecked algorithm parameters field, and
in Section 6 we show an attack method against further implementation flaw in the Netscape
Security Services. In Section 7 we discuss issues with the underlying PKCS#1 standard.
Finally, in Section 8 we highlight how the affected implementations were fixed.

2 PKCS#1 v1.5 Signature Format

First, we briefly describe the PKCS#1 v1.5 format for RSA signatures [RSA93]. We start
with some notation. Let N be the RSA modulus, e the public and d the private exponent.
Denote the bitlength of N by |N | , i.e. the smallest number of bits to represent N , and
its length in octets by n = d|N |/8e. Denote the concatenation of bit or octet strings by
||. Call the input m ∈ Z∗N to the RSA transform the message representative or signature
input, using a representative 0 < m < N .

Definition 1. Let B = Bl−1|| . . . ||B0 be a string of l octets. Then define

mB = rep(B) =
l−1∑
i=0

Bi28i.

Let i2ol(m) denote the l-octet string of a message represenative m < 28l, such that



i2ol(rep(B)) = B for all octet strings of length l.

In the PKCS#1 v1.5 signature format [RSA93] the message representative M for a mes-
sage m is formed by converting the octet string

00x||01x||FFx|| . . . ||FFx||00x||a||H(m)

to a positive integer, where the string a consists of the ASN.1 encoded object identifier of
the hash function H used for computing H(m) and possible algorithm parameters. The
padding string of FFx octets is made as long as it takes to have the whole signature input
be representable by a string of exactly n octets. However, a minimum size of eight FFx
octets is required.

When creating a signature, the message representative M formed as described is passed
to the RSA private key transform Md mod N . When verifying the signature S, the RSA
public key transform Se mod N is applied, and the resulting message representative M ′

is checked for compliance with the standard, as well as that the included hash code is
consistent with the hash code of the (allegedly) signed message.

It is exactly the compliance check of the message representative that seems difficult to get
right, as we will show during the rest of this paper using actual implementation flaws, and
how to exploit them. In fact, all attacks given in this paper produce message representatives
that are not compliant to the PKCS#1 v1.5 standard, therefore we denote them by fake
signatures. Nevertheless, flawed implementations will accept them as valid signatures.

3 Bleichenbacher’s Low-Exponent Attack

During the rump session of the Crypto 2006 conference Daniel Bleichenbacher presented
an attack on implementations of the RSA PKCS#1 v1.5 signatures, as summarised sub-
sequently by Finney [Fin06a]. This attack requires the public exponent to be very small
compared to the modulus, e.g. e = 3. Bleichenbacher made use of the fact that some im-
plementations don’t verify that there is no data after the hash. Thus, these implementations
accept message representatives with a format

00x||01x||FFx|| . . . ||FFx||00x||a||H(m)||g

as valid, where g denotes arbitrary data.

Bleichenbacher showed that this can be exploited to forge RSA signatures, and demon-
strated this for an RSA key with a 3072 bit modulus and e = 3. With these parameters, it
is very easy to arrange this data to be a perfect cube smaller than 23072. The cube root of
this number computed over R is accepted as a valid RSA signature by broken implemen-
tations.



4 Variants for Smaller RSA Moduli

While Bleichenbacher’s example outlined a serious flaw in some RSA implementations,
usually no CA uses an RSA key size of 3072 bits. However, CAs with public exponent
3 and key size of 1024 bits exist and are furthermore included in all major web browsers,
while CAs with exponent 3 and a key size of 2048 bits are less common. Here we show
how to modify Bleichenbacher’s attack to work with moduli as short as 1024 bits.

4.1 Signature Input

The PKCS#1 standard requires at least 8 octets in the FFx part of the padding. However,
some implementations do not check the number of padding octets at all, some require
indeed 8 octets of padding, some just require 7 octets of padding. To be able to exploit
every implementation that does not check trailing data after the hash value, we will use
8 octets of FFx values. Thus, breaking down the lengths of the individual parts of the
padding, we get for the most significant fixed part of the signature input the octet string

A = 00x01x||FFx . . .FFx||00x||a||H(m) (1)

where the parts have sizes of 16, 64, 8, 120, and 160 bits (assuming SHA-1 as H and a
being the ASN.1 encoded prefix), yielding a total 46 octets. For adaptions to other hash
value lengths see the analysis below.

