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Introduction

Commitment schemes are fundamental building blocks in constructions of many
cryptographic protocols. An intuitive description of a commitment can be illus-
trated using a lockable box. In a first phase, some (secret) information is commit-
ted to by putting it into a box, locking the box using its key, and giving it away.
As long as the box is locked, the information inside the box cannot be guessed
nor it can be modified. Later, the content of the box is revealed by opening the
box using the key, and extracting the information inside the box. Therefore, a
commitment scheme allows committing to some value, while keeping it secret and
unmodified. Following the abstract viewpoint of a lockable box, commitments hold
two fundamental properties called hiding and binding. The hiding property indi-
cates that the information inside the locked box cannot be guessed, whereas the
binding property indicates that the information cannot be modified. In addition
to hiding and binding, commitment schemes can provide more properties, such as
universal composability, non-malleability, or trapdoor property.

Commitments were introduced by Blum in [Blu82], who implicitly used them in
order to flip a coin by telephone. Commitments were also used implicitly in the
work of [SRA81] on mental poker, in order to generate a fair deal of cards between
two dishonest players without using any cards. Commitments have many other
applications and are used in various cryptographic protocols.

Since their introduction, many commitment schemes were suggested based on num-
ber theoretic problems. One example is the commitment scheme introduced in
[Blu82], which is based on the hardness of factoring large integers. Another ex-
ample is the scheme introduced in [Ped92], which is based on the hardness of
extracting discrete logarithms. Commitment schemes were also suggested using
more generic complexity assumptions. For example, the commitment scheme in-
troduced in [Nao91], can be implemented using any pseudorandom generator. An
additional example is the scheme introduced in [DPP98|, which employs any family
of collision resistant hash functions. Furthermore, there are commitment schemes



based on other computationally hard problems such as the schemes introduced in
[KTX08, XXW13], which are based on lattice problems, or the scheme introduced
in [JKPT12], which is based on the hardness of decoding random linear codes.

However, commitment schemes based on number theoretic problems will become
insecure as soon as large enough quantum computers are built. This is due to
Shor’s algorithm [Sho97|, which can be used to solve number theoretic problems
such as integer factorization and discrete logarithms in polynomial time on quantum
computers. Despite this fact, important classes of cryptography such as code-based
and lattice-based cryptography are believed to provide security even under quantum
attacks.

About This Thesis

In the first part of this thesis, we give a survey on post-quantum commitment
schemes, i.e., commitment schemes that run on conventional computers, and whose
security is believed to hold up against quantum computers. The survey includes
general constructions of commitment schemes that use generic cryptographic prim-
itives or other cryptographic protocols. Furthermore, the survey includes concrete
commitment schemes based on computational problems that are believed to remain
hard even under quantum attacks. As mentioned above, commitment schemes can
have more properties than hiding and binding. However, in this thesis we concen-
trate only on these two fundamental properties, since they are sufficient for many
applications including coin flipping and mental poker (see Subsection 1.1.1).

In the second part of this thesis, we compare the commitment schemes included in
the survey. The purpose of the comparison is to obtain commitment schemes that
are practical and efficient. More precisely, we first compare the general constructions
of commitment schemes, and the concrete commitment schemes among each other.
Afterwards, we compare the resulting candidates with each other to determine the

most efficient commitment schemes.

Organization

Chapter 1 gives a formal definition of commitment schemes and their fundamental
properties, and provides some applications. Additionally, Chapter 1 covers the
computational problems and cryptographic primitives required for the survey. The
first part of this thesis is covered by Chapter 2 and 3. Chapter 2 gives the survey on



general constructions of commitment schemes, while Chapter 3 includes the survey
on concrete commitment schemes. Chapter 4 covers the second part of this thesis,
which provides the comparison of commitment schemes given in Chapter 2 and 3.

Finally, a conclusion of this thesis is given in Chapter 5.
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Chapter 1

Preliminaries

This chapter covers the necessary mathematical and cryptographic background re-
quired throughout this work. We start by establishing some general notations. Then
we review the definition of commitment schemes with their fundamental security
properties, and view some applications. After that, we review the definition of gen-
eral and ideal lattices followed by lattice computational problems. Finally, we recall
the required cryptographic primitives.

Notations

We let N, Z, Q,R, C denote the set of natural numbers (with zero), integers, ratio-
nals, reals, and complex numbers, respectively. For a positive integer k, we let [k]
denote the set {1,2,...,k}. We denote vectors with bold lower-case letters (e.g., a),
which are assumed to be in column form. Furthermore, we denote matrices with
bold upper-case letters (e.g., A), and we write D™™ for the set of all n xm matrices
over a domain D. For two vectors x,y over some finite domain, we denote their
concatenation by x||y. For two bit strings x,y, we write x®y to denote the bitwise
exclusive-OR (XOR) operation on x,y.

For a positive integer n, we write Z, to denote the set Z/nZ. We write |-] for
rounding to the nearest integer. Furthermore, [-] and |-] means rounding up to the
next integer and rounding down, respectively. All logarithms appear in this work
are to base 2, i.e., logx =log, z, for all x > 0.

For a vector x with entries x; over some domain, the ¢, norm is defined as |x||, =
(3, ]|ziP)! /P for 1 < p < oo, and the o, norm is defined as x| = max;|z;|]. For two
vectors X,y over some domain, we let (x,y) denote the inner product of the vectors

X,y.



1. PRELIMINARIES

The term negligible describes any function f: N — R that decreases faster than
the reciprocal of any polynomial p, i.e., if there exists an ny € N such that for all
n > ng, it holds f(n) < ﬁ. With negl(n), we denote a negligible function f(n). A

probability is called overwhelming if it is 1 — ¢, where ¢ is some negligible function.

The statistical distance between two distributions X,Y over a countable domain
D is defined by the value A(X,Y) = ¥ ,p|prob[X = d] - prob[Y = d]|. Two
distributions X, Y indexed by a positive integer n are called statistically close if
their statistical distance is negligible in n.

For some distribution D over some finite set S, we write s < D to choose s from
S according to the distribution D, and we write s & S to choose s uniformly at

random from the set S.

The growth of functions f(n),g(n) is described with the standard asymptotic no-
tation: The notation f(n) € O(g(n)) means that the magnitude of f(n) is upper-
bounded by a positive constant times g(n), for all large n. The notation f(n) €
0(g(n)) means that the magnitude of f(n) is upper-bounded by every positive con-
stant times g(n), i.e., for all ¢ > 0, there exists an ngy such that |f(n)| < c-|g(n)|,
for all n > ng. The notation f(n) € Q(g(n)) stands for any function f(n), whose
magnitude is at least as large as a positive constant times g(n), for all large n.
The notation f(n) € ©(g(n)) means both f(n) € O(g(n)) and g(n) € O(f(n)), i.e.,
there exist positive constants ¢, ¢’ and ng such that ¢-g(n) < |f(n)| < ¢ - g(n), for
all n > ng. Finally f(n) e w(g(n)) means g(n) € o(f(n)).

For a positive integer n, we let poly(n) denote a polynomially bounded function
f(n) € O(n¢), for some constant ¢ > 1.

1.1 Commitment Schemes

This section gives the definition of commitment schemes, provides basic classifica-
tions of them, and describes their fundamental security properties. In addition, it

gives some applications of commitment schemes.

Commitment schemes are basic ingredients in the theory and practice of secure
cryptographic protocols. They were introduced by Blum in [Blu82] to solve the coin
flipping problem. Loosely speaking, a commitment scheme is a digital analogous
of a secure box. Namely, it is a method that allows a party called the prover to

commit to a secret by putting it into a secured box, and giving it to a party called

10



1.1. COMMITMENT SCHEMES

the verifier. In a later stage, the prover gives the key to the box to let the verifier
open the box and learn the secret.

