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1 Introduction

Quantum computers, although mostly still a theoretical concept, have already im-
pacted modern cryptography immensely. Since the celebrated algorithm for integer fac-
torization by Peter Shor ([Sho94], [Sho99]), it has become clear that quantum computers
change the landscape of problems that are considered to be hard and are therefore the
basis of cryptographic systems. For example, large scale quantum computers would make
it possible to break public-key cryptosystems such as the widely used RSA scheme, by
using Shor’s or related algorithms. Thus cryptographers have been looking for other
seemingly hard problems that even quantum computers are not able to solve efficiently
and that cryptographic systems can be based on. This field of research is known as
post-quantum cryptography. Recent research suggests that lattice-based cryptography, i.e.
cryptographic primitives based on lattices, are somewhat resilient to attacks not only
by classical, but also by quantum computers. A variety of lattice problems, such as
finding a shortest non-zero vector in a given norm or the task to find the closest lattice
point to a given target, are conjectured to be hard problems, i.e. there are no known
efficient algorithms to solve these problems until today, despite immense efforts in recent
cryptographic research.

Another problem worth mentioning in this context is the learning with errors problem
(LWE) first introduced by Oded Regev in 2005 ([Reg05]). This is a problem in machine
learning which asks to recover some secret vector from a number of linear equations which
have been disturbed by a random additive error term. Without the error the problem
would be simple and could be solved by standard Gaussian elimination. However, adding
the noise to the ‘right side’ of the system of linear equations makes the problem seemingly
very hard. Regev showed in [Reg05] that LWE is at least as hard as certain lattice
problems in the worst-case. Since its introduction, the LWE problem has been subject
to a lot of research. There are quite a variety of cryptographic constructions based
on the conjectured hardness of LWE, such as public-key cryptosystems (e.g. [Reg05],
[Pei09]), digital signature schemes (e.g. [BG14], [DDLL13]) and key exchange protocols
(e.g. [DXL12]). However, there are algorithms – both classical and quantum – for solving
LWE, but they all require superpolynomial resources, e.g. [BKW03].

A good deal of this thesis will be dedicated to explore two ways of solving instances of
LWE by using quantum reductions from LWE to other computational problems and then
to solve these problems with quantum algorithms. More explicitely we will show how it
is possible to view an instance of LWE as an instance of the bounded distance decoding
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problem (BDD), which can be reduced to the dihedral hidden subgroup problem (DHSP)
as well as the subset sum problem (SSP) by combining a variety of reductions from the
literature due to Bai et al. ([SBW16]) and Regev ([Reg04a]). Then, we use solvers due
to Kuperberg ([Kup05], [Kup11]), Regev ([Reg04b]) and Bernstein et al. [BJLM13] to
solve DHSP and SSP and thus BDD/LWE. We analyse the complexity of the combined
reductions together with the solver algorithms to present a complete analysis of our
approach to solve LWE instances with quantum algorithms for DHSP and SSP. We also
specify what kind of LWE instances, i.e. what choices for the LWE parameters, can be
solved with the help of quantum reductions to DHSP or SSP, respectively. In this context
the failure parameter of the dihedral coset problem (DCP), which is a variant of DHSP,
will be important. Finally, we discuss some approaches for further research in order to
make the approach of solving LWE instances with quantum reductions to DHSP and
SSP more efficient.

Structure of this thesis

First, we collect the required preliminaries in the topics of quantum computing as well
as lattice-based cryptography in Chapter 2, where we also cover the notation used in this
thesis (Section 2.1). In Section 2.2 we will cover the minimal requirements to provide
the necessary vocabulary and techniques required to understand the various quantum
algorithms presented later on. A very good introduction to the topic of quantum compu-
tation and quantum information is the book by Nielsen and Chuang [NC00]. In Section
2.3 we will provide some background on the topic of lattices, as well as some results on
probability theory which we will require later. We also give a short survey on some of
the standard lattice problems considered in this thesis. Afterwards, we will review the
dihedral group since the hidden subgroup problem on this non-abelian group will be of
great importance to us.

In Chapter 3 we will introduce the hidden subgroup problem (HSP), which plays a some-
what prominent role in the theory of quantum computing, since it captures problems like
integer factorisation, discrete logarithms as well as graph isomorphism. We will present
an algorithm from the literature (e.g. [Lom04] or [NC00]) that solves HSP in the abelian
case.

In Chapter 4 we consider various reductions of computational problems from the liter-
ature. The reductions are due to Bai et al. ([SBW16]) and Regev ([Reg04a]) and will
enable us to solve instances of the bounded distance decoding problem (BDD) with quan-
tum algorithms for the hidden subgroup problem over the dihedral group (DHSP) as well
as the subset sum problem (SSP).

In Chapter 5, we will take a look at two algorithms from the literature for solving DHSP
and SSP. The first subexponential algorithm for DHSP was due to Greg Kuperberg
([Kup05]) and is from 2003. After an improvement of the algorithm by Regev ([Reg04b])
in 2004 , which only needed a polynomial amount of quantum space, Kuperberg gener-
alised Regev’s improved algorithm even further in 2011 ([Kup11]). Kuperberg’s second
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and most recent algorithm for DHSP is the one we will use as a solver. The solver algo-
rithm for SSP is due to Bernstein et al. ([BJLM13]) and is based on an SSP algorithm by
Howgrave-Graham and Joux ([HGJ10]) as well as on techniques from a quantum walk
algorithm by Ambainis ([Amb07]).

Afterwards, in Chapter 6 we will explain how to view an instance of LWE as an instance
of the lattice problem BDD and apply the reductions established earlier in order to solve
LWE with the quantum algorithms for DHSP and SSP. We will then analyse the time
and space requirements for solving LWE instance by making use of the given reductions
to DHSP and SSP.

Finally, in Chapter 7 we will point out certain parts of the reductions from Chapter
4 whose improvement would lead to significantly better results when we solve LWE
instances with algorithms for DHSP and SSP in the way presented in this thesis and we
will also compare our results with algorithms that are used to solve other hard lattice
problems.
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2 Notation and Preliminaries

In this chapter, we will cover the necessary preliminaries from the topics of quantum
computing as well as lattice-based cryptography we will require later on. We will also
establish some general notation that is used throughout this thesis.

2.1 Notation

In this section we will collect some frequently used and fairly standard notation. We de-
note the natural, integer, rational, real and complex numbers by the symbols N,Z,Q,R,C,
respectively. In this thesis, the natural numbers do not include 0. Therefore, we write N0

for the set N ∪{0}. For any positive integer p we denote the set {0, . . . , p−1} by Zp and
we do not always rigorously distinguish between Z/pZ and Zp. Unless stated otherwise
logarithms are always to base 2. We write id or E for the identity map or matrix and, if
we want to emphasise the dimension d, we write idd or Ed. The symbol ∼= denotes the
isomorphy of appropriate objects, e.g. groups, rings or vector spaces. We write dist(x, y)
for the distance between two vectors x, y ∈ Rn in some given metric. Unless stated oth-
erwise we always refer to the euclidean distance. For a set S ⊂ Rn and a vector t ∈ Rn
we set dist(t, S) := infs∈S dist(s, x). With ⊕ we denote the bitwise addition XOR. The
term poly(n) refers to an unspecified, positive-valued polynomial in n ∈ N. We use the
notation N (µ, σ) for a normal distribution with mean µ and standard deviation σ (see
Def. 2.35) as well as U(S) for the discrete or continuous uniform distribution on some
set S ⊆ R.

Since we will be concerned with, for example, the running time of various algorithms and
reductions and since we are particularly interested in the asymptotical examination of
these, we will make heavy use of the Landau symbols.

Definition 2.1 (Landau symbols). Let f, g : R→ R be some real valued functions and
a ∈ R∪{−∞,∞}. The Landau symbols are defined as follows:

• f ∈ O(g) :⇐⇒ lim sup
x→a

∣∣∣f(x)
g(x)

∣∣∣ <∞,
• f ∈ Ω(g) :⇐⇒ lim inf

x→a

∣∣∣f(x)
g(x)

∣∣∣ > 0,

• f ∈ Θ(g) :⇐⇒ f ∈ O(g) ∩ Ω(g),

4



• f ∈ o(g) :⇐⇒ limx→a

∣∣∣f(x)
g(x)

∣∣∣ = 0,

• f ∈ ω(g) :⇐⇒ limx→a

∣∣∣f(x)
g(x)

∣∣∣ =∞.

Unless stated otherwise, we will always consider the case a = ∞. We use the common
(abusive) notation f = O(g) instead of the more accurate f ∈ O(g), and we will also
make use of the expression Õ when we choose to ignore logarithmic factors, that is
f = Õ(g) :⇐⇒ f ∈ O(g logc(g)) for some c ∈ R≥0.

An important term in cryptography, when it comes to analysing algorithms, is ‘efficiency’.
Although the usage of the word ‘efficient’ may vary in some cases, it means in general
that the algorithm has time and space complexity polynomial in the input size. Whenever
we are talking about a reduction from a problem P to another problem P ′, we mean an
algorithm that solves P that has access to a (maybe hypothetical) subroutine that solves
P ′. When we talk about a polynomial-time reduction, the term polynomial-time refers to
the time the reduction takes, excluding the time of the subroutine.

Since we do not restrict ourselves to deterministic algorithms in cryptography, another
important quantity in the analysis of (probabilistic) algorithms is the success probability.
In this context the terms negligible or negligible functions are of great importance.

Definition 2.2 (Negligibility). Let n denote the input size of a problem. A function
ε : N→ R is called negligible, if for every polynomial p : N→ R≥0 there exists an N0 ∈ N
such that

ε(n) ≤ 1

p(n)

holds for all n ≥ N0. If two functions α, β differ only by a negligible amount, we write
α ≈ β.

A standard example for a negligible function is 2−n. Some useful and easily proved
properties of negligible functions are the following.

Lemma 2.3. Let ε, ε1, ε2 be negligible functions and δ a non-negligible function. Let
p : N→ R≥0 be a polynomial. Then

• p · ε is negligible,

• ε1 + ε2 is negligible,

• δ − ε is not negligible.

Coming back to the success probability of an algorithm, we say that an algorithm solves
a certain problem with ‘good’ or ‘high’ probability, if its success probability is bounded
from below by a non-negligible function, e.g. 1/poly(n). This success probability might
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be amplified to a desired degree by running the algorithm several (polynomially many)
times. Finally, when we say that an algorithm has a success probability ‘exponentially
close to 1’ we mean that its success probability differs from 1 by an amount that is
exponentially small in the input size and therefore negligible.

2.2 A Brief Introduction to Quantum Computing

In this section we will give a brief overview on some basic concepts in the topic of quantum
computing. At first, we will consider the fundamental component of quantum comput-
ing, the qubit. Afterwards, we will take a look at the computational model underlying
quantum computers and introduce the concept of quantum measurements. In the last
section we will be concerned with a component of many prominent quantum algorithms:
the quantum Fourier transform.

2.2.1 Qubits and Registers

A quantum bit, or qubit, is the quantum analogue to a classical bit. Just like usual bits,
qubits also have states. The main difference is that a classical bit can only be in one of
the two states 0 and 1 but a qubit, as a two-state quantum mechanical system, can be in
a superposition of states. A superposition can be thought of as some kind of undisturbed
overlapping of physical quantities, e.g. waves. In the context of quantum mechanics it
usually refers to an ‘overlapping’, i.e. a linear combination, of waves functions, or state
vectors of some quantum mechanical system. We will begin by defining single qubits
in a mathematical context, and by making use of the tensor product we will be able to
describe systems with more than one qubit. According to the postulates of quantum
mechanics, any isolated physical system is associated to a complete complex vector space
with an inner product, which is called the state space. The system is then completely
described by a unit vector, called the state vector, in the state space of the system.

Remark 2.4. (Dirac notation) Throughout this thesis we will use the Dirac notation,
which is fairly standard in quantum mechanics. Expressions like |ϕ〉 are so-called ‘kets’
and represent vectors of a complex Hilbert spaces H. Expressions like 〈ψ| are so-called
‘bras’ and represent elements of the dual space H?. For finite-dimensional Hilbert spaces
with a fixed orthonormal basis – this will always be the case in this thesis – we can
think of the kets as column and of the bras as row vectors. For a given ket |ψ〉 , the
corresponding bra 〈ψ| is given by

〈ψ| = |ψ〉† := |ψ〉T .

Bras and kets can be paired in two different ways. A ‘braket’ 〈ψ|ϕ〉 denotes the inner
product of the two kets |ψ〉 and |ϕ〉, whereas the ‘ketbra’ |ψ〉 〈ϕ| denotes the linear
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operator acting on x ∈ H according to (|ψ〉 〈ϕ|)(x) = 〈ϕ|x〉 |ψ〉. In the setting of this
thesis we can therefore think of ketbras as matrices.

Definition 2.5 (The qubit). A qubit is a two-state quantum-mechanical system. The
state space H is a Hilbert space, i.e. a complete inner product space, of dimension two.
Let further {|0〉 , |1〉} denote an orthonormal basis, i.e. a basis of pairwise orthogonal unit
vectors, of H. Then any state vector is of the form

|ψ〉 = a |0〉+ b |1〉 ,

for a, b ∈ C satisfying |a|2 + |b|2 = 1.

Example 2.6. Consider the complex vector space C2 with the usual (complex) inner
product 〈·, ·〉. Then (C2, 〈·, ·〉) is a Hilbert space. We use the orthonormal basis

|0〉 :=

(
1
0

)
, |1〉 :=

(
0
1

)
and call these the computational basis states. For complex numbers α, β ∈ C with
|α|2 + |β|2 = 1 we say that

|ψ〉 = α |0〉+ β |1〉
is a qubit state or a superposition of the basis states. We will interpret the amplitudes
|α|2 = | 〈0|ψ〉 |2 and |β|2 = | 〈1|ψ〉 |2 as the probabilities of the qubit being in the state
|0〉 or |1〉, respectively, when measured (see Section 2.2.3).

As we have already mentioned, we would like to consider systems with more than one
qubit. We can achieve this by using the tensor product, which we denote by ⊗. The
formal definition reads as follows.

Definition 2.7 (Tensor product). Let K be a field and V,W two K-vector spaces. Let X
denote the K-vector space whose basis is formally given by all objects (v, w) with v ∈ V
and w ∈W, and let U be the subspace of X that is generated by all elements of the form

(i) (v, w1 + w2)− (v, w1)− (v, w2)

(ii) (v1 + v2, w)− (v1, w)− (v2, w)

(iii) (av,w)− a(v, w)

(iv) (v, aw)− a(v, w),

where a ∈ K, v, v1, v2 ∈ V,w,w1, w2 ∈W . The tensor product of V and W is defined as

V ⊗W := X�U .

It is itself a K-vector space of dimension dim(V ⊗W ) = dimV · dimW . Its elements,

denoted by v ⊗ w := [(v, w)], are called tensors. If {ei} and {fj} are bases of V and W,

respectively, then {ei ⊗ fj} forms a basis of V ⊗W .
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The rather abstract definition of the tensor product can be somewhat irritating at first.
A more concrete understanding of the tensor product may be obtained through the
Kronecker product.

Definition 2.8 (Kronecker product). Let (aij) = A ∈ Cm×n and B ∈ Cr×s represent
linear maps ϕ : V1 → W1 and ψ : V2 → W2, respectively, between the C-vector spaces
V1, V2,W1,W2. Then the Kronecker product

A⊗B :=

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 ∈ Cmr×ns
represents the tensor product ϕ⊗ ψ : V1 ⊗W1 → V2 ⊗W2, v1 ⊗ v2 7→ ϕ(v1)⊗ ψ(v2).

Example 2.9. We can describe a system with two qubits as follows. Consider the tensor
product C2⊗C2 with the following basis

|00〉 := |0〉 ⊗ |0〉 =

(
1
0

)
⊗
(

1
0

)
, |01〉 := |0〉 ⊗ |1〉 =

(
1
0

)
⊗
(

0
1

)
,

|10〉 := |1〉 ⊗ |0〉 =

(
0
1

)
⊗
(

1
0

)
, |11〉 := |1〉 ⊗ |1〉 =

(
0
1

)
⊗
(

0
1

)
.

Using the Kronecker product, we have

|00〉 =


1
0
0
0

 , |01〉 =


0
1
0
0

 , |10〉 =


0
0
1
0

 , |11〉 =


0
0
0
1

 .

Similarly, we define

|0 . . . 0〉︸ ︷︷ ︸
n times

:= |0〉
⊗n

=


1
0
...
0

 , |0 . . . 01〉 :=


0
1
...
0

 , . . . |1 . . . 1〉︸ ︷︷ ︸
n times

:= |1〉
⊗n

=


0
...
0
1

 .

as a basis for (C2)
⊗n
. For convenience, we usually omit the tensor sign ⊗ in our notation

and write for example |0, 0〉 instead of |0〉 ⊗ |0〉. Sometimes we write |ψ〉 |ϕ〉 rather than
|ψ,ϕ〉 to emphasise that we want to consider the entries in the kets separately. We call
|ψ〉 |ϕ〉 a two qubit quantum register.
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2.2.2 Quantum Circuits and Reversible Computation

We will use circuits as our computational model. Just as classical circuits, which consist
of wires and logical gates, quantum circuits are built from wires and quantum gates. The
gates, classical or quantum, can be represented as matrices. If a gate is supposed to have
n (qu)bits as input and m (qu)bits as output, it can be represented by a 2n×2m matrix.
For example, the (classical) and-gate can be represented as(

1 1 1 0
0 0 0 1

)
,

when we use the notation of Example 2.6. The main difference between classical and
quantum circuits is that in a quantum circuit all computations must be reversible, i.e.
they have to be represented by an invertible matrix. Because a qubit state of n qubits
is a unit vector in C2n, we also require the matrix representing a quantum gate to be an
isometry with respect to the Euclidean norm. Therefore, the appropriate condition that
a matrix U representing a quantum gate has to fulfil is that it is unitary, i.e.

U−1 = U † := U
T
.

Vice versa, every unitary 2n×2n matrix defines a quantum gate acting on n qubits. Next
we give an example of two important quantum gates: the cnot-gate and the Hadamard
gate.

Example 2.10. In the setting of Example 2.9, consider the two qubit gate given by the
matrix

UCN :=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,

which acts on the basis states by

|00〉 7→ |00〉 , |01〉 7→ |01〉 , |10〉 7→ |11〉 , |11〉 7→ |10〉 .

So UCN flips the second qubit, the so-called target qubit, if and only if the first qubit,
the so-called control qubit, is 1. Next we will take a look at the single qubit gate defined
by

H :=
1√
2

(
1 1
1 −1

)
called the Hadamard gate. It acts on the basis states according to

|0〉 7→ 1√
2

(|0〉+ |1〉), |1〉 7→ 1√
2

(|0〉 − |1〉).

So the Hadamard gate takes a basis state, namely |0〉 or |1〉 , and puts it into a superpo-
sition of the two basis states with a probability of 1/2 to measure either 0 or 1.
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Example 2.11. We can use the Kronecker product to construct the Hadamard transform
on n qubits by using the matrix representation H from above. We set H1 := H and
define recursively for 1 < j ≤ n

Hj := H1 ⊗Hj−1 =
1√
2

(
Hj−1 Hj−1

Hj−1 −Hj−1

)
.

For example, the Hadamard transform for a two qubit system is given by the unitary
matrix

H2 =
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

Just as in the case n = 1, the Hadamard transform acts on every basis state by creating
a superposition of all basis states such that the probability to measure one of the states
|00〉 , |01〉 , |10〉 or |11〉 is 1/4.

We have observed that the and-gate, which computes the logical function (a, b) 7→ a∧ b,
is not reversible and is therefore not a valid quantum gate. However, we would obviously
like to have an and-gate in our repertoire. Fortunately, it is possible to simulate any
classical irreversible circuit as a reversible circuit and therefore on a quantum computer
by allowing the use of additional ‘ancilla’ input bits as well as the output of some, for the
following computations unnecessary, ‘garbage’ output bits. This can be seen by using
either the Fredkin gate or the Toffoli gate, which both act on three bits and are universal
gates of reversible computation. The Fredkin gate swaps its first two bits if and only if
its control bit, which remains unchanged, is equal to 1. For the Toffoli gate, the first two
bits are control bits, which remain unchanged, and the third bit is negated if and only
if both control bits are 1. The universality of the Toffoli gate can be realised by noting
that the nand-gate can be built by using the input bits for the nand-gate as the two
control bits of the Toffoli gate and setting the ancilla target bit to 1. Then the output of
the target bit is ¬(a∧b). The above reasoning, together with the well-known universality
of the nand-gate, gives us the following proposition.

Proposition 2.12. Given any (perhaps irreversible) classical circuit that computes a
function f : D → I, x 7→ f(x), there is a reversible circuit which on input x, together
with some ancilla bits in a standard state, computes f(x) together with some additional
garbage output denoted by g(x).

The dependence of the garbage bits g(x) on the initial input x may cause problems in
the quantum computer setting because it may affect interference properties crucial to
quantum computations. However, it is possible to modify the computation in such a way
that the garbage output bits do not depend on x anymore.

Proposition 2.13. Assuming we are in the situation of Proposition 2.12, there is a
reversible circuit C that computes the action

(x, y)
C7−→ (x, y ⊕ f(x))
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for every possible input x to f , where y is some arbitrary starting state.

Proof. We assume that we have access to the reversible variants of the not-gate and the
cnot-gate. Since we have seen that the Toffoli gate is universal, this poses no problem.
We begin by adding two registers: one to store f(x) and one to store the garbage bits
g(x). By making use of the not-gates, we may assume that all ancilla bits are initially
zero, thus we can compute

(x, 0, 0, y) 7→ (x, f(x), g(x), y).

By using an appropriate number of cnot-gates, we can bitwise add the value of the
second register to the fourth one, resulting in

(x, f(x), g(x), y ⊕ f(x)).

Since the computation of f is reversible and does not affect the fourth register at all, we
can apply the reverse circuit to obtain

(x, 0, 0, y ⊕ f(x)).

The statement follows by omitting the two zero registers.

Remark 2.14. To simplify the notation, it is a standard procedure to refer to the modified
circuit above as the reversible circuit that computes f. Most of the time we will not
specifically state that the computation is reversible in the setting of quantum computers.

Remark 2.15. The complexity classes P and NP are the same, no matter if we talk
about reversible or irreversible computation. This is because the overhead for the extra
controlled-NOT operations is linear in the number of bits that are involved in the circuit,
and the number of required ancilla bits scales at most linearly with the number of gates.
Also, the number of gates in the reversible circuit is the same as in the irreversible one
up to a constant factor representing the number of Toffoli gates which are needed to
simulate a single element of the irreversible circuit. For a more detailed discussion of the
content of this subsection, we refer to [NC00], Sections 1.3. and 3.2.5.