4.2 Attack Algorithm

For the attack to work on rather short key sizes we need to be able to vary the hash value
H(m) of the message. To do so for a certificate obeying the X.509 standard, we vary
freely choosable fields such as the serial number of the certificate, time of issue, or time of
validity.

Given an X.509 certificate, the attack algorithm is as follows:

1. Add one second to the notAfter value.

2. Hash it, and construct an octet string A with length 46 octets as decribed (see (1)).
Set a′ ← rep(A) and construct a message representative with minimal padding and
trailing FFx octets:

s′ ← a · 28·82 +
81∑
i=0

(FFx) 28i, (2)

3. Compute t ←
⌊

3
√
s′
⌋3

. Check if
⌊
t/21024−46·8⌋ =

⌊
s′/21024−46·8⌋, i.e. if the 46

most significant octets are equal in t and s′. If so, s← 3
√
t is now the fake signature.

If not, go to step 1.



Analysis. For a 1024-bit modulus the complete length of the signature input is 128 octet.
With 46 octets fixed, we have 82 octets (=656 bits) to fill with arbitrary data.

As the message representative starts with 00x 01x FFx, it is a number < 21009. Thus
the distance between two perfect cubes of this size is smaller than 2673. This is 17 bits
more than the number of bits we can choose arbitrarily. Consequently the probability of
choosing a number with a distance smaller than 2656 to the next perfect cube is about 2−17.

More general, let c be the length (in bits) of the hash code of the employed hash function
and d the length of the ASN.1 data not including the hash code (in bits). Then there are
nf = 8(2 + 8 + 1) + d + c = 15 + 73 + d + c fixed bits in our approach (including
the 15 leading zero bits). Thus, for 1024 bit moduli, any d + c < b1009/3c − 73 = 263
should yield directly a perfect cube without much problems. For d + c ≥ 263 we expect
that the probability of success of a single guess in step 3 is about p ≈ 2−(d+c−263). Thus,
the expected work factor for the attack algorithm is about 1/p trials.

For example, for MD5 with d = 144 and c = 128 this is about p ≈ 2−9 with 29 expected
iterations, for SHA-1 we have d = 15 · 8 = 120 and c = 160, thus p ≈ 2−17 with 217

expected iterations. However, for SHA-256, d = 152 and c = 256 yield an extremely
small p ≈ 2−145.

Experimental Results. We implemented this attack in Java. Executing it took 2-3 min-
utes on average on an IBM T41p Thinkpad using an Intel Pentium M processor with
1700MHz running SUN JDK 1.5.0 06 under Linux 2.6.

Impact. An X.509 certificate containing such a fake signature for a CA public key with
exponent e = 3 is accepted as valid by flawed implementations. This allows to “issue”
false certificates in the name of the CA. Trusted CA certificates with e = 3 are included in
affected versions of Mozilla, Firefox, Thunderbird, Opera, Konqueror, and possibly other
browsers, too. Thus, this breaks the certificate chain, allowing an adversary to intercept
and decrypt any SSL/TLS-protected traffic from, e.g., the HTTPS, POP3s, IMAPs proto-
cols.

5 Exploiting the Algorithm Parameters Field

Another implementation flaw in PKCS#1 signature verification is not to check the algo-
rithm parameter field for the hash function. This has first beed described by Oiwa, Ko-
bara, and Watanabe in [OKW06]. However, they give only an attack on 1024 bit RSA
with MD5. Below we present a practical algorithm for computing fake signatures that
are accepted by such flawed implementations. While we use SHA-1 as an example, other
hash functions could be used also. Further, we point along with limiting factors for the
algorithm.



5.1 Signature Input

The ASN.1 encoded data in the signature input indicates the hash algorithm used during
hash calculation. Technically, this consists of an object identifier of the actual hash func-
tions and additional input parameters like an intialization vector. For all hash functions in
use today a NULL value or a zero-length field must be used as algorithm parameters.