Thus, a commitment scheme is an efficient two-phase protocol between a prover,
denoted by P, and a verifier, denoted by V. The first phase is called commit phase,
and the second phase is called decommit, reveal, or open phase. The protocol is first
initialized by generating some public parameters. Then in the commit phase, P
commit to a value, while keeping it secret. Later in the decommit phase, P chooses
to open the commitment to ¥, which verifies that the opening corresponds to only
a single value determined in the commit phase.

As long as the box is locked, V does not gain any knowledge of the secret until the
decommit phase. Thus, the protocol requires that V is not capable to distinguish
two commitments generated from two distinct values. This requirement has to be
satisfied even if V tries to cheat, and it is called hiding. Furthermore, since P gave
away the box, the secret cannot be changed after the commit phase, i.e., there exists
at most one value that ) can later (in the decommit phase) accept as a legal opening
of the commitment. This requirement has to be satisfied even if P tries to cheat,
and it is called binding.

In the following we give a formal definition of commitment schemes. We basically
follow [JKPT12].

Definition 1.1 (Commitment Scheme). A commitment scheme consists of three
polynomial-time algorithms (Setup,Com,Ver) such that

o Setup(1™): A setup algorithm Setup takes as input 17, for a security parameter
n, and outputs some public parameter pk as a public commitment key, i.e.,
pk <Setup(17).

o Com(pk,m): A commitment algorithm Com takes as input a public key pk,
and a message m. It outputs a commitment ¢, and a reveal value d, i.e.,

(¢, d) < Com(pk, m).

o Ver(pk,m,c,d): A verification algorithm Ver takes as input a public key pk, a

message m, a commitment ¢, and a reveal value d. It returns 1 or 0 to accept

or reject, respectively, i.e., b <Ver(pk,m,c,d), where b e {0,1}.

A commitment scheme must satisfy the following basic requirement.

- Perfect completeness: The verification algorithm Ver outputs 1 whenever

11



1. PRELIMINARIES

the inputs are computed honestly, i.e.,

prob [Ver(pk,m, c,d) = 1| pk < Setup(1™), (¢, d) < Com(pk,m)] =1.

Commitments come in two dual flavors: wunconditionally hiding but computationally
binding, and unconditionally binding but computationally hiding. A computationally
hiding (respectively, binding) commitment indicates that the hiding (respectively,
binding) property holds computationally, i.e., the verifier (respectively, prover) is
restricted to be probabilistic polynomial-time (PPT) with limited computing power
in order to break the hiding (respectively, binding) property. On the other hand,
an unconditionally hiding (respectively, binding) commitment indicates that the
hiding (respectively, binding) property holds information-theoretically, i.e., the ver-
ifier (respectively, prover) has unbounded computing power in order to break the
hiding (respectively, binding) property. The power which the prover or verifier has,
describes time and space complexity.

A commitment scheme cannot be unconditionally hiding and unconditionally bind-
ing simultaneously. If a commitment scheme is unconditionally hiding, then for a
commitment ¢ of a message m, where (¢, d) «<Com(pk, m;r) for some randomness r,
there must exist an ' such that ¢ = ¢/, where (¢’,d") «<Com(pk, m’;r"). Therefore,
with unlimited computing power, one can find this r’, and open the commitment
¢ to m’ instead of m. On the other hand, if a commitment scheme is uncondition-
ally binding, then it is almost impossible to find two distinct messages m,m’ such
that ¢ = ¢/, where (¢,d) <Com(pk,m;r), (c',d") <Com(pk,m’;r") for some r,7’.
Hence, there exists an almost unique r such that either (c¢,d) <Com(pk, m;r) or
(¢,d) «<Com(pk,m';r). Therefore, with unlimited computing power, one can find
this 7, and hence the message m. Thus, at least one of both prover and verifier

must be computationally bounded.

Remark 1.1. We stress that the unconditionally hiding or binding property holds
statistically or perfectly. In this work, we mention explicitly if the hiding or binding
property holds statistically or perfectly.

Hereafter, we give a formal definition of the binding and hiding property. We
basically follow [JKPT12] with some details from [DFS04].

Definition 1.2 (Binding Property). A commitment scheme (Setup,Com,Ver) is
statistically (respectively, computationally) binding if no (respectively, PPT) forger
P* can come up with a commitment and two different openings with noticeable (non-

obvious) probability, i.e., for every (respectively, PPT) forger P*, and every two

12



1.1. COMMITMENT SCHEMES

distinct messages m,m’ from the message space, there exists a negligible function
e(n) such that

prob [Ver(pk:,m, ¢,d) = Ver(pk,m',c,d") | pk < Setup(1™), (¢, m,d, m’,d") < P*(pk)]
where (¢, d) <Com(pk,m), (¢,d") «Com(pk,m’), and pk «<Setup(1").

The scheme is perfectly binding if the following is satisfied: With overwhelming
probability over the choice of the public key pk «<Setup(17”), it holds

(Ver(pk,m,c, d)=1 A Ver(pk,m',c,d") = 1) =m=m'.

Definition 1.3 (Hiding Property). A commitment scheme (Setup,Com,Ver) is
statistically (respectively, computationally) hiding if no (respectively, PPT) distin-
guisher V* is able to distinguish (pk, ¢) and (pk, ¢’), for two distinct messages m, m/,
with non-negligible advantage. This means, for every (respectively, PPT) distin-
guisher V*, and every two distinct messages m, m’ from the message space, there
exists a negligible function £(n) such that the statistical distance between (pk,c)
and (pk,c’) is e(n), i.e.,

A((pk,c), (pk,d)) <e(n),
where (¢, d) <Com(pk,m), (¢/,d") «<Com(pk,m'), and pk <Setup(1™).
The scheme is perfectly hiding if (pk,c) and (pk,c’) are equally distributed.

Remark 1.2. For the rest of this work, we use the term unconditionally hiding to
denote an unconditionally hiding but computationally binding commitment scheme.
Similarly, the term unconditionally binding indicates an unconditionally binding but

computationally hiding commitment scheme.

Commitment schemes can carry homomorphic properties, i.e., operations on com-
mitments to some values are reflected on the values themselves. An additively ho-
momorphic commitment scheme, for instance, holds the following property: From
commitments to m and m’ , the verifier can compute a commitment to m+m’, such

that if the prover opens this new commitment, the message m +m/’ will be revealed.

1.1.1 Applications

Commitments have various applications to cryptographic protocols. A simple ap-

plication of commitments are digital auctions, which exist in many variants. We

13
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1. PRELIMINARIES

consider a simple variant, in which items are sold to the highest bidder. In the so
called bidding phase, each bidder commits to a bid and sends the commitment to
the auctioneer. At the end of the bidding phase, the participants publicly reveal
their bids to the auctioneer, which announces the winner. The hiding property is
reflected by the fact that the actual bids should be kept secret until the bidding
phase is over. On the other hand, the binding property indicates that no bidder
should be able to change his bid after seeing a revealed competitor’s bid.

Another application of commitments is to solve the coin flipping problem over tele-
phone introduced in [Blu82]. A protocol for common coin flipping between two
parties A4 and B is constructed as follows.