2.2.3 Quantum Measurements

Of course, we would like to observe the quantum mechanical systems in question at some
point. Therefore another important concept for us is the measurement or the partial
measurement of a quantum mechanical system. Such an interaction results in the system
not being closed anymore, thus the mathematical description of this ‘observation’ is no
longer required to be represented by unitary operators as before. The measurement
destroys the quantum state and collapses it into a classical system.

11



Definition 2.16 (Quantum measurements). Mathematically any quantum measurement
is described by a collection of linear measurement operators {Mi}i∈I , where I is an index
set whose elements represent the possible outcomes of the quantum measurement. The
measurement operators must fulfil the completeness equation∑

i∈I
M †iMi = id,

where id is the identity operator on the Hilbert space in question. If the state of the
quantum system is |ψ〉, then the probability pi of measuring the outcome i is given by

pi = 〈ψ|M †iMi |ψ〉 ,

and the state |ψ′〉 of the system after the measurement is obtained by the re-normalisation

|ψ′〉 =
Mi |ψ〉√
〈ψ|M †iMi |ψ〉

.

Example 2.17. Consider the one qubit system from Example 2.6. Let M0 = |0〉 〈0| and
M1 = |1〉 〈1| be the measurement operators. It is easy to verify that they satisfy the
completeness equation. If the system is in the state |ψ〉 = α |0〉+ β |1〉 with α, β ∈ C as
above, we have

p0 = |α|2, p1 = |β|2

as we have stated earlier.
Remark 2.18. When describing quantum algorithms, it is standard to just say that a
quantum register is measured rather than specifying the measurement operators. From
now on, we will do this as well.

Often, we will be interested in measuring only a subset of the qubits used in our al-
gorithms. Thus the remaining qubits will collapse into a state compatible with the
measurement.
Example 2.19. Consider the quantum state

|ψ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉 , with |α|2 + |β|2 + |γ|2 + |δ|2 = 1.

If we decide to measure only the left qubit we get 0 with probability |α|2 + |β|2. Let us
assume that the result of our measurement is indeed 0, then the state |ψ〉 above would
collapse to

|ψ′〉 =
1√

|α|2 + |β|2
(α |00〉+ β |01〉)

because the squared values of the coefficients, or amplitudes, of the basis states must
once again sum up to 1.

Sometimes it can be beneficial to perform a measurement in a basis different from the
computational one as the following example illustrates.

12



Example 2.20. Consider the Hadamard basis on one qubit defined by

|+〉 :=
1√
2

(|0〉+ |1〉) and |−〉 :=
1√
2

(|0〉 − |1〉).

Let us assume we have somehow managed to prepare the state

|ψ〉 =
1√
2

(|0〉+ eπid |1〉)

for some integer d. Our goal is to find the least significant bit of d, i.e. we want to
determine the parity of d. A simple calculation shows that the state |ψ〉 has the following
representation in the Hadamard basis:

|ψ〉 =
1− eπid

2
|−〉+

1 + eπid

2
|+〉 .

Thus a measurement in the Hadamard basis would produce the basis states |+〉 and |−〉
with probabilities

p|+〉 =

∣∣∣∣1 + (cos(πd) + i sin(πd))

2

∣∣∣∣2 =
1 + cos(πd)

2

p|−〉 =

∣∣∣∣1− (cos(πd) + i sin(πd))

2

∣∣∣∣2 =
1− cos(πd)

2
.

From this we see immediately that we measure |+〉 with probability 1 if d is even, and
|−〉 if d is odd.

2.2.4 The Quantum Fourier Transform

We will take a look at a part of many quantum algorithms: the quantum Fourier trans-
form (QFT). From now on we will often use the notation |j〉 for some j ∈ N0, by identi-
fying j with its binary representation j1 . . . jn, such that j = j1 ·2n−1 + . . .+ jn−1 ·2 + jn.
This is compatible with our former notation of the computational basis.

Definition 2.21. Let N ∈ N and let |0〉 , . . . , |N − 1〉 denote an orthonormal basis of
a Hilbert space H. The quantum Fourier transform (QFT) F : H → H is the linear
operator defined by

|j〉 F7−→ 1√
N

N−1∑
k=0

e2πijk/N |k〉 , ∀j ∈ {0, . . . , N − 1}. (2.1)

The action on an arbitrary state is given by

N−1∑
j=0

xj |j〉
F7−→

N−1∑
k=0

yk |k〉 ,
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where

yk :=
1√
N

N−1∑
j=0

xje
2πijk/N , for all k ∈ {0, . . . , N − 1}

is the discrete Fourier transform of the N points x0, . . . , xN−1.

Lemma 2.22. For N = 2n let F denote the quantum Fourier transform acting on n
qubits and ω = exp(2πi/N). Then F is unitary and given by the matrix

F :=
1√
N


1 1 1 . . . 1
1 ω ω2 . . . ωN−1

1 ω2 ω4 . . . ω2(N−1)

...
...

... . . .
...

1 ωN−1 ω2(N−1) . . . ω(N−1)2

 .

Proof. The matrix representation of F follows directly from the definition of the quantum
Fourier transform (2.1). It remains to check that F is a unitary matrix. Let ck denote
the k-th column of the matrix F . On the one hand, we have

〈ci|cj〉 =
1

N

N−1∑
k=0

ω(i−j)k =
1− ω(i−j)N

N(1− ωi−j)
= 0

for i, j ∈ {0, . . . , N − 1}, i 6= j, because ωi−j is an N -th root of unity. On the other
hand, if i = j, then

〈ci|ci〉 =
1

N

N−1∑
k=0

1 = 1.

Therefore, the columns of F form an orthonormal basis. So F is unitary.

Remark 2.23. From Lemma 2.22 we see immediately that the inverse Fourier transform
F−1 is given by F † = F . It acts on the basis states according to

|k〉 F
−1

7−−−→ 1

2n/2

2n−1∑
j=0

e−2πijk/2n |j〉 ,

which is easily seen because of ω = ω−1. Also note that the Hadamard transform is just
the Fourier transform on one qubit, or as we will see later (in Section 3.1), the Fourier
transform in the additive group of two elements Z/2Z.

The QFT has the following nice product representation.

Lemma 2.24. Let N = 2n and |0〉 , . . . , |N − 1〉 the computational basis for an n bit
quantum system. For m ≤ n we write 0.j1j2 . . . jm to represent the binary fraction
j1/2 + j2/4 + . . .+ jm/2

m. The QFT can be given the following product representation.

|j1, . . . jn〉 =
1

2n/2
(
|0〉+ e2πi·0.jn |1〉

) (
|0〉+ e2πi·0.jn−1jn |1〉

)
· · ·
(
|0〉+ e2πi·0.j1...jn |1〉

)
.
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Proof. We write out j and k as their binary representations and calculate:

|j〉 = |j1 . . . jn〉
F7−→ 1

2n/2

2n−1∑
k=0

e2πijk/2n |k〉

=
1

2n/2

1∑
k1=0

· · ·
1∑

kn=0

e2πij(
∑n
l=1 kl2

−l) |k1 . . . kn〉

=
1

2n/2

1∑
k1=0

· · ·
1∑

kn=0

n⊗
l=1

e2πijkl2
−l |kl〉

=
1

2n/2

n⊗
l=1

 1∑
kl=0

e2πijkl2
−l |kl〉


=

1

2n/2
(
|0〉+ e2πi·0.jn |1〉

) (
|0〉+ e2πi·0.jn−1jn |1〉

)
· · ·
(
|0〉+ e2πi·0.j1...jn |1〉

)
.

Remark 2.25. The product representation can be used to show how to implement the
QFT efficiently using O(n2) quantum gates. It is possible to show that the QFT can
be implemented efficiently for arbitrary N ∈ N by constructing it for any odd integer
and then combining this with the construction for a power of 2 via the tensor product.
For more details concerning the efficient implementation of the QFT, we refer to [NC00]
Chapter 5 or [Lom04] Section 3.4 and Appendix A.

2.3 Lattice-based Cryptography

In this section we present some standard definitions, notations and well-known facts
regarding lattices, and probability distributions we will need later on.

2.3.1 Lattices

Definition 2.26. Let n ∈ N. A subset L ⊂ Rn that is a discrete additive subgroup of
Rn is called a lattice.

Remark 2.27. Every lattice L can be written as

b1Z+ . . .+ bmZ

for some linearly independent vectors b1, . . . , bm ∈ Rn. The set B := {b1, . . . , bm} is
called a basis of L. The integer m is called the rank of L. If m = n, we say L has full
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rank. It can be convenient to write a lattice as

L := L(B) := B · Zm =

{
m∑
i=1

zibi : zi ∈ Z

}
,

where B is the matrix whose columns are the basis vectors b1, . . . , bm. In a slight abuse
of notation we will speak of B as the basis of L as well. Of course, a lattice basis is not
unique. In fact, take any matrix U ∈ Zm×m with | det(U)| = 1, i.e. U is a unimodular
matrix, then B · U is also a basis of L and every basis of L can be obtained that way.

From now on we will be dealing with full-rank lattices exclusively. For every full-rank
lattice, there is a dual lattice, which is defined as follows.

Definition 2.28 (The dual lattice). Let L be a lattice and let 〈·, ·〉 denote the standard
scalar product on Rn. The dual lattice of L is defined as

L? := {x ∈ Rn : 〈L, x〉 ⊆ Z}.

Remark 2.29. If B is a basis of L, then B? := (BT )−1 is a basis of L?. We also have
L = (L?)? for every lattice L.

Lattices have certain invariants, which do not depend on the chosen basis. Some of the
invariants we will be dealing with are introduced in the following.

Definition 2.30. The determinant of a lattice L is

det(L) := |det(B)|

for some lattice basis B of L . Note, that this definition does not depend on the choice
of basis, see Remark 2.27. Also note that det(L?) = 1/ det(L).

The determinant of a lattice also gives us the volume of the lattice, as the following
proposition demonstrates. See for example [Neu13, Chapter 1 §4].

Proposition 2.31. Let L be a full-rank lattice with basis (matrix) B. The volume of L
is defined as the volume (Lebesgue measure) of the fundamental parallelepiped

P(B) := B · [0, 1)n =

{
n∑
i=1

xibi : xi ∈ [0, 1)

}
and is given by

vol(P(B)) = det(L).

Definition 2.32. Let i ∈ N. The i-th successive minimum λi(L) of a lattice L in a
certain norm is the smallest r ∈ R such that there exist i linear independent vectors in
L of norm at most r. Especially,

λ1(L) = min
v∈L\{0}

‖v‖

is the length of a shortest non-zero vector in L.
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We will require some useful facts about lattice bases, which have been reduced by the well-
known LLL-algorithm, we will present in the following proposition. Roughly speaking,
the LLL-algorithm computes a basis of rather short and nearly orthogonal lattice vectors.
An LLL-reduced basis can be found for any lattice in polynomial-time. The running time
of the LLL-algorithm can be stated as O(nd5 log3(‖B‖∞)), where d is the rank of the
lattice L ⊂ Rn and ‖B‖∞ = max1≤i≤j≤d |Bi,j |. For more details see [LLL82], [EJ16] as
well as [Kal83].

Proposition 2.33. Let {b1, . . . , bn} be an LLL-reduced basis and {b∗1, . . . , b∗n} its Gram-
Schmidt orthogonalisation. That is, b∗i is the component of bi orthogonal to the subspace
spanned by b1, . . . , bi−1. Then it holds

‖b∗i ‖ ≤
√

2‖b∗i+1‖, for all 1 ≤ i ≤ n

and for i > j we have

|〈bi, b∗j 〉| ≤
1

2
‖b∗j‖2.

Proof. See [Reg04a] or [LLL82].

Lemma 2.34. Let L be an n-dimensional lattice and u ∈ L with λ1(L) = ‖u‖, i.e. u is
a shortest vector in L. Let {b1, . . . , bn} be an LLL-reduced basis of L and

u =
n∑
i=1

uibi,

then |ui| ≤ 22n for i ∈ {1, . . . , n}.

Proof. See [Reg04a, Lemma 3.3.].

2.3.2 Probability Theory and Gaussian Distributions on Lattices

In this section we collect some well-known facts from probability theory, we will need
later, and we introduce the standard Gaussian probability distribution on lattices.

Definition 2.35 (The normal distribution). The normal or Gaussian distribution is the
continuous probability distribution whose density function is given as

f(x) :=
1√
2πσ

e−
(x−µ)2

2σ2

for some µ, σ2 ∈ R with σ2 > 0. The normal distribution has mean µ and variance σ2.
We denote this distribution by N (µ, σ2).
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Proposition 2.36 (Hoeffding’s inequality [Hoe63]). Let X1, X2, . . . , Xm be independent
and identically distributed random variables such that ai ≤ Xi − E[Xi] ≤ bi for real
a1, . . . , am, b1, . . . , bm almost surely, and let c > 0 be any real constant, then

Prob

[
m∑
i=1

(Xi − E[Xi]) ≥ c

]
≤ exp

(
− 2c2∑m

i=1(bi − ai)2

)
.

Applying Hoeffding’s inequality to Bernoulli random variables leads to the following often
used bound.

Proposition 2.37 (Chernoff-Hoeffding bound). Let X1, X2, . . . Xm be independent and
identically distributed Bernoulli random variables, i.e they take values in {0, 1}. Then
for any 0 ≤ γ ≤ 1 we have

Prob

[
m∑
i=1

Xi ≥ (E[X1] + γ)m

]
≤ e−2mγ2

and

Prob

[
m∑
i=1

Xi ≤ (E[X1]− γ)m

]
≤ e−2mγ2 .

In particular, it holds

Prob

[∣∣∣∣∣
m∑
i=1

Xi −mE[X1]

∣∣∣∣∣ ≥ mγ
]
≤ 2e−2mγ2 .

Proposition 2.38 (Chebyshev bound). Let X be a random variable with µ = E[X] and
σ2 = Var(X) <∞. Then for all real k > 0 we have

Prob[|X − µ| ≥ k] ≤ σ2

k2
.

Proof. See for example [Kle13, Thm. 5.11]

Definition 2.39. Let A ⊂ Rn be a countable subset, such that ρs(A) :=
∑

y∈A ρs(y)
converges, the discrete Gaussian probability distribution with parameter s > 0 is defined
as

DA,s(x) :=
ρs(x)

ρs(A)
, x ∈ A,

where ρs(x) := exp(−π‖x/s‖).

Remark 2.40. Since
∫
ρs(x) dx = sn, the function ρs/sn is a density function of a con-

tinuous Gaussian distribution with mean 0 and standard deviation σ = s/
√

2π.
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An important lattice quantity, introduced by Micciancio and Regev in [MR07], is the
so-called smoothing parameter. Basically, it is the smallest width such that a discrete
Gaussian measure on a lattice ‘behaves like a continuous one’. For the sake of complete-
ness, we include the formal definition.

Definition 2.41. Let L be an n-dimensional lattice and ε = ε(n) > 0 (typically some
negligible function of n). The smoothing parameter ηε(L) is defined as the smallest s
such that ρ1/s(L? \{0}) ≤ ε.
Remark 2.42. For more details on the smoothing parameter, especially in the LWE
context, we refer to [MR07] as well as [Reg09].

2.3.3 Lattice Problems

In this section we will give a compact overview of some of the most prominent lattice
problems. In the following definitions an n-dimensional lattice L is given to us by some
lattice basis B and γ(n) denotes some function of the lattice dimension, which we will
think of as an approximation factor. We say, an algorithm solves one of the following
problems efficiently, if it solves it in time O(poly(n)).

Definition 2.43 (Approximate shortest vector problem (SVPγ)). Given an n-dimensional
lattice L and some γ = γ(n), the approximate shortest vector Problem (SVPγ) is to find
a vector v ∈ L such that ‖v‖ ≤ γ(n) · λ1(L). The special case where γ(n) ≡ 1, i.e.
‖v‖ = λ1(L) is called the shortest vector problem (SVP).

Definition 2.44 (Decisional approximate shortest vector problem (GapSVPγ)). Given
an n-dimensional lattice L and some γ = γ(n), where it is promised that either λ1(L) ≤ 1
or λ1(L) > γ(n), determine which is the case.

Definition 2.45 (Approximate shortest independent vectors problem (SIVPγ)). Given
an n-dimensional lattice L and some γ = γ(n), the approximate shortest independent
vectors problem (SIVPγ) is to find a set {s1, . . . , sn} of linearly independent vectors of L
which satisfy ‖si‖ ≤ γ(n) · λi(L) for all i ∈ {1, . . . , n}.
Definition 2.46 (Unique shortest vector problem(uSVPγ)). Given an n-dimensional
lattice L and some γ = γ(n) such that λ2(L) > γ(n) · λ1(L), the unique shortest vector
problem (uSVPγ) is to find a vector v ∈ L with ‖v‖ = λ1(L). The quantity λ2(L)/λ1(L)
is sometimes called the uSVP-gap.

Definition 2.47 (Bounded distance decoding problem (BDDγ)). Given an n-dimensional
lattice L, some γ = γ(n) as well as a target vector t ∈ Rn with the guarantee that
dist(t,L) ≤ γ(n)λ1(L), the bounded distance decoding problem (BDDγ) is to find a lat-
tice vector c ∈ L such that ‖c− t‖ = min

v∈L
‖v − t‖.

Remark 2.48. Note that the closest vector is unique if and only if γ < 1
2 .

Remark 2.49. We remark that uSVP is harder for smaller values of the parameter γ
whereas the BDD problem gets easier for smaller values of γ.
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Learning With Errors

In the following we give the definition of the main problem which we would like to solve
using quantum reductions. It is the learning with errors problem (LWE) introduced by
Regev in [Reg05].

Definition 2.50 (Learning with errors (LWE)).

• Parameters and components: The description of an LWE instance consists of a
positive integer n, an integer modulus q ≥ 2 and an error distribution χ on Zq.

• The LWE distribution: For any vector s ∈ Znq (the secret), we sample from the
LWE distribution As,χ over Znq ×Zq by choosing a ∈ Znq uniformly at random and
choosing e according to χ. The output is (a, b = 〈s, a〉 + e mod q), the so-called
LWE sample.

• Search version of LWE: We are given a number of m independent LWE samples,
drawn from As,χ for a uniformly random s ∈ Znq , the goal is to find s.

• Decision version of LWE: We are given a number of m independent LWE samples
(ai, bi)1≤i≤m ∈ Znq ×Zq, distinguish whether these samples were drawn from As,χ
for a uniformly random s ∈ Znq or from the uniform distribution over Znq ×Zq.

We say, that an algorithm solves the search or the decision version of LWE if it outputs
the secret s with probability exponentially close to 1 or if it can distinguish with non-
negligible advantage between samples, drawn from the uniform distribution over Znq ×Zq
and the LWE-distribution As,χ, respectively.

Remark 2.51. In most applications the error distribution over Zq is as follows: Recall
that the density function of the normal distribution with mean µ ∈ R and standard
deviation σ > 0 is

fµ,σ(x) =
1√
2πσ

e
−(x−µ)2

2σ2 , x ∈ R .

Let the rounded normal distribution on Zq be defined via

hqµ,σ : Zq → [0, 1] hqµ,σ(n) :=
∑
k∈Z

∫ (n+kq)+1/2

(n+kq)−1/2
fµ,σ(x) dx.

Then the error distribution for LWE is taken to be χ = Ψβ := hq0,β , where β = αq/
√

2π
for some 0 < α = α(n) < 1. For the other LWE parameters we usually have q ≤ poly(n)
and n ≤ m ≤ poly(n).

Lemma 2.52. If the modulus q is prime, then the search and the decision versions of
LWE are equivalent.

20



Proof. It is obvious that an algorithm that can solve the search version, can also solve the
decision version of LWE. For the other direction, consider for any k ∈ Zq the transforma-
tion on a given sample according to ϕk(a, b) := (a+ (l, 0, . . . , 0), b+ l ·k mod q) for some
l ∈ Zq chosen uniformly at random. We assume that we have access to a polynomial-
time algorithm S that solves the decision version of LWE with probability exponentially
close to 1. If the original samples are uniformly distributed on Znq ×Zq, then so are the
transformed ones. However, if the samples are drawn from the LWE-distribution As,χ,
then the transformed samples are distributed according to As,χ if k = s1 and uniformly
otherwise. For the last statement we require that q is a prime number. Thus, we can use
a solver for the decision version of LWE, i.e. a distinguisher between the uniform and the
LWE-distribution, to determine the first coordinate of the secret s by trying all possible
values for k ∈ Zq. Since q ≤ poly(n), this can be done in polynomial-time. We can find
the other coordinates of s in a similar way and thus we can solve the search version with
only a polynomial number of calls to S.

Remark 2.53. There is also a worst-case to average-case reduction of the decision version
of LWE. The proof can be found in [Reg09] along with more variants of the LWE problem.

Remark 2.54. We remark here that the search-version of LWE can be seen as an instance
of BDD on the lattice

L(A) = {AT s : s ∈ Znq }+ qZm, (2.2)

where A is the n×m-matrix whose columns are the m LWE samples ai ∈ Znq . This
gives us b = AT s + e, where b and e are the vectors consisting of the bi or ei from the
samples, respectively. This connection of LWE and BDD is very important to us and will
be further discussed in Section 6.1. Another important property of the LWE problem is
that it is at least as hard as the lattice problems GapSVP and SIVP as was shown by
Regev in [Reg09, Thm. 3.1], who gave a (quantum) reduction from GapSVP and SIVP
to LWE.

Remark 2.55. The connection between LWE and GapSVP or SIVP, respectively, was
established using the discrete Gaussian sampling problem (DGS), which is defined as
follows: Given a basis B of an n-dimensional lattice L, some real-valued function on
lattices ϕ and a number r > ϕ(L), the discrete Gaussian sampling problem (DGSϕ) is to
output a sample from DL,r.

2.4 The Dihedral Group

In Section 3 we will discuss the hidden subgroup problem (HSP) for the finite abelian
case. Because of the great importance the HSP seems to have when it comes to quantum
algorithms, which provide a superpolynomial speed-up over classical algorithms, it is not
surprising that the HSP on non-abelian groups is also of great interest. Unfortunately,
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until today there are no known efficient quantum algorithms for solving the HSP on non-
abelian groups. However, it is known that a solution for the symmetric group, i.e. the
group consisting of the all permutations of a fixed, finite number of (labelled) elements,
leads to a solution of the graph isomorphism problem. Another non-abelian group, for
which the HSP has a certain application is the dihedral group, which is the symmetry
group of the regular N -sided polygon for some number N ∈ N, which we will denote by
DN . Regev showed ([Reg04a, Thm. 1.1]) that a solution to the dihedral coset problem
(DCP), which is essentially the hidden subgroup problem over the dihedral group, would
lead to a solution of Θ(n1/2+2f )-uSVP where f is some failure parameter in the descrip-
tion of DCP. We now give a brief overview of the dihedral group, DCP as well as the
connection of the latter to DHSP.

