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Abstract. The differential power analysis (DPA) might break the im-
plementation of elliptic curve cryptosystem (ECC) on memory constraint
devices. Goubin proposed a variant of DPA using the point (0, y), which is
not randomized in Jacobian coordinates or in the isomorphic class. This
point often exists in the standard curves, and we have to care this attack.
In this paper, we propose the zero-value point attack as an extension of
Goubin’s attack. Note that even if a point has no zero-value coordinate,
the auxiliary registers might take zero-value. We investigate these zero-
value registers that cannot be randomized by the above randomization.
Indeed, we have found several points P = (x, y) which cause the zero-
value registers, e.g., (1)3x2 + a = 0, (2)5x4 + 2ax2 − 4bx+ a2 = 0, (3)P
is y-coordinate self-collision point, etc. We demonstrate the standard
curves that have these points. Interestingly, some conditions required for
the zero-value attack depend on the explicit implementation of the ad-
dition formula — in order to resist this type of attacks, we have to care
how to implement the addition formula. Finally, we note that Goubin’s
attack and the proposed attack assume that the base point P can be
chosen by the attacker and the secret scalar d is fixed, so that they are
not applicable to ECDSA signature generation.

Keywords: side channel attack, differential power analysis, elliptic curve
cryptosystem, addition formula, zero-value register.

1 Introduction

Elliptic curve cryptosystem (ECC) is suitable for the implementation on memory
constraint devices, because of its short key size. The differential power analysis
(DPA) is a serious attack on such scare computational devices. If the implemen-
tation is careless, the attacker can successfully recover the secret key by observing
the power consuming of the device. Several simulational or experimental results
show that the DPA is effective on the ECC on these devices [5, 8].
? This work was done while the first author stayed at Technische Universität Darm-
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In order to resist the DPA we usually randomize the base point Q of the
underlying curve E. There are two standard approaches. The first one is to
transform the base point to the random equivalent class in Jacobian (or pro-
jective) coordinates [5]. The second one is to map the all parameters including
the base point to the random isomorphic class [13]. However, Goubin pointed
out that the two methods are not able to randomize the points with zero value,
namely (x, 0) and (0, y) [7]. If we use the base point P = (c−1 mod #E)(0, y) for
some integer c, the DPA can successfully detect the point cP is computed during
the scalar multiplication. The attacker can know the secret key by recursively
adapting this attack for different c. Several standard curves over prime field IFp
contain point (0, y), i.e., the curve coefficient b is quadratic residue modulo p.
We have to care Goubin’s attack on these curves.

In this paper we proposed a novel attack, called the zero-value point attack.
On the contrary to Goubin’s attack, the zero-value point attack uses the zero-
value resister of the addition formula. Even if a point has no zero-value point
coordinate, the auxiliary registers might take zero-value. We investigate all pos-
sible zero-value registers that are not randomized by the above randomization.
Indeed we have found non-trivial points which take the zero-value registers in the
addition formula of Jacobian coordinate implementation, e.g., (1)3x2 + a = 0,
(2)3x4 + 6ax2 + 12bx − a2 = 0, (3)P is y-coordinate self-collision point, etc.
These points are different from Goubin’s point (x, 0) or (0, y). We show that
these points exist on some standard curves.

If we choose the curve that does not have these conditions, we can resist
the zero-value point attack. Interestingly, the existence condition of these con-
ditions depends how to explicitly implement the addition formula. For example,
condition (2) appears if we implement T = −2S + M2 in the doubling of the
elliptic curve as W = −S + M2 and then T = U − S, but it never appears if
we implement it as W = 2S and then T = M2 − U . This observation suggests
that the designer has to care how to securely assemble the multiplication and
the addition in the addition formula. Moreover, we show zero-value points for
Montgomery-type method and elliptic curves over binary fields. We have found
that the security conditions for these classes are quite different from those of the
standard addition formula of the curves over prime fields — the zero-value point
attack strongly depends on the structure of the addition formula.

In order to perform Goubin’s attack or our attack, we assume that the at-
tacker is able to freely choose the base point P and the secret scalar d is fixed
for the scalar multiplication. Hence, we need to care these attacks in only such
protocols as ECIES and single-pass ECDH.

This paper is organized as follows: In section 2, we describe the basic prop-
erties of the elliptic curve cryptosystem. In section 3, we review the side channel
attack and Goubin’s attack using the non-randomized point. In section 4, we
propose the zero-value point attack and investigate the zero-value points for
implementation in Jacobian coordinates. In section 5, we investigate the zero-
value points for Montgomery-type method and elliptic curves over binary fields.
Finally we conclude in section 6.
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2 Elliptic Curve Cryptosystems

Let K = IFp be a finite field, where p > 3 is a prime. The Weierstrass form of
an elliptic curve over K is described as

E : y2 = x3 + ax+ b (a, b ∈ K, 4a3 + 27b2 6= 0).

The set of all points P = (x, y) satisfying E, together with the point of infinity
O, is denoted by E(K), which forms an Abelian group. We denote by x(P ) and
y(P ) the x- and y- coordinate of the point P . Let P1 = (x1, y1) and P2 = (x2, y2)
be two points on E(K) that don’t equal to O. The sum P3 = P1 +P2 = (x3, y3)
can be computed as

x3 = λ(P1, P2)2 − x1 − x2, y3 = λ(P1, P2)(x1 − x3)− y1,

where λ(P1, P2) = (3x1
2 +a)/(2y1) for P1 = P2, and λ(P1, P2) = (y2−y1)/(x2−

x1) for P1 6= ±P2. We call the former, P1 +P2 (P1 = P2), the elliptic curve dou-
bling (ECDBL) and the latter, P1 + P2 (P1 6= ±P2), the elliptic curve addition
(ECADD) in affine coordinate (x, y). These two addition formulae respectively
need one inversion over K, which is much more expensive than multiplication
over K. Therefore, we transform affine coordinate (x, y) into other coordinates
where inversion is not required. We give here the addition and doubling formu-
lae in Jacobian coordinates, which are widely used [4]. In this paper we deal
with Jacobian coordinates, but all discussions can be also applied to projective
coordinates (X : Y : Z) setting x = X/Z and y = Y/Z.

In Jacobian coordinates, we set x = X/Z2 and y = Y/Z3, giving the equation
EJ : Y 2 = X3+aXZ4+bZ6. Then, two points (X : Y : Z) and (r2X : r3Y : rZ)
for some r ∈ K∗ are recognized as the same point. Let P1 = (X1 : Y1 : Z1),
P2 = (X2 : Y2 : Z2), and P3 = P1 + P2 = (X3 : Y3 : Z3). The doubling and
addition formulae can be represented as follows.

ECDBL in Jacobian Coordinates (ECDBLJ ) :
X3 = T , Y3 = −8Y1

4 +M(S − T ), Z3 = 2Y1Z1,
S = 4X1Y1

2, M = 3X1
2 + aZ1

4, T = −2S +M2.