1. A flips a secret coin ¢4, and commits to it.
2. B flips a coin ¢p, and publishes it.

3. A reveals ¢4, and cy @ cp is taken as the common coin that both A and B
trust to be random.

Commitment schemes can also be used as a building block in constructions of
zero-knowledge arguments and zero-knowledge proofs. A construction of a zero-
knowledge argument and a zero-knowledge proof based on commitments was shown
in [NOVY98, GMWO91], respectively. Zero-knowledge arguments and zero-knowledge
proofs were introduced in [BCC88, GMRS85], respectively. Roughly speaking, prov-
ing some fact in zero-knowledge is a method, which allows a prover to convince a
verifier that a certain fact is true, while not revealing any additional information.
In zero-knowledge arguments, the verifier can have unbounded computing power,
i.e., the security is information-theoretic. However, the prover is computationally
bounded, i.e., it can cheat in its proof and let the verifier accept a false statement
if some cryptographic assumption is broken during the execution of the protocol.
Therefore, zero-knowledge arguments require unconditionally hiding commitments.
In zero-knowledge proofs, the prover can have unbounded computing power. How-
ever, the proof itself is only computationally secure. Therefore, zero-knowledge
proofs require unconditionally binding commitments. For a formal definition of

zero-knowledge arguments and zero-knowledge proofs, we refer to [NOVY98, Gol01].

Many other applications of commitments exist including the work of [FO092] on
digital election schemes, the work of [SRA81] on mental poker, and the work of
[Eve83] on digital contract signing, in which two mutually suspicious parties wish to

digitally exchange signatures on a contract.

14



1.2. LATTICES AND CRYPTOGRAPHY

Remark 1.3. We stress that all applications described above require either uncon-
ditionally hiding or unconditionally binding commitment schemes. These schemes
are not required to hold additional properties.

1.2 Lattices and Cryptography

Lattices are a major source of hard problems that are believed to be secure even
under quantum attacks. Almost all post-quantum commitment schemes, which we
review in Chapter 3 are schemes whose security is based on lattice problems. There-
fore, we allocate this section to review the definition of lattices and the required lat-
tice computational problems. This section starts by introducing the mathematical
theory of general and ideal lattices, and then it defines the required computational
problems arising from lattices. We basically follow [Micll, MR09, Xagl0], with
some details from [GPV08, HPS08, LMO06, Piel2, LPR13].

1.2.1 Basic Definitions

A lattice is a discrete additive subgroup of the n-dimensional Euclidean space R™.
We can view a lattice as an orderly arrangement of points in R”, where we put a
point at the tip of each vector.

Definition 1.4 (Lattice). Let by, bs, ..., by € R™ be a set of linearly independent
vectors. The lattice L generated by the vectors by,... by is the set of all linear
combinations of by,..., b, with integer coefficients, i.e.,

k
[,(bl,...,bk) Z{lebl | .I'l'EZ}CRn .
i=1

The vectors by, ..., by are called a basis for the lattice £, and they can be given by
a matrix B = [by,...,b.] e R™*. Thus, we can write

L(B)={Bx |xeZ} cR".

Any set of k independent vectors from R” that generates the lattice £ is a basis
for L. Moreover, if U is a unimodular matrix, i.e., an integer square matrix with
determinant +1, then the bases B, BU generate the same lattice. The dimension of
L is the number of vectors in a basis for £. A lattice is called full dimensional or
full rank if n =k, i.e., if the lattice is n-dimensional in the Euclidean space R™. An

integer lattice is a lattice whose vectors have integer coordinates.

15



1. PRELIMINARIES

Definition 1.5 (Dual Lattice). Let £ be a k-dimensional lattice in R*. The dual
of £, denoted by LV, is the lattice given by the set of all vectors w € R” satisfying
(v,w) € Z for all vectors v e L, i.e.,

EV:{WER”HV,W)EZ,VVEE}.

For any matrix B € R™* it holds £(B)¥ = L((B~1)T).

Definition 1.6 (Fundamental Parallelepiped). Let £ be a k-dimensional lattice
in R?, and B = [by,...,bg] a basis for £L. The fundamental parallelepiped for L
corresponding to the basis B is the set

F(B) ={arby+...+ayby [ 0<ai <1, ¥ie[k]} = B[0,1)".

Example 1.1. We illustrate in Figure 1.1 a full rank lattice in R2. The gray area
displays a fundamental parallelepiped in dimension 2, which is spanned by the basis

vectors by, bs.

Figure 1.1: A full rank lattice in R?, and its fundamental parallelepiped.

Definition 1.7 (Determinant). Let £ be a k-dimensional lattice in R”, and B a
basis for £. Furthermore, let F be a fundamental parallelepiped for £ corresponding
to B. The determinant of L, denoted by det(L), is the k-dimensional volume vol (F)

of F, ie., det(L) = vol(F) = +/det(BT - B).

Definition 1.8 (Successive Minima). Let £ be a k-dimensional lattice in R”. For
all i € [k], the i-th successive minimum of L, measured in some norm ¢, (p > 1), and
denoted by AP(L), is the radius r > 0 of the smallest ball B={xeR" | |x|, <7} in

R™ centered at the origin, which contains ¢ linearly independent vectors of L.

16



1.2. LATTICES AND CRYPTOGRAPHY

As a special case, the first minimum A(L£) is the length of the shortest non-zero
lattice vector, i.e.,

p _ .
A(£) = min v, .

The shortest non-zero lattice vector A/(L) is equal to the minimum distance A\P(L)
between any two distinct lattice points, i.e.,

(L) = (L) =min{|x-y|, | x,yeL,x#y} .

Example 1.2. We consider the integer lattice £ = Z3 with basis vectors by =
(2,0,0),bs =(0,2,0), and bz = (1,1,1). We determine the successive minima of Z3

measured in /., and ¢; norm.

- In /., norm: Since the basis vectors by, by, and bs are integer vectors, the
smallest possible ball has radius r = 1. We can achieve norm 1 by the vectors

bs,b; — bs, and by — bz, which are linearly independent. Thus, the successive
minima of Z? in {, norm are A\{°(Z3) = \3?(Z3) = A\ (Z?) = 1.

- In ¢; norm: The basis vectors are integer vectors so that the smallest possible
value in ¢; norm is 1. We can easily verify that non of the vectors with
norm 1 is in the given lattice. The next smallest possible value in ¢; norm
is 2. We can achieve norm 2 by the vectors by, by, and by + by — 2bs, which
are linearly independent. Thus, the successive minima of Z3 in ¢; norm are

A(Z?) = M(ZP) = M(Z9) = 2.

Random lattices

A g-ary lattice is a lattice L that satisfies gZ" ¢ £ € Z", for some (prime) integer g.
The most common two m-dimensional g-ary lattices used in lattice cryptography
are denoted by A,(A),Ay(A), for a given matrix A € Zp*™, where n is considered
as the main security parameter, m is typically a multiple of n, and ¢ is prime. The
lattices A;(A), AY(A) are defined as follows.

AJ(A) = {x €eZ™ : x=ATs (mod q), for some s ¢ Z”}, (1.1)
AJ(A) = {xeZ™ : Ax=0 (modq)}. (1.2)

The lattice A;(A) is generated by the rows of the matrix A modulo ¢, while the
lattice Ay(A) contains all vectors that are orthogonal modulo ¢ to the rows of A.
Both lattices are dual to each other, up to a scaling factor ¢. A random lattice is

obtained by picking the matrix A € Z*™ uniformly at random.

17



1. PRELIMINARIES

Gaussian measures

For any s > 0, the Gaussian function on R" centered at c € R" is defined as follows.
ps.c(x) = exp(-7|x —c|7/s?), for all x e R™ .
The standard deviation is given by o = s/\/27.