While the attack is general in nature, we use H = SHA-1() as a concrete example. The
message representative can be broken down into r = a||z||b||h where a is fixed data, de-
termined by the padding structure and a prefix of the ASN.1 encoded data, z is arbitrary
data placed in a maximal-size algorithm parameters field representing the adversary’s play-
ground, b the suffix of the ASN.1 encoded data, and h = H(m). In more detail, using the
SHA-1 OID we have

a = 00x01x||FFx . . .FFx||30x??x30x??x||06x05x2Bx0Ex03x02x1Ax||04x??x
(3)

where the ??x indicate octet values that depend on the exact length of the resulting ASN.1
structure. Further, we have b = 04x14x to indicate the length of the hash code. Other hash
functions yield very similar octet strings, changes occur after the 06x octet and within b.

5.2 Attack Algorithm

The algorithm to compute a perfect cube showing the format given above is split into two
parts: (i) one part that computes a most significant part of the fake signature which only
dependens on the octet-length of the modulus, but not on any specific message, and (ii) a
part that computes the least significant part of the fake signature, which does depend on
the message to be signed and, if the modulus is rather short, on the most significant part
from the first part of the algorithm. Note that b is fixed for any fixed hash code length.
Further, we use d = |b|+ |h|. So for SHA-1 we have d = 176.

1. Compute the most significant part u2d
′

such that (u2d
′
)3 has the prefix a at the

correct position with d′ to be determined in the process:

(a) Let c ≥ 0 be some value c < N (this c will be determined by binary search).
Set a′ ← rep(a) · 2|z|+|b|+|h| + c, i.e. a′ is the prefix of the fake message
representative up the the point where the algorithm parameters start, with c
compensating the truncation error in the next steps.

(b) Set s← b 3
√
a′c, and compute â← (s)3.

(c) If
⌊
â/2|z|+d

⌋
6= rep(a) restart at step 1a, updating c by binary search such that

rep(a) is approximated from below. If equality cannot be reached, abort.

(d) Find the largest d′ ≤ d = |b| + |h| such that v ← s − (s mod 2d
′
) and⌊

v3/2|z|+d
⌋

= rep(a), i.e. the maximal number of low bits we can cut out to
still have the correct prefix after cubing.



(e) Record the most significant part u of the fake signature as

u← (â− (â mod 2d
′
))/2d

′
. (4)

2. Obtain the data m to be signed, preferrably with some variable parts. m could be a
suitable X.509 certificate, the variable parts being, e.g., a serial number. Use this to
compute the least significant part of the fake signature as follows:

(a) Compute the hash code h ← H(m). If the least significant bit of h is not 1,
alter some variable part in m and repeat.

(b) Set w ← rep(b||h), d ← |w| and compute x < 2d such that x3 ≡ w mod 2d

by inverting 3 modulo 2d−1.

(c) Check if
u mod 2d−d

′
= bx/2d

′
c. (5)

If not, alter some variable part in m and repeat from step 2a.

3. Now compute a candidate fake signature

s̃ = bu/2d−d
′
c · 2d + x (6)

for the current instance of the data m.

Analysis. To show that the algorithm yields indeed a fake signature we have to show
that, first, the verification procedure sees the correct ASN.1 part for the hash value, and
second, it sees the correct prefix with an arbitrary algorithm parameters field.

For the first part of the analysis, we rewrite (6) using u′ ← bu/2d−d′c, i.e. the non-
overlapping part of u (for d′ = d we have u′ = u). Then s̃ = u′2d + x. When verifying,
we find s̃3 = (u′2d + x)3 = (2d)(u′3(2d)2 + 3u′2(2d)x + 3u′x2) + x3. Thus, the least
significant d bits of s̃3 are only influenced by x3. As x3 = w mod 2d, the bits in the b and
h parts are correct. The reason we require h to have the least significant bit set is that the
computation of x works always in this case.

For the second part of the analysis, we partition x = x′′2d
′
+ x′ with x′′ ← bx/2d′c and

x′ ← x mod 2d
′
. From (5) we have u mod 2d−d

′
= x′′ and s̃ = u2d

′
+ x′. Thus we have

s̃3 = (u2d
′
)3︸ ︷︷ ︸

γ

+ (3(u2d
′
)2x′ + 3(u2d

′
)x′2 + x′3)︸ ︷︷ ︸

δ

.