ECADD in Jacobian Coordinates (ECADDJ ) :
X3 = −H3 − 2U1H

2 +R2, Y3 = −S1H
3 +R(U1H

2 −X3), Z3 = Z1Z2H,
U1 = X1Z2

2, U2 = X2Z1
2, S1 = Y1Z2

3, S2 = Y2Z1
3, H = U2−U1, R = S2−S1.

This addition formula is usually optimized in the sense of the number of mul-
tiplications in the base field. We require 11 and 16 multiplications for ECDBL
and ECADD, respectively.

In elliptic curve cryptosystems, it is necessary to compute dP , where P ∈
E(K) and d is an n bit integer. The standard method to compute dP is called as
the binary method. d = (dn−1 · · · d1d0)2 is the binary representation of d. The
binary method is described as follows.
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Algorithm 1: Binary method
Input: d = (dn−1 · · · d1d0)2, P ∈ E(K) (dn−1 = 1).
Output: dP .
1. Q← P
2. For i = (n− 2) downto 0 do:

Q← ECDBL(Q),
If di = 1 then
Q← ECADD(Q,P ),

3. Return(Q).

When we compute the scalar multiplication using Jacobian coordinates, the
point Q in step 2 is represented as Q = (X : Y : Z). In step 3, the point Q must
be recovered to affine coordinate by computing x = X/Z2 and y = Y/Z3.

Let #E be the order of E(K). For the security of elliptic curve cryptography,
we must choose E(K) such that #E is the product of a large prime and a very
small integer h, called the cofactor. To avoid the small subgroup attack, it is
convenient that h = 1, i.e. #E is prime. In this paper, we are interested in the
curves with prime order.

3 Side Channel Attacks on ECC

In this section we review the side channel attack on ECC. The simple power
analysis (SPA), the differential power analysis (DPA), and the Goubin’s attack
are described. We explain the standard countermeasures that resist the SPA and
the DPA. These known countermeasures cannot resist the Goubin’s attack, if the
point (0, y) exist on the underlying curve.

3.1 SPA and Countermeasures

The SPA observes the power consumption of devices, and detects the difference
of operations using the secret key. Algorithm 1 is vulnerable to the SPA. The
scalar multiplication is computed by the addition formulae, namely ECDBL and
ECADD, based on the bit of the secret scalar. The operation ECADD in Algo-
rithm 1 is computed if and only if the underlying bit is 1, although the operation
ECDBL is always computed. The addition formulae are assembled by the basic
operations of the definition field (See Appendix A). There are differences between
the basic operations of ECDBL and those of ECADD. Thus the SPA attacker
can detect the secret bit. In order to resist the SPA, we have to eliminate the
relations between the bit information and their addition formulae.

Coron proposed a simple countermeasure, which is called as the double-and-
add-always method. The double-and-add-always method is described as follows:
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Algorithm 2: Double-and-add-always method
Input: d = (dn−1 · · · d1d0)2, P ∈ E(K) (dn−1 = 1).
Output: dP .
1. Q[0]← P
2. For i = (n− 2) downto 0 do:

Q[0]← ECDBL(Q[0]),
Q[1− di]← ECADD(Q[0], P ),

3. Return(Q[0]).

The double-and-add-always method always computes ECADD whether di = 0
or 1. Therefore, attackers cannot guess the bit information of d using SPA.

Three more different approaches that resist the SPA have been proposed. We
show several schemes used for the Weierstrass form in the following. The first
one is the Montgomery-type method, which always computes both ECADD and
ECDBL for bit information di. It was originally proposed by Montgomery [19],
and enhanced the Weierstrass form of elliptic curves over K [10, 12, 1, 6]. The
second one is to use an indistinguishable addition formula, with which we can
compute both ECDBL and ECADD [1, 2]. The third one is to use the addition
chain with fixed pattern with pre-computed points [17, 18, 21].

3.2 DPA and Countermeasures

The differential power analysis (DPA) observes many power consumptions and
analyzes this information together with statistic tools. Even if a method is secure
against SPA, it might not secure against the DPA. The DPA attacker tries to
guess that the computation cP for an integer c is performed during the scalar
multiplication. He/She gathers many power consumptions cPi for i = 1, 2, 3, ...,
and detects the spike arisen from the correlation function based on the specific
bit of cPi. The DPA can break Algorithm 2, because the sequence of points
generated by Algorithm 2 is deterministic and the DPA can find correlation for
a specific bit.

Coron pointed out that it is necessary to insert random numbers during
the computation of dP to prevent DPA [5]. The randomization eliminates the
correlation between the secret bit and the sequence of points. The standard ran-
domization methods for the base point P are Coron’s 3rd [5] and Joye-Tymen
countermeasures [13]. The main idea of these countermeasures is to randomize
the base point before starting the scalar multiplication. If the base point is ran-
domized, there is no correlation among the power consumptions of each scalar
multiplication. The DPA cannot obtain the spike of the power consumption de-
rived from the statistical tool. We describe the two standard randomization in
the following. There are other DPA countermeasures (e.g. randomized window
methods [25, 9], etc), but in this paper we aim at investigating the security of
Coron’s 3rd and Joye-Tymen countermeasures.

Coron’s 3rd Countermeasure: Coron’s 3rd countermeasure is based on ran-
domization of Jacobian (or projective) coordinates. To prevent DPA we trans-
form P = (x, y) in affine coordinate to P = (r2x : r3y : r) in Jacobian coordi-
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nates for a random value r ∈ K∗. This randomization produces the randomiza-
tion in each representation of point and the randomization of power consumption
during scalar multiplication dP .

Joye-Tymen Countermeasure: Joye-Tymen countermeasure uses an isomor-
phism of an elliptic curve [13]. For a random value r ∈ K∗, an elliptic curve
E : y2 = x3 + ax+ b and the point P = (x, y) can be transformed to its isomor-
phic class like E′ : y′2 = x′

3 + a′x′+ b′ for a′ = r4a, b′ = r6b and P ′ = (x′, y′) =
(r2x, r3y). Instead of computing dP , we compute Q′ = dP ′ = (xQ′ , yQ′) on E′

and then pull back Q = (xQ, yQ) by computing xQ = r−2xQ′ and yQ = r−3yQ′ .
This countermeasure can hold the Z-coordinate equal to 1 during the computa-
tion of dP ′ and it enables good efficiency.

3.3 Goubin’s Power-Analysis Attack

Goubin proposed a new power analysis using a point that can be randomized by
neither Coron’s 3rd nor Joye-Tymen countermeasure [7]. Goubin focused on the
following two points: (x, 0) and (0, y). The points (x, 0) and (0, y) are represented
by (X : 0 : Z) and (0 : Y : Z) in Jacobian coordinates. Even these points are
randomized by Coron’s 3rd countermeasure, one of the coordinate remains zero,
namely (r2X : 0 : rZ) and (0 : r3Y : rZ) for some random integer r ∈ K∗.
Similarly Joye-Tymen randomization cannot randomize these points. Therefore,
the attacker can detect whether the point (x, 0) or (0, y) is used in the scalar
multiplication using the DPA.