The discrete Gaussian distribution over an n-dimensional lattice £ is defined as fol-

lows.
Ps,C(X)

PS,C(£)7
The subscript c is taken to be 0 when omitted.

Dpse(x) = forall xe L .

The normal distribution with mean 0 and standard deviation o is the distribution
on R” having density function

1
o2

-exp(—[x|2/207), for all x e R" .

Ideal lattices

Ideal lattices are lattices with a certain algebraic structure that leads to efficient
and practical cryptographic constructions with compact description such as collision
resistant hash functions.

We recall that an ideal of a ring A (with unity) is an additive subgroup that is
closed under multiplication by elements of A. For a ring element a € A, we define
(a) to be the set of all multiples of a, ie., (a) = {az : z € A}. We note that
(a) is an ideal of A, and it is called principal ideal. We consider the polynomial
ring Z[z] in a variable z, and define R = Z[x]/(f(z)) to be the polynomial factor
ring for a polynomial f(x) € Z[x] of degree n, i.e., the elements of R are residue
classes of polynomials of degree less than n with integer coefficients. Each element
g(x) =apg+arx+...+a, 12" € R corresponds to an n-dimensional integer vector
(ag,ai,...,an1)" € Z™ by using the bijection R — Z". By writing g, we mean
both representations simultaneously. Therefore, the ideal (g) € R corresponds to
a lattice in Z", and it is called ideal lattice. If the polynomial f(z) is monic and
irreducible, then the ideal (g) corresponds to a full rank lattice in Z".

For any polynomial g € Z[z], the norm of g with respect to the modulus f is
defined as |g| s = |g mod f|c. However, when reducing a polynomial g modulo f,

the maximum coefficient of g can increase, and hence the norm | g| s could be much
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1.2. LATTICES AND CRYPTOGRAPHY

greater than | ¢|e. Thus, the polynomial f must have a property that prevents such
an exponential growth of coefficients. This property is called the expansion factor
of f, and it is defined as follows.

EF(f,k) = lgl/lglee - (1.3)

Example 1.3. We can easily verify that the expansion factor of the polynomial
™ + 1 is given by the bound EF (2" + 1,k) < k.

max
geZ[x],deg(g)<k(deg(f)-1)

We let m be a positive integer, and ( € C a primitive m-th root of unity, i.e., ("™ =1,
and (¥ # 1 for all k € [m —1]. The m-th cyclotomic polynomial is defined as
®(2) = ] (0=
ieZs,

The values (* run over all the primitive m-th roots of unity in C. Thus, the poly-
nomial ®,,(x) has degree n = p(m), where () is Euler’s totient function. In
addition, the polynomial ®,,(x) is monic and irreducible. Furthermore, it holds
®,,(x) € Z[z]. In particular, ®,,(x) is the minimal polynomial of (, i.e., ®,,(z) is
the unique monic irreducible polynomial from Q[z] of minimal degree having ( as
a root.

We consider the ring R = Z[x]/(®,,(z)), and the quotient ring R, = R/qR, for some
prime integer ¢q. As described above, a polynomial g(z) = ag+a1z+. . .+a,12" 1 € R,
can be represented as a vector (ag,aq,...,a,1)7 € Zy. We consider the values a;
that the polynomial g(z) assigns on all primitive m-th roots of unity modulo ¢, i.e.,
a; = g(¢") mod g, for all 7 € Z;,. The vector (Go,ay,...,G,-1)" € Z2 is called the
unique chinese remainder representation (or CRT representation) of the polynomial
g(z) in R,. Addition and multiplication in R, can be performed coordinate-wise

using the CRT representation.

1.2.2 Lattice Problems

The fact that the successive minima of a lattice cannot be efficiently computed,
gives raise to well known hard computational problems on lattices. The best known
polynomial-time approximation algorithms to solve any lattice problem only achieve
approximation factors almost exponential in the dimension n of the lattice. In the
following we consider only the lattice computational problems that are related to

this work.

Definition 1.9 (Shortest Vector Problem (SVP)). An input to SVP? is a basis B
of a lattice £. The goal is to find a shortest non-zero vector in £, measured in ¢,

norm, i.e., to output a lattice vector v # 0 such that ||v|, = \?(L).
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Remark 1.4. There may be more than one shortest non-zero vector in a lattice,
i.e., SVP may not have a unique solution. For example, in the integer lattice Z2,
the vectors (0,+1) and (£1,0) are all solutions to SVP!, SVP2, and SVP>.

Definition 1.10 (Gap Version of SVP (GapSVP)). For a gap function «y = poly(n),
an instance of GapSVPY is a pair (B,d), where B is a basis of a lattice £, and
d € Q. In YES instance there exists a non-zero vector v € £ such that |v||, <d, i.e.,

N(L) <d. In NO instance it holds |v|, > vd, for any non-zero vector v € L, i.e.,
N(L) > ~d.

The GapSVP is the decision version of the shortest vector problem (SVP).

Definition 1.11 (Shortest Independent Vectors Problem (SIVP)). An input to
SIVPY is a basis B of an n-dimensional lattice £. The goal is to find n linearly
independent lattice vectors vy, va,...,v, € £ such that max;c, |vil, <7 - A\ (L),

where 7 = poly(n) is an approximation factor.

The case v =1 in the above definition corresponds to solving the problem exactly,
i.e., finding n linearly independent lattice vectors such that max<;c, |vi|, is as small

as possible.

Definition 1.12 (Small Integer Solution (SIS) Problem). An input to SIS} ;is a
matrix A € Zp*™, where q,m,n are fixed positive integers, and 3 is a positive real.

The goal is to find a non-zero integer vector x € Z™ such that

Ax=0 (modg), and |[x],</5.

The SIS?

q,m,p
in Equation 1.2, where given a uniform matrix A € Z7*™, the goal is to find a

problem is indeed a lattice problem for the g-ary lattice Ay (A) defined

non-zero lattice vector x € AY(A) such that x|, < 3.

There are several reductions from the worst case of lattice problems to the av-
erage case of SIS} ., for some polynomially-bounded functions m = poly(n),q =
poly(n), B = poly(n), and v = poly(n). For instance, the work of [MRO7] shows a
probabilistic polynomial-time reduction from GapSVP?2 in the worst case to SIS;m’ 8
on the average case. The most recent work was shown in [MP13]. This work gives
a probabilistic polynomial-time reduction from solving SIVPY in the worst case to
solving SIS]  ; on average.

Definition 1.13 (Ring Variant of SIS (Ring-SIS)). An input to Ring-SIS”

q,m,f3
where g,m,n are fixed positive integers, R = Z[z]/(f(x))

is a

tuple [ay,...,an] € R,
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for a monic polynomial f € Z[x] of degree n, R, = R/qR, and [ is a positive real.
The goal is to find a non-zero vector x = [x1,...,2,,] € R™ such that

Y a;z;=0 (modg), and |[x],<f.
i=1

Given that the polynomial f is irreducible, the work of [LMO06] gives a polynomial-
time reduction from the worst case of SVP on ideal lattices in R to the average

(oo}
q,m,B’

case of Ring-SIS for some bounded m,q, 3, .

Definition 1.14 (Learning With Errors (LWE) Problem). Let n,q = poly(n) > 2
be positive integers, s € Z7 a vector, and x an error distribution over Z,. Define

the distribution As, obtained by choosing a vector a & Zy, a noise e < x, and
outputting the pair (a,(a,s) +e). The decisional LWE, , problem is to distinguish
(with non-negligible probability) ¢ = poly(n) independent samples chosen according

to the distribution As, from ¢ samples chosen according to the uniform distribution

over 2y x 74, where s & Zy. The search LWE, , problem is to find the secret s given

¢ independent samples from As ,,.