We have to prove that the prefix a′ of γ, resulting from the u part in s̃, cannot be disturbed
by adding δ. We observe that

A := (u2d
′
)3 ≤ rep(a)2d+|z| ≤ s̃3 ≤ (u2d

′
+ 2d

′
)3 =: B, (7)

and thus B − A = 3u222d′
2d

′
+ 3u2d

′
22d′

+ 23d′
= 23d′

(3u2 + 3u + 1). Introducing a
formal bound t ≥ 2 such that u < 2t, we obtain 3u2 + 3u + 1 < 4 · 22t = 22t+2, and
B−A < 23d′+2t+2. As a consequence, we find |s̃3−rep(a)2d+|z|| ≤ B−A < 23d′+2t+2.



In order to have a fake signature where the message representative has the correct prefix
(see step 1), we get the necessary condition 3d′ + 2t + 2 < |z| + d. Further, from the
modulus size of n octets, we also have 8n = |a| + |z| + |b| + |y| = |a| + |z| + d. Thus,
we have 8n − |a| − 3d′ − 2 > 2t. In order to obtain a correct prefix rep(a) from the u
part after cubing s̃ we need, applying entropy arguments, at least t ≥ |a| bits to code for
u. Thus we obtain the necessary condition

8n− 2 > 3(|a|+ d′). (8)

Note that the d − d′ overlapping bits of u and x must coincide, so that we get a partial
brute-force condition for d− d′ > 0.

Experimental Results. When determining |a| there is a technical complication from the
ASN.1 notation for the length fields (values indicated with ??x in (3)), which stems from
the variable-size encoding of length fields. As a consequence |a| depends on n, and for
usual key sizes we have 192 ≤ |a| ≤ 240. Concretely, for n ≤ 140, i.e. |N | < 1120,
only a single octet is needed for the length encoding of the first sequence (and also the
other length encodings). Therefore |a| = 192 in these cases. For 177 ≤ n ≤ 269, i.e.
1416 ≤ |N | < 2152, all the length fields are encoded by 2 octets, so |a| = 216.

Our analysis above indicates that for |N | < 1120 we may have d′ < d, so that possibly a
large number of steps in the second part of the algorithm is necessary. We obtain d = d′ for
|N | ≥ 1120. To verify our analysis in practicewe implemented the algorithm. For varying
modulus sizes (in bits) we obtained the following values for d−d′ which indicates number
of bits to brute-force:

n 768 1024 1056 1088 1120
d− d′ 101 21 9 0 0

This shows that for key length ≥ 1024 bit the attack is feasible. Producing fake signatures
for a 1024 bit RSA key in a couple of minutes on a Pentium M 1.5 GHz machine. For
larger key sizes the only constraint is the least significant bit of the hash code being 1.
Verification using a vulnerable version of OpenSSL succeeded as expected.

Impact. Similar to the attack in the last section this attack allows to produce fake sig-
natures for CA public keys. Thus, a flawed implementation will accept a false certificate
containing such a fake signature. This completely breaks the certificate chain.

6 Attack Variant against the Netscape Security Services

Here we present an attack variant that works against yet another, but similar implementa-
tion flaw as the ones before. This flaw is present in a part of the Netscape Security Services
NSS up to and including version 3.10.2 that deals with PKCS#1 signatures as they are used
inside the SSL/TLS protocol. This version of the NSS was used up to version 1.5.0.7 of the



Firefox browser. Below we show an algorithm that can break the SSL/TLS authentication
when the server uses the exponent 3 in its certificate.

6.1 Signature Input

The file security/nss/lib/softoken/rsawrapr.c of NSS contains two func-
tions which decrypt RSA signature and check for correct PKCS#1-padding. One is used
for verifying PKCS#1 signature, while the other, RSA CheckSign(), is used for veri-
fying the signature in an ServerKeyExchange message of SSL or TLS.

This latter function checks for the leading 00x01x octets, and due to an implementation
flaw, accepts any number of FFx octets, including zero1 . Further, the comparison of the
expected and the given hash value are done by taking the appropriate number of octets from
the end of the octet string, e.g. the least significant octets in the message representative.

In fact, the function RSA CheckSign() accepts, instead of a fully standard-conforming
message representative, an octet string

B = 00x||01x||00x||g||h (9)

as valid, provided that (i) h has the expected value and length, and (ii) the length of g is
such that B has the correct length, i.e. g consists of n− 3− d|h|/8e octets.