Definition 2.56 (The dihedral group, first definition). For N ∈ N we define the dihedral
group to be the abstract group generated by an element r of order N and an element s
of order 2 subject to the relation rs = sr−1. That is,

DN := {sirj : rN = s2 = srsr = id, 1 ≤ j ≤ N, i ∈ {1, 2}}.

If we interpret rj as a rotation and srj as a reflection, we see that DN can indeed be
viewed as the symmetry group of the regular N -sided polygon.

Another way of defining the dihedral group is via the semidirect product of groups.

Definition 2.57 (The dihedral group, second definition). For N ∈ N consider the group
homomorphism ϕ : Z/2Z → Aut(Z/NZ), 1 7→ −id. Where Aut(Z/NZ) denotes the
group of all automorphisms of Z/NZ. Then the dihedral group is defined as the (outer)
semidirect product

DN := Z/2Z nϕ Z/NZ.

Following the second of these equivalent definitions of DN , we will denote elements as
(s, r) ∈ Z/2Z n Z/NZ, where the group operation is given by

(s1, r1)(s2, r2) = (s1 + s2, r1 + ϕ(s1)r2) = (s1 + s2, r1 + (−1)s1r2).

Proposition 2.58 (Subgroups of the dihedral group). Every subgroup of DN is either
generated by one element rd for some d | N or by two elements rd, rjs for some d | N
and 0 ≤ j ≤ d− 1.

Proof. See [Con09, Thm. 3.1].

Definition 2.59 (Dihedral coset problem (DCPf )). Let N ∈ N, d ∈ {0, . . . , N − 1}
some fixed value and f a failure parameter. Given a polynomial (in logN) number of
1 + dlogNe qubit registers as input, each in the state

1√
2

(|0, x〉+ |1, x+ d mod N〉),
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with probability of at least 1− 1/(logN)f and otherwise in an arbitrary state |b, x〉 with
b ∈ {0, 1} and x ∈ {0, . . . , N − 1}. The dihedral coset problem (DCPf ) with failure
parameter f is to find the value d.

Remark 2.60. The ‘good’ input states in the definition above can be interpreted as the
uniform superposition of a coset of the subgroup {(0, 0), (1, d)} ⊂ DN . It is well-known
that the DHSP can be reduced to the case where the hidden subgroup is of the above
form. Let H denote the hidden subgroup of G. We note that if H 6= 〈srt〉 for some
1 ≤ t ≤ N , then H ′ := H ∩ {0} × Z/NZ 6= {e}. Here, e denotes the neutral element
of DN . We can find the subgroup H ′ ⊂ {0} × Z/NZ efficiently since this is just an
instance of the abelian hidden subgroup problem. Hence we can compute the quotient
group H/H ′, which is either trivial or a reflection in G/H ′.

Lemma 2.61. If there is an efficient solution to the dihedral hidden subgroup problem
that samples cosets, then there exists a quantum algorithm that solves the dihedral coset
problem with some failure parameter f .

Proof. By assumption, there is a solution to the dihedral hidden subgroup problem. Let
IDHSP denote the number of coset samples that the DHSP algorithm requires as input.
Then the probability, that all input registers of the DCP instance are ‘good’, is at least(

(logN)f − 1

(logN)f

)IDHSP
f→∞−−−→ 1.

So for f large enough, we have that with high probability every input register is ‘good’.
Hence the algorithm that solves DHSP also solves DCP with failure parameter f.

Remark 2.62. Unfortunately, this reduction does not provide any information on the
required size of the failure parameter for DCP in order to make use of an algorithm that
solves DHSP. It would depend on the actual application to choose a minimal probability
for all DCP input registers to be ‘good’, which would then lead to a failure parameter f.
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3 The Hidden Subgroup Problem (HSP)

In this chapter we will present one important problem in current research, the hidden
subgroup problem (HSP). The reason why this problem is of such importance is that
many of the currently known quantum algorithms that provide an exponential speedup
over classical algorithms can be seen as a solver for a special case of the hidden subgroup
problem. While it is possible to solve the HSP (efficiently) for any abelian group, there
is no known solution of polynomial complexity in the general case. We will begin by
formulating the HSP and giving some background information on representation theory,
which we will need to present an efficient quantum algorithm that solves the HSP in the
(finite) abelian case.

Definition 3.1 (The hidden subgroup problem (HSP)). Given a group G, a subgroup
H ⊆ G, a set X and a function f : G→ X such that

∀g1, g2 ∈ G : f(g1) = f(g2)⇐⇒ g1H = g2H,

i.e. the function f is constant on every (left) coset of H in G and takes different values
on different cosets, the hidden subgroup problem is to determine a generating set for the
subgroup H using evaluations of f . Such a function is said to separate cosets of H.

3.1 Solving the Hidden Subgroup Problem in the Abelian
Case

In the following we will need some results from representation theory (of finite groups) as
well as some character theory. All results are basically standard, for the omitted proofs
we refer to [FH13].

Definition 3.2. Let G be a finite group, V a vector space over C of dimension d < ∞
and GL(V ) its group of automorphisms. A representation of G is a group homomorphism
ρ : G → GL(V ). The dimension of ρ is dim(V ) = d. A representation ρ of G is called
irreducible if V has no non-trivial linear subspace which is G-invariant, i.e. for any linear
subspace U ⊆ V with ρg(U) ⊆ U, for all g ∈ G we have U = {0} or U = V , where
g

ρ7−→ ρ(g) =: ρg.

One can show that there are only finitely many pairwise non-isomorphic irreducible
representations for every finite group, say n, and that

∑n
i=1 d

2
i = |G|, where di denotes the
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dimension of the i-th irreducible representation. One useful theorem regarding irreducible
representations is the following:

Theorem 3.3 (Schur’s Lemma). Let G be a finite group, V and W C-vector spaces,
ρ : G → GL(V ), σ : G → GL(W ) representations of G and f ∈ HomC(V,W ) such that
f ◦ ρg = σg ◦ f, for all g ∈ G. Then f ≡ 0 or f is bijective (this means that ρ and σ are
isomorphic). Also, for ρ = σ we have f = λ · id for some λ ∈ C.

Another important aspect when it comes to representations of a group, are characters.

Definition 3.4. Let G be any group. Every group homomorphism χ : G→ C? is called
a (multiplicative) character.

Definition 3.5. Let ρ be a representation of a group G. The character χρ of the
representation ρ is the group homomorphism χρ : G→ C?, defined by

χρ(g) := tr(ρg)

As already mentioned, we want to solve the HSP for abelian groups. The irreducible
representations of finite abelian groups turn out to be quite ‘simple’.

Lemma 3.6. Let G be a finite abelian group and ρ : G → GL(V ) an irreducible repre-
sentation, then dim(V ) = 1.

Proof. For g ∈ G and for all h ∈ G we have

ρh ◦ ρg = ρhg = ρgh = ρg ◦ ρh

because G is abelian. Hence, by Schur’s Lemma ρg(v) = λv holds for all g ∈ G, v ∈ V and
some λ ∈ C . So every linear subspace of V is G-invariant, and because ρ is irreducible,
it must be dim(V ) = 1.

This concludes our brief excursion into representation theory. From now on, let G denote
a finite abelian group for which we will use additive notation. It is well known that we
have

G ∼=
r⊕
i=1

Z/miZ

for some r,m1, . . . ,mr ∈ N. Without loss of generality, we may thus view elements of
G as vectors of length r with the i-th entry from the set {0, . . . ,mi − 1}. We will also
assume that we know the numbers mi, which is not trivial, but Cheung and Mosca have
given an efficient quantum algorithm for that purpose in [CM01] (see also [Lom04, Thm.
5.23]). Our first goal is to generalise the quantum Fourier transform we have seen earlier
to arbitrary finite abelian groups. The QFT that we already know will turn out to be
the Fourier transform over the cyclic group of order N = 2n.

We will now prove a nice relation between finite abelian groups and their characters.
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Proposition 3.7. Let Ĝ denote the set of all characters of the finite abelian group G.
Then Ĝ is a group and G ∼= Ĝ.

Proof. At first we prove the statement for cyclic groups. Because G is a finite group, we
have |χ(g)| = 1 for all g ∈ G and all characters χ. Moreover, if C = 〈c〉 is a cyclic group
with generator c, it suffices to specify the value χ(c), which must be a |C|-th root of
unity, and vice versa, every choice of a |C|-th root of unity defines a different character.
This proves the statement for the cyclic case. Now consider an arbitrary finite abelian
group G. We have

G ∼=
r⊕
i=1

Z/miZ

so we regard any g ∈ G as a vector of length r with integer entries in the range of
{0, . . . ,mi − 1} in the i-th component. Let ei be the vector which is one in the i-th
component and zero otherwise for every i ∈ {1, . . . , r}. Every character χ of G is com-
pletely determined by its values on the set {ei}, because χ is a group homomorphism.
In addition ord(χ(ei)) | mi, so we can write χ(ei) = ωhimi for ωmi = exp(2πi/mi), a
primitive mi-th root of unity, and some integer hi ≤ mi for all i ∈ {1, . . . , r}. Hence,
we have a one-to-one correspondence between a character and a group element, namely
(h1, . . . , hr). So

ϕ : G→ Ĝ, h 7→

(
g 7→ χh(g) :=

r∏
i=1

ωhigimi

)
(3.1)

is a bijection. From this we also see that Ĝ forms a group with group operation defined
via χg1χg2 := χg1+g2 . Moreover, ϕ(0, . . . , 0) = id and ϕ(g1 + g2) = ϕ(g1)ϕ(g2), so G ∼= Ĝ
as required.

Proposition 3.8. Let G be a finite abelian group, χ ∈ Ĝ a character and χ0 ≡ 1 the
identity character, then ∑

g∈G
χ(g) =

{
|G|, if χ = χ0,

0, otherwise.

Definition 3.9 (General QFT over finite abelian groups). Let G be a finite abelian
group and χg(h) :=

∏r
i=1 ω

higi
mi as in Equation (3.1). Then

FG :=
1√
|G|

∑
g,h∈G

χg(h) |g〉 〈h| (3.2)

is called the quantum Fourier transform over the group G.

Remark 3.10. Note that our previous definition in Equation (2.1) is just the special case
of G = Z/NZ with N = 2n. So actually, we could have called it the cyclic quantum
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Fourier transform. However, generally we omit that specification. We also note that

|0〉 FG7−−→ 1√
|G|

∑
g∈G
|g〉 .

So FG creates a uniform superposition over all group elements. It is possible to generalise
the Fourier transform even further and define it for every finite group. This can be
achieved by

f̂(ρ) =

√
dρ
N

∑
g∈G

f(g)ρ(g),

where G is some finite group of order N , f : G → C is any function and ρ is an irre-
ducible representation of G with dimension dρ. Since we have seen in Lemma 3.6 that
every representation of a finite abelian group is one-dimensional, this is compatible with
Equation (3.2). For a more detailed approach on groups and their representations with
regard to the hidden subgroup problem, see for example [NC00, Appendix 2].

Remark 3.11. Regarding complexity, note that FG =
⊗r

i=1FZ/miZ, so FG can be im-
plemented efficiently because the quantum Fourier transform for cyclic groups can be
implemented efficiently.

Next we will examine how the quantum Fourier transform acts on a superposition of
states which all belong to a subgroup H of G since our goal is still to solve the hidden
subgroup problem. In this regard, the so-called orthogonal subgroup will come in handy.

Definition 3.12. Let H ⊆ G be a subgroup. Then the orthogonal subgroup is defined
as

H⊥ := {g ∈ G : χg(h) = 1 ∀h ∈ H}.

Regarding the orthogonal subgroup, one can show that

Theorem 3.13. With the notation introduced above we have

(i) H⊥ is a subgroup of G,

(ii) G/H ∼= H⊥,

(iii) (H⊥)⊥ = H.

Proof. See [Lom04, Thm. 3.1]

The idea is now to give an algorithm that outputs a generating set for H⊥ with high
probability, and then use it to recover the original hidden subgroup H.
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Lemma 3.14. Let |H〉 and |H⊥〉 denote the uniform superpositions over the subgroups
H,H⊥ ⊂ G respectively. Then

|H〉 FG7−−→ |H⊥〉 .

Proof. We observe that

|H〉 =
1√
|H|

∑
h∈H
|h〉 FG7−−→ =

1√
|G|

∑
g,h′∈G

χg(h
′) |g〉 〈h′|

(
1√
|H|

∑
h∈H
|h〉

)

=
1√
|G||H|

∑
g∈G
h∈H

χg(h) |g〉

=
1√
|G||H|

∑
g∈G

(∑
h∈H

χg(h)

)
|g〉 .

The coefficient of |g〉 is |H| if g ∈ H⊥, and 0 otherwise by Proposition 3.8. Hence,

|H〉 FG7−−→

√
|H|
|G|

∑
g∈H⊥

|g〉 =
1√
|H⊥|

∑
g∈H⊥

|g〉 = |H⊥〉 .

Here we used |H⊥| = |G|/|H|. This equation holds because of G/H ∼= H⊥ and we have
proved the statement.

Now we can finally present the algorithm that essentially solves the hidden subgroup
problem in the finite abelian case. We will be working with two registers. In the first
we will store the group elements of G, and in the second we will compute the function f
which is given to us as an oracle.

Algorithm 1 Algorithm for the abelian hidden subgroup problem

INPUT: Two qubit registers initially in the state |0〉 |0〉, an abelian group G and a black
box oracle that computes a function f that separates cosets of a subgroup H ⊂ G.
OUTPUT: A uniformly distributed random element ofH⊥.
1: Apply the Fourier transform FG to the first register. Afterwards compute f in the

second register.
2: Perform a measurement of the second register.
3: Apply the Fourier transform once again to the first register.
4: Measure the first register and output the outcome.
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Let us take a closer look at Algorithm 1. The initial state of the registers is |0〉 |0〉 and
the algorithm performs the following actions on them:

|0〉 |0〉 FG,f7−−−→ 1√
|G|

∑
g∈G
|g〉 |f(g)〉 .

Say the outcome of the measurement is f(t) for some t ∈ G, then the state collapses to

1√
|H|

∑
h∈H
|t+ h〉 |f(t)〉 .

Here we used that the function f separates cosets of the subgroup H. The content of the
second register is not important for the next steps. So from now on, we omit it. Step 3
yields

1√
|H|

∑
h∈H
|t+ h〉 FG7−−→ 1√

|H|

∑
h∈H

1√
|G|

∑
g,h′∈G

χg(h
′) |g〉 〈h′|t+ h〉

=
1√
|H||G|

∑
g∈G
h∈H

χg(t+ h) |g〉

=
1√
|H⊥|

∑
g∈H⊥

χg(t) |g〉 ,

where the last equality is obtained by a calculation, similar to the one we did in the
previous lemma. At last we measure the first register and obtain a uniformly distributed
random element of H⊥ (recall that |χg(t)| = 1).

This concludes the description of the algorithm. What is left to show is that, if we run
this algorithm a polynomial number of times, we obtain a generating set for H⊥, from
which we have to reconstruct the original subgroup H.

The first problem is taken care of by the following proposition. For a proof see [Lom04,
Thm. D.1].

Proposition 3.15. Let G be a finite group, k ∈ N and g1, . . . , gk+logd|G|e uniformly
sampled elements of G, then

Prob[〈g1, . . . , gk+logd|G|e〉 = G] ≥ 1− 1

2k
.

The second problem can be overcome by solving a system of modular linear equations.
For a detailed discussion, see once again [Lom04, p. 23].
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4 Some Reductions of Lattice Problems

In this chapter we want to present several reductions from lattice problems onto one
another. The most important ones being

1. a reduction from the unique shortest vector problem (uSVP) to the dihedral coset
problem (DCP), and therefore (see Lemma 2.61) also to the dihedral hidden sub-
group problem (DHSP), and

2. a reduction from the dihedral coset problem to the subset sum problem (SSP) in
Section 4.3.

As we have already mentioned, we can view instances of learning with errors (LWE)
as instances of the bounded distance decoding problem (BDD) over certain lattices (see
Remark 2.54 or later in more detail Section 6.1) which are constructed by a matrix
consisting of LWE samples. Because there also exists a reduction from BDD to uSVP
(see Section 4.1), we will have two different ways of solving LWE instances via algorithms
for the dihedral hidden subgroup problem and the subset sum problem. The roadmap
for this section is illustrated in the following diagram, where reductions are represented
by arrows. The approximation factors of the corresponding problems are omitted for
convenience, but will be specified in the respective sections.

LWE BDD
Eq. (2.2)

uSVP
[SBW16]

Section 4.1
DCP

[Reg04a]

Section 4.2

DHSP

Lemma 2.61

SSP

[Reg04a]Section 4.3
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4.1 A Reduction from BDD to uSVP

As already mentioned in Section 2.3.3, we can view an instance of (search) LWE as
a BDD instance on the lattice defined in Equation (2.2). The best known BDD-to-
uSVP reduction is currently a probabilistic polynomial-time reduction from BDD1/(

√
2γ)

to uSVPγ(1+Ω(1/n)) where γ > 1, is polynomial in the lattice dimension n, and is due to
Bai et al. ([SBW16]). The actual reduction is from BDD(1−1/n)/(

√
2γ), but that is a mere

technical detail (see e.g. [LM09] Section 3). Much the same as prior reductions from
BDD to uSVP instances, an approach called Kannan’s embedding technique is used to
construct a uSVP instance of an (n+ 1)-dimensional lattice L′ defined by the matrix

B′ =

(
B t
0 kd0

)
,

where B is the basis (matrix) of an n-dimensional lattice and t is the target vector of the
BDD1/(

√
2γ) instance. The number d0 is an approximation of dist(t,L(B)) := d satisfying

d0 ∈ [d, d/(1− 1/n)], which can be efficiently computed ([Bab86] or Remark 4.3). In the
reduction of Bai et al. the factor k was chosen to be 1/(n− 1). The key to the improved
reduction is to choose the matrix B not just as the basis of the given BDD-lattice, as it
was done in older reductions, but rather the basis of a sparsified sublattice, which still
contains a closest vector to t, but no other close-by vectors. Ultimately, this results in an
increased uSVP-gap λ2(L′)/λ1(L′) and thus an improved reduction.

Let us begin by defining the lattice sparsification.

Definition 4.1. Let B be the basis of an n-dimensional BDD-lattice L, p a positive
prime integer and z ∈ Znp . Then we define the sparsification of L with respect to p and
z as

Lp,z := {x ∈ L : 〈z,B−1x〉 = 0 mod p}.

In other words, the sparsified lattice is the set of all lattice points whose coordinate
vectors, with respect to the basis B, are orthogonal to z over Zp.

We can efficiently compute a basis of the sparsified lattice as the following lemma shows.

Lemma 4.2. There exists a polynomial-time algorithm which computes a basis Bp,z of
Lp,z when given a basis B of L as well as p and z.

Proof. Let b1, . . . , bn denote the column vectors of B and b̄1, . . . , b̄n the column vectors
of B−T = (BT )−1. Note that we have (b̄i)

T bj = δij . In the following we describe an
algorithm that computes a basis of Lp,z . If z = 0, the algorithm simply outputs Bp,z. If
z 6= 0, the algorithm does the following. Assuming without loss of generality zn 6= 0, the
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algorithm computes B−T and sets

B̂ :=
(
b̄1, . . . , b̄n−1,

1
p

∑n
i=1 zib̄i

)
.

Afterwards it computes and outputs Bp,z = B̂−T . Since B−T has full rank, so does B̂.
To see that B̂−T is a basis of Lp,z, consider x = B̂−T y for some y ∈ Zn. We have

B̂TB =


b̄1
...

b̄n−1
1
p

∑n
i=1 zib̄i

(b1, . . . , bn) =


1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 0 1 0
1
pz1 . . . 1

pzn

 .

Computing (B̂TB)−1 yields

(B̂TB)−1 =


1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 0 1 0
− z1
zn

. . . − zn−1

zn
p
zn

 ,

which gives us

B−1x = B−1B̂−T y = (B̂TB)−1y =


y1
...

yn−1

−
∑n−1

i=1
ziyi
zn

+ pyn
zn

 =: v

and finally
〈z, v〉 = pyn ≡ 0 mod p.

We conclude the proof by remarking that the algorithm obviously runs in polynomial-
time since the essential step is the computation of the inverse of a matrix.

We will now present the algorithm that reduces BDD(1−1/n)/(
√

2γ) to uSVPγ(1+Ω(1/n)).
The input is a basis B of the BDD lattice, a target vector t as well as two numbers d0, l0
whose roles we will discuss afterwards.

Remark 4.3. We will prove that the above algorithm works correctly if the input param-
eters d0, l0 satisfy d0 ∈ dist(t,L) · [1, 1/(1 − 1/n)) and l0 ∈ λ1(L) · [1, 1/(1 − 1/n)). Of
course, we have to make sure that the reduction is called with such suitable values for l0
and d0. To do this, we first note that there exist polynomial-time algorithms that find
d1 ∈ dist(t,L) · [1, 2n/2) and l1 ∈ λ1(L) · [1, 2n/2). For l1, this follows from Proposition
2.33, and for d1 this is due to [Bab86, Thm. 3.1].
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Algorithm 2 BDD(1−1/n)/(
√

2γ) to uSVPγ(1+Ω(1/n)) reduction algorithm

INPUT: A basis B of an n-dimensional BDD(1−1/n)/(
√

2γ) lattice L, a target vector t
and two numbers d0, l0.
OUTPUT: A lattice vector c ∈ L with ‖c−t‖ = dist(t,L).

1: Compute the smallest prime p greater than 4γn2.
2: Sample z, u ∈ Znp uniformly at random and compute w = Bū ∈ L such that u ≡ ū

mod p as well as ‖t+ w‖ ≥ (n+ 1)l0/
√

2.
3: Compute a basis Bp,z of the sparsified lattice Lp,z .
4: Set k = 1/(n− 1) and define the n+ 1-dimensional lattice Λ(B′) via

B′ =

(
Bp,z t+ w

0 kd0

)
.

5: Run the uSVPγ(1+Ω(1/n)) solver with input B′. Let s′ = (s′1, . . . , s
′
n+1) be its output.