The decisional LWE, , problem is indeed a lattice problem for the g-ary lattice
defined in Equation 1.1, where given a uniform matrix A € Z;»", and a vector
x € 27, the goal is to distinguish between the case that x is chosen uniformly from
Z7, and the case in which x is chosen by perturbing each coordinate of a random
point in the lattice A,(AT) using the error distribution x.

The LWE problem was introduced in [Reg09]. This work shows a reduction from
the worst case of LWE,, to the average case of LWE,,. Moreover, the work of
[Reg09] gives a search to decision reduction, and shows that for certain moduli
q, and Gaussian error distributions x, LWE, is as hard as solving SIVP2 and
GapSVP? in the worst case, for some bounded approximation factor .

Definition 1.15 (Ring Variant of LWE (RLWE)). Let R = Z[x]/(®,,(x)) be the
cyclotomic polynomial ring for m a power of 2, and R, = R/qR be the quotient
ring for a prime integer ¢ = poly(n) > 2 such that ¢ =1 mod m. For an element
s € R, and an error distribution x over R, define the distribution A, , obtained by
choosing an element a & R,, an error term e < x, and outputting the pair (a, a-s+e).
The decisional RLWE, , problem is to distinguish (with non-negligible probability)
¢ = poly(n) independent samples chosen according to the distribution A, from ¢
samples chosen according to the uniform distribution over R, x R,, where s & R,.
The search RLWE, , problem is to find the secret s given ¢ independent samples
from the distribution A, ,.
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The RLWE problem was introduced in [LPR13]. This work shows that the decisional
RLWE problem is as hard as the search problem. The work of [LPR13] also gives
a polynomial-time reduction from the worst case of SIVP2 on ideal lattices in R to

the search RLWE, , problem, for some bounded approximation factor .

Definition 1.16 (Learning Parity with Noise (LPN) Problem). For a positive in-
teger n, and 0 < 7 < 1/2. The search LPN,, . problem asks to find a fixed uniformly
random n-bit string s from ¢ = poly(n) samples of the form (a, (a, s)@e), where a is a
uniformly random n-bit string, and e € {0, 1} has Bernoulli distribution (Ber,) with
parameter 7, i.e., proble =1 ; e < Ber;| = 7. The decisional LPN,, ; problem asks
to distinguish (with non-negligible probability) ¢ noisy inner products (a, (a,s)@e¢)

from ¢ samples chosen according to the uniform distribution over {0,1}" x {0,1}.

The LPN problem is a fundamental problem in learning theory. It is equivalent
to the problem of decoding random linear codes, which is one of the most impor-
tant problems in coding theory. However, LPN problem is closely related to LWE
problem. More precisely, LWE is a generalization of LPN to larger moduli.

1.3 Cryptographic Primitives

This section gives the definition of the fundamental cryptographic primitives re-
quired in this work. Namely, we recall the definition of one-way functions, one-
way permutations, pseudorandom generators, collision resistant hash functions,
public-key cryptosystems, and finally digital signature schemes. We basically follow
[Gol01, KLO7].

We start by one-way functions, which are the most basic primitive for cryptographic
applications. Their existence is considered as the minimal complexity assumption,
and a necessary condition to the existence of most known cryptographic primitives.
Roughly speaking, a one-way function (OWF) f is a function that is easy to evaluate,
but hard to invert, i.e., on input z, its output y = f(x) can be computed efficiently.
On the other hand, it is hard to find an inverse of y under f. A formal definition
follows.

Definition 1.17 (One-Way Function (OWF)). A function f: {0,1}" — {0,1}"
is called one-way if the following two conditions are satisfied.

1. f is easy to compute: There exists a deterministic polynomial-time algo-
rithm & such that on input x, algorithm & outputs f(x), i.e., f(x) < £(x).

22



1.3. CRYPTOGRAPHIC PRIMITIVES

2. f is hard to invert: For every probabilistic polynomial-time algorithm A, it
holds

prob [A(1", f(x)) € f~'(f(x))] < negl(n),

where the probability is taken over the uniformly random choice of x from
{0,1}", and all possible internal coin tosses of A.

A function f is length-preserving if the length of any image f(x) is equal to the
length of its preimage x, i.e., if |f(x)| = |x| for all x. A one-way permutation is
a one-way function that is length-preserving and one-to-one. A formal definition
follows.

Definition 1.18 (One-Way Permutation (OWP)). Let f: {0,1}" — {0,1}" be
a one-way function that is length-preserving, and let f,, be the restriction of f to
the domain {0,1}". The function f is called one-way permutation if for every n, the
function f,, is a bijection.

Next we move to pseudorandomness, which is a computational relaxation of true
randomness. Loosely speaking, a pseudorandom generator G is a deterministic al-
gorithm that expands short random seeds into much longer bit sequences that look
like a uniformly distributed string, i.e., although the output of GG is not really ran-
dom, it is computationally indistinguishable from truly random sequences. Thus,
the security of a pseudorandom generator requires that every polynomial-time dis-
tinguisher D outputs the bit 1 with almost the same probability when given a truly
random string, and when given a pseudorandom one. This output bit indicates the
decision of D, i.e., it outputs 1 for a pseudorandom string, and 0 for a truly random
string. The advantage of D is the absolute value of the difference of the probabilities
that the decision of D is correct given a pseudorandom string, and incorrect given
a truly random string. A formal definition follows.

Definition 1.19 (Pseudorandom Generator (PRG)). Let G : {0,1}" — {0,1}",
for n € N, and ¢ = poly(n), be a deterministic polynomial-time computable function.

The function G is called pseudorandom generator if the following two conditions
hold.

1. Expansion: For every n, it holds that ¢ > n. The function ¢ is called the
expansion factor of G.

2. Pseudorandomness: For every polynomial-time distinguisher D, it holds

| prob[D(1", G(x)) = 1] - prob[D(1",y) = 1]| < negl(n),
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where the probabilities are taken over the uniformly random choice of the
seed x from {0,1}", the uniformly random choice of y from {0, 1}4, and the
random coins used by D.

We proceed to hash functions and collision resistance. In general, a family of hash
functions simply takes strings of arbitrary length, and compresses them into shorter
strings of some fixed length. Consequently, there must exist two distinct values x, 2’
that collide under the functions of the family, i.e., H(z) = H(x'), for any function
H from the family. A family of hash functions consists of two polynomial-time
algorithms denoted by KGen and Hash. The first algorithm determines a function
from the family. The second algorithm is deterministic and computes the hash
value of its input. A family of hash functions is collision resistant if it is infeasible
for any probabilistic polynomial-time algorithm to find a collision in any function
H from the family, i.e., to find a pair of distinct domain elements z,x’, for which
H(z)=H(z"). A formal definition follows.

Definition 1.20 (Collision Resistant Hash Functions). A family of hash functions
H = (KGen(1"), H) from {0,1}" to {0,1}" with security parameter n € N is called
collision resistant if for every probabilistic polynomial-time algorithm A it holds

k< KGen(1");  x#x'A

pl"Ob (X,X’) - A(k;) ) Hk(X) = Hk(xl)

<negl(n),
where the probability is taken over the choice of k «KGen(1"), and the internal
coin tosses of the algorithm A.