The attacker can break the secret scalar using these points as follows: For
a given scalar c we can always generate a point P that satisfies P = (c−1 mod
#E)(0, y), because the order of the curve #E is prime. If the attacker chooses
P as the base point for the scalar multiplication, the DPA can detect whether
cP is computed or not during the scalar multiplication. Then the attacker can
obtain the whole secret scalar by recursively applying this process from the most
significant bit. Unfortunately, Goubin has not discussed how effective his attack
is. In Section 4.6, we discuss the multiplication with zero can be effectively
detected for a standard implementation.

Goubin’s attack is effective on the curves that have points (x, 0) or (0, y).
The point (x, 0) is not on the curves with prime order ( 6= 2), because the order
of the point (x, 0) is 2. The point (0, y) appears on the curve if b is quadratic
residue modulo p, which is computed by solving y2 = b.

4 Zero-Value Point Attack

In this section, we propose a novel attack, called the zero-value point attack. On
the contrary to Goubin’s attack, our attack utilizes the auxiliary register which
takes the zero-value in the definition field. We investigate the zero-value registers
that are randomized by neither Coron’s 3rd nor Joye-Tymen countermeasure.
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The addition formula is assembled by the operations of the base field, namely
the multiplication and the addition. We have about 20 different operations of
the auxiliary registers for both ECDBL and ECADD (See the addition formula
in Appendix A). There are a lot of possibilities that the value of the auxiliary
registers become zero. The zero-value registers of the ECDBL and those of the
ECADD are quite different. We examine all possible operations that take zero
in the auxiliary registers.

We show several criteria, with which the proposed attack is effective — the
attack is strongly depending on the implementation of the addition formula.
We list up all possible security conditions and we discuss their effectiveness.
Moreover, we demonstrate the attack is effective on several standard curves.

4.1 Outline of Attack

We describe the outline of the zero-value point attack in the following.
The goal of the zero-value point attack is to break the secret scalar by adap-

tively choosing the base point Q. We assume that the scalar multiplication is
computed by Algorithm 2. But, we can apply our zero-value point attack to the
SPA countermeasures using the deterministic addition chain described in section
3.1. The attacker breaks the secret key from the most significant bit. The second
most significant bit dn−2 can be broken by checking whether one of addition
formulae ECDBL(2Q), ECADD(2Q,Q), ECDBL(3Q), and ECADD(3Q,Q) is
computed. If we can generate the zero-value register for these addition formu-
lae, we can detect the second most bit — dn−2 = 0 holds if ECDBL(2Q) or
ECADD(2Q,Q) has the zero-value register, and dn−2 = 1 holds if ECDBL(3Q)
or ECADD(3Q,Q) has the zero-value register.

Next, we assume that (n−i−1) most significant bits (dn−1, · · · , di+1)2 of d are
known. We can break the i-th bit di by checking whether one of ECDBL(2kQ),
ECADD(2kQ,Q), ECDBL((2k+1)Q), and ECADD((2k+1)Q,Q) is computed,
where k =

∑n−1
j=i+1 dj2

j−i−1. We know that di = 0 holds if ECDBL(2kQ) or
ECADD(2kQ,Q) has the zero-value register, and di = 1 holds if ECDBL((2k +
1)Q) or ECADD((2k+1)Q,Q) has the zero-value register. Therefore if we find a
point P that takes the zero-value register at ECDBL, we can use the base point
Q = (c−1 mod #E)P for some integer c for this attack. On the other hand, in
order to use the zero-value register at ECADD, the base point Q that causes the
zero-value register at ECADD(cQ,Q) must be found.

Thus the attacker has to find the points Q which cause the zero-value register
at ECDBL(cQ) or ECADD(cQ,Q) for a given integer c. The ECDBL causes the
zero-value register for a given one point Q, but the zero-value register for the
ECADD depends on the two points Q and cQ. In this paper we call these points
zero-value point (ZVP).

4.2 Possible Zero-Value Points from ECDBL

We investigate the ZVP for addition formulae in Jacobian coordinates, but the
same arguments apply to addition formulae in projective coordinates. We search
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the zero-value points in the following. We examine all auxiliary registers of the
ECDBL in Jacobian coordinates. There are 21 intermediate values for ECDBLJ ,
as described in Appendix A. We prove the following theorem.

Theorem 1. Let E be an elliptic curve over a prime field IFp defined by y2 =
x3+ax+b. The elliptic curve E has the zero-value point P = (x, y) of ECDBLJ (P )
if and only if one of the following five conditions is satisfied: (ED1) 3x2 +a = 0,
(ED2) 5x4 + 2ax2 − 4bx + a2 = 0, (ED3) the order of P is equal to 3, (ED4)
x(P ) = 0 or x(2P ) = 0, and (ED5) y(P ) = 0 or y(2P ) = 0. Moreover, the
zero-value points are not randomized by either Coron’s 3rd or Joye-Tymen ran-
domization.

Conditions (ED4) and (ED5) are exactly those of Goubin’s attack.
We will prove this theorem in the following. Let P1 = (X1 : Y1 : Z1), and

P3 = (X3 : Y3 : Z3) = ECDBLJ (P1). The intermediate values of ECDBL can
be zero if and only if one of the following values is zero.

X1, Y1, Z1, X3, Y3,M,−S +M2, S − T

Here Z1 = 0 implies P = O, which never appears for input of ECDBLJ (P ).
The conditions X1 = 0, Y1 = 0, X3 = 0, and Y3 = 0 are equivalent to x(P ) = 0,
y(P ) = 0, x(2P ) = 0, and y(2P ) = 0 which are exactly the points discussed by
Goubin. Next M = 3X2

1 +aZ4
1 = 0 implies the condition 3x2+a = 0, which is the

condition (ED1). Note that neither Coron’s 3rd nor Joye-Tymen randomization
can randomize this point. Indeed the randomized point (X ′1 : Z ′1) = (r2X1 : rZ1)
by Coron’s 3rd randomization satisfies 3X ′21 + aZ ′41 = r4(3X2

1 + aZ4
1 ) = 0,

where r ∈ K∗. The randomized point (X ′′1 : Z ′′1 ) = (s2X1 : Z1) and curve
parameter a′′ = s4a by Joye-Tymen randomization satisfies 3X ′′21 + a′′Z ′′41 =
s4(3X2

1 +aZ4
1 ) = 0, where s ∈ K∗. The condition−S+M2 = 0 implies−4X1Y

2
1 +

(3X2
1 + aZ4

1 )2 = 0, which is equivalent to −4xy2 + (3x2 + a)2 = 0, namely
condition (ED2). The condition S − T = 0 implies x1 = x3. This occurs only if
2P = ±P , which means P = O or the order of P equals to 3, namely condition
(ED3).

