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Abstract

The security of currently used signature schemes, e.g. the RSA signature scheme, is threatened through

the eventually invention of efficient quantum computers. During the last years, lattice-based cryptogra-

phy turns out to be a good alternative to currently used cryptography.

In this work we describe the concept of cryptographic security reductions which are used to prove the

security of digital signature schemes. Further on, we define the terms bit hardness and bit security which

describe how hard a problem and how secure a signature scheme is respectively. To measure the quality

of a security reduction, the term tightness is defined. We show that in case of a tight security reduction

breaking a signature scheme is at least as hard as solving the underlying problem. However, a non-tight

security reduction leaves the possibility that breaking the scheme could be easier than solving the under-

lying problem.

Further on, we describe selected lattice-based signature schemes and compute the bit security, based

on the security reduction of the scheme. Following this, the schemes are compared with regard to the

security and the size of the signature and the key sizes.
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1 Introduction

Currently used signature schemes are based on number theory problems, e.g. the factorization problem

and the discrete logarithm problem, which are conjectured to be hard for classical computers. Already

20 years ago the mathematician Peter Shor presented an efficient algorithm for solving these problems

which uses a quantum computer [20]. So the security of currently used signature schemes is threatened by

the eventually invention of efficient quantum computers. Therefore post-quantum cryptography concen-

trates on finding alternatives to currently used cryptographic primitives which security is not threatened

through efficient quantum computers. Due to the progress of quantum computers over the last years,

post-quantum cryptography becomes more and more important. One highly promising part of post-

quantum cryptography is lattice-based cryptography. Throughout this work we focus on the comparison

of provable secure lattice-based signature schemes. This work is divided into three parts which are de-

scribed below.

In the first part (Chapter 3 and 4) we focus on provable security of signature schemes. First, after a

short description of digital signatures, we show how to prove the security of a signature scheme using

cryptographic security reductions. The idea of these proofs is to show that an adversary, that is able to

break the scheme, can be turned into an algorithm that solves the underlying problem. Further on, to

describe how hard it is to solve a problem and how secure a signature scheme is respectively, we define

the terms bit hardness and bit security. A relation between these two values is given by the security

reduction. The better the security reduction the smaller is the gap between the hardness of the prob-

lem and the security of the signature scheme. To measure the quality of a security reduction, the term

tightness is defined. Based on this, we finally show how to compute the security of a signature scheme

regarding the tightness of the security reduction.

In the second part (Chapter 5 and 6) we compute the security of lattice-based signature schemes. At

first, we define (ideal) lattices and the following problems: the small integer solution (❙■❙) problem,

the inhomogeneous small integer solution (■❙■❙) problem, the learning with errors (▲❲❊) problem, the

decisional learning with errors (❉▲❲❊) problem, the ring-small integer solution (❘-❙■❙) problem, the

ring-learning with errors (❘-▲❲❊) problem, the ring-decisional learning with errors (❘-❉▲❲❊) problem

and the decisional compact knapsack (❉❈❑) problem. The hardness of the ❙■❙ and the ▲❲❊ problem

is illustrated by two examples. Hereafter, we describe the following lattice-based signature schemes: the

signature scheme (LYU12) by Lyubashevsky [16], the signature scheme (BLISS) by Ducas, Durmus, Lepoint

and Lyubashevsky [11], the signature scheme (GLP) by Güneysu, Lyubashevsky and Pöppelmann [14],

the signature scheme (AFLT) by Abdalla, Fouque, Lyubashevsky and Tibouchi [1], the signature scheme

(BG) by Bai and Galbraith [5], the signature scheme (TESLA) by Alkim, Bindel, Buchmann, Dagdelen and

Schwabe [4] and the signature scheme (GPV) by Gentry, Peikert and Vaikuntanathan [12]. For each

scheme we use the security reduction given by the authors and the results from the first part of this work

to compute the bit security of the scheme.

In the third part (Chapter 7), we compare the security and the efficiency of the signature schemes.

The efficiency comparison is superficial and only based on the size of the keys and the signature of the

signature scheme. We do not consider the runtime of the signing or verification algorithm. The security

comparison is more detailed.
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2 Notation

Throughout this work we denote the set of natural numbers by N, the set of integers by Z, the set of

real numbers by R and the set which contains prime numbers by P. For q ∈ Nwe define the set Zq which

contains the integers within
�

− q

2 ,
q

2

�

, e.g. Z5 = {−2,−1, 0, 1, 2} and Z4 = {−1, 0, 1, 2}. For n, q ∈ N we

define the polynomial ring Zq[x]/(x
n + 1). Elements within this ring are represented as polynomials of

degree n− 1 with coefficients in Zq, e.g. 4x3 − 2x2 + 1 ∈ Z7[x]/(x
4 + 1).

We denote vectors by bold and matrices by bold capital letters. For a vector v we define the Euclidean

norm by ‖v‖2, the maximum norm by ‖v‖∞, the 1-Norm by ‖v‖1 and the transposed vector by vT . The

inner product of two vectors v, w is defined by 〈v,w〉. We denote the n× n identity matrix by In.

For a finite set S we write a
$← S to describe that a is chosen uniformly at random from S and for a

distribution χ we write a ← χ to denote that a is sampled according to the distribution χ . We call a

problem P hard if there exist no probabilistic polynomial time (ppt) algorithm which solves P.

For a polynomial a ∈ Zq[x]/(x
n + 1) we denote the vector v ∈ Zn

q
which contains the coefficients of

a by a. For polynomials a1, a2, ..., ak ∈ Zq[x]/(x
n + 1) we denote the vector v ∈ Zk·n

q
which contains the

coefficients of the polynomials ai by (a1, a2, ..., ak)
T , e.g. a1 = x2 + 3x , a2 = −2x2 + 3 ∈ Z7[x]/(x

3 + 1)

and (a1, a2)
T = (1, 3, 0,−2, 0, 3)T ∈ Z6

7
.

A function f is called negligible in the (security) parameter λ, denoted by negl(λ), if it decreases faster

than every inverse polynomial function for sufficiently large λ. Below we define the term negligible more

formally.

Definition 2.1 Let D, R be two sets. A function f : D→ R is called negligible in the security parameter λ

if ∀c ∈ N : ∃n0 ∈ N s.t. ∀λ ≥ n0, f (λ)≤ 1
λc .

Note that there are further notations which are only necessary for some of the schemes described in

Chapter 6. We skip those notations at this point and provide them within the sections in which they are

needed.

3 Digital signature schemes

Digital signatures are used to ensure the cryptographic goals of integrity and authenticity. Integrity

means that one can check whether received data were manipulated or not. Authenticity means that one

can check whether received data were sent by the one who claims it.

An important example of digital signatures is online banking. When the bank receives the instructions

to transfer money, it first has to check if the instructions were sent by the owner of the bank account

and not by someone else (authenticity). Further on, the bank has to check that the instructions are not

corrupted. Otherwise, someone could change the target bank account or the amount of money which

should be transferred (integrity).

We assume the following situation: Alice sends a message µA to Bob which can be replaced with

another message µE by a third party called Eve. When Bob receives a message µ he is not able to distin-

guish whether it is the one by Alice, i.e. µ= µA, or the corrupted one by Eve, i.e. µ= µE .

We change the situation above by using digital signatures, i.e. there exists a pair of two keys (sk, v k).

The signing key sk only known by Alice and the verification key v k which is publicly known. With the
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signing key sk Alice is able to create a signature σA of the message µA. With the verification key v k of

Alice everyone can check if a signature was created by Alice using her signing key sk.

Alice sends in addition to µA the corresponding σA created with the signing key. When Bob receives a

message µ and a signature σ he is able to use the verification key v k of Alice to check whether σ was

created by Alice using her signing key sk or not. Because the signing key is unknown to Eve she should

not be able to create a message and a signature which Bob would accept as a message by Alice.

Below we formally define digital signature schemes.

Definition 3.1 A signature scheme is a triplet (❑❡②●❡♥, ❙✐❣♥, ❱❡r✐❢②) of polynomial time algorithms.

• ❑❡②●❡♥ is the key generating algorithm which gets a security parameter λ as input and returns a

signing key sk and a verification key v k.

• ❙✐❣♥ is the signing algorithm which gets a message µ and the signing key sk as input and returns a

signature σ of the message µ.

• ❱❡r✐❢② is the verification algorithm which gets a message µ, a signature σ and the verification key

v k as input and either accepts (return 1) or rejects (return 0) the signature σ.

The following equation has to hold for all messages µ.

Pr[(sk, v k)← ❑❡②●❡♥(1λ) | ❱❡r✐❢②(µ,❙✐❣♥(µ, sk), v k) = 1] = 1

For a signature scheme (❑❡②●❡♥, ❙✐❣♥, ❱❡r✐❢②) a signature σ of a message µ is called valid if the Veri f y

algorithm accepts the signature.

Definition 3.2 Let (❑❡②●❡♥, ❙✐❣♥, ❱❡r✐❢②) be a signature scheme, v k be a verification key and µ be a

message. A signature σ of µ is called valid if Veri f y(µ,σ, v k) = 1.

It is important that an adversary against a signature scheme is not able to compute the signing key

with reasonable effort only knowing the public information, e.g. the verification key. Furthermore, it is

necessary that an adversary is not able to produce a forgery, i.e. a message-signature pair (µ,σ) such

thatσ is a valid signature of µ, after seeing arbitrary many message-signature pairs. Below we define the

terms secure and strongly unforgeable in connection with signature schemes.

A signature scheme S is called secure if an adversaryA only knowing the public information of S, after

seeing arbitrary many message-signature pairs for messages chosen by himself, is not able to produce a

valid signature of a not yet seen message [13].

Definition 3.3 A signature scheme (❑❡②●❡♥, ❙✐❣♥, ❱❡r✐❢②) is called secure if for every key pair

(sk, v k) and for every ppt adversary A knowing v k, after seeing qs message-signature pairs

{(µ1,σ1), (µ2,σ2), ..., (µqs
,σqs
)} with µ1,µ2, ...,µqs

chosen by A and σi = ❙✐❣♥(µi, sk), the probability

that A can produce (µ,σ), such that µ 6= µi and ❱❡r✐❢②(µ,σ, v k) = 1, is negligible.