Next we recall the definition of public-key encryption. Public-key (or asymmetric)
encryption allows a party A to generate a pair of keys (pk, sk), called the public key
and the private or (secret) key, respectively. The public key pk is used by a party
B to encrypt messages for A. The party A uses the private key sk to decrypt the
resulting ciphertexts, and to obtain the messages. The party B can also generate a
key pair. This allows A to encrypt messages for B as well. Thus, both parties A, B
can communicate secretly even if all communications between them are monitored.

A formal definition follows.

Definition 1.21 (Public-Key Encryption Scheme). A public-key encryption scheme
is a triple of probabilistic polynomial-time algorithms (KGen,Enc,Dec) such that

o KGen(1"): A key generation algorithm KGen takes as input 17, for a security
parameter n. It outputs a pair of keys (pk,sk), i.e., (pk,sk) <KGen(1"),
where pk refers to the public key, and sk to the private or (secret) key.
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o Enc(1",pk,m): An encryption algorithm Enc takes as input 17, a public key

pk, and a message m from some underlying plaintext space M. It outputs a
ciphertext ¢, i.e., ¢ «<Enc(1", pk,m).

o Dec(17,sk,c): A decryption algorithm Dec takes as input 17, a private key sk,
and a ciphertext c. It outputs a message m or a special symbol 1 denoting
failure, i.e., m <Dec(1", sk, c) or L «Dec(17, sk, c).

A public-key encryption scheme must satisfy the following basic requirement.

- For all n e N, all (pk, sk) «<KGen(1"), every m € M, and all ¢ «<Enc(1", pk, m),
it holds
prob[Dec(1", sk, c) # m] < negl(n) .

In words, the decryption algorithm Dec always outputs correctly encrypted
messages, except with possibly negligible probability.

We conclude with digital signatures. Digital signature schemes allow a signer S
to digitally sign a message in such a way that any other party can verify that the
message originated from S, and has not been modified in any way. Thus, digital
signature schemes establish the integrity, authenticity, and non-repudiability of the
message to be signed. Like public-key cryptosystems, a digital signature scheme
requires a key pair (pk, sk), where sk is private and used for signing messages, and
pk is public and used for verifying the signed messages. A formal definition follows.

Definition 1.22 (Digital Signature Scheme). A digital signature scheme is a triple
of probabilistic polynomial-time algorithms (KGen,Sig,Ver) such that

o KGen(1"): A key generation algorithm KGen takes as input 17, for a security
parameter n. It outputs a pair of keys (pk,sk), i.e., (pk,sk) «<KGen(1"),
where pk refers to the public key, and sk to the private or (secret) key.

o Sig(1m,sk,m): A signature algorithm Sig takes as input 17, a private key

sk, and a message m from some underlying message space M. It outputs a
signature s, i.e., s «<Sig(1", sk, m).

o Ver(1",pk,s): A deterministic verification algorithm Ver takes as input 17, a
public key pk, and a signature s. It outputs a bit b, where b =1 means valid,
and b = 0 means invalid, i.e., b <Dec(1", pk, s), where b€ {0,1}.

A digital signature scheme must satisfy the following basic requirement.
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- For all n e N, all (pk, sk) <KGen(1"), every m € M, and all s «<Sig(1", sk, m),
it holds
prob[Ver(1",pk,s) =1]=1.

In words, the verification algorithm Ver always validates correctly signed mes-

sages.
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Chapter 2

Commitment Schemes from
General Constructions

In this chapter we provide a survey on general constructions of commitment schemes
that use various cryptographic primitives and protocols. Such a general construc-
tion is a framework that employs cryptographic primitives or protocols to obtain
a commitment scheme. In particular, we can obtain commitment schemes secure
even against quantum computers by plugging cryptographic primitives or protocols

secure under quantum attacks into the corresponding framework.

The works we consider in this survey are constructions of unconditionally hiding or
unconditionally binding commitment schemes. In the introduction of this work, we
pointed out that there are commitment schemes with additional properties, which
we do not consider. We argued that the hiding and binding property are sufficient
for many applications including those given in Subsection 1.1.1, which use either
unconditionally hiding or unconditionally binding commitments.

The additional properties of commitment schemes we do not consider include for
example the trapdoor property defined in [BCC88, DC03|, which allows the prover
to overcome the binding property and to open a commitment ambiguously. An-
other example is non-malleability defined in [DDNO3], which prevents anyone from
constructing a valid commitment to a related secret from a commitment of another
person’s secret. In particular, we are not concerned about commitment schemes
with the universal composability property defined in [CF01], which guarantees that
the commitment schemes remain secure even if they are composed with arbitrary
protocols and polynomially many copies of the schemes are run concurrently. More-

over, we do not consider commitment schemes under the common reference string
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model, where the prover and the verifier have access to a common string taken from
a predetermined distribution during the commit phase.

In Figure 2.1 we give an overview of the constructions of commitment schemes con-
sidered in this survey in form of a tree. The leafs of the tree include the subsections
where the constructions are reviewed followed by the respective original papers
in which the constructions appeared. The parent nodes of the leafs include the
respective cryptographic primitives or protocols, which the constructions employ.
The cryptographic primitives are one-way function (OWF), one-way permutation
(OWP), collision resistant hash function (CRHF), and public-key encryption (PKE).
The cryptographic protocols are ¥-protocol and private information retrieval (PIR)
protocol. The two roots represent the resulting schemes, where UHC and UBC stand
for unconditionally hiding commitments and unconditionally binding commitments,

respectively.

Y-Protocol PIR Protocol

2.3.4
[IKOO05]

212
[HNO*09]| | |[NOVY9S]
2.2.3
| [TPYO0S]
2.3.3
| [DPPYS]

Figure 2.1: Overview of general constructions of commitment schemes.

Section 2.1 reviews the constructions of commitment schemes that use OWFs. Sec-
tion 2.2 reviews the constructions that use OWPs. Section 2.3 includes those con-
structions that employ CRHFSs, while Section 2.4 includes a construction that uses
PKE. Finally, the constructions that use »-protocols and PIR protocols are given

in Section 2.5.



2.1. COMMITMENTS FROM ONE-WAY FUNCTIONS

2.1 Commitments from One-Way Functions

This section includes general constructions of commitment schemes proposed in

[Nao91, HNO*09]. These constructions assume the existence of one-way functions.

2.1.1 Statistically Binding from [Nao91]

Next we review two constructions of statistically binding commitment schemes pre-
sented in [Nao91], one commits to single bits, and the other to bit strings. Both
schemes are interactive with two rounds, and assume the existence of pseudorandom
generators (PRGs), which exist if and only if one-way functions (OWEFs) exist. This
relation between OWFs and PRGs was shown in [HILL99]. We start by reviewing
the bit commitment scheme and then the bit string commitment scheme.

We set n as the security parameter for both schemes. The security parameter
guarantees the security of the used PRG for seeds of length n.

I. Bit commitment protocol

o Setup(1™): The setup algorithm chooses any pseudorandom genera-
tor G that stretches a random seed with length n to 3n bits, i.e.,
G: {0,1}" — {0,1}*".

« Com(G,b): The algorithm Com works as follows.
Commit phase: To commit to a bit b € {0,1}, the prover P and the

verifier V act as follows.

1. V selects a random bit string r of length 3n and sends it to P.

2. After receiving r, P selects a random seed x € {0,1}" and returns
the commitment string ¢ to V, where

G(x) ifb=0
G(x)eor ifb=1.

Reveal phase: To open the commitment, P sends b and x to V.

o Ver(G,r,c,b,x): V verifies that the values b,x and r match the previ-

ously given commitment.
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We provide a simple illustration of the protocol flow in Figure 2.2.