6.2 Attack Algorithm

The key idea of the attack is, like in the attacks presented here, to turn the computation of
the 3rd root moduloN into the computation of a 3rd root over the integers. That is, we will
produce a value whose bit representation, when run through the RSA verification transfor-
mation, is described by equation (9). Note that larger exponents can also be attacked if
correspondingly larger keys are used. We construct an octet string

S = Y ||00x . . .00x||X (10)

with Y 6= 0 such that v = rep(S)3 < N and i2on(v) is formatted according to (9). We
compute a prefix

Z = 00x||01x||00x (11)

such that for y′ ← (rep(Y ) · 2a)3 the octet string Y ′ ← i2on(y′) has the 3-octet prefix Z.
Let b = n − 3, the number of octets in B (see (9)) following the prefix Z (e.g. b = 125
for 1024 bit keys). Let k denote the bitlength of the hash code h expected in the fake
signature. Note that φ(2k) = 2k−1 is relative prime to the exponent e = 3, so computation
of e-th roots mod 2k succeeds whenever h is odd. Then the algorithm is as follows:

1This problem was noted independently by Finney [Fin06b].



1. Let 0 < xh < N be such that

x3
h ≡ h mod 2k, (12)

and let Xh = i2odk/8e(xh) be its octet representation.

2. Distinguish three cases:

b ≡ 2 (mod 3): Set y′ ← 216 · 28(b−5)/3.

b ≡ 1 (mod 3): Set y′ ← 2857x · 28(b−4)/3.

b ≡ 0 (mod 3): Set y′ = 065Ax · 28(b−3)/3.

Now set s = y′ + xh, the fake signature for h.

Analysis. To show the correctness of the algorithm, i.e. that s is a fake signature,
we note that s3 ≡ x3

h ≡ h (mod 2k), thus the expected hash value will be found in
the message representative. Further, distinguishing the three cases in the second step,
we see from a dirct computation that y′3 = 248 · 28(b−5) for b ≡ 2 (mod 3), y′3 =
0001006D260447x ·28(b−4) for b ≡ 1 (mod 3), and y′3 = 0001003CA7A8x ·28(b−3)

for b ≡ 0 (mod 3). We note that for xh < 28(b−5)/3, xh < 28(b−4)/3, and xh <
28(b−3)/3, respectively, these prefixes will stay intact even s3 = (y′ + xh)3.

Example. For a usual key length of a 1024 bit modulus we get bounds for xh of |xh| <
320, i.e. we can fake signatures that include hash codes of at most this size. As the func-
tion RSA CheckSign() is used for verifying a certain signature during the SSL/TLS
handshake with the hash code being the concatenation of an SHA-1 and MD5 hash code,
we have |xh| = 160 + 128 = 288. Therefore the attack succeeds for 1024 bit RSA
keys. The attack can be done on the fly: The most time consuming part is the inversion in
equation (12).

Impact. During SSL/TLS handshake the server has the option to issue a new key by
sending a ServerKeyExchange message to the client2 . This message is signed using
the concatenation of MD5 and SHA-1, and is checked by the RSA CheckSign function
attacked above. As a consequence, an adversary can send a new key, along with a fake
signature on the ServerKeyExchange message to the client, and is thus able to act as
a man in the middle. This breaks the SSL/TLS authentication.

7 Issues in the PKCS#1 Standard Documents

The PKCS#1 standard (see [JK03, RSA93]) specifies and documents well-known and
widespread way to format the message representative for an RSA signature. Here we

2This mechanism was introduced to support short keys for encryption due to export restrictions while keeping
the strength of the authentication. It is kept in TLS to support authentication-only server certificates.



discuss the issues in the PKCS#1 standard regarding signature verification that are indeed
at the heart of the problems described in this paper.

Comparison-based verification. The signature verification procedure suggested in the
current version 2.1 of the standard is to build up the message representative as it would
be expected, applying the RSA verification transformation to the signature and then doing
a bit-by-bit comparison of the received and the expected message representative. This
method is based on the assumption that the formatting of the message representative is
unique.3 However, this is not really the case. The algorithm parameter field is optional
in the sequence comprising the algorithm identifier. As current hash functions only have
a NULL parameter here, this field can be either present or not. Thus, verifying using
the comparison-based method needs to take this into account to not falsely reject valid
signatures.