A signature scheme S is called strongly unforgeable if an adversaryA only knowing the public informa-

tion of S, after seeing arbitrary many message-signature pairs for messages chosen by himself, is neither

able to produce a valid signature of a not yet seen message nor able to produce a different valid signature

of a yet seen message [16].
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Definition 3.4 A signature scheme (❑❡②●❡♥, ❙✐❣♥, ❱❡r✐❢②) is called strongly unforgeable if for every

key pair (sk, v k) and for every ppt adversary A knowing v k, after seeing qs message-signature pairs

{(µ1,σ1), (µ2,σ2), ..., (µqs
,σqs
)} with µ1,µ2, ...,µqs

chosen by A and σi = ❙✐❣♥(µi, sk), the probability

that A can either produce (µ,σ), such that µ 6= µi and ❱❡r✐❢②(µ,σ, v k) = 1, or produce σ∗, such that

∃i ∈ {1, 2, ..., qs} with σ∗ 6= σi and ❱❡r✐❢②(µi,σ
∗, v k) = 1, is negligible.

We see that the term strongly unforgeable is a stronger notion of the term secure. For practical use it is

enough if a signature scheme is secure because possible weakness can be removed by using timestamps.

The difference between these terms is more of theoretical interest.

4 Provable Security

In this section we focus on provable security of signature scheme. Therefore, we describe how to prove

the security of signature schemes using cryptographic security reductions. First, we give a short descrip-

tion of the random oracle model. Following this, we describe the structure of cryptographic security

reductions in the random oracle model as described by Katz and Lindell [15]. Note that we only focus

on signature schemes. The concept of security reductions is also used for other cryptographic primitives,

e.g. encryption schemes. Finally, we define the terms bit hardness, bit security and tightness to compare

different security reductions.

4.1 Cryptographic security reductions in the Random Oracle Model

The random oracle model is a theoretical model to prove the security for cryptographic primitives. The

idea is that the used hash functions are modeled as random oracles. A random oracle acts like a black

box algorithm. For each query which was not queried yet the oracle outputs a new random value and

for each query which already was queried the oracle outputs the same value which was outputted the

last time the query was made.

The random oracle model provides an idealized world to prove the security, which facilitates to prove

the security of a signature scheme. If the used hash function is indistinguishable from a random oracle

then the scheme is secure in the real world. Katz and Lindell [15] describe that there is, at the moment,

no justification that hash functions will become indistinguishable from random oracles. In fact, there are

examples of cryptographic primitives that are secure in the random oracle model and insecure if imple-

mented in the real world [15].

Let P be a hard problem and S be a signature scheme which security is based on P. The goal of a

security reduction is to show that S is secure under the assumption that P is a hard problem. This can be

proven by contradiction.

Assume that P is hard and S is not secure, which means there exists an ppt adversary A who is able

to break the scheme by generating a forgery, i.e. (µ,σ) such that σ is a valid signature of µ. Note that

for the proof it is neither necessary that such an adversary exists nor that it is known how the adversary

breaks the scheme. Based on this, we assume A as a (hypothetical) black box algorithm which gets the

public information (e.g. the verification key) of S as input and outputs a forgery (µ,σ). Furthermore,

A can query two oracles (hash and sign) which return hash values and signatures respectively. An ppt

7



Figure 4.1: Structure of a security reduction

algorithm R which makes (black-box) use of the algorithm A to solve the problem P is constructed. This

means that R:

• generates the input of A,
• responds to both the Hash- and Sign- queries of A and
• has access to the output of A.

The existence of such an algorithm R leads to a contradiction of the assumption that P is hard which

proves that S is secure if P is hard. In that case we call R the reduction of P to S.

The structure of a security reduction is illustrated in Figure 4.1. The algorithms (R and A) are repre-

sented by the two boxes. The input of each algorithm is represented by the arrow that points to the

algorithm while the output is represented by the arrow that points away from the algorithm. The arrows

above A represent the queries that Amakes and the response by each oracle respectively.

4.2 Tightness

Tightness is a measure to describe the quality of a security reduction. A security reduction is called tight

if both the time and the success probability of the adversary and the reduction are approximately the

same. Otherwise, the security reduction is called non-tight or loose.

Definition 4.1 ([9]) Let S be a signature scheme with respect to a hard problem P, A be an adversary

against S and R be the reduction of P to S. Furthermore, assume thatA is successfully after time tA with

probability εA andR solves an instance of Pwith success probability εR in time tR. The security reduction

is called tight if tR ≈ tA and εR ≈ εA. Otherwise, if tR ≫ tA or εR ≪ εA, the security reduction is called

non-tight or loose. The tightness gap is defined as
tR·εA
tA·εR .

For a tight security reduction the tightness gap is ≈ 1 and for a non-tight security reduction it is ≫ 1.

Given two different security reductions with respect to the same signature scheme, the one with the

smaller tightness gap is called tighter than the other.

Based on the success probability and the runtime of the algorithms, we define the terms bit hardness

and bit security, as described by Alkim et al. [4]. These values define lower boundaries of the effort which

is necessary to solve a problem (to break a scheme).
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Definition 4.2 Let P be a hard problem and R be an algorithm which solves P after time tR with success

probability εR. The bit hardness is the largest integer κ such that

2κ ≤ tR

εR
. (1)

The problem P is said to be κ-bit hard.

Definition 4.3 Let S be a signature scheme and A be an adversary who breaks S after time tA with

success probability εA. The bit security is the largest integer γ such that

2γ ≤ tA

εA
. (2)

The signature scheme S is said to be γ-bit secure.

Below we illustrate how the tightness of a security reduction effects the security of a signature scheme

given both an example for a tight security reduction and an example for a non-tight security reduction.

To simplify matters we assume εR = εA = 1 in both cases.

Example 4.1 Let S be a signature schemewhich security is based on a hard problemPwith bit hardness κ.

Furthermore, let A be an adversary against S with runtime tA and success probability εA and R be the

reduction of P to S with runtime tR and success probability εR. We assume tR = tA which, using the

assumption above, yields to tA = tR = 2κ. Inserting εA = 1 and tA = 2κ in (2) finally provides γ= κ.

Example 4.2 Let S be a signature schemewhich security is based on a hard problemPwith bit hardness κ.

Furthermore, let A be an adversary against S with runtime tA and success probability εA and R be the

reduction of P to S with runtime tR and success probability εR. We assume tR = t2
A
. By solving this

equation for tA we obtain tA =
p

tR which, using the assumption above, yields to tA =
p

tR =
p

2κ = 2
κ
2 .

Inserting εA = 1 and tA = 2
κ
2 in (2) finally provides γ= κ

2 .

We see that in case of the tight security reduction (Example 4.1) the bit security of the signature scheme

and the bit hardness of the problem are the same while in case of the non-tight security reduction (Ex-

ample 4.2) the bit security of the signature scheme is only half the bit hardness of the problem.

Suppose one wants to use a signature scheme with a bit security γ = 128. In case of the tight security

reduction one can easily obtain the required bit security by choosing the parameters such that κ = 128

holds. In case of the non-tight security reduction this instantiation only ensures half the required bit se-

curity and thus the parameters have to be chosen such that κ = 256 holds. The disadvantage is that this

instantiation might significantly deteriorates the performance of the signature scheme.

There exists a dilemma between security and performance in case of non-tight security reductions. To

increase the bit security larger parameters have to be chosen which often leads to worse performance.

Higher performance requires smaller parameters which leads to lower bit security. The common method

is to make the schemes efficient by instantiate the parameters to obtain the desired bit hardness κ and

9



to claim that the signature scheme is κ-bit secure. The primary reason of using this method is that there

exists the possibility that the bit security and bit hardness are equal because these values define a lower

boundary and a tight security reduction might be found in the future. The primary reason against this

method is that the scheme is constituted more secure than it can at the time be proven.

Finally, we describe how to compute the bit security of a signature scheme according to the security

reduction. Let P be a problem with bit hardness κ, S be a signature scheme with bit security γ, A be an

adversary against S, making qs queries to the Sign-Oracle and qh queries to the Hash-Oracle, andR be the

reduction of P to S. Furthermore, let tR,εR describe that R is successful after time tR with probability εR
and tA,εA for A respectively. By solving (2) for γ we obtain

γ=
ln(tA)− ln(εA)

ln(2)
(3)

as the formula for the bit security. Now we can use the relation between tR, εR and tA, εA, given by the

security reduction, to compute the bit security. To simplify matters we use the following assumptions:

εR = 1, tR = 2κ, (4)

qh = 2κ, qs = 2κ/2. (5)

The first assumption describes, roughly speaking, that the algorithm needs at least 2κ operations to solve

the problem with success probability 1. The second assumption is taken from the work of Alkim et al. [4]

and describes how often the adversary queries the hash oracle and signing oracle respectively.

5 Hardness assumptions

We define some lattice-based problems on which the security of the signature schemes, described in this

work, is based. The problems are divided into standard lattice problems and ideal lattice problems. The

standard lattice problems are the small integer solution (❙■❙) problem, the inhomogeneous small integer

solution (■❙■❙) problem, the learning with errors (▲❲❊) problem and the decisional learning with errors

(❉▲❲❊) problem. The ideal lattice problems consider the ring-small integer solution (❘-❙■❙) problem, the

ring-learning with errors (❘-▲❲❊) problem, the ring-decisional learning with errors (❘-❉▲❲❊) problem

and the decisional compact knapsack (❉❈❑) problem. Thereafter, we provide an example for the ❙■❙

problem as well as an example for the ▲❲❊ problem.

5.1 Standard lattice problems

A k-dimensional lattice Λ is a discrete subgroup of the vector space Rn containing all vectors which can

be written as integer linear combinations of k linear independent vectors {b1, b2, ..., bk}.

Definition 5.1 Let n, k ∈ N and {r1, r2, ..., rk} be k linear independent vectors in Rn. The set Λ =
�

k
∑

i=1

airi | ai ∈ Z
�

is called a k-dimensional lattice with Basis {r1, r2, ..., rk}.
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The small integer solution problem

The small integer solution problem, which is based on the work by Ajtai [2], is that one is given a random

Matrix A ∈ Zn×m
q

and asked to find a short vector s ∈ Zm
q
such that As= 0 mod q.