Remark 1. There are two orders of the additions to obtain T = −2S + M2.
−S + M2 appears if we compute with the following ordered additions W =
−S +M2 and then T = W − S as in Appendix A. If we compute W = 2S and
then T = M2 −W , condition (ED2) does not appear in the ECDBL. Thus we
should avoid the former order of the two additions for the implementation of
ECDBL.

4.3 Possible Zero-Value Points from ECADD

We investigate the possible zero-value points from ECADD, namely all possible
zero-value points P which satisfies ECADD(cP, P ) for some integer c. We exam-
ine the addition formula in Jacobian coordinates. There are 23 auxiliary values
in the ECADD, as described in Appendix A. We prove the following theorem.
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Theorem 2. Let E be an elliptic curve over prime field IFp defined by y2 = x3+
ax+b. The elliptic curve E has the zero-value point P = (x, y) of ECADDJ (cP, P )
for some c ∈ ZZ if and only if one of the following seven conditions is satisfied:
(EA1) P is a y-coordinate self-collision point, (EA2) x(cP ) + x(P ) = 0, (EA3)
x(P ) − x(cP ) = λ(P, cP )2, (EA4) 2x(cP ) = λ(P, cP )2, x(cP ) = λ(P, cP )2, or
x(P ) = λ(P, cP )2, (EA5) the order of P is 2c+1, (EA6) x(cP ) = 0, x(P ) = 0, or
x((c+1)P ) = 0, and (EA7) y(cP ) = 0, y(P ) = 0, or y((c+1)P ) = 0. Moreover,
the zero-value points are not randomized by either Coron’s 3rd or Joye-Tymen
randomization.

A point P = (x, y) is called the y-coordinate self-collision point if there is
a positive integer c such that the y-coordinate of the point cP is equal to y.
Conditions (EA6) and (EA7) are those of Goubin’s attack.

Let P1 = (X1 : Y1 : Z1), P2 = (X2 : Y2 : Z2), and ECADDJ (P1, P2) = (X3 :
Y3 : Z3). Here we can set P1 = cP2 for some integer c. If one of the following
values is zero, at least one of the intermediate values must be zero.

X1, Y1, Z1, X2, Y2, Z2, X3, Y3,H,R, U1H
2 −X3.

Here if one of X1, Y1, X2, Y2, X3, Y3 is zero, this provides conditions (EA6) and
(EA7). Z1 = 0, Z2 = 0 and H = 0 imply P1 = O, P2 = O, and P1 = ±P2, re-
spectively, which never appear for input of ECADDJ (P1, P2). Next, R = Y1Z

3
2−

Y2Z
3
1 = 0 implies y1 = y2, where y1 = Y1/Z

3
1 and y2 = Y2/Z

3
2 , namely condi-

tion (EA1). This is equal to the y-coordinate collision point. Note that neither
Coron’s 3rd nor Joye-Tymen randomization can randomize this point. Indeed the
randomized point (Y ′1 : Z ′1) = (r3Y1 : rZ1), (Y ′2 : Z ′2) = (s3Y2 : sZ2) by Coron’s
3rd randomization satisfies Y ′1Z

′3
2 −Y ′2Z ′31 = r3s3(Y1Z

3
2−Y2Z

3
1 ) = 0, where r, s ∈

K∗. The randomized point (Y ′′1 : Z ′′1 ) = (t3Y1 : Z1), (Y ′′2 : Z ′′2 ) = (t3Y2 : Z2) by
Joye-Tymen randomization satisfies Y ′′1 Z

′′3
2 − Y ′′2 Z ′′31 = t3(Y1Z

3
2 − Y2Z

3
1 ) = 0,

where t ∈ K∗. Finally U1H
2 −X3 = 0 implies 3U1H

2 +H3 − R2 = 0, which is
x1 − x3 = 0. This occurs only if (c + 1)P = ±cP , which means P = O or the
order of P equals to 2c+ 1, namely condition (EA5).

The other possible intermediate values appear only at the computation of
X3 = −H3−2U1H

2 +R2. For ECADDJ in Appendix A, we compute −H3 +R2,
but we can differently implement it. We have 6 possible conditions:

(a1 )−H3 − 2U1H
2 = 0, (a2 )− 2U1H

2 +R2 = 0,
(a3 )−H3 +R2,= 0 (a4 )−H3 − U1H

2 = 0,
(a5 )− U1H

2 +R2 = 0, (a6 )(−H3 − U1H
2) +R2 = 0.

We examine these conditions in the following. These above points are randomized
by neither Coron 3rd nor Joye-Tymen randomization. Condition (a1) implies
H(X2Z

2
1 + X1Z

2
2 ) = 0, namely H = 0 or x1 + x2 = 0 in affine coordinate. The

condition H = 0 has already appeared. x1 + x2 = 0 implies x(cP ) + x(P ) = 0,
which is equal to condition (EA2). Condition (a2) implies −2X1Z

2
2 (X2Z

2
1 −

X1Z
2
2 )2 + (Y2Z

3
1 − Y1Z

3
2 )2 = 0, which is 2x1 = λ2 in affine coordinate. It is
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condition (EA4). Condition (a3) implies−(X2Z
2
1−X1Z

2
2 )3+(Y2Z

3
1−Y1Z

3
2 )2 = 0,

which is x2 − x1 = λ(P2, P1)2, namely condition (EA3). Condition (a4) implies
H = 0 or U2 = 0, which has already discussed. Condition (a5) is converted
to −X1Z

2
2 (X2Z

2
1 − X1Z

2
2 )2 + (Y2Z

3
1 − Y1Z

3
2 )2 = 0, which is x1 = λ2 in affine

coordinate. It is equal to condition (EA4). Condition (a6) implies −(X2Z
2
1 −

X1Z
2
2 )3−X1Z

2
2 (X2Z

2
1 −X1Z

2
2 )2 +(Y2Z

3
1 −Y1Z

3
2 )2 = 0, which is x2 = λ(P2, P1)2

in affine coordinate. It is equal to condition (EA4).

Remark 2. If we implement the addition −H3 − 2U1H
2 + R2 with either con-

dition (a1), (a2), or (a3), then conditions (a4), (a5), and (a6) never appear in
ECADD. Condition (a1), (a2), and (a3) are never simultaneously satisfied —
only one of them can be occurred. For example, the implementation of ECADD
in Appendix A uses (a3), and thus the other conditions will never appear. The
security of ECADD against the zero-value point attack strongly depends on its
implementation, and we should care how to implement it.

4.4 How to Find the ZVP

We discuss how to find the ZVP described in the previous sections. A zero-value
point is called as trivial, if the order of the point is smaller than that of the curve.
The standard curves over prime fields have prime order, i.e., the orders of these
elliptic curves are always prime and there is no trivial ZVP on them. Goubin’s
point (0, y) is a non-trivial point. In the following we discuss the non-trivial ZVP
that is different from Goubin’s point.