Then output (s′1, . . . , s
′
n) + t.

Let xi = ( n
n−1)i−1 for i ∈ N . A simple calculation shows that

xi = 2
n
2 ⇔ i =

n

2 log
(

n
n−1

) + 1 =: C = O(n2).

Since this is polynomial in n, we can cover the interval [1, 2n/2) by the polynomially sized
set {xi · [1, 1/(1 − 1/n)) : 1 ≤ i ≤ dCe}. So calling the above algorithm with all values
in the sets {d0xi : 1 ≤ i ≤ dCe} and {l0xi : 1 ≤ i ≤ dCe} for the parameters d0 and
l0, respectively, and keeping a best solution among the returned ones assures that the
presented algorithm will work correctly, once we have proved the correctness with the
assumptions on d0 and l0.

We continue by analysing the algorithm step by step, concerning running time and cor-
rectness. In the first step, we calculate the smallest prime greater than 4γn2. By the
Bertrand-Chebyshev Theorem (for a proof see [AZQ10, Chapter 2]) we know that there
is a prime p with 4γn2 < p < 8γn2 − 2. So we can just test these (polynomially many)
numbers, starting with b4γn2 + 1c, on primality using, for example the AKS primality
test, which runs in time Õ(log(n)6) ([LJP02]). One might wonder, why we compute the
rather arbitrary looking vector w in the first step. We will address this issue right now by
explaining the idea behind the lattice sparsification and why it increases the uSVP-gap.

The idea behind the sparsification is to remove all but one of the vectors inside a ball
of radius r = λ1(L)/

√
2 around the target vector t. This is done in two steps. The

first one is to show that the number of lattice points in the ball of radius r around t,
denoted by B(t, r), is polynomial in n (Lemma 4.4). In a second step we show that, with
non-negligible probability, there is at most one vector in every ball around the multiples
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of the shifted target vector that is kept in the sparsified lattice (Proposition 4.8). The
shift is the vector w in the algorithm above. It is chosen at random since u ∈ Znp is
chosen uniformly at random, but we make sure that t+ w is a sufficiently long vector.

Lemma 4.4. Let r = λ1(L)/
√

2. For any n-dimensional lattice L and any target vector
t ∈ Qn, we have

#(L∩B(t, r)) ≤ 2n.

Proof. If n = 1, then the statement is true since in any set of at least three distinct
lattice vectors, two of them have distance at least 2λ1(L) > 2r. Now assume that the
statement is true for some n ∈ N and let y1, . . . , yN ∈ Rn+1 be distinct lattice vectors
such that ‖yi − t‖ ≤ λ1(L)/

√
2 for all i, and define xi := yi − t. Assume without loss of

generality that xN 6= 0. We have to show that N ≤ 2(n+ 1). To do so, we consider the
maps

x′i := f(xi) :=

{
xi, if 〈xi, xN 〉 = ±‖xi‖‖xN‖,
xi − 〈xi,xN 〉‖xN‖2 xN , otherwise,

and

x′′i := g(x′i) :=

{
0, if x′i = 0,
r
‖x′i‖

x′i, otherwise.

Note that g(x′i) = g(x′j) if and only if x′i = k · x′j for some k > 0, and for every xi 6= 0
we have ‖x′′i ‖ = r. Since we want to use induction over n, the idea is to use the map
h := g ◦ f to adjust the xi on an (n + 1)-dimensional sphere with radius r and north
pole h(xN ) = x′′N , such that all but at most two points get mapped to the n-dimensional
equator, i.e. the subspace orthogonal to x′′N . Then by induction hypothesis we have
N ≤ 2 + 2n. We first observe that

2〈xi, xj〉 = ‖xi‖2 + ‖xj‖2 − ‖xi − xj‖2 ≤
λ1(L)2

2
+
λ1(L)2

2
− λ1(L)2 = 0.

holds for all i 6= j. Now, we will consider three cases.

(1) If 〈xi, xN 〉 = ±‖xi‖‖xN‖ and 〈xj , xN 〉 = ±‖xj‖‖xN‖, i.e. xi and xj are both collinear
to xN , then 〈x′i, x′j〉 = 〈xi, xj〉.

(2) If 〈xi, xN 〉 6= ±‖xi‖‖xN‖ and 〈xj , xN 〉 = ±‖xj‖‖xN‖ or vice versa, we obtain that
one of x′i or x

′
j – in this case x′i – is orthogonal to xN and the other is collinear to

xN .

(3) In the case, where 〈xi, xN 〉 6= ±‖xi‖‖xN‖ and 〈xj , xN 〉 6= ±‖xj‖‖xN‖, we assume
that there is some k > 0 with x′i = k · x′j . We can write xj = xi + (1/k) · v for some
vector v ∈ Rn+1 that, without loss of generality, satisfies 〈v, xN 〉 ≤ 0, since if the
last inequality does not hold, we interchange xi and xj . By the definition of x′i and
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x′j we obtain

xi −
〈xi, xN 〉
‖xN‖2

xN = k ·

(
xi +

1

k
v −
〈xi + 1

kv, xN 〉
‖xN‖2

xN

)
,

thus
v = (1− k)

(
xi −

〈xi, xN 〉
‖xN‖2

xN

)
+
〈v, xN 〉
‖xN‖2

xN

and therefore

〈xi, xj〉 =

〈
xi, xi +

1− k
k
·
(
xi −

〈xi, xN 〉
‖xN‖2

xN

)
+

1

k

〈v, xN 〉
‖xN‖2

xN

〉
= ‖xi‖2 +

1− k
k
·
(
‖xi‖2 −

〈xi, xN 〉2

‖xN‖2

)
+

1

k

〈v, xN 〉
‖xN‖2

〈xi, xN 〉

≥ 1

k
‖xi‖2 +

1

k

〈v, xN 〉
‖xN‖2

〈xi, xN 〉

≥ 1

k
‖xi‖2 > 0.

This is a contradiction to 〈xi, xj〉 ≤ 0. Here the first inequality holds if and only if
k > 1 but since k is positive by assumption we may as well without loss of generality
assume k > 1, since either k > 1 or 1/k > 1.

These observations together with the fact that there can only be at most two collinear
lattice vectors inside a ball of radius r = λ1(L)/

√
2 (analogously to the case n = 1) show,

that there is a one-to-one correspondence between the xi and the x′′i . Since at least N−2
points get mapped to the equator, i.e. 〈x′′i , x′′N 〉 = 0, the possible exceptions being ±x′′N .
We have N − 2 ≤ 2n by induction hypothesis, which proves the statement.

Lemma 4.5. For any lattice basis B of L, integer q and lattice vectors x, y with x 6= y
and ‖x − y‖ < qλ1(L), the coordinate vectors of x and y with respect to B are different
modulo q, i.e. B−1x 6≡ B−1y mod q.

Proof. Assume that B−1x ≡ B−1y mod q. This implies x − y = q · Bz for some vector
z ∈ Zn \{0}, hence ‖x− y‖ ≥ qλ1(L), a contradiction.

We will use the next lemma from [SD16], to make sure that there is only one (randomly
shifted) vector in the ball around the (randomly shifted) target vector t, which is orthog-
onal to a uniform chosen z in Znp . Thus, a sparsification using z will ultimately result in
a ‘big gap’ between the closest lattice vector to t and all other lattice vectors.

Lemma 4.6. Let t ∈ Qn. For any prime number p, set of vectors {vi}1≤i≤N ⊆ Znp \{0},
and t 6∈ {vi}1≤i≤N we have

1

p
−N
p2
− N

pn−1
≤ Prob

z,u←U(Znp )
[∀ 1 ≤ i ≤ N : 〈z, t+ u〉 ≡ 0 mod p, 〈z, vi + u〉 6≡ 0 mod p ].
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Proof. We introduce the events

A := [∀ 1 ≤ i ≤ N : 〈z, t+ u〉 ≡ 0 mod p, 〈z, vi + u〉 6≡ 0 mod p],

B := [∀ 1 ≤ i ≤ N, ∀k ∈ Zp \{1} : t+ u 6= k(vi + u)].

Consider the sets

U := {x ∈ Znp : 〈x, t+ u〉 ≡ 0 mod p}, Vi := {x ∈ Znp : 〈x, vi + u〉 ≡ 0 mod p}.

They are (n−1)-dimensional subspaces of Znp . Conditional on B, the subspaces U and Vi
are distinct for every i, thus U∩Vi is an (n−2)-dimensional subspace with |U∩Vi| = pn−2.
Let V :=

⋃N
i=1 Vi, then

Prob
z,u←U(Znp )

[A|B] =
|U \ V |
|Znp |

≥
|U | −

∑N
i=1 |U ∩ Vi|
pn

=
1

p
− N

p2
.

Note that

Prob
u←U(Znp )

[BC ] = Prob
u←U(Znp )

[∃ 1 ≤ i ≤ N, k ∈ Zp \{1} : k(vi + u) = t+ u]

≤
N∑
i=1

Prob
u←U(Znp )

[∃ k ∈ Zp \{1} : k(vi + u) = t+ u] ≤ N(p− 1)

pn
,

where the last inequality follows because for any fixed i there are at most p− 1 possible
choices for u such that the equality k(vi + u) = t + u is satisfied since k ∈ Zp \{1}.
Summing up, we get

Prob[A] = Prob[A|B] Prob[B] + Prob[A|BC ] Prob[BC ]

≥ Prob[A|B]

(
1− N(p− 1)

pn

)
≥ 1

p
− N

p2
− N(p− 1)

pn
− N

pn

=
1

p
− N

p2
− N

pn−1
,

where all probabilities are taken over the uniform and independent choices of u and z.

Remark 4.7. In our case we have N ≤ 2n as well as 4γn2 < p < 8γn2. So the probability
in Lemma 4.6 is non-negligible. By noting that it is at most 1/p+1/pn, because 〈z, t+u〉
mod p is uniformly distributed on Zp if t+ u 6= 0 ∈ Znp , and that Prob[t+ u = 0] = 1/pn

for u chosen uniformly over Znp , we see that the lower bound is almost tight.

Proposition 4.8. Let B be a basis of an n-dimensional lattice L, t a target vector and
c ∈ L with ‖c − t‖ ≤ λ1(L)/(

√
2γ) =: R for some γ ≥ 1. Furthermore, let p be a prime

number with p ≥ γn+ 1. We have

Prob
z,u←U(Znp )

 c+ w ∈ Lp,z ∩B(t+ w, γR)

Z(c+ w) ⊇ Lp,z ∩
⋃

1≤i≤bγnc

B(i(t+ w), γR)

 ≥ 1

p
− N

p2
− N

pn−1
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with N =
∣∣∣L∩⋃bγnci=1 B(i(t+ w), γR)

∣∣∣. If w ∈ L is chosen such that B−1w ≡ u mod p

and ‖t+w‖ > γR(n+ 1) holds, then none of the multiples i(c+w) lies in a ball centred
at j(t+ w) with radius γR for i 6= j, i.e.

i(c+ w) 6∈
⋃

1≤i,j≤bγnc
i 6=j

B(j(t+ w), γR)

holds for all 1 ≤ i ≤ bγRc.

Proof. Let Ni := | L∩B(it, γR) \ {ic}| and denote the lattice vectors inside a ball with
radius γR around it without the shifted closest vector ic by {vij}1≤j≤Ni . We want to
use Lemmata 4.5 and 4.6. For all 1 ≤ i ≤ bγnc and 1 ≤ j ≤ Ni we observe that

‖ic− vij‖ ≤ i‖c− t‖+ ‖it− vij‖ ≤ γnR+ γR =
n+ 1√

2
λ1(L) < pλ1(L).

For any vector x we denote its coordinate vector with respect to the basis B by x̃ := B−1x.
Lemma 4.5 gives us ic̃ 6≡ ṽij mod p. Note that i < γn+1 ≤ p, thus i is invertible modulo
p. We use Lemma 4.6 with c̃ and {1

i ṽij}1≤i≤bγnc,1≤j≤Ni and obtain

Prob
z,u←U(Znp )

[
〈z, c̃+ u〉 ≡ 0 mod p

〈z, ṽij + iu〉 6≡ 0 mod p ∀i, j

]
≥ 1

p
− N

p2
− N

pn−1
,

where we used that 〈z, ṽij + iu〉 6≡ 0 mod p if and only if 〈z, ṽij/i+u〉 6≡ 0 mod p. To see
that none of the multiples of the shifted closest vector ends up in another ball, we note:

‖i(c+ w)− j(t+ w)‖ = ‖(j − i)(t+ w)− i(c− t)‖
≥ |j − i| · ‖t+ w‖ − |i| · ‖c− t‖
> γR(n+ 1)− γnR = γR,

for i 6= j and w chosen as in the assumption of the proposition. The last inequality is
obtained by using the reverse triangle inequality.

Remark 4.9. Since the input to the algorithm is a BDD(1−1/n)/(
√

2γ) lattice, we have
‖c−t‖ ≤ (1−1/n)λ1(L)/(

√
2γ) < λ1(L)/(

√
2γ), and since p > 4γn2 > γn+1, Proposition

4.8 can be applied to our reduction. In addition, we have N ≤ 2n · γn < p/2 according
to Lemma 4.4. The probability that the lattice sparsification process works can therefore
be estimated as

Prob [‘Lattice sparsification works’] ≥ 1

p
− N

p2
− N

pn−1

>
1

p
− 1

2p
− 1

2pn−2

≈ 1

2p
≥ 1

8γn2
.
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Therefore, we have proved the following: With non-negligible probability, the only vectors
of the BDD lattice L belonging to the bγnc balls that are kept in the sparsified lattice
are multiples of c+w. The first bγc vectors in the set {i(c+w)}1≤i≤bγnc are always kept
since in this case ‖i(c+ w)− i(t+ w)‖ ≤ λ1(L)/

√
2 = γR.

We will now analyse the (n + 1)-dimensional lattice created in the second step of the
algorithm.

Lemma 4.10. Let n ≥ 2, γ ≥ 1, t ∈ Qn, d := dist(t,L), c ∈ L with ‖c − t‖ = d,
d0 ∈ [d, d/(1 − 1/n)], and k := 1/(n − 1). Further, we let the vector w be chosen as in
Proposition 4.8. We consider the (n + 1)-dimensional lattice Λ := Λ(B′) defined by the
basis

B′ =

(
Bp,z t+ w

0 kd0

)
.

Then Λ satisfies λ2(Λ)/λ1(Λ) ≥ γ(1 + Ω(1/n)) and

s′ =

(
c− t
−kd0

)
is a shortest vector of Λ, both with non-negligible probability (over the choices of u and z
as in Proposition 4.8).

Proof. Every non-zero vector v ∈ Λ(B′) can be written as

v =

(
bv −m(t+ w)
−mkd0

)
for some m ∈ Z, 0 6= bv ∈ Lp,z. Note that since c+w ∈ Lp,z, taking m = 1 yields s′ ∈ Λ.
We want to establish lower bounds for the norm of such vectors v that are not parallel to
s′. So from now on let v ∈ Λ denote an arbitrary vector that is linearly independent from
s′, and without loss of generality we assume m ≥ 0. First we note that ‖s′‖2 = d2 +k2d2

0.
To prove the statement, we will consider three cases. If we assume m = 0, then

‖v‖2 = ‖bv‖2 ≥ λ1(L)2 ≥ 2γ2d2

(1− 1
n)2
≥ 2γ2d2

0.

Here we used that L is a BDD(1−1/n/(
√

2γ)) lattice. Thus, we obtain

‖v‖2

‖s′‖2
≥ 2γ2d2

0

d2 + k2d2
0

=
2γ2

( dd0 )2 + k2

≥ 2γ2

1 + k2
=

2γ2

1 + 1
(n−1)2

=: C1(n).
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In the second case we consider 1 ≤ m ≤ γn. By Proposition 4.8 we have

c+ w ∈ Lp,z ∩
bγnc⋃
i=1

B
(
i(t+ w),

λ1(L)√
2

)
⊆ Z(c+ w)

with non-negligible probability. Since v is collinear to s′ if and only if bv ∈ Z(c+w), we
obtain

‖v‖2 = ‖bv −m(t+ w)‖2 + (md0k)2 ≥ λ1(L)2

2
+ (md0k)2 ≥

(
dγ

1− 1
n

)2

+ (md0k)2

and thus

‖v‖2

‖s′‖2
≥

(
dγ

1− 1
n

)2
+ (md0k)2

d2 + k2d2
0

≥

(
dγ

1− 1
n

)2
+ (mdk)2

d2 + ( d
1− 1

n

)2k2

=
γ2 + m2

n2

(1− 1
n)2 + 1

(n−1)2

≥
γ2 + 1

n2

(1− 1
n)2 + 1

(n−1)2

=: C2(n).

Finally, we consider m > γn. In this case we have

‖v‖2

‖s′‖2
≥ (md0k)2

d2 + d2
0k

2
≥ (mdk)2

d2 + ( d
1− 1

n

)2k2
=

m2

(n− 1)2 + ( n
n−1)2

≥ γ2

(1− 1
n)2 + 1

(n−1)2

=: C3(n).

We combine the three lower bounds on ‖v‖2/‖s′‖ to complete the proof. We observe that

C1(n) ≥ 2γ2

1 + 1
≥ 1 and C3(n) ≤ C2(n).

Additionally, a quick calculation shows that C3(n) ≥ C1(n) if and only if n ≥ 2. Thus

‖v‖
‖s′‖

≥ 1

and to complete the proof, we note that for large enough n the uSVP-gapsatisfies

λ2
2(Λ)

λ2
1(Λ)

≥ min(C1(n), C2(n), C3(n)) ≥ γ2

(
1 + Ω

(
1

n

))
.

Remark 4.11. For a nice geometrical illustration of the overall reduction see [SBW16]
Figures 3 and 4.
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According to Remark 4.3 and Proposition 4.8, the requirements of Lemma 4.10 are met
with non-negligible probability. Thus, Lemma 4.10 yields that the uSVPγ(1+Ω(1/n)) solver
outputs s′ and Algorithm 2 finds the closest vector c ∈ L to t. Therefore, we have proved
the following.

Theorem 4.12 (Reduction from BDD to uSVP). Let 1 ≤ γ = γ(n) ≤ poly(n). There is
a probabilistic polynomial-time reduction from BDD1/(

√
2γ) to uSVPγ(1+Ω(1/n)).

Remark 4.13. Since uSVP gets easier if the gap gets larger, we have in particular a reduc-
tion from BDD1/(

√
2γ) to uSVPγ since any uSVPγ solver can also solve uSVPγ(1+Ω(1/n)).

4.2 A Reduction from uSVP to DHSP

In this section we want to present a reduction from uSVP to the dihedral hidden subgroup
problem (DHSP), following the approach in [Reg04a]. More formally, the statement is
as follows.

Theorem 4.14 (Corollary 1.2 in [Reg04a]). If there exists a solution to the dihedral
hidden subgroup problem (that samples cosets), then there exists a quantum algorithm
that solves the poly(n)-unique shortest vector problem.

We will prove Theorem 4.14 by showing the chain of reductions depicted in the following
diagram.

uSVPΘ(n1+2f ) 2PPf
Thm. 4.21 DCPf

Lemma 4.17
DHSP

Lemma 2.61

Figure 4.1: uSVP to DHSP reduction

Here, f is the failure parameter of DCP and 2PP is the abbreviation for the two point
problem which is defined as follows.

Definition 4.15 (Two point problem (2PPf )). Let M ∈ N and f a failure parameter.
We are given a polynomial (in n logM) number of 1 + ndlogMe qubit registers. Each
register is in the state

1√
2

(|0, a〉+ |1, a′〉)

with probability of at least 1− 1/(n log(2M))f , where a, a′ ∈ {0, . . . ,M − 1}n such that
the difference a−a′ is fixed, and otherwise it is in an arbitrary state |b, a〉 with b ∈ {0, 1}
and a ∈ {0, . . . ,M − 1}n. The two point problem (2PPf ) with failure parameter f is to
find a− a′.
Remark 4.16. The dihedral coset problem and the two point problem appear to be very
similar to each other. We say that an algorithm solves DCPf if it outputs d with prob-
ability poly(1/ logN) in time poly(logN). Analogously, an algorithm solves 2PPf if it
outputs a− a′ with probability poly(1/(n logM)) in time poly(n logM).
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Lemma 4.17. If there exists an algorithm that solves DCP with failure parameter f,
then there exists an algorithm that solves 2PP with the same failure parameter.

Proof. We claim that the following algorithm solves 2PP when given oracle access to a
solver for DCP.

Algorithm 3 Reduction from 2PP to DCP

INPUT: A valid input to the two point problem and access to an algorithm that solves
the dihedral coset problem.
OUTPUT: The solution to the two point problem
1: Transform the 2PPf input registers into a valid input for DCPf with N = (2M)n.

This is done by performing the action (a0, . . . , an−1) 7→
∑n−1

i=0 ai · (2M)i on the last
ndlogMe qubit registers.

2: Run the DCP solver with these transformed input registers. Let d denote the result.
3: Compute d̃ = d+M + 2M2 + . . .+ 2n−1Mn.
4: for i = 0 to n− 1 do
5: Compute di = d̃−M mod (2M).
6: Set d̃ = (d̃− di −M)/(2M).
7: end for
8: Return (d0, . . . , dn−1).

After applying the map

ϕ : {0, . . . ,M − 1}n → {0, . . . , (2M)n − 1},

(a0, . . . , an−1) 7→
n−1∑
i=0

ai · (2M)i

in the first step, we obtain registers of the form

1√
2

(|0, ϕ(a)〉+ |1, ϕ(a′)〉)

with probability of at least 1− 1/(n(log 2M))f . We have

d := ϕ(a)− ϕ(a′) = a0 − a′0 + (a1 − a′1) · 2M + . . .+ (an−1 − a′n−1) · (2M)n−1,

which is fixed because the difference a − a′ is fixed by assumption. Therefore, we have
created a valid input for DCP with N = (2M)n. We run the DCP algorithm, which
outputs d with high probability. Next we produce

d̃ := d+M + 2M2 + . . .+ 2n−1Mn

= d0 +M + (d1 +M) · 2M + . . .+ (dn−1 +M) · (2M)n−1,
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where we set di := ai − a′i. Because −M + 1 ≤ di ≤ M − 1 for all i, we obtain
1 ≤ di + M ≤ 2M − 1, and we can extract the di successively from d̃. At first we
compute d̃ mod 2M which gives us d0. Then we compute d̃1 := (d̃ − d0 −M)/(2M)
from which we get d1 by considering d̃1 modulo 2M . Continuing this way, we obtain all
di. The algorithm outputs (d0, . . . , dn−1), the solution to the two point problem.