Definition 5.2 The small integer solution (❙■❙q,♥,♠,β) problem. Let n, m, q ∈ N, m > n and β ∈ R. One is

given a random matrix A
$← Zn×m

q
and asked to find a vector s ∈ Zm

q
\{0}, such that As ≡ 0 mod q and

‖s‖2 ≤ β

The value of the boundary β is a critical part. If β is too small, no solution vector can be found but on the

other hand, if β is to big, it is easy to find a solution vector. Lyubashevsky describes that the inequality

β ≥pmq
n
m has to hold in order to ensure the existence of a solution vector [16].

The inhomogeneous small integer solution problem

The inhomogeneous small integer solution problem is that one is given a random Matrix A ∈ Zn×m
q

and a

vector y ∈ Zn
q
and asked to find a short vector s ∈ Zm

q
such that As= y mod q.

Definition 5.3 The inhomogeneous small integer solution (■❙■❙q,♥,♠,β) problem. Let n, m, q ∈ N, m > n

and β ∈ R. One is given a random matrix A
$← Zn×m

q
and a random vector y

$← Zn
q
and asked to find a

vector s ∈ Zm
q
\{0}, such that As≡ y mod q and ‖s‖2 ≤ β

The inhomogeneous small integer solution problem is a generalization of the small integer solution prob-

lem (see Definition 5.2)

The learning with errors problem

The learning with errors problem is that, after a secret vector s is chosen, one is given arbitrary many

samples (ai, 〈ai, s〉+ ei), such that the vectors ai are chosen uniformly at random and ei are small errors,

and asked to find s.

Definition 5.4 The learning with errors (▲❲❊♥,q,χ ,φ) problem. Let n, q ∈ N and χ ,φ be distributions

over Zq. After s← χn is chosen, one is given arbitrary many samples (ai, 〈ai, s〉+ ei mod q) ∈ Zn
q
× Zq,

such that ai

$← Zn
q
, ei ← φ, and asked to find s.

The learning with errors problem was first introduced by Regev [18].

The decisional learning with errors problem

The decisional learning with errors problem is that one is given arbitrary many samples (ai, bi) and asked

to distinguish whether there exists a secret vector s, such that the samples are of the form (ai, 〈ai, s〉+ ei

mod q) with random vectors ai and small errors ei , or the samples are chosen randomly.

Definition 5.5 The decisional learning with errors (❉▲❲❊♥,q,χ ,φ) problem. Let n, q ∈ N and χ ,φ be

distributions over Zq. One is given arbitrary many samples (ai, bi) ∈ Zn
q
× Zq and asked to distinguish

whether there exists s← χn such that the samples are of the form (ai, 〈ai, s〉+ ei mod q) with ai

$← Zn
q
,

ei ← φ or the samples are chosen uniformly at random from Zn
q
×Zq.
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5.2 Ideal lattice problems

Ideal lattices are lattices with additional algebraic structure. One main advantage of ideal lattices is that

a n-dimensional ideal lattice can represented by just one vector while a standard lattice requires exactly

n vectors.

Definition 5.6 ([8]) Ideal Lattice. Given a lattice Λ, such that Λ ⊆ Zn, a polynomial f (X ) = f0 + ... +

fn−1X n−1+ fnX n and a mapping φ f (v0, ..., vn−1)→ v0+ v1X + ...+ vn−1X n−1+ f (X )Z[X ]. Λ is considered

an ideal lattice, if φ f (Λ) is an ideal in R f = Z[X ]/( f (X )). Likewise, if I is an ideal in R f , then its image Λ

under φ−1
f
(I) is an ideal sublattice of Zn.

In cryptography ideal lattices are represented as ideals in polynomial rings.

The ring-small integer solution problem

The ring-small integer solution problem is that one is given random polynomials a1, a2, ..., am and asked

to find small polynomials s1, s2, ..., sm such that a1s1 + a2s2 + ...+ amsm = 0.

Definition 5.7 The ring-small integer solution (❘-❙■❙q,♥,♠,β) problem. Let q ∈ P, n, m ∈ N, m > n, β ∈ R
and R = Zq[x]/(x

n + 1). One is given a1, a2, ..., am

$← R and asked to find s1, s2, ..., sm ∈ R such that
m
∑

i=0

(ai · si) = 0 in R and ‖(s1, s2, ..., sm)
T‖2 ≤ β .

The ring-learning with errors problem

The ring-learning with errors problem is that, after a secret polynomial s is chosen, one is given arbitrary

many samples (ai, ai · s + ei), such that the polynomials ai are chosen uniformly at random and ei are

polynomials with small coefficients, and asked to find s.

Definition 5.8 The ring-learning with errors (❘-▲❲❊♥,q,χ ,φ) problem. Let n, q ∈ N, R = Zq[x]/(x
n + 1)

and χ ,φ be distributions over R. After s← χ is chosen, one is given arbitrary many samples (ai, ai ·s+ei) ∈
R× R, such that ai

$← R, ei ← φ, and asked to find s.

The ring-decisional learning with errors problem

The ring-decisional learning with errors problem is that one is given arbitrary many samples (ai, bi) and

asked to distinguish whether there exists a secret polynomial s such that the samples are of the form

(ai, ai · s + ei) with random polynomials ai and polynomials with small coefficients ei or the samples are

chosen randomly.

Definition 5.9 The ring-decisional learning with errors (❘-❉▲❲❊♥,q,χ ,φ) problem. Let R= Zq[x]/(x
n+1),

n, q ∈ N and χ ,φ be distributions over R. One is given arbitrary many samples (ai, bi) ∈ R× R and asked

to distinguish whether there exists s← χ such that bi = ai · s+ ei with ai

$← R, ei ← φ or the samples are

chosen uniformly at random from R× R.
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The decisional compact knapsack problem

The decisional compact knapsack problem, described in [14], is a variant of the ring-decisional learning

with errors problem in which one is given a sample (a, t) and asked to distinguish whether the sample

is of the form (a, as1 + s2), such that a is a random polynomial and s1, s2 are polynomials with small

coefficients, or the sample is chosen randomly.

Definition 5.10 The decisional compact knapsack (❉❈❑♣,♥) problem. Let n ∈ {2k : k ∈ N}, p ∈ {q ∈ P :

q ≡ 1 mod 2n}, Rpn
= Zp[x]/(x

n + 1) and R
pn

1 = {z ∈ Rpn
: z =

∑n−1

i=0
zi x

i ∧ |zi| ≤ 1}. One is given

(a, t) ∈ Rpn ×Rpn
and asked to distinguish whether there exist s1, s2 ∈ R

pn

1 , such that (a, t) = (a, as1+ s2),

or (a, t) is chosen uniformly at random from Rpn × Rpn
.

The decisional compact knapsack problem is described as the ring-decisional learning with errors problem

with "aggressive" parameters by Güneysu et al. [14].

5.3 Examples

In this section we illustrate how the boundary β in case of ❙■❙ and the addition of errors ei in case of

▲❲❊ makes the problems hard. In order to achieve this, we divide each example in two variants. In the

first one, we show how easy it is to find a solution without regarding the boundary β and the errors ei .

In the second one, we describe why the boundary β and the errors ei makes it much harder to find a

solution.

Example: Small Integer Solution problem

We set the parameters as follows: n = 2, m = 4, q = 211 and, as described by Lyubashevsky [16],

β = 29.05.

Variant 1

Let C be a challenger who chooses a random matrix A=

�

14 46 −57 −2

58 80 −30 1

�

∈ Z2×4
211

and asks to find a

vector s ∈ Z4
211
\{0} such that As= 0 mod 211 holds.

Using Gaussian elimination provides the matrix

�

1 0 −83 98

0 1 102 16

�

from which we obtain the basis B =

{b1,b2} = {(83;−102; 1; 0)T , (−98;−16; 0; 1)T} of the solution space. There are exactly 2112 − 1 =

44520 linear combinations of b1 and b2 which are not zero and solve the problem.

Variant 2

Let C be a challenger who chooses a random matrix A=

�

14 46 −57 −2

58 80 −30 1

�

∈ Z2×4
211

and asks to find a

vector s ∈ Z4
211
\{0} such that As= 0 mod 211 and ‖s‖2 ≤ 29.05 holds.

Using the results fromVariant 1we can use the basis B = {b1,b2}= {(83;−102; 1; 0)T , (−98;−16; 0; 1)T}
to find vectors s such that As = 0 mod 211 holds. The only thing that remains is to find a vector s as

a linear combination of b1 and b2 such that ‖s‖2 ≤ 29.05 holds. By computing ‖b1‖2 ≈ 101.79 and
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‖b2‖2 ≈ 91.22 we see that the trivial linear combinations 1 ·b1+0 ·b2 and 0 ·b1+1 ·b2 are no solutions.

With the simple linear combination s1 = −2 · b1 + 1 · b2 = (−53;−23; 2; 1)T with ‖s1‖2 ≈ 57.82 we find

a significantly smaller vector but even that one is nearly twice as long as it is claimed by C.

There are exactly 64 linear combinations of b1 and b2 which size remains lower than β = 29.05 (see

Table A.1 for all solutions), e.g. s = 7 · b1 + 21 · b2 = (0; 5; 7; 21)T with ‖s‖2 ≈ 22.69. These are merely

about 0.144% of all the vectors within the solution space. In Table 5.1 the number of solutions and the

percentage of the solution space for different values β are listed. There we see that even for the bigger

value β = 40.67= 1.3 · 29.05 the number of solutions remains lower than 0.7% of the solution space.

In Table A.2 the number of solutions for different instantiations of the ❙■❙ problem with fixed n = 2,

m = 4 and β =
p

4 · q are listed. These values suggest that the percentage of vectors, which are short

enough decreases with growing values q.