First we discuss the non-trivial ZVP from ECDBL. There are two non-trivial
points (x, y) such that (ED1) 3x2 + a = 0, (ED2) 5x4 + 2ax2 − 4bx + a2 = 0.
The solution of these polynomials over finite fields can be easily computed using
the Cantor-Zassenhaus algorithm [3].

Next we discuss the non-trivial ZVP from ECADD. The existence conditions
of these points are determined by not only one base point P but also the scalar c.
In order to find these ZVP we have to know how to represent the relation between
P and cP , for example, x(cP ) + x(P ) = 0. Izu and Takagi discussed a similar
self-collision for Brier-Joye addition formula [11]. Here we can similarly apply
their approach to finding the ZVP. We explain it in the following. Let P = (x, y)
be the point on the elliptic curve. The division polynomial ψ(P ), φ(P ), ω(P )
is a useful tool for representing these relationships as the polynomials over the
definition field K. The point cP can be represented as follows:

cP =
(
φc(P )
ψ2
c (P )

,
ωc(P )
ψ3
c (P )

)
where c is a scalar value (see for example, [22]). For small c, we know ψ1(P ) =
1, ψ2(P ) = 2y, and ψ3(P ) = 3x4 +6ax2 +12bx−a2, where P = (x, y). We define
φc = xψ2

c − ψc−1ψc+1 and 4yωc = ψc+2ψ
2
c−1 − ψc−2ψ

2
c+1.

For example, the points P = (x, y) which satisfy x(cP ) + x(P ) = 0 are
the solutions of φc(P ) + x(P )ψ2

c (P ) = 0. The points P = (x, y) with x(P ) −
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x(cP ) = λ(P, cP )2 are the solutions of polynomial (x(P )ψ2
c (P ) − φc(P ))3 =

(y(P )ψ3
c (P )−ωc(P ))2. Similarly we can construct the equations whose solutions

imply the ZVP. The polynomials ψc(P ), ωc(P ), φc(P ) have degree with order
O(c2), which increases exponentially in log c. Therefore, it is a hard problem to
fin the solutions of these equations for a large c — we can find the ZVP only for
a small c using the division polynomials. It is an open problem to find a more
efficient algorithm of computing the ZVP.

4.5 ZVP on Standard Curves

We have examined the existence of several ZVP over the SECG [23] random
curves over prime fields. Especially we discuss the non-trivial conditions from
ECDBLJ , namely (ED1) 3x2 + a = 0, (ED2) 5x4 + 2ax2 − 4bx+ a2 = 0. These
conditions are most effectively used for the proposed zero-value point attack.
We have found enough curves which have the points with condition (ED1) or
(ED2). In Table 1 we summarize the existence of these points. Notation ‘o’
means that the curve has the point with one of the aforementioned conditions.
For comparison we also show point (0, y) used in Goubin’s attack in Table 1.
Some curves, e.g., secp112r1, secp224r1, are secure against Goubin’s attack, but
not against ours. SECG secp224r1 is insecure only against condition (ED2).

(0, y) (ED1) (ED2)

SECG secp112r1 - o o

SECG secp128r1 o - -

SECG secp160r1 o - -

SECG secp160r2 o - o

SECG secp192r1 o o o

SECG secp224r1 - - o

SECG secp256r1 o - o

SECG secp384r1 o o -

SECG secp521r1 o o -

Table 1. The existence of non-trivial ZVP of ECDBLJ

4.6 Detecting the Zero-Value Registers

We discuss how the DPA can detect the multiplication or the addition with the
zero-value register on memory constrained devices such as smart cards.

The embedded CPU on a smart card, typically an 8 bit CPU, has only so poor
computing power that we usually equip a coprocessor for implementing ECC.
In the coprocessor, a multiplication circuit and an addition circuit are generally
embedded for computing the modular multiplication and the modular addition of
the base field IFp, respectively. These circuits compute the outputs by inputting
two k-bit values, where we usually choose k = 32. The power consumption of
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the multiplication circuit might be dominant for the whole power consumption
of the device.

The modular multiplication algorithm suitable for the multiplication circuit
is the Montgomery multiplication [16]. Algorithm 3 describes the Montgomery
multiplication using a k bit multiplication circuit. The computations of xjyi,
a0m

′, and mjui at Step 2 use the k multiplication circuit.

Algorithm 3: Montgomery multiplication
Input: M = (mn−1 · · ·m0)b, X = (xn−1 · · ·x0)b, Y = (yn−1 · · · y0)b, b = 2k,

R = bn, gcd(m, b) = 1, m′ = m−1 mod b.
Output: XY R−1 mod M .
1. A← 0 (A = (an · · · a0)b).
2. For i from 0 to (n− 1) do:

temp← 0,
For j from 0 to (n− 1) do:
{temp, aj} ← xjyi + aj + temp,
an ← temp, temp← 0, ui ← a0m

′ mod b,
For j from 0 to n do:
{temp, aj} ← mjui + aj + temp,
A← A/b.

3. If A ≥M , A← A−M .
4. Return(A).

Suppose that one of the input X,Y in the Montgomery multiplication equals
to 0. If the input X (or Y ) is 0, then values xj (or yj), a0, and ui at Step 2
always take 0, respectively. Therefore, one of the inputs of the multiplication
circuit is always 0 during the computation of the Montgomery multiplication.

We explain the implication of this zero input for the multiplication circuit in
the following. A 32-bit multiplication circuit comprises three parts (see [24] for
example): (1) AND gates for partial products, (2) carry-save adder trees such as
Wallace trees, and (3) fast carry propagate adder. The gate counts of these three
parts are roughly estimated to about 2K ,7K, and 1K gates, respectively. If one
of the inputs to the multiplication circuit is 0, then it behaves as follows: The
output of the AND gate (1) always takes 0 though the other input varies. The
inputs and outputs of both the carry save adder (2) and fast carry propagate
adder (3) are always 0. This means that the power consumption of first part con-
siderably decreases, and those of the latter two parts are almost nothing during
the computation of Montgomery multiplication. Thus the power consumption
of the zero-value multiplication dramatically decreases, namely more than 80%.
We guess that the attacker can distinguish it only by the single observation of
the power consumption.

On the other hand, modular addition (X+Y mod M) and subtraction (X−
Y mod M) is implemented by using k bit addition circuit. If one of the input
X,Y in modular addition or subtraction equals to zero, one of the inputs of
addition circuit is always 0 during the computation of X + Y or X − Y . Thus,
the power consumption of the addition circuit considerably decreases. However,
because the gate counts of the addition circuit are much smaller than those of
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the multiplication circuit, it does not reflect the whole power consumption as
the case of modular multiplication. Thus, the attacker makes much more efforts
in order to detect the modular addition and subtraction with the zero value
comparing with the modular multiplication with the zero value.