We will now come to the main result of this section: the reduction from uSVP to 2PP.
First, we will explain the intuition and basic idea of the reduction and then present it
more formally. The first step of the reduction is of course to create an input for the two
point problem. Since we want to use an algorithm for 2PP to find a solution for uSVP,
the hidden difference in the instance of 2PP should more or less be the shortest vector of
the unique SVP lattice. We will create an instance of 2PP such that the fixed difference
a− a′ is

û :=

(
u1, . . . ,

ui0 −m
p

, . . . , un

)
,

where i0 is some index, p > n2+2f is an integer prime number and 1 ≤ m ≤ p − 1 such
that ui0 ≡ m mod p. From this, we can extract the shortest unique vector u ∈ L. To
create a superposition of only two lattice points with fixed difference û, we start with a
uniform superposition over many lattice points. We partition the underlying space into
cubes, such that there are at most two lattice points in each cube and if that is the case,
their difference should be û. The partition is obtained by computing some function F
in a separate register and the measurement of this register will leave us with the desired
superposition over two lattice points, hiding the vector û, i.e. an input register for 2PP.

We will now present a description of a subroutine that creates input registers for the two
point problem. The routine will start with two quantum registers. The first one contains
one qubit and the second one ndlogMe qubits, initially in the state |0, 0〉. The functions
g, h and F := g ◦ h are defined in the discussion subsequent to the subroutine which is
as follows:

Algorithm 4 Subroutine: Creating input registers for the two point problem

INPUT: An LLL-reduced basis B of an n-dimensional cunqn
1+2f -uSVP lattice L, a

prime p > n2+2f , a positive integer m with 1 ≤ m ≤ p − 1 that satisfies u1 ≡ m mod p
where u1 is the first component of a shortest vector u ∈ L, and an approximation l of
the length of the shortest vector such that ‖u‖ ≤ l ≤ 2‖u‖.
OUTPUT: A valid input for the two point problem
1: Set M = 24n and apply the Hadamard transform on 1 + ndlogMe qubits.
2: Compute the function F = g ◦ h in a third register and measure the result.
3: Output the first two registers.

Here, cunq > 0 is some constant, which has to fulfil some requirements we specify later.
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Let us take a closer look at what the above routine does exactly. We denote the LLL-
reduced basis by {b1, . . . , bn}.

The registers are initially in the state |0〉 |0〉. After the first step we have created the
uniform superposition over all elements of the set A := {0, 1} × {0, . . . ,M − 1}n. Now
the registers are in the state

1√
2Mn

∑
(t,a)∈A

|t, a〉 .

Since we want to hide û ∈ L, we need to map elements of A to lattice points. This is
done by the function h : A → L;

h((t, a)) := (a1p+ tm)b1 +

n∑
i=2

aibi.

As we already mentioned, we want to partition the space into cubes. We randomly
translate them to make sure that they are not aligned with the lattice. Let {e1, . . . , en}
denote the standard basis of Rn. For v =

∑n
i=1 viei ∈ R

n we compute the function
g : Rn → Zn;

g(v) :=

(⌊
v1

l · ccuben
1
2

+2f
− w1

⌋
, . . . ,

⌊
vn

l · ccuben
1
2

+2f
− wn

⌋)
,

where the real numbers w1, . . . , wn, which are chosen uniformly at random from [0, 1),
are responsible for the random translation of the cubes and ccube is some constant. Note
that F := g ◦ h maps every point of A to some q ∈ Zn which represents one cube in the
partition of Rn. After the routine has computed F in the second step and measured the
result, say q, we have produced the state∑

(t,a)∈A
F (t,a)=q

|t, a〉 |q〉 , (4.1)

where the normalisation factors were omitted for convenience. What remains to show is
that this really creates an input register for the two point problem, which hides û with
probability at least 1− 1/(n log(2M))f . In the following we will assume i0 = 1 without
loss of generality.

Lemma 4.18. In the setting of Algorithm 4 let cunq > 2ccube. For every q ∈ Zn there
exist at most two elements (0, a), (1, a′) ∈ A that get mapped to q by F . If this is the
case, then

a′ − a = û =

(
u1 −m
p

, u2, . . . , un

)
.
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Proof. Let x, y ∈ L be in the image of f , i.e. x = f(t, a) and y = f(s, a′) for some
(t, a), (s, a′) ∈ A, with g(x) = g(y) = q. Also let xi, yi denote their respective coordinates
in the standard basis of Rn for 1 ≤ i ≤ n. At first, we show that x − y is a multiple of
the shortest vector u ∈ L. Assuming the contrary, we have

‖x− y‖ > cunqn
1+2f‖u‖ ≥ 1

2
l · cunqn

1+2f ,

since by assumption L is a cunqn
1+2f -unique lattice and 2‖u‖ ≥ l. This implies that

|xi − yi| > 1
2 l · cunqn

1
2

+2f for at least one index i, because otherwise we would have

‖x− y‖ =

√√√√ n∑
i=1

|xi − yi|2 ≤

√
n ·
(

1

2
l · cunqn

1
2

+2f

)2

,

a contradiction. To see that this implies g(x) 6= g(y), note that

0 = g(x)i − g(y)i =

⌊
xi

l · ccuben
1
2

+2f
− wi

⌋
−

⌊
yi

l · ccuben
1
2

+2f
− wi

⌋
≥ xi − yi
l · ccuben

1
2

+2f
− 1 > 0,

where we used xi ≥ yi without loss of generality. Hence, x−y = k ·u for some k ∈ Z \{0}.
The first coordinate of x− y in the LLL-basis is

ku1 ≡ km ≡ a1p+ tm− (a′1p+ sm) ≡ (t− s)m mod p.

So t− s ≡ k mod p. If we assume t = s, we get |k| ≥ p and therefore

‖x− y‖ ≥ p‖u‖ > n2+2f‖u‖ > n1+2fcunq‖u‖ ≥ l · ccuben
1+2f

for n large enough, which again implies g(x) 6= g(y). This means we have, without loss
of generality t = 0, and s = 1. It follows that k ≡ 1 mod p and even k = 1 because for
|k| > 1 we would get the same contradiction as before. This completes the proof of the
lemma sind x1 − y1 = 1 · u1 = p(a1 − a′1) +m.

We have seen that the state created in Equation (4.1) consists of at most two points,
whose difference is û. What remains to show is that the probability of the procedure not
failing is high enough.

Lemma 4.19. Let m be chosen as in Algorithm 4 and let u =
∑n

i=1 uibi denote the
unique shortest vector. If we choose (t, a) ∈ A = {0, 1} × {0, . . . ,M − 1}n uniformly at
random, then with probability of at least 1− 1

(n log(2M))f
there exists a′ ∈ {0, . . . ,M − 1}n

such that F (1− t, a′) = F (t, a).
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Proof. Let q ∈ Zn represent any fixed cube of our partition and let Q be the random
variable representing the measurement of F (t, a) at the end of step (2) of Algorithm 4.
Then

Prob[Q = q] = Prob
(t,a)←U(A)

[F (t, a) = q] =
1

2Mn
|{(t, a) ∈ A : F (t, a) = q}|,

where the probability on the left is taken over all the randomness in Algorithm 4. So we
may as well assume that t and a are chosen uniformly at random. We define

a′ :=

(
a1 ±

u1 −m
p

, a2 ± u2, . . . , an ± un
)
,

where the “+” corresponds to the case t = 0 and the “−” to the case t = 1.

There are two possible ways the procedure can fail to put out a valid input register for
the two point problem. First, a′ might not be in {0, . . . ,M−1}n. We know from Lemma
2.34 that |ui| ≤ 22n. Thus, we obtain

Prob[a′ /∈ {0, . . . ,M − 1}n] ≤ Prob[∃i : ai < 22n or ai ≥M − 22n]

= n · 22n + 22n

M
=
n22n+1

M
(4.2)

because a was chosen uniformly at random. The second possibility for the procedure to
fail is that f(1− t, a′) and f(t, a) are located in different cubes. We observe that

f(1− t, a′)− f(t, a) = (a1p± (u1 −m) + (1− t)m− (a1p+ tm))b1 +

n∑
i=2

(ai ± ui − ai)bi

= ±u.

Since w1, . . . , wn ∈ [0, 1) are uniformly chosen, we have

Prob[F (1− t, a′)i 6= F (t, a)i] ≤
|〈u, ei〉|

l · ccuben
1
2

+2f
≤ |〈u, ei〉|
‖u‖ccuben

1
2

+2f
(4.3)

for every coordinate i. This implies

Prob[F (1− t, a′) 6= F (t, a)] ≤
∑n

i=1 |〈u, ei〉|
‖u‖ccuben

1
2

+2f
≤ 1

ccuben2f
,

where we used sub-additivity and

‖u‖1 =

n∑
i=1

|ui| · 1 ≤

(
n∑
i=1

|ui|2
) 1

2

·

(
n∑
i=1

1

) 1
2

=
√
n · ‖u‖

by the Cauchy-Schwarz inequality. Summing up, we can bound the error probability of
the procedure by

Prob[created register is ‘bad’] ≤ n22n+1

M
+

1

ccuben2f
≤ 1

(n log(2M))f
(4.4)
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for ccube large enough. Note that although 2ccube is bounded by cunq, we can consider
an instance where cunq and therefore also ccube are large enough for the estimations to
work since we are dealing with Θ(n1+2f )-uSVP instances. The last inequality above can
be seen by noting that

n22n+1ccuben
2f (n log(2M))f +M(n log(2M))f ≤Mccuben

2f

for ccube (and again n) sufficiently large, since we are interested in the asymptotic be-
haviour for n → ∞. Note that n log(2M) = n log(2) + 4n2, so (half) the term on the
right side dominates the first summand because n22n+1(n log(2M))f ≤M = 24n and for
ccube large enough it also dominates the second summand.

f(0, 0, 2)

f(1, 0, 2)

u

b1

b2

w

Figure 4.2: Illustration of the lattice partition into cubes

Example 4.20. We give an example of the described procedure above in Figure 4.2. We
take L = L(B) with the basis (

1 2
0 2

)
,

so we have n = 2, λ1(L) = 1 and λ2(L) = 2. Assume we take ccube = 0.5, l = 2 and
f = 0.003. Since the shortest vector is (1, 0)T , we take i0 = 1, p = 5 and m = 1. In
Figure 4.2 the lattice L is displayed together with two different partitions of the plane
with edge length 1.42. The red one is without any translation and the green one with
translation by the vector w = (0.62, 0.11)T . Consider the lattice points h(0, 0, 2) = (4, 4)T
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and h(1, 0, 2) = (5, 4)T . We have 5/
√

2 ≈ 3.5355 as well as 4/
√

2 ≈ 2.8284. Hence the
probability that g(4, 4) and g(5, 4) differ in the first coordinate is 1/

√
2 ≈ 0.7071, where

the probability is taken over the choice of w1 ∈ [0, 1). This serves as an illustration for
the estimation of the probability that F (1−t, a′) and F (t, a) differ in the i-th coordinate,
see Equation 4.3.

We have proved that the described routine indeed, with high probability, produces a
‘good’ input register for the two point problem, which hides the vector û. Therefore, we
can now extract the unique shortest vector u ∈ L by using the 2PP oracle.

Theorem 4.21 (Reduction from uSVP to 2PP). Let p > n2+2f be any fixed prime
number. If there exists a solution to the two point problem with failure parameter f > 0,
then there exists a quantum algorithm that, when called with the input

• a (cunqn
1+2f )-unique lattice L with shortest vector u =

∑n
i=1 uibi for some suffi-

ciently large constant cunq,

• an integer index i0,

• a positive integer m with 1 ≤ m ≤ p− 1 and ui0 ≡ m mod p

• and an approximation of the length of the shortest vector l with ‖u‖ ≤ l ≤ 2‖u‖,

returns u with the same probability as the success probability 2PP oracle.

Proof. To create an complete input for the 2PP oracle, we call Algorithm 4 to create an
input register for the two point problem poly(n logM) = poly(n) times. Lemmata 4.18
and 4.19 assure that the input for the oracle, created this way, is indeed a valid input
for the two point problem. Also, we have shown that the hidden difference in this 2PP
instance is

a′ − a =

(
u1, . . . ,

ui0 −m
p

, . . . , un

)
.

So if we call the 2PP oracle with the correct parameters l,m, i0, the output will be a′−a
and we can extract u from this vector. What remains to show is how to find the correct
values for the three parameters. The solution is quite simple – we just try all possible
values. From Proposition 2.33 we know that ‖b1‖ ≤ 2(n−1)/2‖b∗1‖. Thus we can just
divide ‖b1‖ by increasing powers of 2 and we know that one of the (n − 1)/2 values for
l will be as required. Because u ∈ L is the shortest vector, we know that u/p /∈ L . This
implies the existence of some index i0 such that ui0 6≡ 0 mod p. With 1 ≤ i0 ≤ n and
1 ≤ m ≤ p − 1, we have a total of (p − 1)n(n − 1)/2 = O(n4+2f ) possible values for
the parameters. We call the procedure with each of these values and, for each output of
our 2PP oracle, we compute the respective candidate for the shortest vector. By keeping
only the shortest of the vectors produced this way and discarding all non-lattice vectors,
we find the solution to the uSVP instance.
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We can now prove the claimed reduction from uSVP to DHSP.

Proof of Theorem 4.14. The proof is just a combination of the several reductions in this
section shown in Theorem 4.21 and Lemmata 4.17 and 2.61, see Figure 4.1.

Remark 4.22. The uSVP to 2PP reduction, which we have presented, can be improved
such that the uSVP parameter is not Θ(n1+2f ), but rather Θ(n1/2+2f ). Regev gives
an algorithm that partitiones the underlying space with balls instead of cubes. The
improved algorithm has many similarities with the one described above. In particular,
the important Lemmata 4.18 and 4.19 are almost identical to the ones we need if the
partition is made with balls. However, some additional, technical lemmata are needed.
The details can be found in [Reg04a] Section 3.3.

4.3 A Reduction from DCP to the Subset Sum Problem

In this section we will yet present another reduction from the dihedral coset problem.
This time we reduce DCP to the so-called subset sum problem(SSP). In contrast to the
rather simple reduction from DCP to DHSP (Lemma 2.61), the reduction to SSP is more
complicated and requires some preliminary lemmata before we can describe the quantum
reduction. The approach we will take is again taken from [Reg04a].

Definition 4.23 (Subset sum problem (SSP), decision version). Given a set of integers
A = {a1, . . . , ar}, where r ∈ N, and a target t ∈ N, the decisional subset sum problem
(SSP) is to decide whether there exists a subset B ⊆ {1, . . . , r} such that∑

i∈B
ai = t.

The search version of SSP would be to find a subset such that the respective numbers ai
sum up to t.

Remark 4.24. It is a well-known fact that the subset sum problem is NP-complete.

Remark 4.25. Obviously, being able to solve the search version efficiently also means that
we are able to solve the decision version efficiently. The opposite direction is also true.
Given an oracle that solves the decision version of SSP, we can use it to tell us whether
there is a subset of {a1, . . . , ar−1} that sums to t. If that is the case, then we do not
need ar and proceed with {a1, . . . , ar−2}. If there is no proper subset that sums to t
then this tells us that we need ar. Then we set t1 = t − ar and call the oracle with the
set {a1, . . . , ar−1} and the new target value t1. This procedure recursively finds a subset
that sums up to t.
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Another variant of SSP, which is the important one for us in this section, is the following.

Definition 4.26 (Subset sum problem (SSP) with a modulus). Given a set of integers
A = {a1, . . . , ar}, where r ∈ N, a target t ∈ N, and a modulus N ∈ N , the subset sum
problem (SSP) with modulus N is to find a subset B ⊆ {1, . . . , r} such that∑

i∈B
ai ≡ t mod N. (4.5)

We call an input (A, t,N) legal if there exists at least one subset B such that the above
equation holds. Although it does not make a huge difference, we assume the input
numbers in A to be ‘reduced mod N ’ by which we mean that they are in the range
0 ≤ ai ≤ N − 1 for all i.

Remark 4.27. For the rest of the section we will refer to the subset sum problem with a
modulus by the abbreviation SSP. We will only consider SSP instances with r = logN+cr
for the size of the input sequence of numbers A, with a constant cr.

The main theorem we want to prove in this section is the following.

Theorem 4.28 (Reduction from DCP to SSP, Thm. 1.3 in [Reg04a]). If there exists an
algorithm that solves 1/poly(logN) of the legal inputs to the subset sum problem with
modulus N , then there exists a quantum algorithm that solves the dihedral coset problem
with failure parameter f = 1.

Remark 4.29. Since DCP gets easier for larger values of the failure parameter, because the
probability that registers are ‘bad’ is lower, Theorem 4.28 actually gives us a reduction
from DCPf , with f ≥ 1 to SSP.

We will now describe the basic idea of the DCP to SSP reduction. We assume that
we have access to a solver S for the subset sum problem that can find a solution for
a 1/(logcs N) fraction of the legal inputs, where cs ≥ 0 is some constant depending on
the solver. Lemma 4.30 shows that, for a randomly chosen input set A to the subset
sum problem, at least half of the inputs is legal. Therefore, S answers a non-negligible
fraction of all SSP inputs. Also we can assume that the output of S is always correct
since it can be easily checked if the output satisfies Equation (4.5). If the solver is not
able to find a solution to SSP, it outputs an error. In the first part of the reduction,
Lemma 4.34, we describe two almost identical quantum routines R1, R2 which receive
as input the qubit registers from the dihedral coset problem with failure parameter 1 as
well as q-matching m. A q-matching is a function that divides some set into two parts
and every element of one subset has distance q from its ‘match’ in the other subset. The
output of R1 and R2 is either 0 or 1 with probabilities which depend on q and d. Recall
that d is the ‘shift’ that we need to find to solve DCP. Moreover, if the matching has a
certain ‘nice’ property, the routines R1 and R2 have a high enough success probability,
see Lemma 4.33.
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In the second part of the reduction (Lemma 4.37) we will use the routines R1, R2 to
construct a third routine that finds an estimation of a multiple kd of d that has distance
of at most N/(logcm+1N) from kd modulo N . We will then use this third routine
iteratively to find kd mod N , from which we can extract d, the solution to the dihedral
coset problem.

In the upcoming quantum reduction the input set A and the target number t to the
subset sum problem will be obtained by the measurement of some qubits and are therefore
randomly generated. In fact, A will be uniformly distributed. Naturally, the question
arises whether there are enough, i.e. a non-negligible fraction, legal inputs for SSP, when
the input parameters are chosen randomly. This is answered by the following lemma.

Lemma 4.30. Let r,N ∈ N, N ≥ 2 and cr ≥ 4. For any fixed t ∈ {0, . . . , N − 1} and
(a1, . . . , ar) = A ⊆ {0, . . . , N−1}r chosen uniformly at random, the probability that there
is a legal input to the subset sum problem is at least 1

2 .

Proof. We define the Bernoulli random variables

Xb : {0, . . . N − 1}r → {0, 1}, a 7→

{
1, if

∑r
i=1 aibi ≡ t mod N,

0, otherwise,

for each b ∈ {0, 1}r, b 6= 0. We have

E[Xb] =
1

N
and Var(Xb) = E

[
X2
b

]
− (E[Xb])

2 =
1

N
− 1

N2
<

1

N

since
∑r

i=1 aibi is uniformly distributed on {0 . . . , N − 1} for every b 6= 0, because each
ai is uniformly drawn from {0, . . . N − 1} by assumption. This is clear for any b with
exactly one 1 and follows via induction for all other b ∈ {0, 1}r. The random variables
Xb are also pairwise independent. To see this, let b 6= b′ and assume that b and b′ differ
on exactly one coordinate, say b1 6= b′1. Then without loss of generality b1 = 1, b′1 = 0.
We get for k, l ∈ {0, 1}:

Proba1,...,ar [Xb = k, Xb′ = l] = Ea1,...,ar
[
1[Xb=k, Xb′=l]

]
= Ea2,...,ar

[
Ea1

[
1[Xb=k, Xb′=l]

]]
= Ea2,...,ar [Proba1 [Xb = k, Xb′ = l]]

= Ea2,...,ar

[
(N − 1)1−k

N
· 1[Xb′=l]

]
= Proba1,...,ar [Xb = k] · Proba1,...,ar [Xb′ = l]

where we have used that, since b′1 = 0, the value of a1 for the outcome of Xb′ is irrelevant,
and that

Proba1 [Xb = k] =
(N − 1)1−k

N
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for any a2, . . . , ar. For arbitrary b 6= b′ we can make an analogous argument for every
coordinate. We let the random variable

Y :=
∑

b∈{0,1}r
b 6=0r

Xb

denote the number of legal inputs for any a ∈ {0, . . . , N − 1}r. We want to bound the
probability of the event that there are no legal inputs, i.e. [Y = 0]. We get

Prob[Y = 0] ≤ Prob

[
Y <

1

2
· 2r − 1

N

]
= Prob

[
Y − E[Y ] < −1

2
E[Y ]

]
= Prob

[
E[Y ]− Y >

1

2
E[Y ]

]
≤ Prob

[
|E[Y ]− Y | > 1

2
E[Y ]

]
≤ 4 · Var(Y )

(E[Y ])2
= 4 · Var(Xb)N

2

2r − 1
< 4 · N

2r − 1
≤ 8

2cr
≤ 1

2
,

where we used r = logN + cr as well as the Chebyshev bound (Proposition 2.38) and

E[Y ] =
2r − 1

N
, Var(Y ) = (2r − 1)Var(Xb),

which holds since the random variables Xb are pairwise independent.

Next we will give the formal definition of a matching, which will be important in the
description of the different routines in the quantum reduction.

Definition 4.31. A function m : D ⊆ {0, . . . , N − 1} → {0, . . . , N − 1} is called a
matching if m(i) 6= i and m(m(i)) = i for all i ∈ D such that m is also defined on m(i).
If, in addition, |m(i)− i| = q holds for all i ∈ D then m is called a q-matching. Also, we
define the sets

P1(m) := {i ∈ D : m(i) > i} and P2(m) := {i ∈ D : m(i) < i}.

Later we will be interested in matchings that have a certain property which is important
for the success probability of the routines in the quantum reduction.

Definition 4.32. Let cm > 0 be a constant and define

T error(A) := {t ∈ {0, . . . , N − 1} : S(A, t) 6= error}

A matching m with domain D is called good if

ProbA

[∣∣{i ∈ D : i,m(i) ∈ T error(A)}
∣∣ ≥ N

logcm N

]
≥ 1

logcm N
.
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Lemma 4.33. For any integer q < N
logcm N we define q-matchings via

mq,1(t) :=

{
t+ q, if t mod 2q < q, t+ q < N,

t− q, if t mod 2q ≥ q, t− q ≥ 0.

mq,2(t) :=

{
t− q, if t mod 2q < q, t− q ≥ 0,

t+ q, if t mod 2q ≥ q, t+ q < N.