Table 5.1: Number of solutions for different values for β

β solutions percentage β solutions percentage

5.81 0 = 0 % 46.48 532 ≈ 1.195%

11.62 4 ≈ 0.009% 52.29 832 ≈ 1.869%

17.43 14 ≈ 0.031% 58.10 1256 ≈ 2.821%

23.24 34 ≈ 0.076% 87.16 6334 ≈ 14.227%

29.05 64 ≈ 0.144% 116.21 19814 ≈ 44.506%

34.86 166 ≈ 0.373% 145.26 36646 ≈ 82.314%

40.67 306 ≈ 0.687% 174.31 43864 ≈ 98.527%

Example: Learning With Errors problem

We set the parameters as follows: n = 4, q = 211, χ be the uniform distribution over Z211 and φ be the

Gaussian distribution with standard deviation σ = 1.

Variant 1

Let C be a challenger knowing a secret vector s which is chosen uniformly at random from Z4
211

. C chooses

random vectors a0,a1,a2,a3 uniformly at random from Z4
211

and computes bi = 〈ai, s〉 mod 211. Finally,

C outputs the samples

• (a0, b0) = ((− 60; 93; 94; 93)T , 83),

• (a1, b1) = ((− 28;− 54;− 62;− 14)T , 9),

• (a2, b2) = ((− 68;− 34;− 90; 8)T ,− 50),

• (a3, b3) = (( 103; 1;− 29; 3)T ,− 21)

and asks to find s.

The secret vector s= (−56; 33; 53; 96)T for which 〈ai, s〉= bi holds can be easily found using Gaussian

elimination.

Variant 2

Let C be a challenger knowing a secret vector s which is chosen uniformly at random from Z4
211

. C chooses

random vectors a0,a1,a2,a3,a4 uniformly at random from Z4
211

and samples errors e0, e1, e2, e3, e4 accord-
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ing to the Gaussian distribution with standard deviation σ = 1. For simplicity, we assume that C samples

the errors until they are within {−1, 0, 1}. Finally, C computes bi = 〈ai, s〉 + ei mod 211, outputs the

samples

• (a0, b0) = (( 40; 17; 31; 58)T , 6),

• (a1, b1) = ((− 94;− 51; 32; 83)T ,−75),

• (a2, b2) = ((− 94;− 46; 100; 19)T ,−96),

• (a3, b3) = ((− 57;− 50;− 55;−103)T , 7),

• (a4, b4) = ((− 49;− 65;− 11; 39)T ,−19)

and asks to find s.

Based on the fact that each equation is only correct up to ±1, Gaussian elimination cannot be used to

find the solution. There is exactly one vector s = (105; 23; 38;−63)T such that the difference between

〈ai, s〉 and bi for all samples is at most 1. Table 5.2 lists the number of solution vectors after seeing each

new sample outputted by C. We see that the number of solutions decreases from nearly three billion

solutions after the first sample to less than 100 solutions after seeing four samples. After seeing the fifth

sample, there is only one solution left. For a unique solution the number of samples has to be bigger

than the dimension n. Furthermore, the uniqueness depends on the size of the errors and the random

vectors ai.

Belowwe describe two algorithms described by Regev [19] for solving the problem. Note that there are

more algorithms for the problem, e.g. a maximum likelihood algorithm [19], which we do not describe.

The first algorithm asks continuously for samples until seeing enough of the form ((1; 0; 0; 0)T , bi) to

recover the first component of s. The same procedure is used to recover the other components of s. This

algorithm is not efficient because the probability that a sample of the form ((1; 0; 0; 0)T , bi) is outputted

is q−n which is exactly the probability that one randomly guesses the secret vector s. Further on, it is

not enough to see just one sample of the form ((1; 0; 0; 0)T , bi) to recover the first component of s. To

illustrate that, assume that C continuously outputs new samples until we see the following two:

• ((1; 0; 0; 0)T , 105),

• ((1; 0; 0; 0)T , 104).

From the first sample we find out that s1 is an element of {−105, 104, 105} and from the second sample

we find out that s1 has to be within {103, 104, 105}. Even nowwe can only limit that the first component

of s is either 104 or 105.

Another algorithm, which is based on the work of Blum et al. [7], has certain similarity to the algorithm

above. Instead of asking for samples until seeing a sample of the form ((1; 0; 0; 0)T , bi), the algorithm

tries to find a small set of equations such that the addition of these yields to a sample of the form

((1; 0; 0; 0)T , bi). To illustrate that, assume that C outputs new samples until we see the following four:

• (( 84; 104;− 12; 43)T ,− 97),

• (( 37; 59; 98;− 79)T , 17),

• (( 62; 7; 64;− 36)T ,− 23),

• ((− 14; 41;− 61; 72)T , 1).

By adding these equations we obtain ((1; 0; 0; 0)T ,−104) which also just limits the possible values of the

first component of the secret vector.
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We see that both algorithms try to recover the first component by using samples of the form

((1; 0; 0; 0)T , bi). The main difference is that the first algorithm continuously asks for new samples until

seeing a sample of that form, while the second algorithm tries to generate a sample of that form from

the already seen samples.

Table 5.2: Number of solutions for different number of samples

considered samples solutions percentage

(a0, b0) 28181793 ≈ 1.4218009479%

(a0, b0), (a1, b1) 400689 ≈ 0.0202151794%

(a0, b0), (a1, b1), (a2, b2) 5697 ≈ 0.0002874196%

(a0, b0), (a1, b1), (a2, b2), (a3, b3) 81 ≈ 0.0000040865%

(a0, b0), (a1, b1), (a2, b2), (a3, b3), (a4, b4) 1 ≈ 0.0000000505%

6 Signature schemes based on lattices

In this section we describe selected lattice-based signature schemes. The considered schemes are the

signature scheme by Lyubashevsky [16], the signature scheme by Ducas et al. [11], the signature scheme

by Güneysu et al. [14], the signature scheme by Abdalla et al. [1], the signature scheme by Bai and

Galbraith [5], the signature scheme by Alkim et al. [4] and the signature scheme by Gentry et al. [12].

For each scheme we describe the public parameters to which everyone has access, the key generation

algorithm and the corresponding pair of keys. In addition we describe how to sign a message and verify

a signature respectively by describing both the signing and the verification algorithm. Further on, we

describe on which problem (see Chapter 5) the security is based and whether the signature scheme is

secure (see Definition 3.3) or strongly unforgeable (see Definition 3.4). Finally, we compute the bit

security of the scheme as described in Chapter 4.2.

6.1 Signature scheme by Lyubashevsky

In this section we describe the signature scheme (LYU12) by Lyubashevsky [16]. When comparing this

scheme with the signature scheme by Ducas et al. [11] we see that they look very familiar. This is mainly

due to the fact that Ducas et al. tried to increase the efficiency of this scheme.

Table 6.1 provides an overview of the scheme, which contains the public parameters, the key pair, the

random oracle and both the signing and verification algorithm. Table 6.2 presents concrete values of the

parameters. Further on, Table 6.2 contains the size of the signature, the signing key and the verification

key (in kilobit [kb]), as well as the indicated bit security. Ducas et al. [11] show that the signature scheme

has a lower bit security as in the original work by Lyubashevsky [16]. Therefore, we use the parameters

provided by Ducas et al. [11].
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Description of the signature scheme

Public Parameters: The integers ξ, σ, n, m, k, q, the rational numbers η and M and the distribution Dσ

with standard deviation σ. Note that Lyubashevsky [16] uses κ instead of ξ. In this work we use κ

as the bit hardness.

Signing Key: The signing key is a m×k matrix S such that each component of S is an integer with absolute

value at most d.

Verification Key: The verification key consists of two matrices A and T such that A is sampled uniformly

from Zn×m
q

and T= AS mod q.

Key Generation Algorithm: First, a m× k matrix S with absolute values at most d is chosen. Afterwards,

a n × m matrix A with values from Zq is chosen uniformly at random. The matrices A and S are

multiplied yielding the matrix T. Finally the algorithm returns (sk, v k) with sk = S and v k = (A,T).

Signing Algorithm: To sign a message µ, a vector y is sampled from the distribution Dm
σ
. Afterwards, the

message µ and product of A and y are hashed together yielding the vector c. Further on, the vector

z = Sc+ y is computed. In the last step, to ensure that z does not leak any information about the

signing key S, rejection sampling is applied by returning (z,c) with probability min

�

Dm
σ (z)

M Dm
Sc,σ
(z)

, 1

�

.

Otherwise, the signing algorithm restarts.

Verification Algorithm: To check whether a given signature (z,c) of a message µ is valid or not, the

verification algorithm checks if the inequality ‖z‖2 ≤ ησ
p

m and the equality c= H(Az−Tc,µ) are

satisfied. If that is true, the algorithm accepts the signature, i.e. return 1. Otherwise, the signature

is rejected, i.e. return 0.

Hardness Assumption: The security of the scheme is based on the ❙■❙ problem (see Definition 5.2).

Security Property: The scheme is strongly unforgeable (see Definition 3.4).

Computation of the bit security

Theorem 6.1 ([16]). If there is a polynomial-time forger, who makes at most qs queries to the signing

oracle and qh queries to the hash oracle H, who breaks the signature scheme with probability εA, then

there is a polynomial-time algorithm who can solve the SISq,n,m,β problem for β = (2ησ + 2dκ)
p

m =

Õ(dn) with probability ≈ ε2
A

2(qh+qs)
. Moreover, the signing algorithm produces a signature with probability

≈ 1/M and the verifying algorithm accepts a signature produced by an honest signer with probability at

least 1− 2−m.