In the standard curves such as SECG [23] random curves over prime fields,
the prime p is chosen to be a Mersenne-like prime because of efficient modular
reduction. In this case, the multiplication circuit is used only for the multipli-
cation X · Y . Therefore, the modular multiplication with the zero value can be
also detected efficiently.

5 Application to Other Classes

In this section we discuss how the zero-value point attack is effective on other
classes of ECC. The Montgomery-type methods and the curves over IF2n are
investigated. The analyses of the zero-value points for these classes are quite
similar that of Jacobian coordinates over prime fields. We examine all possible
zero-value register randomized by neither Coron’s 3rd nor Joye-Tymen counter-
measure.

5.1 Montgomery-Type Method

We investigate the ZVP over the Montgomery-type method. It was originally
proposed by Montgomery [19], and enhanced the Weierstrass form of elliptic
curves over K [10, 12, 1, 6]. The scalar multiplication is computed as follows:

Algorithm 4: Montgomery-type method
Input: d = (dn−1 · · · d1d0)2, P ∈ E(K) (dn−1 = 1).
Output: dP .
1. Q[0]← P, Q[1]← mECDBL(P )
2. For i = (n− 2) downto 0 do:

Q[1− di]← mECADD(Q[0], Q[1]),
Q[di]← mECDBL(Q[di]).

3. Return(Q[0]).

mECADD and mECDBL are the special elliptic curve addition and doubling for
the Montgomery-type method. In this method, we don’t need to use y-coordinate
(Y -coordinate in projective coordinates) to compute the scalar multiplication
dP . This leads the efficiency of the Montgomery-type method. Let P1 = (X1 :
Z1) and P2 = (X2 : Z2) in projective coordinates, which don’t equal to O, by
setting x = X/Z. In the following we describe the doubling formula P3 = (X3 :
Z3) = 2P1 and the addition formula P3 = (X3 : Z3) = P1 +P2, where P1 6= ±P2

and P3
′ = (X3

′ : Z3
′) = P2 − P1 where (X ′3, Z

′
3 6= 0). There are also several

variations of these formulae [10, 12, 1, 6].

ECDBL in Montgomery-Type Method (mECDBLP) :
X3 = (X1

2 − aZ1
2)2 − 8bX1Z1

3, Z3 = 4(X1Z1(X1
2 + aZ1

2) + bZ1
4).
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ECADD in Montgomery-Type Method (mECADDP) :
X3 = Z3

′((X1X2−aZ1Z2)2−4bZ1Z2(X1Z2+X2Z1)), Z3 = X3
′(X1Z2−X2Z1)2.

If the base point is chosen as P = (0, y), this addition formula mECADDP causes
error at the end of scalar multiplication due to the zero Z-coordinate. This point
should not be used for the base point.

The Montgomery-type method always computes mECADD and mECDBL
whether di = 0 or 1. Therefore, attackers cannot guess the bit information of
d using SPA (see [10, 12, 1, 6] for further discussions). We can enhance SPA-
resistance to DPA-resistance by applying either Coron’s 3rd or Joye-Tymen
countermeasure to the Montgomery-type method.

Here we investigate the zero-value points for mECDBLP and mECADDP in
the following. We assume that (n− i− 1) most significant bits (dn−1, · · · , di+1)2

of d are known, and let k =
∑n−1
j=i+1 dj2

j−i−1. If di = 0, mECDBLP(kP ) at i-th
loop and mECADDP(2kP, (2k + 1)P ) at (i − 1)-th loop will be computed. On
the contrary, if di = 1, mECDBLP((k+1)P ) at i-th loop and mECADDP((2k+
1)P, (2k+2)P ) at (i−1)-th loop will be computed. Thus the attacker can detect
the i-th bit di by checking whether one of mECDBLP(kP ), mECDBLP((k +
1)P ), mECADDP(2kP, (2k + 1)P ), mECADDP((2k + 1)P, (2k + 2)P ) is com-
puted. We investigate the ZVP at mECDBLP(P ) and mECADDP(cP, (c+ 1)P )
for given integer c in following two theorems. We prove these two theorems in
Appendix B.

Theorem 3. Let E be an elliptic curve over a prime field IFp defined by y2 =
x3+ax+b. The elliptic curve E has the zero-value point P = (x, y) of mECDBLP

(P ) if and only if one of the following four conditions is satisfied: (MD1) x2−a =
0, (MD2) x2 + a = 0, (MD3) x(P ) = 0 or x(2P ) = 0, and (MD4) y(P ) = 0.
Moreover, the zero-value points are not randomized by either Coron’s 3rd or
Joye-Tymen randomization.

Theorem 4. Let E be an elliptic curve over a prime field IFp defined by y2 =
x3+ax+b. The elliptic curve E has the zero-value point P = (x, y) of mECADDP

(cP, (c + 1)P ) for c ∈ ZZ if and only if one of the following three conditions is
satisfied: (MA1) x(cP )x((c + 1)P ) = a, (MA2) x(cP ) + x((c + 1)P ) = 0, and
(MA3) x(cP ) = 0, x((c+1)P ) = 0, or x((2c+1)P ) = 0. Moreover, the zero-value
points are not randomized by either Coron’s 3rd or Joye-Tymen randomization.

The conditions in Theorem 3 and Theorem 4 are different from those of the
standard addition formula. The zero-value point attack strongly depends on the
structure of the addition formula.

5.2 Curves over IF2n

We investigate the ZVP over ECC over binary fields IF2n .
An elliptic curve over IF2n is defined as E : y2 + xy = x3 + ax2 + b, where

a, b ∈ IF2n and b 6= 0. Let P1 = (x1, y1) and P2 = (x2, y2) be two points on E
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that don’t equal to O. The sum P3 = P1 + P2 = (x3, y3) can be computed as
x3 = λ(P1, P2)2 + λ(P1, P2) + x1 + x2 + a, y3 = λ(P1, P2)(x1 + x3) + x3 + y1,
where λ(P1, P2) = y1/x1 + x1 for P1 = P2 and λ(P1, P2) = (y1 + y2)/(x1 + x2)
for P1 6= ±P2. In ECC over IF2n , most efficient addition and doubling formulae
for the double-and-add-always method was proposed by López and Dahab [14].
In this paper, affine coordinate (x, y) is transformed into projective coordinates
(X : Y : Z) by setting x = X/Z and y = Y/Z2. Let P1 = (X1 : Y1 : Z1),
P2 = (X2 : Y2 : Z2), and P3 = P1 + P2 = (X3 : Y3 : Z3). The doubling and
addition formulae can be presented as follows.

ECDBL in Projective Coordinates (ECDBLP2n) :
X3 = X1

4 + bZ1
4, Y3 = bZ1

4Z3 +X3(aZ3 + Y1
2 + bZ1

4), Z3 = X1
2Z1

2.