Let cm > 3cs be a constant, then at least one of the 2 logcm N matchings in the set

Mq := {mq,1 . . . ,mlogcm N ·q,1,mq,2 . . . ,mlogcm N ·q,2}

is a good matching.

The proof of Lemma 4.33 is rather technical but not very complicated and can be found
in [Reg04a, Lemma 4.5]. We begin with the first part of the quantum reduction.

Lemma 4.34 (First part of the quantum reduction). Given r = logN+cr input registers
for the dihedral coset problem with failure parameter f = 1, access to an SSP solver S
and a q-matching m, there exist routines R1, R2 which either fail or output one bit.
In the latter case, the probability of the bit being 1 is 1

2 −
1
2 cos

(
2πq dN

)
for R1 and

1
2 + 1

2 sin
(
2πq dN

)
for R2. If the input matching was good, the success probability of the

routines is Ω( 1
logcm N ).

Proof. Recall that the input registers for DCP are either in the state

1√
2

(|0, x〉+ |1, x+ d mod N〉 ,

which we called good, or in the state |b, x〉 with b ∈ {0, 1} and x ∈ {0, . . . , N − 1},
which we called bad. The routines R1 and R2 will need a total of (1 + dlogNe)r+ r+ 1
qubit registers. The first registers are the DCP input registers. Each of these consists of
1 + dlogNe qubits and we require r of them. We assume without loss of generality that
the first s of the DCP input registers are bad. The other registers are initialised as |0, 0〉.
The routines begin by applying the quantum Fourier transform to the second register of
the DCP input registers. This results in

1√
2N

N−1∑
k=0

e2πi kx
N |0, k〉+ 1√

2N

N−1∑
k=0

e2πi
k(x+d)
N |1, k〉 =

1√
2N

N−1∑
k=0

e2πi kx
N

(
|0〉+ e2πi id

N |1〉
)
|k〉

for a good register and in
1√
N

N−1∑
k=0

e2πi kx
N |b〉 |k〉

for a bad one.
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Keep in mind that this step is performed on all r DCP input registers. The next step is
to measure the second register from the DCP input registers. Let A = (a1, . . . ar) be the
result. Note that A is drawn uniformly from {0, . . . , N−1}r, so we can use it as an input
for the SSP solver S later. After the measurement, the whole register is in the state

1√
2r−s

 s⊗
j=1

[
e2πi

ajxj
N |bj〉 |aj〉

] r⊗
j=s+1

[
e2πi

ajxj
N

(
|0〉+ e2πi

ajd

N |1〉
)
|aj〉

] |0, 0〉 .
If we omit the global phase

∏r
j=1 exp(2πiajxj/N) and the rdlogNe fixed qubits, our

remaining 2r + 1 registers are in the state

1√
2r−s

 s⊗
j=1

|bi〉
r⊗

j=s+1

(
|0〉+ e2πi

ajd

N |1〉
) |0, 0〉 . (4.6)

We will refer to the first of these three registers above (in square brackets) as α and to
the other two registers as β and γ. Then, we introduce the notation tα :=

∑r
l=1 αlal for

α ∈ {0, 1}r as well as

M := {α ∈ {0, 1}r : αl = bl, 1 ≤ l ≤ s},
L := {α ∈M : tα ∈ P1(m), S(A, tα) = α, S(A,m(tα)) 6= error},
R := {α ∈M : tα ∈ P2(m), S(A, tα) = α, S(A,m(tα)) 6= error}.

We perform the following actions on the last two qubit registers containing r and one
qubit respectively:

if α ∈M \ (L ∪R)

then exit

else if α ∈ L

then β ← α, γ ← 1

else if α ∈ R

then β ← S(A,m(tα)), γ ← 1

Note, that this requires exactly one evaluation of tα, one evaluation of the matching m,
and one oracle call to S. After applying the actions above on the state in Equation (4.6),
the resulting state is:

1√
2r−s

 ∑
α∈M
α/∈L∪R

e2πitα
d
N |α, 0, 0〉+

∑
α∈L

e2πitα
d
N |α, α, 1〉+

∑
α∈R

e2πitα
d
N |α,S(A,m(tα)), 1〉

 .
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Note that we have multiplied the whole state by the fixed phase exp (2πi
∑s

i=1 aibi)
to make the notation more convenient. Using the 1:1-correspondence between the sets
P1(m) and P2(m) induced by the matching m, we rewrite the last sum over R into a sum
over L. This way we obtain∑

α∈L

(
e2πi〈S(A,m(tα)),a〉 d

N |S(A,m(tα)), α, 1〉
)
,

which together with the first two sums results in

1√
2r−s

 ∑
α∈M
α/∈L∪R

e2πitα
d
N |α, 0, 0〉+

∑
α∈L

e2πitα
d
N (|α〉+ e2πiq d

N |S(A,m(tα))〉) |α, 1〉

 .

We also used 〈S(A,m(tα)), a〉− tα = q here. The next step in the routines is to measure
the registers β and γ. If we measure γ = 0, the routines output an error. Otherwise the
resulting state, omitting the measured qubits and renaming the basis states, is

1√
2

(
|0〉+ e2πiq d

N |1〉
)
.

Now, we come to the difference in the two routines. Routine R1 applies the Hadamard
transform on this state and routine R2 applies the transformation given by the unitary
matrix (

1 0
0 i

)
and afterwards the Hadamard transform. The resulting states are

|ψ1〉 =
1

2

((
1 + e2πiq d

N

)
|0〉+

(
1− e2πiq d

N

)
|1〉
)

|ψ2〉 =
1

2

((
1 + e

πi
2

+2πiq d
N

)
|0〉+

(
1− e

πi
2

+2πiq d
N

)
|1〉
)

A simple calculation similar to the one in Example 2.20 shows that the probabilities
for a measurement of 1 are as required. So all that remains to show is a high success
probability if the matching m is good. The routines succeed if we measure γ = 1, the
probability for that to happen is |L ∪ R|/2r−s. Let S denote the random variable that
counts the number of bad registers. We have

Prob[S = 0] ≥
(

1− 1

logN

)r
=

(
1− 1

logN

)logN+cr

= Ω(1)

since (1− 1/ logN)logN+cr N→∞−−−−→ e−1. We also note that if S = 0, the sets

L ∪R = {α ∈ {0, 1}r : tα ∈ P1(m) ∪ P2(m), S(A, tα) = α, S(A,m(tα)) 6= error}
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and
C := {i ∈ D : i,m(i) ∈ T error(A)}

have the same cardinality since every α ∈ L ∪ R gives us a tα ∈ C and vice versa. If
m was a good matching, we know that, with non-negligible probability, |C| is at least
N/ logcm N which gives us

|L ∪R|
2r

≥ N

2logN+cr logcm N
= Ω

(
1

logcm N

)
and finally

Prob[γ = 1] ≥ Prob[S = 0] · Prob[γ = 1|S = 0] = Ω(1) · Ω
(

1

logcm N

)
,

which concludes the proof.

Remark 4.35. Note that the assumption f = 1 on the failure parameter is only used to
give a lower bound on the probability that none of the input registers are bad. Since this
estimation works as well for f ≥ 1, the routines R1 and R2 succeed also for DCP inputs
with failure parameter f ≥ 1 with non-negligible probability.

In the second part of the reduction we will need a little technical lemma.

Lemma 4.36. Let 0 < ε ≤ 1/4 and x, y ∈ R with

|x− cos(ϕ)| ≤ ε, and |y − sin(ϕ)| ≤ ε.

Then we can compute ϕ mod 2π up to an additive error of 8ε.

Proof. Assume x ≥ 0. Then∣∣∣∣ y

1 + x
− sin(ϕ)

1 + cos(ϕ)

∣∣∣∣ =

∣∣∣∣y − sin(ϕ) + (y − sin(ϕ)) cos(ϕ) + (cos(ϕ)− x) sin(ϕ)

(1 + x)(1 + cos(ϕ))

∣∣∣∣
≤ 3ε

(1 + x)(1 + cos(ϕ))
.

We have x− cos(ϕ) = r for some r ∈ R with 0 ≤ |r| ≤ ε. If r ≥ 0, we can estimate

3ε

(1 + x)(1 + cos(ϕ))
≤ 3ε

(1 + x)(1 + x− ε)
≤ 3ε

1− ε
≤ 4ε.

For r < 0 we can do a similar calculation. Using sin(2ϕ) = (1 + cos(2ϕ)) tan(ϕ) and the
mean value theorem, we get

arctan

(
y

1 + x

)
− ϕ

2
=

1

ζ2 + 1

(
y

1 + x
− sin(ϕ)

1 + cos(ϕ)

)
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for some appropriate ζ, and therefore∣∣∣∣2 arctan

(
y

1 + x

)
− ϕ

∣∣∣∣ ≤ 8ε.

If we have x < 0, we instead use 2 arccot(y/(1−x)) to estimate ϕ and proceed analogously.

Lemma 4.37 (Second part of the quantum reduction). Assume we have access to the
routines R1, R2 from Lemma 4.34. Then there exists a routine R that finds for any given
integer q < N

logcm N a multiple q′ ∈ {q, . . . , logcm N · q} of q and an estimate r such that

r ∈
[
q′d− N

logcm+1N
, q′d+

N

logcm+1N

]
mod N.

holds with probability exponentially close to 1.

Proof. Consider the set of matchingsMq from Lemma 4.33. For any q′-matching m from
this set we do the following. With the matching m as input (and the required DCP
registers) we call routines R1, R2 each log3cm+4N times. If the number of successful calls
to one of the routines is less than log2cm+3N we output an error. At first we show that
this happens only with negligible probability. If we go through all the matchings inMq,
which is still efficient since the size ofMq is polynomial in logN, we are guaranteed to
find at least one good matching. According to Lemma 4.34 the success probability of R1

and R2 with a good matching is at least cg 1
logcm N for a constant cg > 0. The probability

that routine R fails with a good matching is at most(
1− cg

1

logcm N

)logcm+1N

,

since logcm+1N calls to the subroutines have to fail in order for R to fail. This probability,
however, is exponentially small. So we assume that the number of successful calls to the
routines, say R1,R2 respectively, are both at least log2cm+3N. We denote the averages
of their respective outputs as x and y. Let us think of the i-th outcome of routines R1

and R2 as Bernoulli random variables R1,i and R2,i and let

X =
1

R1

R1∑
i=1

R1,i, Y =
1

R2

R2∑
i=1

R2,i.

The respective random variables in the two families of random variables (R1,i)1≤i≤R1 and
(R2,i)1≤i≤R2 are independent and identically distributed. Using the Chernoff-Hoeffding
bound (Prop. 2.37), we get

Prob(R1,i)1≤i≤R1

[∣∣∣∣X − (1

2
− 1

2
cos(2πq′

d

N
)

)∣∣∣∣ > 1

ce logcm+1N

]
≤ 2e

−2
R1

c2e log2cm+2 N ≤ 2e
−2 logN

c2e .
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Since we assumed that more than log2cm+3N calls to R1 were successful. Note that
this probability is exponentially small (in logN). Hence, with probability exponentially
close to 1, x′ := 1 − 2x is an approximation of cos

(
2πq′ dN

)
up to an additive error of

at most 2/(ce logcm+1N). A similar bound holds for y and therefore y′ := 2y − 1 is an
approximation of sin

(
2πq′ dN

)
with the same bound for the additive error as x′. For ce

large enough, to make sure that the additive error is not bigger than 2π, this leads to an
estimation of q′dmod N with an additive error of at most N/ logcm+1N by using Lemma
4.36 and multiplying everything with N

2π .

To complete the description of the quantum reduction from DCP to SSP, we prove
Theorem 4.28 by showing how to find the shift d in the good DCP registers.

Proof of Theorem 4.28. We claim that Algorithm 5 solves the dihedral coset problem
with failure parameter f ≥ 1 by making use of an oracle for the subset sum problem (in
the subroutines R1, R2).

Algorithm 5 DCP1 to SSP reduction

INPUT: Access to subroutine R from Lemma 4.37
OUTPUT: The hidden shift d in the DCP input registers, i.e the solution to
DCP.
1: Call R with input q = 1. Let (r̂, q̂) be the output and set q1 = 1, r1 = r̂.
2: while qi < 4N

logcm+1N
do

3: Call R with input q = 2qiq̂. Let (r′, q′) be the output.
4: Set qi+1 = q′

q̂ , a
′ =

⌊(
qi+1

qi
ri − r′

)
/N
⌉
and ri+1 = N · a′ + r′.

5: end while
6: Compute d̂ =

⌊
ri
qi

⌉
.

7: Output d = d̂q̂−1.

We analyse the algorithm and prove its correctness. Let d′ := dq̂. We note that after the
initial call to routine R, the output r1 satisfies

r1 ∈
[
d′ − N

logcm+1N
, d′ +

N

logcm+1N

]
mod N.

We assume that we have an estimate ri in the i-th step such that

ri ∈
[
qid
′ − N

logcm+1N
, qid

′ +
N

logcm+1N

]
mod qiN.

Note that this is fulfilled in the first step since q1 = 1. Then we also have

qi+1

qi
ri ∈

[
qi+1d

′ − 2N

logN
, qi+1d

′ +
2N

logN

]
mod qi+1N
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since qi+1/qi ≤ 2 logcm N, and because of q′ ∈ {2qiq̂, . . . , 2 logcm N · qiq̂}. The output of
the call to routine R in the i-th step gives us

r′ ∈
[
qi+1d

′ − N

logcm+1N
, qi+1d

′ +
N

logcm+1N

]
mod N.

The idea behind computing ri+1 the way we do is to obtain an estimate that satisfies

ri+1 ∈
[
qid
′ − N

logcm+1N
, qid

′ +
N

logcm+1N

]
mod qi+1N.

To see that this indeed works out, we write

r′ = qi+1d
′ + ε1 +Na1 and

qi+1

qi
ri = qi+1d

′ + ε2 + qi+1Na2,

for some integers a1, a2 and ε1 ∈ [− N
logcm+1N

, N
logcm+1N

] and ε2 ∈ [− 2N
logN ,

2N
logN ]. First we

observe that for N > 64 we have

|ε2 − ε1| ≤
N

logcm+1N
+

2N

logN
<
N

2
.

Thus,
a′ = b((a2qi+1 − a1)N + ε2 − ε1) /Ne = a2qi+1 − a1.

Therefore,

ri+1 = N · a′ + r′ = N(a2qi+1 − a1) + qi+1d
′ + ε1 +Na1 ≡ qi+1d

′ + ε1 mod qi+1N

as required. Since qi at least doubles in each step, the while loop is left after a polynomial
number of logN − log logcm+1N + 3 = O(logN) steps. We leave the while loop when
qi ≥ 4N/(logcm+1N), and in this case we have

ri
qi
∈
[
d′ − N

qi logcm+1N
, d′ +

N

qi logcm+1N

]
⊆
[
d′ − 1

4
, d′ +

1

4

]
mod N.

Since this is an interval of width 1/2, rounding to the nearest integer yields d′ = dq̂.

Remark 4.38. It may be seen that the DCP1 to SSP reduction requires timeO(log4cm+7N)
together with O(log4cm+5N) oracle calls and we need to store O(log3cm+6N) qubits. We
require O(log3cm+4N) classical space, while the success probability is exponentially close
to 1.
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5 Algorithms for DHSP and SSP

In this chapter we will take a look at some quantum algorithms from the literature
for solving DHSP and SSP. In Section 5.1 we consider an algorithm for DHSP due to
Kuperberg ([Kup05]) and in Section 5.2 an algorithm for solving SSP due to Bernstein et
al. ([BJLM13]). For a more detailed discussion of the algorithms as well as an in-depth
analysis of their complexity we refer to the original papers ([Kup05],[Kup11],[Reg04b]
and [BJLM13]).

5.1 DHSP Algorithms

In this section we will review some quantum algorithms for solving the dihedral hid-
den subgroup problem. At first we will discuss two ‘older’ algorithms due to Kuperberg
([Kup05]) and Regev ([Reg04b]). We will not analyse these two algorithms in detail,
since they are generalised and outperformed by another DHSP algorithm, also due to
Kuperberg ([Kup11]). However, the basic ideas behind all three algorithms are similar
and discussing the first two serves as a good introduction to the topic.

5.1.1 Kuperberg’s First Algorithm and Regev’s Improvement

All three algorithms are concerned with the task of finding some kind of ‘hidden shift’,
which is a bit string on dlogNe bits. As usual for notational convenience, we will consider
the case where N is a power of 2. The task is to solve the hidden subgroup problem in
the dihedral group DN , defined in Section 2.4. Recall that the hard cases of DHSP are
the ones where the hidden subgroup H is of the form H = {(0, 0), (1, d)}. The hidden
bit string we have to find to solve DHSP in this case is d. One idea that all three
DHSP algorithms share is that it suffices to determine the parity of d. This is due to
the fact that once we know the least significant bit of d, we can consider another DHSP
instance with a group isomorphic to DN/2 and another hiding function f ′(s, r) defined
as f(s, 2r) if d was even and f(s, 2r+ 1) if d was odd. This functions hide the subgroup
{(0, 0), (1, d/2)} or {(0, 0), (1, (d − 1)/2)}, respectively. Proceeding inductively, we can
determine the whole string d. Another similarity of the three algorithms is that they all
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aim to create a qubit state of the form

|ψ〉 =
1√
2

(|0〉+ (−1)d |1〉). (5.1)

A measurement in the basis |±〉 (recall Example 2.20) reveals the parity of d. In order to
create the state in Equation (5.1), the algorithms perform different kinds of combinational
operations on qubit states of the form

|ψk〉 :=
1√
2

(|0〉+ e2πidk/N |1〉). (5.2)

In the description of Kuperberg’s second algorithm, these states will be generalised to
the so-called phase vectors, but for now we will be dealing with these states, which can
be produced in the following way. Recall that in an instance of HSP we assume to have
access to a unitary operator Uf that computes the hiding function f . The following steps
show how we can produce a state of the form (5.2):

|0, 0〉 |0〉
FDN7−−−→ 1√

2N

∑
b∈{0,1}

x∈{0,...,N−1}

|b, x〉 |0〉

Uf7−−→ 1√
2N

∑
b∈{0,1}

x∈{0,...,N−1}

|b, x〉 |f(b, x)〉 .

A measurement of the third register with result, say, y leaves the first two register in a
state

1√
2
|0, y〉+ |1, y + d mod N〉

FZ/NZ7−−−−→ 1√
2N

N−1∑
j=0

e2πiyj/N |0, j〉+

N−1∑
j=0

e2πi(y+d)j/N |1, j〉 .

Then a measurement of the second register with result, say, k produces the desired state
|ψk〉. Note that the value k is known to us since we just measured it. We can think of
this value as a label for the qubit state |ψk〉, thus the goal of the algorithms becomes
the creation of a qubit state whose label has all but the leftmost bit of this label zeroed
out. Now, we will describe briefly the way Kuperberg’s first algorithm, as well as Regev’s
algorithm, achieves that goal.

In Kuperberg’s first algorithm, a chain of routines is used to combine states of the form
(5.2) in such a way, that the combined state has the label k1 − k2 with a probability of
1/2. Each routine would get qubit states from his predecessor such that the labels of
these states have already a number of bits zeroed out. The routine saves all the qubits
and their respective labels in a pile and for each new incoming qubit, it checks whether
the new label coincides with one already in the pile on the last, say m, bits that have
not been zeroed out so far. If this is the case, the routine combines the two qubits and
obtains with probability 1/2 a new qubit whose label has m additional bits zeroed out.
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Provided the decomposition n = m2 + 1 it can be shown that this leads to a running
time of 2O(

√
n) = 2O(

√
logN). Thus, Kuperberg’s first algorithm was the first one solving

DHSP on a quantum computer in subexponential time. However, each of the m routines
has to wait for O(2m) qubits entering its pile on average. Thus, the algorithm does also
require 2O(

√
logN) space.

The major improvement by Regev was to reduce the required space to a polynomial
amount (in logN), while obtaining an only slightly worse running time of 2O(

√
logN log logN).

Regev achieves this by introducing a new technique that allows his algorithm to zero out
blocks of bits without having to wait for a match to occur in the bits of the incoming
labels. Since this technique is also adopted by Kuperberg in his later algorithm, we will
talk about it briefly. Regev decomposes n to n = 1 + ml with m = O(

√
n/ log n) and

l = O(
√
n log n). Instead of waiting and comparing labels, he just tensors O(l) qubits to-

gether and computes the function 〈~b,~kmod 2l〉 in an ancilla register. Here ~k is the vector
consisting of the O(l) labels and ~b is an arbitrary bit string of O(l) bits. A measurement
of the ancilla register leaves us with a superposition over all the bit strings such that
〈~b,~kmod 2l〉 coincides with the measurement, say z. The main cost of Regev’s algorithm
is to compute the set of all these ‘good’ bit strings. This is done by brute force, thus
resulting in the slightly higher running time of 2O(l) = 2O(

√
n logn). Finally, a projective

measurement on the subspace spanned by two (arbitrary) of these ‘good’ bit strings is
performed to produce a qubit state of the form

1√
2

(|0〉+ e2πid〈~b2−~b1,~k〉/N |1〉)

after renaming the basis states. The label of this state is 〈~b2 − ~b1,~k〉 and, clearly, its
last l significant bits are all 0. By changing the utilised modulus, a similar combination
can be performed on other l-bit blocks, e.g. 22l to zero out the second l-bit block from
the right. The presented ideas, introduced in [Reg04b], are picked up and generalised by
Kuperberg in his second DHSP algorithm.

5.1.2 Kuperberg’s Second Algorithm for DHSP

Now, we will review Kuperberg’s second algorithm for DHSP. The two papers by Kuper-
berg which provide more details than our summary are [Kup05] and [Kup11].

Recall that for N ∈ N the dihedral group DN is given as the semi-direct product

DN = Z/2Z n Z/NZ.