Theorem 6.1 provides us

εR ≈
ε2
A

2(qs + qh)
, (6)

tR ≈ tA. (7)
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Table 6.1: LYU12

Public Parameters
ξ,σ, n, m, k ∈ N ; η, M ∈ Q ; q ∈ P ;
Gaussian distribution Dσ with standard deviation σ ;

Signing Key: S
$← {−d, ..., 0, ..., d}m×k

Verification Key: (A,T) s.t. A
$← Zn×m

q
,T← AS

Random Oracle: H : {0, 1}∗→ {v : v ∈ {−1, 0, 1}k,‖v‖1 ≤ ξ}
Signing Algorithm Verification Algorithm
Input: (µ,A,S) Input: (µ,z,c,A,T)

Output: (z,c) Output: {0, 1}
1: y← Dm

σ
1: if ‖z‖2 ≤ ησ

p
m and

2: c← H(Ay,µ) c= H(Az− Tc,µ)

3: z← Sc+ y then return 1

4: return (z,c) with probability 2: return 0

min

�

Dm
σ (z)

M Dm
Sc,σ
(z)

, 1

�

Table 6.2: Parameter selection LYU12

Parameter LYU12 III

n 512

q 233

d 31

m 3253

k 512

η 1.2

ξ 14

σ 300926

M 2.72

signature size [kb] ≈ 71.29

signing key size [kb] ≈ 8192

verification key size [kb] ≈ 8192

Bit Security 80

By solving (6) for εA and (7) for tA we obtain

εA ≈
Æ

2εR(qs + qh), (8)

tA ≈ tR. (9)
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Insertion (8) and (9) in (3) provides us

γ≈
ln(tR)− ln

�p

2εR(qs + qh)
�

ln(2)
(10)

as the formula for the bit security.

Ducas et al. [11] indicate a bit security of 80. That actually means that the parameters of the scheme

are chosen such that the underlying problem has the bit hardness κ = 80. By using the assumptions (4)

and (5) we obtain εR = 1, tR = 280, qh = 280 and qs = 240. Insertion in (10) finally yields

γ≈
ln(280)− ln

�p

2 · 1 · (240 + 280)
�

ln(2)
≈ 39. (11)

We see the bit security is just about half the indicated bit security.

6.2 Signature scheme by Ducas, Durmus, Lepoint and Lyubashevsky

The Bimodal lattice signature scheme (BLISS) by Ducas et al. [11] is the fastest signature scheme, within

this work, in running times and sizes of the signature and the keys. The main difference between BLISS

and the scheme by Lyubashevsky (see Chapter 6.1) is that BLISS rejects a potential signature with a lower

probability than the scheme by Lyubashevsky and that BLISS is based on ideal lattices. To simplify matters

we describe the matrix variant instead of the ring variant of the scheme.

Table 6.3 provides an overview of the scheme, while Table 6.4 presents concrete values of the parame-

ters. Further on, Table 6.4 contains the size of the signature, the signing key and the verification key (in

kilobit [kb]), as well as the indicated bit security

Throughout this section we define the set B = {0, 1}. Further on, we define, for natural numbers n

and ξ, the set Bn
ξ
= {v ∈ Bn : ‖v‖1 = ξ}which contains vectors of dimension n such that there are exactly

ξ components equal to 1 while all the other components are equal to 0.

Description of the signature scheme

Public Parameters: The integers n, m, ξ, the prime q, the real numbers σ, B2, M , α and the discrete

Gaussian distribution Dm
σ
with standard deviation σ. Note that Ducas et al. [11] use κ instead of ξ.

In this work we use κ as the bit hardness.

Signing Key: The signing key is a (short) m× n matrix S such that each component is chosen from Z2q.

Verification Key: The verification key is a n×m matrix A such that each component is chosen from Z2q

and AS= qIn mod 2q.

Key Generation Algorithm: We skip the description of the key generation algorithm at this point be-

cause it goes beyond the scope of this work. A detailed description is given in [11].

Signing Algorithm: To sign a message µ, a vector y is sampled uniformly from a distribution Dm
σ

as the

first step. In the next step the verification key A and the vector y are multiplied modulus 2q and

19



the corresponding vector is hashed together with the message µ yielding the vector c. Afterwards,

a bit b is chosen randomly from B and the vector z← y+ (−1)bSc is computed. To ensure that the

distribution of the potential signature (z,c) is independent from the distribution of the signing key,

rejection sampling is applied by returning (z,c) with probability 1/

�

M exp

�

− ‖Sc‖2
2

2σ2

�

cosh
�

〈z,Sc〉
σ2

�

�

.

Otherwise, the signing algorithm restarts.

Verification Algorithm: The verification algorithm accepts, i.e. return 1, a signature (z,c) for a message

µ if the three (in)equalities ‖z‖2 ≤ B2 , ‖z‖∞ < q/4 and c = H(Az+ qc mod 2q,µ) are satisfied.

Otherwise, the signature is rejected, i.e. return 0.

Hardness Assumption: The security of the scheme is mainly based on the ❘-❙■❙ problem (see Defini-

tion 5.7).

Security Property: The scheme is strongly unforgeable (see Definition 3.4).

Table 6.3: BLISS

Public Parameters
ξ, n, m ∈ N ; q ∈ P ; σ, B2, M ,α ∈ R ; B = {0, 1} ; Bn

ξ
= {v ∈ {0, 1}n : ‖v‖1 = ξ} ;

Gaussian distribution Dσ with standard deviation σ ;

Signing Key: S ∈ Zm×n
2q

Verification Key: A ∈ Zn×m
2q

s.t. AS= qIn mod 2q

Random Oracle: H : {0, 1}∗→ Bn
ξ

Signing Algorithm Verification Algorithm
Input: (µ,A,S) Input: (µ,z,c,A,T)

Output: (z,c) Output: {0, 1}
1: y

$← Dm
σ

1: if ‖z‖2 ≤ B2 and

2: c← H(Ay mod 2q,µ) ‖z‖∞ < q/4 and

3: b
$← B c= H(Az+ qc mod 2q,µ)

4: z← y+ (−1)bSc then return 1

5: return (z,c) with probability 2: return 0

1/

�

M exp

�

− ‖Sc‖2
2

2σ2

�

cosh
�

〈z,Sc〉
σ2

�

�

Computation of the bit security

The security of the signature scheme is based on the security reduction by Lyubashevsky [16], thus we

can use formula (10) to compute the bit security.

Ducas et al. [11] indicate a bit security of 128. We instantiate the parameters of the underlying problem
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Table 6.4: Parameter selection of BLISS

Parameter BLISS II

n 512

m ≈ 1022

q 12289

ξ 23

B2 11074

M −
σ 107

α 0.5

signature size [kb] 5

signing key size [kb] 2

verification key size [kb] 7

Bit Security 128

to obtain a bit hardness κ = 128. Using the assumptions (4) and (5) provides us εR = 1, tR = 2128,

qh = 2128 and qs = 264. Insertion in (10) finally yields

γ≈
ln(2128)− ln

�p

2 · 1 · (264 + 2128)
�

ln(2)
≈ 63. (12)

We see that the bit security is just about half the indicated bit security.

6.3 Signature scheme by Güneysu, Lyubashevsky and Pöppelmann

In this section we describe the signature scheme (GLP) by Güneysu et al. [14] which is described as "A

Signature Scheme for Embedded Systems" by the authors.

Table 6.5 provides an overview of the scheme, while Table 6.6 presents concrete values of the pa-

rameters. Further on, Table 6.6 contains the size of the signature, the signing key and the verification

key (in kilobit [kb]), as well as the indicated bit security. Throughout this section we define the ring

Rpn
= Zp[x]/(x

n + 1) and for k ∈ N we define the subset R
pn

k
of Rpn

which contains all polynomials with

integer coefficients within [−k, k].

Description of the signature scheme

Public Parameters: The integers n and k, the prime p and the set Dn
32

which contains all polynomials d

such that there are at most 32 coefficients di which are either 1 or −1 while the other coefficients

are all 0.

Signing Key: The signing key consists of two polynomials s1, s2 chosen uniformly at random from R
pn

1 .

Verification Key: The verification key consists of a polynomial a
$← Rpn

and the polynomial t = as1 + s2

mod (xn + 1) ∈ Rpn
.
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Key Generation Algorithm: The algorithm chooses two polynomials s1, s2 uniformly at random from R
pn

1

and the polynomial a uniformly at random from Rpn
. Afterwards, the polynomial t = as1 + s2 is

computed. Finally, the algorithm returns (sk, v k) with sk = (s1, s2) and v k = (a, t).

Signing Algorithm: To sign a message µ, polynomials y1, y2 are chosen uniformly at random from R
pn

k
.

The algorithm hashes the polynomial a y1 + y2 and the message µ together yielding the polyno-

mial c. In the next step two polynomials z1, z2 are computed by setting z1 = s1c+y1 and z2 = s2c+y2

respectively. Following this, rejection sampling is applied by restarting the algorithm if at least one

of the two polynomials z1 and z2 is not an element of R
pn

k−32
until both are elements of R

pn

k−32
. In this

case the algorithm returns the signature (z1, z2, c).

Verification Algorithm: For a given message µ and a given signature (z1, z2, c), the verification algorithm

accepts the signature, i.e. return 1, if both z1 and z2 are elements of R
pn

k−32
and the equality c =

H(az1 + z2 − tc,µ) is satisfied. Otherwise, the signature is rejected, i.e. return 0.

Hardness Assumption: The security of the scheme is based on the ❉❈❑ problem (see Definition 5.10).

Security Property: The scheme is strongly unforgeable (see Definition 3.4).

Table 6.5: GLP

Public Parameters
n, k ∈ N ; p ∈ P ;

Dn
32
= {d =

n−1
∑

i=0

di x
i ∈ Rpn

: di ∈ {−1, 0, 1} ∧
∑n−1

i=0
|di| ≤ 32} ;

Signing Key: s1, s2

$← R
pn

1

Verification Key: (a, t) s.t. a
$← Rpn

, t ← as1 + s2

Random Oracle: H : {0, 1}∗→ Dn
32

Signing Algorithm Verification Algorithm
Input: (µ, a, s1, s2) Input: (µ, z1, z2, c, a, t)

Output: (z1, z2, c) Output: {0, 1}
1: y1, y2

$← R
pn

k
1: if z1, z2 ∈ R

pn

k−32
and

2: c← H(a y1 + y2,µ) c = H(az1 + z2 − tc,µ)

3: z1← s1c + y1, z2← s2c + y2 then return 1

4: if z1 /∈ R
pn

k−32
or z2 /∈ R

pn

k−32
2: return 0

then goto step 1
5: return (z1, z2, c)

Computation of the bit security

The security of the signature scheme is based on the security reduction by Lyubashevsky [16], thus we

can use (10) as formula to compute the bit security.