ECADD in Projective Coordinates (ECADDP2n) :
X3 = C2 +H +G, Y3 = HI + Z3J , Z3 = F 2,
A1 = Y1Z2

2, A2 = Y2Z1
2, B1 = X1Z2, B2 = X2Z1, C = A1 +A2, D = B1 +B2,

E = Z1Z2, F = DE, G = D2(F + aE2), H = CF , I = D2B1E +X3,
J = D2A1 +X3

The combination of the double-and-add-always method and Coron’s 3rd
countermeasure was considered to achieve DPA resistance. However, Goubin’s
attack can break this DPA resistance. Moreover, we investigate the ZVP in fol-
lowing two theorems. We prove these two theorems in Appendix B.

Theorem 5. Let E be an elliptic curve over a binary field IF2n defined by y2 +
xy = x3 + ax2 + b. The elliptic curve E has the zero-value point P = (x, y)
of ECDBLP2n(P ) if and only if one of the following four conditions is satisfied:
(BD1) x2 + y = 0, (BD2) ax2 + y2 = 0, ax2 + b = 0 or y2 + b = 0 (BD3)
x(P ) = 0 or x(2P ) = 0, and (BD4) y(P ) = 0 or y(2P ) = 0. Moreover, the
zero-value points are not randomized by Coron’s 3rd randomization.

Theorem 6. Let E be an elliptic curve over a binary field IF2n defined by y2 +
xy = x3 + ax2 + b. The elliptic curve E has the zero-value point P = (x, y) of
ECADDP2n(cP, P ) if and only if one of the following seven conditions is satisfied:
(BA1) P is a y-coordinate self-collision point, (BA2) x(cP ) + x(P ) + a = 0,
(BA3) λ(cP, P ) = 1, λ(cP, P )2 = x(cP ) + x(P ) + a or λ(cP, P ) = x(cP ) +
x(P )+a, (BA4) the order of P is 2c+1, (BA5) y(cP )+x((c+1)P ) = 0, (BA6)
x(cP ) = 0, x(P ) = 0, or x((c + 1)P ) = 0, and (BA7) y(cP ) = 0, y(P ) = 0, or
y((c+ 1)P ) = 0. Moreover, the zero-value points are not randomized by Coron’s
3rd randomization.

The conditions in Theorem 5 and Theorem 6 are also different from those
of the standard addition formula or the Montgomery-type Method of the curves
over prime fields. A different implementation of addition formula might cause
the different zero-value point attack. Finally we point out that there is no ZVP
other than Goubin’s point (0, y) for the Montgomery-type method over IF2m

proposed by López and Dahab [15].
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6 Conclusion

We presented the zero-value point attack on elliptic curve cryptosystem, which
detect the zero-value auxiliary registers of the addition formulae. These points
can be randomized by neither Coron’s 3rd nor Joye-Tymen countermeasure, and
we can detect these operations using the DPA. We have found the several non-
trivial points P , which take the zero-value, namely (1)3x2 + a = 0, (2)5x4 +
2ax2−4bx+a2 = 0, (3)P is a y-coordinate self-collision point, etc. These points
exist on several standard curves from SECG. Moreover, we showed the zero-
value points for the other classes, e.g., the Mongomery-type method and ECC
over finite field IF2m . These conditions provide us new security criteria for the
secure implementation of ECC.

We should care the zero-value point attack under the computation environ-
ment allowed to perform the DPA. The zero-value point attack could be resisted
if we randomized the scalar. We should randomize not only the base point but
also the secret scalar.
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Appendix A

In this appendix we describe an implementation of ECDBL and ECADD in the
Jacobian coordinate. The addition formulae are assembled by the basic arith-
metic of the definition field, namely the addition +, the subtraction −, and the
multiplication ×.

ECDBLJ

Input (X1, Y1, Z1, a)
Output (X3, Y3, Z3)
T4 ← X1, T5 ← Y1, T6 ← Z1

T1 ← T4 × T4; (= X2
1 )

T2 ← T5 × T5; (= Y 2
1 )

T2 ← T2 + T2; (= 2Y 2
1 )

T4 ← T4 × T2; (= 2X1Y
2
1 )

T4 ← T4 + T4; (= 4X1Y
2
1 = S)

T2 ← T2 × T2; (= 4Y 4
1 )

T2 ← T2 + T2; (= 8Y 4
1 )

T3 ← T6 × T6; (= Z2
1 )

T3 ← T3 × T3; (= Z4
1 )

T6 ← T5 × T6; (= Y1Z1)
T6 ← T6 + T6; (= 2Y1Z1)
T5 ← T1 + T1; (= 2X2

1 )
T1 ← T1 + T5; (= 3X2

1 )
T3 ← a× T3; (= aZ4

1 )
T1 ← T1 + T3; (= 3X2

1 + aZ4
1 = M)

T3 ← T1 × T1; (= M2)
T3 ← T3 − T4; (= −S +M2)
T3 ← T3 − T4; (= −2S +M2 = T )
T4 ← T4 − T3; (= S − T )
T1 ← T1 × T4; (= M(S − T ))
T4 ← T1 − T2; (= 8Y 4

1 −M(S − T ))
X2 ← T3, Y2 ← T4, Z2 ← T6

ECADDJ

Input (X1, Y1, Z1, X2, Y2, Z2)
Output (X3, Y3, Z3)
T2 ← X1, T3 ← Y1, T4 ← Z1, T5 ← X2, T6 ← Y2, T7 ← Z2

T1 ← T7 × T7; (= Z2
2 )

T2 ← T2 × T1; (= X1Z
2
2 = U1)

T3 ← T3 × T7; (= Y1Z2)
T3 ← T3 × T1; (= Y1Z

3
2 = S1)

T1 ← T4 × T4; (= Z2
1 )

T5 ← T5 × T1; (= X2Z
2
1 = U2)

T6 ← T6 × T4; (= Y2Z1)
T6 ← T6 × T1; (= Y2Z

3
1 = S2)

T5 ← T5 − T2; (= U2 − U1 = H)
T7 ← T4 × T7; (= Z1Z2)
T7 ← T5 × T7; (= Z1Z2H = Z3)
T6 ← T6 − T3; (= S2 − S1 = R)
T1 ← T5 × T5; (= H2)
T4 ← T6 × T6; (= R2)
T2 ← T2 × T1; (= U1H

2)
T5 ← T1 × T5; (= H3)
T4 ← T4 − T5; (= −H3 + R2)
T1 ← T2 + T2; (= 2U1H

2)
T4 ← T4 − T1; (= −H3 − 2U1H

2 + R2 = X3)
T2 ← T2 − T4; (= U1H

2 −X3)
T6 ← T6 × T2; (= R(U1H

2 −X3))
T1 ← T3 × T5; (= S1H

3)
T1 ← T6 − T1; (= −S1H

3 + R(U1H
2 −X3))

X3 ← T4, Y3 ← T1, Z3 ← T7
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Appendix B

Proof of Theorem 3

The intermediate values can be zero if and only if one of the following value are
zero.