In a hard instance of DHSP we are given a function h that hides cosets of some subgroup
H ⊂ DN which is of the form {(0, 0), (0, s)}. However, in this section we will use the
equivalent notation that was introduced in Definition 2.56. So from now on we write
H = 〈yxs〉 for the hidden subgroup. By considering the maps

f(a) := h(xa) and g(a) := h(yxa),
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we see that DHSP is actually equivalent to the so-called abelian hidden shift problem, i.e
given an abelian group A (here we have A = Z/NZ) and two injective functions f, g with
f(a) = g(a+ s) for all a ∈ A, the task is to find s. For more information and details see
[Kup05] Section 6. The situation that we assume is the following: We are given elements
rj ∈ Z/NZ (r0 = 0) for 0 ≤ j ≤ l− 1 for some l ∈ N and a set of injective functions {fj}

fj : Z/NZ→ X

satisfying
f0(a+ rjs) = fj(a)

for all j and all a ∈ Z/NZ, for a unique s. Here X is just some arbitrary (unstructured)
set. In the case l = 2, this is equivalent to r1 being invertible modulo N . Note that the
abelian hidden shift problem is just the special case l = 2, r1 = 1. We will also assume
that we have access to an oracle Uf that performs the action

|j, a, 0〉
Uf7−−→ |j, a, fj(a)〉 .

Let |J〉 and |A〉 denote the uniform superpositions over the sets J = {0, . . . , l − 1}
and A = Z/NZ. For simplicity, we also assume N = 2n. The first thing Kuperberg’s
algorithm does is to compute a set of many so-called phase vectors, which is done in the
following way. First we use the oracle to apply Uf . This yields

|J〉 |A〉 |0〉
Uf7−−→ 1√

lN

∑
j,a

|j, a, fj(a)〉 .

Measuring and discarding the third register with result say f0(t) leads to

1√
l

∑
j

|j, t− rjs〉
FZ/NZ7−−−−→ 1√

l

∑
j

|j〉 1√
N

∑
k

e2πi(t−rjs)k/N |k〉

and a measurement of the second register with result say b yields the state

|ψ〉 =
1√
l

∑
j

e−2πirjsb/N |j〉 .

Definition 5.1. Let l ∈ N, N = 2n for some n ∈ N . A quantum state of the form

|ψ〉 =
1√
l

l−1∑
j=0

e2πisb(j)/2n |j〉 (5.3)

is called a phase vector of length l. The coefficients b(j) are called phase multiplier
functions. If m ≤ n, such that 2m divides b(j1) − b(j2) for all j1 6= j2 then the state in
Equation (5.3) can be written as

|ψ〉 =
1√
l

l−1∑
j=0

e2πisb(j)/2h |j〉

with h = n−m. The number h is called a height of the phase vector.

62



Remark 5.2. Note that, since we do not assign the smallest possible height to a phase
vector, we can view phase vectors of height h as well as phase vectors of height h′ for
any h ≤ h′ ≤ n.

Kuperberg’s algorithm uses the so-called collimation algorithm to produce more favourable
phase vectors.

Algorithm 6 Collimation algorithm for phase vectors

INPUT: Phase vectors |ψ1〉 , . . . , |ψr〉 of height h with lengths l1, . . . , lr and a collimation
parameter m.
OUTPUT: A phase vector |Ψ〉 of height h−m and length l′ ≈ 2−m

∏r
i=1 lr.

1: Compute |ψ′〉 = |ψ1〉 ⊗ . . .⊗ |ψr〉 .

2: Compute b(~j) :=
∑r

j=1 bj mod 2m in another m qubit register, measure it and save
the outcome, say c.

3: Compute the set of indices Ĵ ⊆ J1× . . .×Jr such that b(~j) = c for ~j ∈ Ĵ , set l′ = |Ĵ |.
4: Renumber the resulting vector to form |Ψ〉 of length l′ with indexing set {0, . . . , l′−1}.

Remark 5.3. The explicit process of renumbering is done in the following way: We
pick a bijection π : Ĵ → {0, . . . , l′ − 1} (Kuperberg uses the special permutation that
also sorts the new phase multiplier table containing the values b(j1) + b(j2) by the m
lowest bits, see the proof in [Kup11, Prop. 4.2]) and apply the subunitary operator
Uπ : Cl1 ⊗ . . .⊗Clr → Cl′ that annihilates all vectors orthogonal to C[Ĵ ] ⊆ C[J1×. . .×Jr]
and acts as π on all vectors in C[Ĵ ]. Here we denote by C[X] the Hilbert space with an
orthonormal basis indexed by elements of some finite set X. In the case of X being
a group G, C[G] is called the group algebra. The estimation of the length of the new
phase vector |Ψ〉 is done heuristically by assuming that b(~j) is uniformly distributed on
{0, . . . , 2m − 1}.

Regarding the complexity of the collimation algorithm we have the following results.

Proposition 5.4 (Proposition 4.2 in [Kup11]). Let r = 2, lmax := max(l1, l2, l
′) with l′

as the length of the collimated phase vector |Ψ〉. Then Algorithm 6 requires

• Õ(lmax) classical time,

• O(lmaxh) classical space,

• O(lmax max(m, log lmax)) classical space with quantum access,

• poly(log lmax) quantum time and

• O(log lmax) quantum space.
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We can now give a complete description of Kuperberg’s Collimation sieve algorithm:

Algorithm 7 Kuperberg’s collimation sieve algorithm

INPUT: A desired height h, a collimation parameter m = m(h), a branching parameter
r = r(h), a starting minimum length l0 and an oracle that computes Uf .
OUTPUT: A phase vector of height h.
1: if h = n then
2: Extract phase vectors |ψ1〉 , . . . , |ψs〉 , as described in the beginning, and tensor

them together such that the length of |Ψ〉 = |ψ1, . . . , ψs〉 is at least l0 and output
|Ψ〉 .

3: else
4: Obtain recursively and sequentially phase vectors |ψ1〉 , . . . , |ψr〉 of height h + m

and collimate them with Algorithm 6 to produce a phase vector |Ψ〉 of height h
and return this vector.

5: end if

When Algorithm 7 is run with h = 1, it produces the state

|ψ〉 =
1√
l

l−1∑
j=0

(−1)b(j)s |j〉 .

We compute a non-empty maximal set X ⊆ {0, . . . , l− 1}, such that b(j) takes only the
values 0 and 1 equally often for j ∈ X and perform a partial measurement to determine
whether |ψ〉 ∈ C[X]. If no such set X exists or |ψ〉 6∈ C[X], then we run Algorithm 7
again. However, if |ψ〉 ∈ C[X], then |ψ〉 contains at least one qubit factor of the form
(|0〉+ (−1)s |1〉)/

√
2 and a measurement in the Hadamard basis |±〉 yields the parity of

the hidden shift s. We can now inductively compute the whole string s by noting that
DN contains the two subgroups

U0 = 〈x2, y〉 and U1 = 〈x2, yx〉,

which are both isomorphic to DN/2 and fulfil H ⊆ Ub if and only if b ≡ s mod 2. This
concludes the description of the algorithm.
Remark 5.5. Regarding time and space complexity, a heuristic analysis Algorithm 7
shows that its running time can be estimated as Õ(2

√
2 logN ), see [Kup11] Section 4.5.

Regarding the parameters m and r of Algorithm 7, we remark that increasing m saves
quantum time at the cost of classical time and space, whereas increasing r saves quantum
space at the cost of quantum time. For more details in that regard we refer to Sections
1, 2, 4 of [Kup11].

Since we are interested in a special application of this algorithm, we will also describe a
slightly modified version that will be suitable for solving DHSP. Recall that for DHSP
we only assume the existence of two hidden shifts f0 and f1. For notational convenience
we assume logN = n = m2 + 1. The modified algorithm works as follows.
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Algorithm 8 Modified version of Kuperberg’s Algorithm for DHSP

INPUT: A number m = O(
√

logN), 2O(
√

logN) DHSP input registers, access to a
subroutine that implements Algorithm 6.
OUTPUT: The parity of d with constant probability.
1: First stage: Form two phase vectors of length l0 = 2m+1, each from m + 1 of the

input qubits.
2: Call Algorithm 6 to produce another phase vector with output length l1.
3: Divide the index set of the output vector from the previous step into segments of

length l0 and a left over segment of length l2.
4: Perform a partial measurement corresponding to this partition into segments.
5: if the length of the measured segment is l2 then
6: Discard the phase vector.
7: else
8: Store the produced phase vector of length l0.
9: end if

10: Intermediate stages: Use the phase vectors produced in the previous stages to obtain
recursively and sequentially phase vectors whose phase multiplier functions are more
and more aligned by using the same procedure as described in the first stage.

11: Last stage: After aligning the last m bits of the phase multipliers and producing
a phase vector of length l1 using Algorithm 6, divide the index set into segments
of two elements each (and one left over segment if l1 is odd) and perform a partial
measurement corresponding to this partition.

12: if the produced phase vector is of the form (5.1) then
13: Perform a measurement in the Hadamard basis to find the parity of d.
14: else
15: Restart from the beginning.
16: end if

Proposition 5.6. Algorithm 8 requires quantum time and classical space 2O(
√

logN) and
quantum space O(log logN) and has a non-negligible success probability.

Proof. See [Kup11, Prop. 4.5].

5.2 A Quantum Algorithm for SSP

In this section we will review an algorithm for the subset sum problem to capitalise on
Theorem 4.28. The algorithm which is due to Bernstein et al. is an improvement of an
algorithm by Howgrave-Graham and Joux ([HGJ10]) and runs in time O(2(0.241...+o(1))n).
It combines different techniques for solving the subset sum problem, such as ‘Left-right
split’, ‘quantum walks’, ‘moduli’ and ‘representations’. We will briefly review these differ-
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ent ideas and give an overview of their combination in order to obtain the complete algo-
rithm afterwards. For a more detailed approach, we refer to the original paper [BJLM13].

Recall the search version of SSP: Given a sequence of integers A = (a1, . . . an) for n ∈ N
and a target value t, the goal is to find a set of indices I ⊆ {1, . . . , n} such that∑

i∈I
ai = t.

Remark 5.7. A variant of SSP we already know is the introduction of a modulus (recall
Definition 4.26). Another variation of SSP is the following: We are given an additional
natural number 1 ≤ w ≤ n and are asked to find solutions, i.e. an index set I, such that
|I| = w. This problem is called the subset sum problem with weight w. Of course, we
can also mix these two SSP variations and, indeed, we will do so later on.

Let Σ: P({1, . . . , n}) → N denote the function that maps the index set I to the value∑
i∈I ai. We can reformulate the subset sum problem as the task to find a root of the

function Σ− t. Note that we could use Grover’s algorithm ([Gro96]) to find a root of this
function, using about 2n/2 quantum evaluations of Σ− t. However, this is not optimal.

Now, we will briefly review the different techniques mentioned above. Throughout this
section, we divide n by different numbers and assume that the result is an integer. This
is purely for notational convenience. Everything we do can be generalised for arbitrary
n ∈ N.

The left-right split: To find an indexing set I ⊆ {1, . . . , n} with Σ(I) = t, enumerate all
sets I1 ⊆ {1, . . . , n/2} and compute the first list L1 := {(Σ(I1), I1) : I1 ⊆ {1, . . . , n/2}}.
Afterwards, we enumerate all sets I2 ⊆ {n/2 + 1, . . . n} and compute the second list
L2 := {(t− Σ(I2), I2) : I2 ⊆ {n/2 + 1, . . . , n}}. After the computation of each t− Σ(I2),
we check for a collision with elements of L1 in the first coordinate via binary search. If
there is a collision, we output I = I1 ∪ I2 and terminate. Otherwise there is no solution
to the subset sum problem.

A quantum variant of this procedure is the following. This time consider the first list
L′1 := {(Σ(I1), I1) : I1 ⊆ {1, . . . , n/3}} and define the function

f : P({n/3+1, . . . , n})→ {0, 1}, f(I2) :=

{
0, if t− Σ(I2) is a first coordinate in L′1,
1, otherwise.

Since binary search in L′1 takes time O(n), so does one evaluation of f . We can use
Grover’s algorithm to find a root of f . This leads to costs of O(n2n/3) in time and space
for the quantum version in contrast to O(n2n/2) for the classical version.

Quantum walks: To find a unique collision of some function f with inputs of b-bits,
i.e. the only two values x 6= y with f(x) = f(y), we search through the Johnson
graph of r subsets of the set of b-bit strings. Here r ≈ 22b/3 is an algorithm parameter
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and the Johnson graph is the graph whose vertices are the subsets of all b-bit strings
with cardinality r. The edges of the Johnson graph are between subsets which differ in
exactly one element. A quantum walk algorithm due to Ambainis ([Amb07]), which acts
on states of the form |S〉 |f(S)〉 |T 〉 |f(T )〉, where S and T are adjacent vertices of the
Johnson graph and f(S), f(T ) are the multisets of the images of S and T under f , can
be used to find the unique collison with O(22b/3) evaluations of f . An important aspect
in this context is the way we store the subsets of cardinality r as well as the multiset
of their images. Bernstein et al. propose a radix tree for that purpose. As for Grover’s
algorithm, there are also generalisations for the cases when f has a known number of
k > 1 collisons or an arbitrary unknown number of collisions. For more details we refer
to [BJLM13] Section 3 and [Amb07].

Moduli: In Section 4.3, we have already encountered SSP with a modulus, recall Def-
inition 4.26. We can modify the left-right split approach by choosing a positive integer
modulus M ≈ 2n/4, some m ∈ {0, . . . ,M − 1} and computing

LM1 := {(Σ(I1), I1) : I1 ⊆ {1, . . . , n/2}, Σ(I1) ≡ m mod M}.

This is an instance of a subset sum problem of size n/2 with modulusM . This new subset
sum instance will be handled by solving the family of subset sum problems (without a
modulus!) given by the same input set A = (a1, . . . , ar) (recall that we assume that
0 ≤ ai ≤ M − 1 for all i) and the different targets m,m + M, . . . ,m + (n/2 − 1)M .
These SSP instances will be handled by a suitable subroutine, e.g. the original left-right
split. Note that the subroutine has to find all solutions to the respective SSP instances to
compute LM1 . So the number of solutions must be added to the costs of the subroutine.
However, since the ai are assumed to be uniformly random, we have 2n/2/M ≈ 2n/4

solutions for Σ(I1) ≡ m mod M for every m on average. Since the running time of
the left-right split algorithm is also O(n2n/4) in this case, we have O(n2n/4) for the
subroutine. The computation of

LM2 := {(Σ(I2), I2) : I2 ⊆ {n/2, . . . , n}, Σ(I2) ≡ t−m mod M}

is done similarly. Again, we store LM1 in a sorted table and for each element in LM2
we check whether t − Σ(I2) appears in that table. If we find no collision, we just try a
different value for m, until in the worst case all m ∈ {0, . . . ,M −1} are exhausted, which
produces a total cost of O(n2n/2).

Representations: Representation in this context refers to a decomposition of an (index)
set and should not be confused with representations of groups. In the original left-right
split we partitioned some index set I into two index sets, where we split the original set
of indices in a left and a right half. However, we could also split the index set I into two
parts I1, I2, where |I1| = |I2| = |I|/2 in a different way. The main advantage of this is
that there are more possibilities for us to decompose the set I, and since we do not care
how we decompose the set I, as long as we find it, this will improve the probability of
the algorithm being successful.
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The central idea of the improved algorithm by Bernstein et al. is the following. Since SSP
can be thought of as a collision finding problem, as our previous discussion illustrates,
they start with a classical collision finding algorithm for a function f that computes all
possible values of f . They introduce an algorithm parameter r and adapt the algorithm
such that it only computes f(S) for a subset S of all inputs such that |S| = r. This
requires less time, but results in a lower success probability. Then Bernstein et al. apply
the quantum walk technique to walk through adjacent vertices in the Johnson graph
of subsets of size r. The required number of quantum walk steps depends on the suc-
cess probability of the previous algorithm. For this approach, the computation of the
‘lower probability algorithm’ has to be expressed in a data structure that allows efficient
movement between adjacent sets. As already mentioned, they choose to store sets in
augmented radix trees.

We will now give a description of the modified Howgrave-Graham-Joux algorithm, com-
bining all ideas presented so far. For notational convenience, we assume that we are only
searching for solutions of the SSP with weight |I| = n/2. Other weights can be handled
by adjusting the set sizes in the following algorithm appropriately and unknown weights
are handled by trying all possible O(n) weights.

Howgrave-Graham-Joux algorithm (unmodified version):

original
w = n/2

SSP

w = n/2

SSP with
modulus

w = n/4

SSP with
modulus

w = n/8

SSP with
modulus

w = n/16

SSP
. . .

w = n/8

SSP with
modulus

. . .

w = n/4

SSP with
modulus

w = n/8

SSP with
modulus

. . .

w = n/8

SSP with
modulus

. . . w = n/16

SSP

Figure 5.1: Tree structure of the Howgrave-Graham-Joux algorithm

In the first level of the Howgrave-Graham-Joux algorithm (see Figure 5.1) a modulus
M1 ≈ 2n/2 and a value m1 ∈ {0, . . . ,M1 − 1} are picked, transforming the original
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weight-n/2 SSP into one with a modulus. The goal is to compute the sets

LM1
1 := {(Σ(I1), I1) : I1 ⊆ {1, . . . , n}, |I1| = n/4, Σ(I1) ≡ m1 mod M1}.

and

LM1
2 := {(Σ(I2), I2) : I2 ⊆ {1, . . . , n}, |I2| = n/4, Σ(I2) ≡ t−m1 mod M1}.

Then we check for collisions Σ(I1) = t−Σ(I2) that also satisfy I1∩I2 = ∅ since we do not
perform the standard left-right split but rather use the representation technique. Since
a1, . . . an are uniformly random and the number of possible decompositions of I in the sets
I1, I2 ⊆ {1, . . . , n} with |I1| = |I2| = n/4 is

(n/2
n/4

)
≈ 2n/2, we expect that for each choice

of m1 we find at least one element in LM1
1 such that I1 is part of such a decomposition

of I with high probability. For the approximation of the binomial coefficient we used the
asymptotic approximation log

(
n
k

)
≈ nH(k/n), derived from Stirling’s formula, where

H(α) = −α log(α)− (1−α) log(1−α) is the binary entropy of α ∈ (0, 1). The remaining
task is to compute the sets LM1

1 and LM1
2 , which are weight-n/4 SSPs with moduli (second

level of the tree). They are solved analogously by picking another modulus M2 ≈ 2n/4,
dividingM1, producing four weight-n/8 SSPs with moduli. Each of these is finally solved
by using the standard left-right split method resulting in eight weight-n/16 SSPs as the
leaves of the tree. It can be shown that the success probability of one iteration of this
algorithm is inverse polynomial in n. For this statement, a more detailed explanation
and overview of the Howgrave-Graham-Joux algorithm and its organisation as a tree, we
refer to the original paper [BJLM13, pp. 13-15].

The modified version: Bernstein et al. modify the algorithm above in the following
way. They introduce a parameter r ≤

( n/2
n/16

)
that controls the number of randomly

selected weight-n/16 subsets in the lowermost stage of the algorithm. In the extreme
case r =

( n/2
n/16

)
, this produces the original algorithm and for smaller values of r the

success probability drops by a factor of (r/
( n/2
n/16

)
)8, which is compensated by a quantum

walk consisting of O(
√
r(
( n/2
n/16

)
/r)4) steps to assure that the algorithm has a constant

success probability, see [Amb07]. In [BJLM13] it is stated that the optimal choice of the

parameter r is on the scale of
( n/2
n/16

)4/4.5
leading to a computational cost of 2(0.241...+o(1))n.

Here, polynomial factors, such as the ones produced by binary search in previous steps,
are suppressed. In the following we will always work with this running time, but have in
mind that it actually is poly(n) · 2(0.241...+o(1))n for a rather small polynomial factor.
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6 Solving LWE Instances via Reductions
to SSP and DHSP

Now, we will use the quantum reductions given in Chapter 4 together with the algorithms
presented in Chapter 5 in order to construct two approaches for solving the learning with
errors problem (LWE). In the following, we will analyse the asymptotical running time,
space requirements and success probabilities of the algorithms we obtain by combining
the various quantum reductions we presented together with the algorithms for solving
DHSP from Kuperberg and SSP from Bernstein et al. (BJLM). We begin with showing
how to view an instance of LWE as an instance of the bounded distance decoding problem
(BDD). Afterwards, we apply the reductions from Chapter 4 to transform the original
LWE problem into an instance of the dihedral coset problem (DCP), or the subset sum
problem (SSP), which we will finally solve with the algorithms from Chapter 5. This
way, we will obtain two possible ways for solving LWE, which we can then compare to
other quantum algorithms from the literature that solve other lattice problems that are
assumed to be hard on quantum computers, e.g. the shortest vector problem (SVP). In
the end we will also review some details in our chain of reductions that crucially impact
the running time of the overall algorithms. By highlighting these, we will see where there
is room for possible improvements in both approaches presented in this thesis.

6.1 Viewing LWE as BDD

It was already mentioned earlier, see Remark 2.54, that it is possible to think of LWE as
an instance of BDD. We will now explain this idea in more detail.

Recall from Section 2.3.3 (Def. 2.50) that the output of the LWE distribution has the
form (a, b) = (a, 〈s, a〉+e mod q) for some positive integer modulus q, a uniformly chosen
a ∈ Znq , some secret s ∈ Znq , and some error term e ∈ Zq, chosen according to some error
distribution χ on Znq , usually some discrete Gaussian. Assuming we are given m LWE-
samples of the above form, where m is usually taken to be polynomial in n, we can group
all of these samples together to form

b = AT s+ e,

where A ∈ Zn×mq and b, e ∈ Zmq are the vectors formed by the bi, ei from the m LWE

70



samples, respectively. We define the following lattice

L := Λq(A) := {AT s : s ∈ Znq }+ qZm (6.1)

and remark that finding the closest vector of L to the target vector b yields the solution
s to the LWE-search version. The lattice L is an example of a so-called ‘q-ary lattice’ by
which we mean that L fulfils qZm ⊆ L, i.e. the membership of a vector x is determined
by its value modulo q.

Definition 6.1. Let n ≤ m, A ∈ Zn×m and q ∈ N. We define

Λq(A) := {y ∈ Zm |∃s ∈ Zn : y ≡ AT s mod q},
Λ⊥q (A) := {y ∈ Zm |Ay ≡ 0 mod q}.

Later, we will be interested in the determinant of lattices of the above form. However,
we cannot use A to compute the determinant because A is not quadratic. One way to
solve this problem is given by the following algorithm (see [HW11, Prop. 1.12.]).

Algorithm 9 q-ary lattice base algorithm

INPUT: A matrix A ∈ Zn×mq with rank(A) = n (n ≤ m).
OUTPUT: A lower-triangular, full-rank matrix B ∈ Zn×n that satisfies B ·Zn ∼= A ·Zm.
1: for j = 1 to n do
2: Compute d = gcd(ajj , . . . , ajm).
3: Compute dj , . . . , dm ∈ Z such that

∑m
i=j diaji = d.