Güneysu et al. [14] indicate a bit security of 100. That actually means that the parameters of the
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Table 6.6: Parameter selection of GLP

Parameter GLP I

n 512

p 8383489

k 214

signature size [kb] 8.74

signing key size [kb] 1.58

verification key size [kb] 11.52

Bit Security 100

scheme are chosen such that the underlying problem has the bit hardness κ = 100. By using the as-

sumptions (4) and (5) we obtain εR = 1, tR = 2100, qh = 2100 and qs = 250. Insertion in (10) finally

yields

γ≈
ln(2100)− ln

�p

2 · 1 · (250 + 2100)
�

ln(2)
≈ 49. (13)

We see the actual bit security is just about half the indicated bit security.

6.4 Signature scheme by Abdalla, Fouque, Lyubashevsky and Tibouchi

The lattice-based lossy signature scheme (AFLT) by Abdalla et al.[1] is generated via transformation of a

lattice-based lossy identification scheme. The signature scheme as well as the identification scheme are

described in [1].

Table 6.7 provides an overview of the scheme. Abdalla et al. do not provide how to choose practical

parameters.

Description of the signature scheme

Public Parameters: The integers p, n, l, c t r, the real number σ, the ring Rpn
= Zp[x]/(x

n + 1), the

distribution DRpn
,σ over Rpn

with standard deviation σ, the sets M and G which are subsets of

Rpn
= Zp[x]/(x

n+1) that contains polynomials which coefficients remain below a given boundary.

The symbol ⊥ which the signing algorithm returns if it fails producing a signature.

Signing Key: The signing key consists of two polynomials s1, s2← DRpn
,σ.

Verification Key: The verification key is a tuple (a, t) such that a is chosen uniformly at random from Rpn

and t = as1 + s2 mod (xn + 1).

Key Generation Algorithm: First, the algorithm chooses two polynomials s1, s2 ← DRpn
,σ. Afterwards

the algorithm chooses a polynomial a uniformly at random from Rpn
and computes the polynomial

t = as1 + s2 mod (xn + 1). Finally, (sk, v k) with sk = (s1, s2) and v k = (a, t) is returned.
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Signing Algorithm: To sign a message µ, the counter c t r is initialized to zero and polynomials y1, y2 are

chosen uniformly at random from M . In the next step the polynomial a y1 + y2 is hashed together

with the message µ yielding the polynomial c. Further on, two polynomials z1, z2 are computed

by setting z1 = s1c + y1 and z2 = s2c + y2. Afterwards, the algorithm checks if z1 or z2 /∈ G and

the current number of attempts c t r is smaller than the boundary l. If it is true, c t r is increased by

1 and the algorithm restarts without the initialization of c t r. Otherwise, the algorithm checks if

z1 or z2 /∈ G and sets the potential signature (z1, z2, c) to (⊥,⊥,⊥). Finally, the algorithm returns

(z1, z2, c).

Verification Algorithm: For a given message µ and a given signature (z1, z2, c) the verification algorithm

accepts the signature, i.e. return 1, if both z1, z2 ∈ G and c = H(az1 + z2 − tc,µ) are satisfied.

Otherwise, the signature is rejected, i.e. return 0.

Hardness Assumption: The security of the scheme is based on the❘-❉▲❲❊ problem (see Definition 5.9).

Security Property: The scheme is secure (see Definition 3.3). For a bigger value p (see Theorem 6.2) the

scheme is strongly unforgeable (see Definition 3.4).

Table 6.7: AFLT

Public Parameters

p, n, c t r, l ∈ N ; Rpn
= Zp[x]/(x

n + 1) ;

M = {g ∈ Rpn
: ‖g‖∞ ≤ n3/2σ log3 n} ; G = {g ∈ Rpn

: ‖g‖∞ ≤ (n− 1)
p

nσ log3 n} ;
Distribution DRpn

,σ with standard deviation σ ;

Signing Key: s1, s2

$← DR,σ

Verification Key: (a, t) s.t. a
$← R, t ← as1 + s2

Random Oracle: H : {0, 1}∗→ {g ∈ Rpn
: ‖g‖∞ ≤ log n}

Signing Algorithm Verification Algorithm
Input: (µ, a, s1, s2) Input: (µ, z1, z2, c, a, t)

Output: (z1, z2, c) Output: {0, 1}
1: c t r ← 0 1: if z1, z2 ∈ G and

2: y1, y2

$← M c = H(az1 + z2 − tc,µ)

3: c← H(a y1 + y2,µ) then return 1

4: z1← s1c + y1, z2← s2c + y2 2: return 0

5: if (z1, z2 /∈ G and c t r < l

then c t r ← c t r + 1

goto step 2
6: if z1, z2 /∈ G

then (z1, z2, c)← (⊥,⊥,⊥)
7: return (z1, z2, c)
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Computation of the bit security

Theorem 6.2 ([1]). If p ≫ σ2/α · n3/α+η for some η > 0, and the ❘-▲❲❊ problem over R with stan-

dard deviation σ is (εR, tR)-hard, then the signature scheme is (tA, qh, qs,εA)-unforgeable against chosen

message attacks in the random oracle model for:

tA ≈ tR −O(qs · t1),

εA ≈ εR + (qh + qs) · negl(n)

(where t1 is the cost of a multiplication in R), and it outputs a valid signature with probability ≥ 1− (1−
1/e2 + 2/(en))l . If, moreover, p ≫ σ2/α · n4/α+η for some η > 0, the signature scheme is (tA, qh, qs,εA)-

strongly unforgeable against chosen message attacks.

The difference to the security reduction by Lyubashevsky [16] is that Abdalla et al. [1] do not use the

forking lemma [17] to prove the security. That is the reason why they find a tight security reduction.

Theorem 6.2 provides us

εA ≈ εR + (qh + qs) · negl(n), (14)

tA ≈ tR −O(qs · t1). (15)

Because of the negligibly function in (14) and the constant term in (15) we obtain

εA ≈ εR, (16)

tA ≈ tR. (17)

Insertion (16) and (17) in (3) provides us

γ≈ ln(tR)− ln(εA)

ln(2)
(18)

as the formula for the bit security.

There is no indicated bit security for the signature scheme given by the authors. Suppose that the

parameters of the underlying problem are chosen to obtain a bit hardness κ. By using the assumption

(4) we obtain εR = 1 and tR = 2κ. Insertion in (18) yields

γ≈ ln(2κ)− ln(1)

ln(2)
≈ κ · ln(2)− 0

ln(2)
≈ κ. (19)

We see that for every instantiation of the parameters the bit security and the bit hardness are equal.
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6.5 Signature scheme by Bai and Galbraith

In this section we describe the signature scheme (BG) described by Dagdelen et. al [10]. This is a variant

of the signature scheme by Bai and Galbraith [5] who uses GLP (see Chapter 6.3) to construct a scheme

aiming for short signatures to increase the efficiency.

Table 6.8 provides an overview of the scheme while, Table 6.9 presents concrete values of the param-

eters for both this scheme and TESLA (see Chapter 6.6). Further on, Table 6.9 contains the size of the

signature, the signing key and the verification key (in kilobit [kb]), as well as the indicated bit security.

Throughout this section we define, following Bai and Galbraith [5], the function [a]2d which get an

integer a as input and output the unique integer x within the range (−2d−1, 2d−1] such that a and x have

the same remainder modulo 2d . Based on this we define the function ⌊a⌉d which drops d bits of a. We

expand this function to vectors by applying it to each component of the vector.

Description of the signature scheme

Public Parameters: The integers m,n,q,σ,ω,κ,B,L, the real number U , the m× n matrix A, the Gaussian

distribution Dσ with standard deviation σ, and the function F which gets a binary string of length

κ as input and generates a n-dimensional vector with weight ω. Furthermore the functions [·]2d

and ⌊·⌉d which are described above.

Signing Key: The signing key consists of a n×n matrix S and a m×n matrix E which are chosen from the

distributions Dn×n
σ

and Dm×n
σ

respectively.

Verification Key: The verification key is a m× n matrix T← AS+ E mod q.

Key Generation Algorithm: The algorithm chooses S← Dn×n
σ

and E← Dm×n
σ

. Afterwards, the algorithm

checks if checkE(E) = 0 and restarts if it is true. Otherwise, the algorithm returns (sk, v k) with

sk← (S,E) and v k← T. A description of the function checkE is given by Dagdelen et al. [10].

Signing Algorithm: To sign a message µ, the algorithm chooses a vector y uniformly at random from

the set [−B, B]n which is multiplied with the matrix A to obtain the vector v. The vector v, after

dropping the last d bits, and the message µ are hashed together yielding the binary string c which

is used as input for F to obtain the vector c. Afterwards, the vectors z and w are computed by

setting z ← y + Sc and w ← v − Ec. Finally, the algorithm returns (z, c) as a signature if both

|[wi]2i |> 2d−1 − L and ‖z‖∞ > B − U holds. Otherwise, the algorithm restarts.

Verification Algorithm: For a given message µ and a given signature (z, c), the verification algorithm

uses c as input for F to obtain the vector c and computes w′ ← Az − Tc mod q. The vector w,

after dropping the last d Bits, and the message are hashed together yielding the binary string c′.

Finally, the algorithm accepts the signature, i.e. return 1, if both c′ = c and ‖z‖∞ ≤ B − U holds.

Otherwise, the signature is rejected, i.e. return 0.

Hardness Assumption: The security of the scheme is based on the ❙■❙ problem (see Definition 5.2) and

the ❉▲❲❊ problem (see Definition 5.5).

Security Property: The scheme is strongly unforgeable (see Definition 3.4).
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Computation of the bit security

Theorem 6.3 ([5]). Let q be prime. Let parameters n, m, d,κ, B be such that

(2B)nqm−n ≥ (2d+1)m2κ

and suppose that Prs1,s2←{0,1}κ[F(s1) = F(s2)]≤ c1
2κ for some constant c1 holds. Let Dy = [−B, B]with the

uniform distribution and let S,E have entries chosen from discrete Gaussian distributions with standard

deviation σ = αq. Let A be a forger against the signature scheme in the random oracle model that

makes qh hash queries, qs sign queries, runs in time tA and succeeds with probability εA. Then there is

a negligible ε and some 0 ≤ δ′ ≤ εA such that A can be turned into either one of the following two

algorithms:

1. an algorithm, running in time approximately t and with advantage εA − δ′ − ε, that solves the
(n, m, q,α)-decisional ▲❲❊ problem.