Prover P Verifier V

Commit to be {0,1}
Commit phase:

r<{0,1}°"

x < {0,1}"
G(x), ifb=0 ¢
Gx)eor, ifb=1

Y

Reveal phase:

. [Gx), ifb=0
C =
Gx)er, ifb=1

Figure 2.2: Statistically binding bit commitment protocol from [Nao91].

The computationally hiding property follows from the pseudorandomness of G, i.e.,
the verifier V cannot distinguish between both cases b = 0 and b = 1 significantly,
since the output of G is pseudorandom. On the other hand, valid openings for
both cases b = 0 and b =1 with random seeds x; and x;, respectively, require that
G(xo) = G(x1) ®r. Since the set {G(x0) ® G(x1) | X0, %1 € {0,1}"} has at most 22"
elements, the probability that a random r € {0, 1}3n hits this set is at most gi—: =2,
It follows the statistically binding property.

II. Commitment protocol for bit strings

In this protocol, the prover P commits to an ¢-bit string b, where £ is at least linear
in n. The protocol utilizes some error-correcting code with a large distance between
code words. Essentially, error-correcting codes enable reliable delivery of messages
over a noisy communication channel. This is accomplished by mapping messages
to longer strings, which contain redundant elements that enable reconstruction of
some corrupted bits. However, using an error-correcting code in the bit string

commitment scheme proposed in [Nao91] prevents P from altering any bit from b.
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According to [Nao91], a constructive example of error-correcting codes is given in
[Jus72].

The protocol sets C c {0,1} to be a code of 2¢ words such that the Hamming
distance between any two words is at least eq, where € > 0, ¢log(2/(2-¢)) > 3n,
2¢ € O(n), and g/ is a fixed constant. Furthermore, the protocol sets E : {0,1}" —
{0,1}? to be any efficiently computable function for mapping words in {0, 1}Z to C.

We write B;(x) to denote the i-th bit of the pseudorandom output G(x) on seed
x. Moreover, for a k-bit string r, where exactly ¢ bits from r are 1, we let G(x)
denote the string (y1,...,¥q), Where y; = Bj(;)(x), and j(¢) is the index of the i-th

linr.

e a

« Setup(1?): The algorithm chooses any PRG, G : {0,1}" — {0,1}*",
and any efficiently computable function E: {0,1}* — {0,1}%.

« Com(G, E,b): The algorithm Com works as follows.
Commit phase: To commit to a bit string b € {0, 1}57 the prover P

and the verifier V act as follows.

1. V sclects a random bit string r € {0,1}*?, where exactly ¢ bits from
r are 1, and sends it to P.

2. After receiving r, P computes E(b), selects a random seed x €
{0,1}", computes z = E(b) ® G.(x), and returns the commitment
c € {0, 1}2q to V, where c is the string z along with the bits B;(x),
for each 1 <4 < 2q such that r; = 0.

Reveal phase: To open the commitment, P sends b and x to V.

e Ver(G,E,r,c,b,x): V verifies that for all 1 < < 2¢ such that r; =0, P
had sent the correct B;(x), and verifies that E(b) & G,(x) = z.

We illustrate the protocol flow in Figure 2.3.

The following theorem shown in [Nao91] establishes the security of the protocol.

Theorem 2.1. Let G be a pseudorandom generator with a (large enough) security
parameter n. Then the above bit string commitment protocol satisfies the following.

e For any two bit strings b, b’ the verifier V selects, it cannot decide (in polynomial-
time) with non-negligible probability to which bit string the prover P has com-

mitted. Thus, the protocol is computationally hiding.
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Prover P Verifier V

Commit to b e {0,1}

Commit phase:

r < {0,1)%
exactly ¢ bits are 1
r
x < {0,1}"
z=E(b) & G.(x) c
c = (z, Bi(x)), >
Vie[2q] : r;=0
Reveal phase:
b, x

z < E(b) ® Ge(x)
Vie[2q] : r;=0,
B;(x) are correct ?

Figure 2.3: Statistically binding bit string commitment protocol from [Nao91].

e P can open only one possible bit string, except with probability less than 27".
Thus, the protocol is statistically binding.

e For {>n, the communication cost is O({).

2.1.2 Statistically Hiding from [HNO"09]

We review below the construction introduced in [HNO*09], which provides an in-
teractive statistically hiding bit commitment scheme. The scheme employs a vari-
ant of commitment schemes called two-phase commitment schemes introduced in
[NV06], and a family of functions called universal one-way hash functions introduced
in [NY89]. The two-phase commitment scheme is constructed using any OWF. This
commitment scheme is then used together with a family of universal one-way hash
functions to construct the desired statistically hiding commitment scheme. The
existence of universal one-way hash functions is also implied by the existence of
OWFs as shown in [Rom90, KKO05]. Hence, the entire construction is based on the
existence of OWFs.
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First we recall the definition of two-phase commitment schemes. Roughly speaking,
a two-phase commitment scheme is an alternate variant of commitment schemes
with two sequential and related stages in which the prover and the verifier interact.
The transcript of the first stage is used as an input for the commitment of the
second stage. In each stage, the prover commits to and reveals a value. Following
is a formal definition adopted from [HNO*09].

Definition 2.1 (Two-Phase Commitment Scheme). Let n be some security param-
eter and (k1 = poly(n), ko = poly(n)) the message lengths. A two-phase commitment
scheme, denoted by (P,V'), consists of four interactive protocols computable in
polynomial-time: the first commit stage (P}, V!), the first reveal stage (P!, V1),
the second commit stage (P2, V2), and the second reveal stage (P2, V2), such that

1. In the first commit stage, P! takes as private input a bit string o) € {0, 1}
and coin tosses 7p. At the end of the interaction, both P! and V! output a
commitment c(). The commitment ¢ is assumed to be the transcript of

the first commit stage.

2. In the first reveal stage, both P! and V! take as common input the commit-
ment ¢, and P! takes as private input its previous coin tosses rp. P! sends
V1 a pair (M, yM), where v is interpreted as a decommitment for o).
V1 accepts or rejects according to ¢, o) and v(1). After that, both P!
and V! output a string 7. The string 7 is assumed to be the transcript of the
first commit stage and first reveal stage, and includes V/!’s decision to accept
or reject.

3. In the second commit stage, both P? and V2 take as common input the string
7, and P? takes a private input ® e {0,1}" and its previous coin tosses
rp. At the end of the interaction, both P? and V.2 output a commitment ¢(®).
The commitment ¢ is assumed to be the concatenation of the string 7 and

the transcript of the second commit stage.

4. In the second reveal stage, both P? and V;? take as common input the com-

mitment ¢, and P? takes as private input its previous coin tosses rp. P2
sends V2 a pair (0®,~4®)), where v(?) is interpreted as a decommitment for

o (@, V1 accepts or rejects according to ¢(?) o) and ~(3).

- If the prover and the verifier follow their prescribed strategy, then the verifier
will always accept (with probability 1), i.e., the scheme has perfect complete-

ness.

- The scheme (P, V') is called public coin, if all messages sent by the verifier to

the prover are independent random coins.
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A two-phase commitment scheme is statistically hiding, if both commitment stages
are statistically hiding, i.e., with overwhelming probability, the verifier cannot ob-
tain information about the committed value before each of the reveal stages. Since
the stages are run sequentially, the hiding property for the second commit stage
is required to hold even given the verifier’s transcript of the first stage. However,
the binding property is only required to hold in one of both stages, i.e., if at least
one of the two commit stages is binding. In the other (bad) stage, the prover can
reveal a given commitment to two different messages. This bad stage is allowed to
be determined dynamically by the prover. Moreover, the second stage is required
to be statistically binding if the prover breaks the first stage. The binding property
for two-phase commitment schemes is called I-out-of-2 binding.