4: Set ~aj =
∑m

i=j di~ai (here ~aj denotes the j-th column of A)
5: for k = j + 1 to m do
6: Set ~ak = ~ak −

ajk
d ~aj .

7: end for
8: end for
9: Return B = (~a1, . . . ,~an).

Lemma 6.2. The lattices Λq(A) and Λ⊥q (A) have dimension m and satisfy Λ⊥q (A) =

q · Λq(A)? as well as Λq(A) = q · Λ⊥q (A)?.

Proof. See [HW11, Prop. 1.13.]

To determine the approximation factor when viewing LWE as an instance of BDD, we
will need a reasonable approximation of the length of the shortest vector of the lattice
defined in Equation (6.1). We will use a heuristic, known as the Gaussian heuristic, which
approximates the number of lattice points in a set S by the quotient of the volume of
the set and the determinant of the lattice, i.e.

|S ∩ L | ≈ vol(S)

det(L)
. (6.2)
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It is easy to use the Gaussian heuristic to estimate the length of the shortest vector. Let
us take the set S to be an m-dimensional ball that contains exactly one lattice vector,
and let r denote its radius. The volume of an m-dimensional ball of radius r is given as

vol(S) = rm
πm/2

Γ(m/2 + 1)
,

where Γ denotes the Gamma function. Using the Gaussian heuristic, we estimate the
length of the shortest vector by

λ1(L) ≈ Γ(m/2 + 1)1/m

√
π

det(L)1/m.

The next step for us is to compute det(Λq(A)).

Lemma 6.3. If A ∈ Zn×mq with n ≤ m and rank(A) = n modulo q, then

det(Λ⊥q (A)) = qn and det(Λq(A)) = qm−n.

Proof. See [HW11, Fact 2.3]

Now, we can give the final estimate on the length of the shortest vector in the lattice
given in Equation (6.1), using Stirling’s approximation Γ(z + 1) ≈

√
2πz( ze )z, as

λ1(L) ≈ π1/2m

√
m

2πe
q1− n

m ≈
√

m

2πe
q1− n

m . (6.3)

The final step to regard LWE as a BDD instance is to establish the approximation factor
γ. Keep in mind that the ‘LWE-lattice’, defined in Equation (6.1), is an m-dimensional
lattice according to Lemma 6.2. Recall from Section 2.3.3 that in an instance of BDDγ

we are asked to find the closest lattice point to a given target vector t ∈ Rn assuming
that dist(t,L) ≤ γ(m)λ1(L). Since the target vector is of the form t = AT s + e, we
have dist(t,L) = ‖e‖, where e is drawn from the discrete Gaussian DZm,β with mean
0 and standard deviation β/

√
2π, which can be realised by drawing the coordinates

independently from DZ,β (Def. 2.39). Therefore we need an upper bound on the length of
a vector, sampled according to DZm,β . In Definition 2.41 we introduced Micciancio’s and
Regev’s smoothing parameter and remarked that if the parameter of a discrete Gaussian
on a lattice is at least the smoothing parameter, it behaves like a continuous Gaussian.
The following calculation may therefore serve as a motivation for an upper bound on the
error. Recall that for the discrete Gaussian from Definition 2.39 we have s = σ

√
2π. If
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BDD uSVP
Section 4.1

1√
2γ
→ γ

DCP
Section 4.2

Θ(n1/2+2f )→ f

DHSP

Lemma 2.61
f sufficiently large

SSP

f ≥ 1

Section 4.3

Figure 6.1: Path of reductions with parameters.

the error term is drawn from the normal distribution N (0, s/
√

2π) we compute

Probe←N (0,s/
√

2π)

[
‖e‖ ≥ s

√
m
]

= 2

∫ ∞
s
√
m

1√
2πσ

e−
x2

2σ2 dx

≤ 2√
2π

∫ ∞
s
√
m

x

s
√
mσ

e−
x2

2σ2 dx

= − 1√
mπ

e−
x2

2σ2

∣∣∣∣∞
s
√
m

=
1√
mπ

e−πm.

Thus, with probability exponentially close to 1, we have ‖e‖ ≤ s
√
m. For the discrete

distribution, which is used to sample the error terms in the LWE instances, we have a
similar result due to Banaszczyk.

Lemma 6.4 (Lemma 1.5(i) in [Ban93]). Let L be a lattice, s > 0 and let Bd(0,
√
ds)

denote the (closed) Euclidean ball of dimension d, centred at the origin with radius
√
ds.

Let further DL,s be defined as in 2.39. Then

DL,s(L\Bd(0,
√
ds)) ≤ 1

2d
.

In other words: The mass given to lattice points of norm greater than
√
ds by the discrete

Gaussian DL,s is exponentially small.

It was mentioned earlier that in most LWE applications we take the error distribution
χ to be Ψβ, as previously defined in Definition 2.50. Lemma 6.4 allows us to estimate
dist(t,L) ≤ β

√
m with probability exponentially close to 1.

At this point we want to remind the reader of the path of reductions, together with the
respective parameters of the problems, that were established in the previous sections.
They are summarised in Figure 6.1.
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Since we established a reduction from BDD1/
√

2γ to uSVPγ in Section 4.1, we want to
bound dist(t,L) by λ1(L)/(

√
2γ). This leads to

β
√
m

!
=

1√
2γ
λ1(L)

(6.3)
≈ 1√

2γ

√
m

2πe
q1− n

m .

Therefore, we established a reduction from LWE to uSVPγ with approximation factor

γ ≈ q1− n
m

2
√
πeβ

. (6.4)

Remark 6.5. We keep in mind that there is still some randomness involved. For example,
the matrix A, obtained from the LWE samples, is required to have full rank in Zq.
However, since we have access to essentially arbitrary many LWE samples, this is a
minor issue. Also, the upper bound on the length of the error vectors holds ‘only’ with
probability exponentially close to 1. At last we mention that the approximation of λ1(L)
is only a heuristic, but it seems to be a relatively good one in the case of random lattices
([MR09, Chapter 3]).

The reduction from uSVPΘ(n1/2+2f ) to DCPf together with the decomposition β = αq
from the parameter of the LWE-error-distribution leads to

α = C · q−
n
m

n1/2+2f
(6.5)

for some constant C ∈ R.
Remark 6.6. Regev’s hardness result from [Reg09] requires αq > 2

√
n.

6.2 Combining the Reductions

To analyse the reductions from LWE to DHSP or SSP, we sum up the running time,
space requirements and success probabilities of the various reductions discussed in the
previous sections in Table 6.1 and 6.2. Note that we use n on the next page to refer to
the dimension of the original BDD-lattice because we did so in the previous chapters,
where the reductions were presented. Since the LWE-lattice defined in Equation (6.1)
is actually a lattice of dimension m ≥ n (the number of LWE samples), according to
Lemma 6.2, we will replace every n by an m when we analyse the actual reductions from
LWE to SSP and DHSP later.
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Table 6.1: Analysis of the individual reduction steps

Reduction Time Space Success probability

DCPf to DHSP [Reg04a] no additional time no additional space
(

(logN)f−1
(logN)f

)IDHSP

DCP1 to SSP [Reg04a] O(log4cm+7N) +O(log4cm+5N) oc O(log3cm+6N) exponentially close to 1

2PPf to DCPf [Reg04a] O(1) + 1 oc poly(n logM) ·O(n logM) deterministic reduction

uSVPΘ(n1/2+2f ) to 2PPf
[Reg04a]

LLL+(I(n logM)·O(1)+1 oc)·O(n4+2f ) I(n logM) +O(n4+2f ) deterministic reduction

BDD1/(
√

2γ) to uSVPγ
[SBW16]

LLL+O(n4) · (Õ(n2) +O(n2.373) + 1 oc) O(n2 log(γn2)) ≈ 1
8γn2

Table 6.2: Analysis of the utilised solver algorithms

Algorithm Time Space Success probability Required input registers

Kuperberg-DHSP2
[Kup11]

2O(
√

logN) 2O(
√

logN) classical and
O(log logN) quantum

O(1) 2O(
√

logN log logN)

BJLM-SSP
[BJLM13]

Õ(2(0.241...+o(1))r) Õ(2(0.241...+o(1))r) exponentially close to 1 O(logN)
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The IDHSP given in Table 6.1 is the number of required ‘good’ input registers for the
DHSP solver, M is the quantity introduced in Algorithm 4 (M = 24n), the abbreviation
LLL stands for the running time of the LLL-algorithm (usually something along the lines
of O(n6 log3(‖B‖∞))), I(n logM) refers to the required number of input registers for the
2PP-solver, N = (2M)n (see Lemma 4.17) refers to the dihedral group DN of order 2N ,
f is the 2PP or DCP failure parameter, r is the number of elements used as input for
SSP, cm is the matching constant, required to fulfil cm > 3cs, and the abbreviation ‘oc’
stands for oracle call(s). Note that cs is a constant used to describe what fraction of all
legal inputs an SSP solver could handle. It can be taken to be zero if an SSP solver can
find the solution for any legal SSP input. This is the case for the algorithm, considered in
Section 5.2. We note that in the analysis of the two algorithms in Table 6.2 polynomial
factors were suppressed since they are dominated by the exponential terms.

We can combine the reductions to produce a reduction from LWE, which we learned to
think of as an BDD instance, to DHSP as well as to SSP. Since the chain of reductions
is identical in both cases until the last reduction from DCP is made, we obtain for the
two reductions the following results:

• LWE to SSP general time:

TSSP,gen = 2LLL+ (Õ(m2) +O(m2.373)) · O(m4)

+O(m8+2) ·
[
I(m logM) +O(1) +O(log4cm+7N) +O(log4cm+5N) · solver time

]
• LWE to SSP time concrete (only dominant summands):

TSSP = O(m24) +O(m20) · Õ(2(0.241...+o(1))·(4m2+m))

= Õ(2(0.241...+o(1))·(4m2+m))

• LWE to SSP space: Õ(2(0.241...+o(1))·(4m2+m))

• LWE to SSP success probability:

psuccess,SSP ≈
2
√
πeβ

8m2q−
n
m

=
2
√
πeαq

n
m

8m2

• LWE to DHSP general time:

TDHSP,gen = 2LLL+ (Õ(m2) +O(m2.373)) · O(m4)

+O(m8+2f ) · [I(m logM) +O(1) + solver time]

• LWE to DHSP time concrete (only dominant summands):

TDHSP = O(m8+2f )2O(m
√

logm) +O(m8+2f )2O(m)

= Õ(2O(m
√

logm))
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• LWE to DHSP space: 2O(m) classical and O(logm) quantum.

• LWE to DHSP success probability:

psuccess,DHSP ≈
2
√
πeαq

n
m

8m2

(
(logN)f − 1

(logN)f

)IDHSP

Here we took into account that the reductions considered earlier gave us M = 24m and
N = (2M)m. Also, we choose cm = cs = 0 since the SSP solver is not restricted to only
a fraction of the legal inputs.

At first, it seems odd that the time and space requirements in both cases worsen with
a greater number of samples, since more LWE-samples, i.e more information about the
secret, should not make it harder for us to solve LWE. However, we have to keep in mind
that the LWE-lattice defined in Equation (6.1) has dimension m. Therefore, we have to
figure out what an appropriate quantity for the number of LWE-samples is. We require
the matrix A whose columns consist of the vectors ai ∈ Znq , which are chosen uniformly
at random, to have full rank with high probability, while keeping m as small as possible.

Lemma 6.7. Let n ∈ N, q ∈ Z a prime number and A ∈ Zn×nq a matrix, where every
entry is chosen uniformly at random over Zq. Then we have

Prob[A has full rank] ≥
(

1− 1

q

)n
.

Proof. We prove the statement via induction over n. For n = 1 it is true, since for a
prime number q the only element not invertible in Zq is 0. Assume that the statement is
true for n − 1 ∈ N, n ≥ 2. Let (ai,j)1≤i,j,≤n = A ∈ Zn×nq denote a matrix whose entries
have been chosen uniformly over Zq, except for the entry an,n, which is still empty. Let
Mi,j denote the minor matrix of A, i.e. the submatrix obtained by deleting the i-th row
and the j-th column. The Laplace expansion of det(A) is given as

det(A) =
n∑
i=1

(−1)i+nai,n det(Mi,n).

Therefore, we have

det(A) = 0 ⇐⇒ an,n det(Mn,n) = −
n−1∑
i=1

(−1)i+nai,n det(Mi,n).

This yields

Prob[rank(A) = n] ≥ Prob[rank(A) = n| rank(Mn,n) = n− 1] · Prob[rank(Mn,n) = n− 1]

=

(
1− 1

q

)
·
(

1− 1

q

)n−1

.
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Since the LWE modulus q is polynomial in n (in Regev’s public-key cryptosystem based
on LWE it is between n2 and 2n2), Lemma 6.7 tells us that we can take the number of
LWE-samples to be equal to n and still have a high probability that A has full rank if q
is prime. Thus, we obtain, in the above summarisation of the presented reductions, that
running time, required space and success probability all depend primarily on the main
input parameter n of the LWE problem.

Another thing worth mentioning at this point is the failure parameter f of DCP. Although
the size of f is not of great importance regarding the running time and space requirements
since the exponential running time of the best currently known DHSP and SSP algorithms
dominates the polynomial factors, depending on the failure parameter. Nevertheless, the
failure parameter is important since it determines which uSVP instances we are able
to solve, when we make use of the reductions to DHSP and SSP. Thus, f ultimately
determines what LWE instances we are able to solve. In Section 6.1 we saw that the
relation between the LWE parameters can be stated as

n =

(
C · 1

q · α

) 1
1/2+2f

, (6.6)

when we take the number of LWE samples to be n, for some constant C > 0. Thus,
knowing the failure parameter tells us what instances of LWE with main input parameter
n we can hope to solve. The presented reduction from LWE to SSP requires f ≥ 1. For
the LWE to DHSP reduction the situation is more complicated. It is not clear whether
– or to what extend – solvers for DHSP like the algorithms by Kuperberg and Regev
are able to handle ‘bad’ DCP input registers. Therefore, we may require all DCP input
registers to be ‘good’ in order to be able to solve DCP with a DHSP solver. Let us assume
we want all DCP input registers to be ‘good’ with a probability of at least ε for some
0 < ε < 1, i.e.

Prob[all DHSP input registers are ‘good’] ≥
(

1− 1

logf N

)IDHSP !
≥ ε

⇐⇒ 1− ε1/IDHSP ≥ 1

logf N

⇐⇒ f ≥ − log(1− ε1/IDHSP)

log logN
=: Φ(N, IDHSP, ε), (6.7)

where IDHSP denotes the number of required DHSP input registers.

Lemma 6.8. Let 0 < ε < 1. If the number of required DHSP input registers IDHSP is
polynomial in logN with degree k ≥ 1, then

lim
N→∞

Φ(N, IDHSP, ε) = k.
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Proof. For notational convenience we take IDHSP(x) = xk for some k ∈ N. By using
L’Hôpital’s rule we obtain

lim
x→∞

− log(1− ε1/xk)

log(x)
= lim

x→∞
− ln(ε) · k · ε1/xk

xk · (1− ε1/xk)
.

Since

lim
x→∞

xk · (1− ε1/xk) = lim
x→∞

(1− ε1/xk)
1
xk

= lim
x→∞

k · x−k−1 · ln(ε) · ε1/xk

−k · x−k−1

= − ln(ε)

again by L’Hôpital’s rule, we have that

lim
N→∞

Φ(N, IDHSP, ε) = k,

for IDHSP(logN) = logkN and for IDHSP(logN) = O(logkN) the statement follows by
an analogous calculation.

Remark 6.9. Unfortunately, Kuperberg’s algorithm requires IDHSP = 2O(
√

logN log logN)

input registers. In this case we have Φ(N, IDHSP, ε)
N→∞−−−−→ ∞ for every 0 < ε < 1. For

concrete applications the value of Φ(N, IDHSP, ε), i.e. the lower bound for the failure
parameter, has to be calculated for the given ε and N. Keep in mind that we have the
relation logN = 4n2 + n, where n is the main security parameter of the LWE instance
in question.
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7 Room for Improvements and
Conclusions

In this last chapter we will highlight and discuss some parts of the chains of reductions,
where an improvement would significantly effect the required time at the end. We also
briefly compare our results with algorithms that are used to solve other hard lattice
problems.

7.1 Room for Improvements

As one can see from the previous section, it does not seem to be a very practical idea
to solve LWE instances with reductions to SSP and DHSP, at least for now. The overall
required time is exponential in the LWE-lattice-dimension m, which is not surprising.
However, the actual size of the exponents is rather bad. The problems start to arise once
we choose to reduce uSVP to DCP. The reason for the big expressions in the exponent
is that the dihedral group underlying the instance of DCP, created in the reduction from
2PP, has a really high cardinality. In Lemma 4.17 we create an instance of DCP with
dihedral group DN such that N = (2M)n, and in Algorithm 4 we take M = 24n, which
leads to logN = 4n2 + n = O(n2). The reason for the choice of M lies in Lemma
4.19 in the estimation given in Equation (4.2), which is needed to provide a bound for
the probability that the created 2PP input registers are ‘bad’, see Inequality (4.4). The
choice of M is, somewhat surprisingly, motivated by the estimation |ui| ≤ 22n on the
coordinates of the unqiue shortest vector in the LLL-reduced basis, which was provided
by Lemma 2.34. Therefore, a tighter bound on the |ui| would result in a smaller dihedral
group, thus improving the reduction given in [Reg04a]. It might be possible to achieve
such a smaller bound by using other basis reduction algorithms than LLL, for example
the BKZ (Blockwise Korkine-Zolotarev) basis reduction. However, in contrast to the
LLL algorithm, there are no known algorithms that compute a BKZ-reduced basis in
polynomial-time. Therefore, it would be necessary to make a trade-off between smaller
bounds on the coefficients of the shortest vector on the one hand and the running time of
a BKZ implementation on the other hand (there is a rather new implementation called
BKZ 2.0 due to Chen and Nguyen, see [CN11]). If we assume that we could obtain a
smaller bound on the |ui|, say something like |ui| ≤ 2τ(n) for some τ(n) = o(n), Lemma
4.19 would go through with M = 22τ(n) resulting in logN = O(τ(n) · n).
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Therefore, we would obtain an improved reduction from LWE to SSP, which requires
2O(τ(m)·m) time and space. Analogously, the LWE to DHSP reduction would be improved
to require only ≈ 2O(

√
τ(m)·m) time and classical space as well as ≈ O(log(τ(m) · m))

quantum space.

However it is unlikely that we could hope for a bound |ui| ≤ poly(n), since this would
leave us with only 2n · poly(n)− 1 possible choices for the coefficients of u, and we could
brute-force our way to a solution of uSVP.

Another alternative worth considering is to improve the reduction from 2PP to DCP itself
to decrease the size of the dihedral group. Until today, there are no published reductions
from 2PP to DCP that produce a dihedral group significantly smaller then D

2O(n2) .

However, in an unpublished article ([LBF+13]) Li et al. claim to have established a
reduction with dihedral group Dn13n logn , which would immediately improve the time and
space requirements of the SSP reduction to ≈ 2O(m logm). For the DHSP reduction we
would obtain ≈ 2O(

√
m logm) for time and classical space as well as ≈ O(log(m logm))

quantum space this way.

7.2 Conclusions

In this thesis, we approached the learning with errors problem by reducing it to the
dihedral hidden subgroup problem and the subset sum problem. This way we aimed
to solve LWE-instances with the best currently known quantum algorithms for these
problems. First, we presented several (quantum) polynomial-time reductions from the
literature and then combined them to establish a reduction from LWE, which can be
considered as an instance of the bounded distance decoding problem, to the dihedral coset
problem. Then, we reduced DCP to the ‘final’ problems DHSP and SSP. We analysed
the time and space requirements of solving LWE-instances with quantum algorithms
that solve DHSP and SSP as well as their success probability. Unfortunately, for the
SSP route, the results we obtained for the time and (classical) space requirements are
superexponential in the number of LWE samples m which itself is at least as large as
the dimension n of the LWE secret. For the DHSP route the space and time costs
are exponential in m in addition to some polynomial factors in m. We compare these
results to the running times for other lattice problems that are considered to be hard
such as the shortest vector problem or its variant SVPδ. For these two problems, it
was shown in [LMVDP15] that there exist algorithms that make use of quantum search
algorithms, similar to Grover’s Algorithm ([Gro96]), in order to find a shortest vector in a
lattice of dimension n, provably in time 21.799n+o(n) and heuristically in time 20.286n+o(n).
Also, SVPδ can be solved provably in time 20.603n+oδ(n) for any n-dimensional lattice.
While against that background the running time of 2(0.241...+o(1))n of the SSP algorithm
by Bernstein et al. ([BJLM13]) looked promising at first, the DCP to SSP reduction
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produced an instance of SSP of input size O(logN) = 4n2 +n that turned out to be too
large to be practical, again because of the huge N , i.e. the size of the dihedral group.

Also, we pointed out possible improvements in the chain of reductions presented in this
thesis, for example the possibility of a better pre-processing of the involved uSVP-lattice
basis to reduce the size of the coefficients of the unique shortest vector. This could lead
to a reduced size of the dihedral group underlying the created DCP instance. Another
approach would be an improved reduction from the two point problem to DCP, which
reduces the cardinality of the involved dihedral group. We showed how these hypothetical
improvements would affect the results of an approach similar to the one taken in this
thesis.

In summary, tackling the learning with errors problem with a reduction to DHSP looks
more promising than with a reduction to SSP. Attempting to solve LWE instances with
an embedding approach, which would essentially be a reduction from LWE (as BDD) to
uSVP without the last reduction to DCP (and from there to DHSP and SSP), as it was
done and analysed in [AFG13], is likely to be a better approach until we can handle the
size of the dihedral group in the DCP instance better.

Lastly, it may be possible that the additional structure inherent to the ring variant of
LWE introduced by Regev et al. in ([LPR10]) may be exploited to establish a reduction
from RLWE to DCP, similar to the one discussed in this thesis, with a smaller underlying
dihedral group. This may be a reasonable objective for further research in this area.

It seems, however, unlikely that there will be an efficient quantum algorithm for the
learning with errors problem, since lattice based cryptography seems to be somewhat
resilient against the capabilities of quantum computers. Then again, the reduction of
various lattice problems that are considered to be hard to the dihedral hidden subgroup
problem together with the ability of quantum computers to solve the hidden subgroup
problem efficiently in the abelian case, may suggest that there could be an efficient
quantum algorithm one day.
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