2. an algorithm, running in time approximately 2t and with success probability δ′
�

δ′
qh
− 1

2κ

�

, that

solves the unbalanced (m+ n, m, q)-❙■❙ problem: Given an m× (n+m)matrix A′ to find a length n

vector y1 and a length m vector y2 such that ‖y1‖∞,‖y2‖∞ ≤max(2B, 2d−1)+2E′w andA′
�

y1
y2

�

≡ 0(

mod q) where E′ satisfies

(2E′)m+n ≥ qm2κ

The first security reduction is tight while second one is non-tight. To compute the bit security we only

need the less tighter security reduction thus we ignore the first one at this point. The second security

reduction in Theorem 6.3 provides us

εR ≈ δ′
�

δ′

qh

− 1

2κ

�

, 0≤ δ′ ≤ εA, (20)

tR ≈ 2tA. (21)

Because of 0≤ δ′ ≤ εA there exists a ρ ∈ [0, 1] such that δ′ = ρεA. Insertion in (20) yields

εR ≈ ρεA
�

ρεA

qh

− 1

2κ

�

, 0≤ ρ′ ≤ 1. (22)

By solving (22) for εA and (21), ignoring the linear factor, for tA we get

εA ≈
ρ

2κ +

r

−ρ
2κ

2 − 4 · ρ2

qh
· −εR

2 · ρ2

qh

, (23)

tA ≈ tR. (24)
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Insertion (23) and (24) in (3) provides us

γ≈
ln(tR)− ln

 

ρ
2κ
+

s

�−ρ
2κ

�2−4·ρ
2

qh
·−εR

2·ρ
2

qh

!

ln(2)
(25)

as the formula for the bit security.

The signature scheme has an indicated bit security of 128 [10]. We instantiate the parameters of the

underlying problem to obtain a bit hardness κ = 128. Using the assumptions (4) and (5) provides us

εR = 1, tR = 2128, qh = 2128 and qs = 264. Furthermore, we assume the best case in which ρ = 1.

Insertion in (25) finally yields

γ≈
ln(2128)− ln

 

1

2128 +

s

� −1

2128

�2−4· 12

2128 ·−1

2· 12

2128

!

ln(2)
≈ 63. (26)

We see that the bit security is just half the indicated bit security.

6.6 Signature scheme by Alkim, Bindel, Buchmann, Dagdelen and Schwabe

The Tightly-secure, Efficient signature scheme from Standard Lattices (TESLA) by Alkim et al. [4] is basi-

cally the signature scheme by Bai and Galbraith [5]. The difference of the schemes are the instantiation

of the parameters, the security reduction, the hardness assumption and the security property. Hence, we

only describe the difference to the signature scheme by Bai and Galbraith (see Chapter 6.5) and do not

recall the entire description of the signature scheme.

Table 6.8 provides an overview of the scheme, while Table 6.9 presents concrete values of the param-

eters for BG and TESLA. Further on, Table 6.9 contains the size of the signature, the signing key and the

verification key (in kilobit [kb]), as well as the indicated bit security.

Description of the signature scheme

Hardness Assumption: The security of the scheme is based on the ❉▲❲❊ problem (see Definition 5.5).

Security Property: The scheme is secure (see Definition 3.3).

Computation of the bit security

Theorem 6.4 ([4]). If ▲❲❊ is (tR,εR)-hard, the signature scheme TESLA is (tA, qh, qs,εA)- unforgeable

against adaptively chosen message attacks in the random oracle model where tR ≈ tA + O(qsκ
3) and

εR ≈ εA
�

1− qs(qs+qh)2
(d+1)·m

(2B+1)nqm−n

�

− qh2d·n(2B−2U+2)n

qm − (28σ+1)m·n+n2

qm·n .
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Table 6.8: BG and TESLA

Public Parameters
m, n, q,σ,ω,κ,σ, B, L ∈ N ; U ∈ R ; A ∈ Zm×n ;
Gaussian distribution D with standard deviation σ;
[·]2d : Z→ Z, [a]2d → x s.t. x ∈ (−2d−1, 2d−1] ⊂ Z and x ≡ a mod 2d ;
⌊·⌉d : Z→ Z, ⌊a⌉d → (a− [a]2d )/2d ;

F : {0, 1}κ→ {−1, 0, 1}k s.t. ‖F(v )‖1 = w and Pr[s1, s2

$← {0, 1}κ|(F(s1) = F(s2))]≤ c1
2κ ;

Signing Key: S← Dn×n
σ

and E← Dm×n
σ

Verification Key: T← AS+ E

Random Oracle: H : {0, 1}∗→ {0, 1}ξ

Signing Algorithm Verification Algorithm
Input: (µ,A,S,T) Input: (µ,z, c,A,T)

Output: (z, c) Output: {0, 1}
1: y

$← [−B, B]n 1: c← F(c)

2: v← Ay mod q 2: w′← Az− Tc mod q

3: c = H(⌊v⌉d ,µ) 3: c′ = H(⌊w⌉d ,µ)

4: c= F(c) 4: if c′ = c and

5: z= y+ Sc ‖z‖∞ ≤ B − U

6: w← v− Ec mod q then return 1

7: if |[wi]2d |> 2d−1 − L or 5: return 0

‖z‖∞ > B − U

then Restart
8: return (z, c)

Theorem 6.4 provides us

εR ≈ εA
�

1− qs(qs + qh)2
(d+1)·m

(2B + 1)nqm−n

�

− qh2d·n(2B − 2U + 2)n

qm
− (28σ+ 1)m·n+n2

qm·n , (27)

tR ≈ tA +O(qsκ
3). (28)

For the parameter values given in Table 6.9, the fractions in (27) are negligibly. This fact and the linear

factor in (28) provides us

εA ≈ εR, (29)

tA ≈ tR. (30)

Insertion (29) and (30) in (3) provides us

γ≈ ln(tR)− ln(εR)

ln(2)
(31)
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Table 6.9: Parameter selection of BG and TESLA

Parameter BG TESLA

κ 128 128

n 532 416

m 840 800

σ 43 114

α 428 1

k (14) −
L 2322 6042

ω 18 20

B 221 − 1 223 − 1

U 2554.1 7138

d 23 24

q 229 − 3 227 − 39

signature size [kb] ≈ 11.7 10.11

signing key size [kb] ≈ 7127 5407

verification key size [kb] ≈ 12615 8766

Bit Security 128 128

as the formula for the bit security.

Alkim et al. [4] indicate a bit security of 128 using the parameters given in Table 6.9. Hence, we assume

that the underlying problem has a bit hardness of κ= 128. Using assumption (4) provides us εR = 1 and

tR = 2128. Insertion in (31) finally yields

γ≈ ln(2128)− ln(1)

ln(2)
≈ 128. (32)

We see that the bit security and the indicated bit security are equal.

6.7 Signature scheme by Gentry, Peikert and Vaikuntanathan

The signature scheme (GPV) by Gentry et al. [12], in contrary to the other schemes, is based on trapdoor

functions.

Table 6.10 provides an overview of the scheme, while Table 6.11 provides concrete values of the param-

eters. Further on, Table 6.11 contains the corresponding size of the signature, the signing key and the

verification key (in kilobit [kb]), as well as the indicated bit security. The values of the parameters are

taken from the implementation by El Bansarkhani and Buchmann [6].

Throughout this section we define the function SampleD which gets a basis T of a lattice Λ, a real

number s and a vector t as input and outputs a vector v within Λ such that the distance between v and

t is small. For a matrix A ∈ Zn×m
q

we define the set Λ⊥(A) = {e ∈ Zm
q

: Ae ≡ 0 mod q} which contains

all vectors such that the product of the matrix and the vector is 0. Below we define the terms one-way

function and trapdoor function.
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A one-way-function is a function which can be efficiently computed but it is very difficult to compute

its inverse function.

Definition 6.5 Let D, R be two sets. A function f : D→ R is called a one-way-Function if for given x ∈ D

it is easy to compute y = f (x) and for given y ∈ R it is hard to compute x ∈ D s.t. f (x) = y .

A trapdoor function is a one-way-function which can be efficiently inverted by knowing a secret.

Definition 6.6 Let D, R be two sets, f : D→ R be a one-way-function and t be a secret. The function f is

called a trapdoor function if one, knowing t, is given y ∈ R and able compute x ∈ D s.t. f (x) = y .

Description of the signature scheme

Public Parameters: The integers n, m, q, the real number s, the sets Dn, Rn and the function SampleD.

Signing Key: The signing key consists of a good basis T of Λ⊥(A). A basis T is called good if the Gram-

Schmidt vectors of T are short.

Verification Key: The verification key consists of the n×m matrix A.

Key Generation Algorithm: Gentry et al. [12] describe how to create the key pair using a method by

Ajtai [3].

Signing Algorithm: To sign a message µ, the algorithm hashes µ yielding some point y within D. Af-

terwards, the algorithm chooses an arbitrary vector t such that Ay = t mod q and computes the

vector v← SampleD(T, s,−t). Finally, the algorithm returns the signature z← t+ v.

Verification Algorithm: The algorithm accepts, i.e. return 1, a given signature z of a message µ, if both

z ∈ Dn and the equality H(µ) = Az are satisfied. Otherwise, the signature is rejected, i.e. return 0.

Hardness Assumption: The security of the scheme is based on the ■❙■❙ problem (see Definition 5.3).

Security Property: The scheme is strongly unforgeable (see Definition. 3.4).

Computation of the bit security

Proposition 6.7 ([12]) The scheme described in Table 6.10 is strongly existentially unforgeable under a

chosen-message attack.