Parsing-based verification. Further, the PKCS#1 v2.1 standard includes a footnote men-
tioning an alternative method of verifying a v1.5 signature. This alternative method parses
the ASN.1 data and checks that everything is as expected and required:

1. Checking the padding

2. Parsing the ASN.1 encoded data while checking every octet for wrong data and
making sure that no additional data is present.

3. Checking for the correct OID of the hash algorithm

4. Checking the Algorithm Parameters field

5. Comparing the hash code data.

Each of these steps must be carefully implemented in order to avoid vulnerabilities of the
resulting code. In fact, despite being only briefly mentioned in the standard, this method
is used by the major implementations of the v1.5 signature verification procedure.

While we view the comparision-based method as much better-suited4 for correct imple-
mentation, it might falsly reject some valid signatures. However, we believe the real-world
impact of this change is very small. Nevertheless there might be some areas of applica-
tion where it indeed has an impact, e.g. when embedded software or hardware cannot be
upgraded.

3The most important changes from version 1.5 [RSA93] to the current version 2.1 [JK03] is the use of the
Distinguished Encoding Rules DER instead of the Basic Encoding Rule BER as the ASN.1 encoding scheme,
possibly in order to remove some ambiguity. In fact, BER allows length encodings for ASN.1 items in many
equivalent forms, while DER gives indeed a unique encoding of the data. Thus, a verifier requiring DER might
reject previously valid signatures.

4We note that the comparision-based verification method for version 1.5 signature padding would not work
when keyed universal one-way hash functions (see [BR97]) are employed. Here the algorithm parameters would
contain the key, which has to be extracted before verifying the message representative.



8 Fixing Affected Implementations

Here we describe how some of the major affected implementations were fixed regarding
the attacks described in this paper.

GnuTLS. This SSL library [Gnu] suffered from the problem of not properly checking
the algorithm parameters field (see Section 5). This problem is fixed in version 1.4.4.
However, a source code inspection5 revealed that the minimum size of 8 octets of FFx
in the padding string is not enforced.6 The attacks using trailing data after the ASN.1
data (see Sections 3 and 4) are avoided by using an ASN.1 parser that returns an error on
additional data after an ASN.1 structure.

OpenSSL. The patch for the affected OpenSSL version [Ope] fixed two problems: not
checking for trailing data (see Sections 3 and 4), and not checking the algorithm parame-
ters field (see Section 5).7

Netscape Security Services (NSS). The problem described in Section 4 has been fixed
in the NSS prior to version 3.11.3 (contained in Firefox and Thunderbird prior to version
1.5.0.7) by switching to another ASN.1 parser8. The implementation error described in
Section 6 is fixed since NSS version 3.11.3. While this problem was fixed for Firefox
2.0 [Moz], it went unnoticed that this fixed a critical problem still present in the older 1.5
branch of Firefox and Thunderbird (fixed since 1.5.0.8).

Bouncy Castle Java Cryptographic Service Provider. The cryptographic service provider
for Java [Bou] was affected up to version 1.33. In later versions this problem is fixed
in a rather radical way. The code was switched from a parsing-based method to the
comparison-based method (see Section 7). Further, the verification code contains a hard-
coded resolution of the ambiguity from the algorithm parameters field being optional.

9 Conclusion

We have shown how Bleichenbacher’s attack on PKCS#1 signature verification can be
extented to much shorter key sizes. Further, we have shown how similar implementation
flaws in signature verification can be efficiently exploited to create fake signatures. All
implementation flaws discussed here stem from the problem of not checking some parts
of the message representative. This highlights (again) that it is essential to check carefully
all fields in the message representative for compliance with the specification.

5 File lib/gnutls pk.c, function gnutls pkcs1 rsa decrypt()
6Interestingly the original security advisory in [OKW06] detailing the algorithm parameter attack gives an

example where the padding uses only two octets of FFx in the padding string, and consequently is not conforming
to the standard, which requires at least eight octets.

7 The function RSA verify() the file crypto/rsa/rsa sign.c is fixed by checking for trailing data
after the ASN.1-encoded data and for an ASN.1-object of type NULL as the algorithm parameters. This latter
check is hard-coded, blocking future use (without changing the code) of hash functions that do have parameters.

8 However, the security-critical behavior of both parsers, allowing trailing data for backward compatibility
vs. disallowing it, is documented only by comments deeply embedded into the source code. Thus, a security
critical feature of the code is used without being well-documented.
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