X1, Z1, X3, Z3, X1
2 − aZ1

2, X1
2 + aZ1

2

Here Z1 = 0 implies P = O, which can be discarded. X1 = 0 and X3 = 0 are
equivalent to x(P ) = 0 and x(2P ) = 0, namely conditions (MD3). Z3 = 0 implies
X1Z1(X1

2 + aZ1
2) + bZ1

4 = 0, namely x1
3 + ax1 + b = 0. This is equivalent to

y1 = 0, namely (MD4).
Next X1

2 − aZ1
2 = 0 implies x1

2 − a = 0, where x1 = X1/Z1, namely
(MD1). Note that neither the Coron’s 3rd nor the Joye-Tymen countermeasure
can randomize the points. Indeed the randomized point (X ′1 : Z ′1) = (rX1 : rZ1)
by the Coron’s 3rd countermeasure satisfies X ′1

2 − aZ ′1
2 = r2(X1

2 − aZ1
2) = 0,

where r ∈ K∗. The randomized point (X ′′1 : Z ′′1 ) = (s2X1 : Z1) and curve
parameter a′′ = s4a by the Joye-Tymen countermeasure satisfies X ′′1

2 − aZ ′′1
2 =

s4(X1
2 − aZ1

2) = 0, where s ∈ K∗.
Finally X1

2 + aZ1
2 = 0 implies x1

2 + a = 0, namely (MD2). This condition
is influenced by neither the Coron’s 3rd countermeasure nor the Joye-Tymen
countermeasure, the same as (MD1).

Proof of Theorem 4

The intermediate values can be zero if and only if one of the following value are
zero.

X1, Z1, X2, Z2, X3, X1Z2 −X2Z1, X1X2 − aZ1Z2, X1Z2 +X2Z1

Here Z1 = 0, Z2 = 0, and X1Z2 − X2Z1 = 0 imply P1 = O, P2 = O, and
P1 = ±P2, respectively, which can be discarded. If one of X1, X2, X3 is zero, this
provides conditions (MA3).

Next X1X2 − aZ1Z2 = 0 implies x1x2 − a = 0, where x1 = X1/Z1 and
x2 = X2/Z2, namely condition (MA1). Note that neither Coron’s 3rd nor Joye-
Tymen countermeasure can randomize the points. Indeed the randomized points
(X ′1 : Z ′1) = (rX1 : rZ1), (X ′2 : Z ′2) = (sX2 : sZ2) by Coron’s 3rd countermea-
sure satisfies X ′1X

′
2 − aZ ′1Z ′2 = rs(X1X2 − aZ1Z2) = 0, where r, s ∈ K∗. The

randomized point (X ′′1 : Z ′′1 ) = (t2X1 : Z1), (X ′′2 : Z ′′2 ) = (t2X2 : Z2) and curve
parameter a′′ = t4a by Joye-Tymen countermeasure satisfies X ′′1X

′′
2 − aZ ′′1Z ′′2 =

t4(X1X2 − aZ1Z2) = 0, where t ∈ K∗.
Finally X1Z2 +X2Z1 = 0 implies x1 +x2 = 0, namely (MA2). This condition

is influenced by neither Coron’s 3rd nor Joye-Tymen countermeasure, the same
as (MA1).
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Proof of Theorem 5

If one of the following values is zero, at least one of the intermediate values must
be zero.

X1, Y1, Z1, X3, Y3, aZ3 + Y1
2 + bZ1

4.

Here Z1 = 0 implies P = O, which never appears for input of ECDBLP2n(P ).
The condition X1 = 0, X3 = 0, Y1 = 0, and Y3 = 0 are equivalent to x(P ) = 0,
x(2P ) = 0, y(P ) = 0, and y(2P ) = 0, namely conditions (BD3), (BD4). Next,
aZ3 +Y1

2 + bZ1
4 = aX1

2Z1
2 +Y1

2 + bZ1
4 = 0 implies ax1

2 + y1
2 + b = 0, where

x1 = X1/Z1 and y1 = Y1/Z1
2, namely x1(x1

2 + y1) = 0. This indicates x1 = 0,
which is condition (BD3), or x1

2 + y1 = 0, which is condition (BD1). Note that
Coron’s 3rd countermeasure cannot randomize the point. Indeed the randomized
point (X ′1 : Y ′1 : Z ′1) = (rX1 : r2Y1 : rZ1) by Coron’s 3rd countermeasure satisfies
aX ′1

2
Z ′1

2 + Y ′1
2 + bZ ′1

4 = r4(aX1
2Z1

2 + Y1
2 + bZ1

4) = 0, where r ∈ IF∗2n .
The other possible intermediate values appear only at the computation of

aZ3 + Y1
2 + bZ1

4. we have three possible intermediate values:

aZ3 + Y1
2, aZ3 + bZ1

4, Y1
2 + bZ1

4.

aZ3 + Y1
2 = 0, aZ3 + bZ1

4 = 0, and Y1
2 + bZ1

4 = 0 imply ax1
2 + y1

2 = 0,
ax1

2 + b = 0, and y1
2 + b = 0, respectively. These three conditions are never

simultaneously satisfied, which indicates condition (BD2).

Proof of Theorem 6

If one of the following values is zero, at least one of the intermediate values must
be zero.

X1, Y1, Z1, X2, Y2, Z2, X3, Z3, C,D, F + aE2, I, J.

Here if one of X1, Y1, X2, Y2, X3, Y3 is zero, this provides conditions (BA6) or
(BA7). Z1 = 0, Z2 = 0 and D = 0 imply P1 = O, P2 = O, and P1 = ±P2,
respectively, which never appear for input of ECADDP2n(P1, P2). Next, C = 0
implies y1 = y2, where y1 = Y1/Z1

2 and y2 = Y2/Z2
2, namely condition (BA1).

This point never appears for input of ECADDP2n . Next F + aE2 = 0 implies
x1 + x2 + a = 0, namely condition (BA2). I = 0 implies x1 + x3 = 0, which is
condition (BA4). Finally J = 0 implies y2 + x3 = 0, namely condition (BA5).
These conditions aren’t randomized by Coron’s 3rd countermeasure.

The other possible intermediate values appear only at the computation of
X3 = C2 +H +G. We have three possible intermediate values:

C2 +H,C2 +G,H +G.

C2 +H = 0 implies y1 +y2 +x1 +x2 = 0, namely λ(P1, P2) = 1. Next C2 +G = 0
implies (y1 +y2)2 +(x1 +x2)2(x1 +x2 +a) = 0, namely λ(P1, P2)2 = x1 +x2 +a.
Finally H + G = 0 implies y1 + y2 + (x1 + x2)(x1 + x2 + a) = 0, namely
λ(P1, P2) = x1+x2+a. These three conditions are never simultaneously satisfied,
which indicates condition (BA3).
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