The proof of Proposition 6.7 provides us

εR ≈ εA − negl(n), (33)

tR ≈ tA. (34)

Because of the negligibly function in (33) we obtain

εA ≈ εR, (35)

tA ≈ tR. (36)
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Table 6.10: GPV

Public Parameters
n, m, q ∈ N ; s ∈ R ;
Dn = {e ∈ Zm : ‖e‖2 ≤ s

p
m} ;

Signing Key: T s.t. T is a good basis of Λ⊥(A)

Verification Key: A ∈ Zn×m
q

Random Oracle: H : {0, 1}∗→ Zn
q

Signing Algorithm Verification Algorithm
Input: (µ,T) Input: (µ,z,A)

Output: z Output: {0, 1}
1: y= H(µ) 1: if z ∈ Dn and

2: t← Zm s.t. At= y mod q H(µ) = Az

3: v← SampleD(T, s,−t) then return 1

4: return z← t+ v 2: return 0

Table 6.11: Parameter selection of GPV

Parameter GPV

n 512

m 16384

q 230

s ≈ 4292

signature size [kb] 235.2

signing key size [kb] 96512

verification key size [kb] 222720

Bit Security 108

Insertion (35) and (36) in (3) provides us

γ≈ ln(tR)− ln(εR)

ln(2)
(37)

as the formula for the bit security.

Gentry et al. [12] indicates a bit security of 128. We instantiate the parameters of the underlying

problem to obtain a bit hardness κ = 128. Using assumption (4) provides us εR = 1 and tR = 2128.

Insertion in (37) finally yields

γ≈ ln(2128)− ln(1)

ln(2)
≈ 128 (38)

We see that the bit security and the indicated bit security are equal.
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7 Comparison

Within this section we summarize the signature schemes described in Chapter 6 and compare these with

regard to security and the size of the signatures and the keys. For convenience Table 7.1 lists all the im-

portant information of the signature schemes. The size of the signing key, the verification key and the

signature are in kilobit [kb].

There are three schemes with a tight security reduction (AFLT,TESLA,GPV) and four schemes with a

non-tight security reduction (LYU12,BLISS,GLP,BG). When comparing the hardness assumption we see

that the schemes with a tight security reduction are based on the (❘-)❉▲❲❊ problem and the ■❙■❙ prob-

lem while the schemes with a non-tight security reduction are based on the (❘-)❙■❙ problem and the

❉❈❑ problem. Note that BG has a tight security reduction based on the ❉▲❲❊ problem which is not

mentioned in Table 7.1 as it has no effect to the bit security of the scheme, since the security reduction

based on the ❙■❙ problem is non-tight.

By comparing the bit hardness and bit security of each scheme, we see that only in case of the schemes

with a tight security reduction the bit hardness and bit security are equal. For all the other schemes the

bit security is merely half the bit hardness. As described in Chapter 4.2, this leads to lower provable secu-

rity as it opens the chance that breaking the scheme is easier than solving the problem.

By comparing the security properties, we see that all schemes are strongly unforgeable except for AFTL

and TESLA which are secure. As described in Chapter 3, this is more of theoretical interest and does not

lead to weaknesses in most real world applications.

For the efficiency comparison1 we first focus on the size of the signature. We see that BLISS, GLP,

BG and TESLA have signature sizes between 5kb and 11.7kb while LYU12 and GPV have signature sizes

of 71.29kb and 235.2kb respectively. These values make LYU12 and GPV much less efficient compared

to the other four schemes. By comparing the sizes of the keys we see that GPV has by far the biggest

keys while BLISS and GLP have the smallest keys. Even BG and TESLA, which have similar signature sizes

compared with BLISS and GLP, have key sizes which are more than factor 210 bigger than the keys of

BLISS and GLP. This resulted from the fact that BG and TESLA use standard lattices (see Definition 5.1)

while BLISS and GLP are based on ideal lattices (see Definition 5.6). By comparing the key sizes of LYU12,

BG and TESLA, we see that LYU12 and BG have keys with similar size. TESLA, however, has the smallest

keys of these schemes which makes it the most efficient scheme of these three, only outperformed by

BLISS and GLP.

It can be summarized that, at the moment, every signature scheme, described in this work, lacks ei-

ther a tight security reduction or efficiency. The most promising schemes, considering both security and

efficiency, are BLISS, GLP and TESLA.

1 Note that AFLT is not considered in this comparison because there are no values of the parameters given.
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8 Conclusion

During this work we showed that there are crucial differences considering the provable security of lattice-

based signature schemes due to the tightness of the security reduction. In case of the schemes with a

tight security reduction (AFLT [1], TESLA [4], GPV [12]), the bit security of the schemes and the bit hard-

ness of the underlying problem are equal. In case of the schemes with a non-tight security reduction

(LYU12 [16], BLISS [11], GLP [14], BG [10]), the bit security of the scheme is merely half the bit hardness of

the underlying problem. On the other hand, it turns out that the schemes with a tight security reduction

are significant less efficient compared to schemes like BLISS and GLP.

We also showed that schemes like LYU12 and BG form a good foundation of lattice-based signature

schemes. Based on this, the schemes BLISS and TESLA are constructed which are more efficient and

ensure higher bit security than LYU12 and BG. But even these schemes require further research and im-

provements for practical use.

Furthermore, the comparison of the schemes showed that all security reductions based on the (❘-)❙■❙

problem are non-tight while all security reductions based on the (❘-)❉▲❲❊ problem are tight.

Based on the fact that the most efficient signature schemes (BLISS and GLP) are based on ideal lattices,

a ring-TESLA variant can be a great improvement of lattice-based signature schemes. Also a tight security

reduction for BLISS and GLP is desirable to increase their provable security.
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A Appendix

Table A.1: All solutions for β = 29.05

v ‖v‖2 v ‖v‖2

( 23;− 2; 4; 1)T ≈ 23.45 (−23; 2;− 4;− 1)T ≈ 23.45

(−22; 5; 6; 1)T ≈ 23.37 ( 22;− 5;− 6;− 1)T ≈ 23.37

( 1; 3; 10; 2)T ≈ 10.68 (− 1;− 3;−10;− 2)T ≈ 10.68

( 5;− 7;−23; 2)T ≈ 24.64 (− 5; 7; 23;− 2)T ≈ 24.64

(− 7;−27; 6; 3)T ≈ 28.69 ( 7; 27;− 6;− 3)T ≈ 28.69

( 24; 1; 14; 3)T ≈ 27.96 (−24;− 1;−14;− 3)T ≈ 27.96

(−21; 8; 16; 3)T ≈ 27.75 ( 21;− 8;−16;− 3)T ≈ 27.75

(−17;− 2;−17; 3)T ≈ 24.31 ( 17; 2; 17;− 3)T ≈ 24.31

( 2; 6; 20; 4)T ≈ 21.35 (− 2;− 6;−20;− 4)T ≈ 21.35

( 6;− 4;−13; 4)T ≈ 15.39 (− 6; 4; 13;− 4)T ≈ 15.39

(−16; 1;− 7; 5)T ≈ 18.19 ( 16;− 1; 7;− 5)T ≈ 18.19

( 7;− 1;− 3; 6)T ≈ 9.75 (− 7; 1; 3;− 6)T ≈ 9.75

(−15; 4; 3; 7)T ≈ 17.29 ( 15;− 4;− 3;− 7)T ≈ 17.29

( 8; 2; 7; 8)T ≈ 13.45 (− 8;− 2;− 7;− 8)T ≈ 13.45

(−14; 7; 13; 9)T ≈ 22.25 ( 14;− 7;−13;− 9)T ≈ 22.25

(−10;− 3;−20; 9)T ≈ 24.29 ( 10; 3; 20;− 9)T ≈ 24.29

( 9; 5; 17; 10)T ≈ 22.25 (− 9;− 5;−17;−10)T ≈ 22.25

( 13;− 5;−16; 10)T ≈ 23.45 (−13; 5; 16;−10)T ≈ 23.45

(− 9; 0;−10; 11)T ≈ 17.38 ( 9; 0; 10;−11)T ≈ 17.38

( 14;− 2;− 6; 12)T ≈ 19.49 (−14; 2; 6;−12)T ≈ 19.49

(− 8; 3; 0; 13)T ≈ 15.56 ( 8;− 3; 0;−13)T ≈ 15.56

( 15; 1; 4; 14)T ≈ 20.93 (−15;− 1;− 4;−14)T ≈ 20.93

(− 7; 6; 10; 15)T ≈ 20.25 ( 7;− 6;−10;−15)T ≈ 20.25

(− 3;− 4;−23; 15)T ≈ 27.91 ( 3; 4; 23;−15)T ≈ 27.91

( 16; 4; 14; 16)T ≈ 26.91 (−16;− 4;−14;−16)T ≈ 26.91

(− 6; 9; 20; 17)T ≈ 28.39 ( 6;− 9;−20;−17)T ≈ 28.39

(− 2;− 1;−13; 17)T ≈ 21.52 ( 2; 1; 13;−17)T ≈ 21.52

(− 1; 2;− 3; 19)T ≈ 19.36 ( 1;− 2; 3;−19)T ≈ 19.36

( 0; 5; 7; 21)T ≈ 22.69 ( 0;− 5;− 7;−21)T ≈ 22.69

( 5;− 2;−16; 23)T ≈ 28.53 (− 5; 2; 16;−23)T ≈ 28.53

( 6; 1;− 6; 25)T ≈ 26.42 (− 6;− 1; 6;−25)T ≈ 26.42

( 7; 4; 4; 27)T ≈ 28.46 (− 7;− 4;− 4;−27)T ≈ 28.46
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Table A.2: Number of solution of the SIS problem for different value q using n= 2, m= 4

number of solutions

q A β with β without β percentage

211

�

14 46 −57 − 2

58 80 −30 1

�

29.05 64 44520 ≈ 0.144%

149

�

16 32 −54 10

40 17 −68 71

�

24.41 76 22200 ≈ 0.342%

113

�−26 8 18 −21

−53 −21 −41 −42

�

21.26 76 12768 ≈ 0.595%

79

�

1 33 −25 38

4 − 1 −26 29

�

17.78 80 6240 ≈ 1.282%

31

�−11 − 5 3 4

9 −15 12 −14

�

11.14 74 960 ≈ 7.708%

17

�

8 7 6 2

5 − 8 2 − 5

�

8.25 68 288 ≈ 23.611%
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