Next we recall the definition of universal one-way hash functions. Universal one-way
hash functions are a relaxation of collision resistant hash functions such that it is
hard to find a collision (x,z’) for a given (fixed) preimage x before the function is

chosen from the family. The following formal definition is basically from [NY89].

Definition 2.2 (Universal One-Way Hash Functions). A family of hash functions
F = (KGen(1"), F') from a domain X to a range Y with security parameter n € N
is called wniversal one-way, if for any probabilistic polynomial-time algorithm A4 =
(AD, A@) it holds

k< KGen(1"); (z,state) <« AD(A")  z#a' A

: < l(n),
v’ < AP (z, state, Fy,) Fi.(x) = Fi.(z") negl(n)

prob
where the probability is taken over the choice of k «KGen(1"), and the internal
coin tosses of the algorithm A. The state variable, declared in [HNO*09], represents
additional information, which the algorithm A is allowed to transfer between the

selection of z and finding the collision.

An additional tool used for the construction of the statistically hiding commitment
scheme proposed in [HNO*(09] are pairwise independent hash functions introduced
in [CW77]. Intuitively, a pairwise independent hash function has the property
that every two distinct elements x1, x5 from the domain are mapped randomly and
independently. A formal definition follows.

Definition 2.3 (Pairwise Independent Hash Functions). A family of hash functions
H = (KGen(1"), H) from a domain X to a range Y with security parameter n € N
is called pairwise independent, if for every two distinct domain elements x1, x5 € X

and every v,y € Y it holds
1

prob [k: <« KGen(1") @ Hg(x1) =y1 A Hp(xo) = y2] = W )

34



2.1. COMMITMENTS FROM ONE-WAY FUNCTIONS

We proceed to the theorem presented in [HNO*09], which yields a collection of

two-phase commitment schemes from any one-way function.

Theorem 2.2. Let f: {0,1}" — {0,1}" be any one-way function. Then given the
function f, a collection of m = n°M) public coin two-phase commitment schemes
(P,V) = ((P, V)i, (P,V)g,...,(P,V)m> with message lengths (ki,k2) = (n,n) can
be constructed in time polynomial in n, so that the following hold.

o There exists an index i € [m] such that the scheme (P,V); is statistically
hiding.

e For every index i € [m], the scheme (P,V); is computationally I1-out-of-2
binding.

Remark 2.1. As stated in [HNO*09], a possible way to obtain schemes for long mes-
sages is to apply the above theorem to the function f’(xy,...,xx) = (f(x1),..., f(Xx)),
which has input length kn, for k = poly(n). If the function f is one-way, then the

function f’ is one-way as well.

The following theorem from [HNO*09] states how to convert each two-phase com-
mitment scheme of the collection obtained from Theorem 2.2 into a single sta-
tistically hiding commitment scheme. This is accomplished by using a family of
universal one-way hash functions whose existence can be based on any one-way
function [Rom90, KKO05]. Thus, the transformation can be based on any one-way
function.

Theorem 2.3. There exists an efficient procedure that takes as input a security
parameter n, a two-phase commitment scheme (P, V') with message lengths (ki, ko) =
(n,1) obtained from Theorem 2.2 and a family of universal one-way hash functions
F = (KGen(1™), F) from {0,1}" to {0,1}"", and outputs a public coin (standard)
commitment scheme that is statistically hiding and computationally binding.

Theorem 2.3 uses a commitment protocol provided in [HNO*(09] that is statistically
hiding and only (1 - d(n))-binding, for § > 1/n°M | i.e., the binding property is
weak. This protocol is then converted into a statistically hiding and computationally
negl(n)-binding protocol. We omit the technical details of this transformation
process and review next the protocol, instead.

o Setup(1m): For a security parameter n € N, the setup algorithm ini-
tializes a two-phase commitment scheme (P,V’) with message lengths
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(k1,k2) = (n,1). This scheme is obtained from Theorem 2.2. Fur-
thermore, the algorithm selects any family of universal one-way hash
functions F = (KGen(1"), F') from {0,1}" to {0,1}"™, and any family of
pairwise independent hash functions # = (KGen(1"), H) from {0,1}"
to {0,1}.

o The algorithm Com works as follows.
Commit phase: To commit to a bit b € {0,1}, the prover P and the

verifier V act as follows.

1. P selects a uniform o € {0,1}".

2. P and V engage in (P!(o),V.}!)(1"), with P acting as P! and V
acting as V1.
Let ¢ be the common output of P!, V! after the interaction.

3. V picks a random universal one-way hash function Fj from the
family F, and sends it to P.

4. P sends y = Fi(o) to V.

5. V flips a random coin, represented by phase < {1,2} ¢, and sends
phase to P.
If phase = 1, then P proceeds as follows.

(a) P selects a random pairwise independent hash function Hj
from the family #, and sends (Hy,b® Hy/(o)) to V.

(b) P and V both output (c(l),Fk,y,phase =1,Hy,be Hk,(a'))
as the commitment.

If phase = 2, then P proceeds as follows.

(a) P runs P! to obtain the decommitment message v(1) and first-
phase transcript T corresponding to both o and ¢(*). P sends
(o, v, 7) to V.

(b) P and V engage in (P2(b),V2)(1",7), with P acting as P?
and V acting as V2.
Let ¢ be the common output of P2, V2 after the interaction.

(¢) P and V both output (c(l),Fk,y,phase = 2,c(2)) as the com-

mitment.

Reveal phase: To open the commitment, P does the following depend-

ing on the value of phase.

- If phase = 1, then P sends b, o to V.
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- If phase = 2, then P runs P? to obtain the decommitment message
~@ | and sends b,y to V.

o The algorithm Ver works as follows.

- If phase = 1, then V checks that y = Fi(o), and verifies that the
last component of the commitment equals b @ Hy/ (o).

- If phase = 2, then V checks that y = Fj(o), and verifies that both
V1and V2 accept ¢, 0,7, and c@,b, v, respectively.

?As mentioned before, the 1-out-of-2 binding property allows P to cheat in one of both
stages. However, the universal one-way hash function Fj forces P to decide in which stage
it likes to cheat before knowing the value of phase.

According to [HNO*09], applying Theorem 2.3 to each two-phase commitment
scheme obtained from Theorem 2.2, yields a collection of public coin (standard)

commitment schemes {(Setup,Com,Ver)i}z , such that the following hold.

- There exists an index ¢ € [m] such that the scheme (Setup,Com,Ver); is sta-
tistically hiding.

- For every index ¢ € [m], the scheme (Setup,Com,Ver); is computationally
binding.

Finally, the latter collection of (standard) commitment schemes can be converted,
as stated in [HNO*09], into the desired statistically hiding commitment scheme by
randomly secret-sharing the bit b = by @ ... ® b,,,, where b is the bit being com-
mitted to, and committing to each share b; using the i'th commitment scheme
(Setup,Com,Ver);, for all i € [m].

Remark 2.2. The work of [HHK*05] shows how to construct a statistically hiding
commitment scheme given any regular one-way function with known preimage size,
i.,e., a OWF f, for which every point in the image of f has the same number of
preimages, and this number is known or it can be efficiently computed. More gen-
erally, a construction of statistically hiding commitment scheme was proposed in
[HHK*05], which is based on approximable-preimage-size¢ OWF, i.e., a OWF f sat-
isfying the additional property that given any image y of f, the number of points
mapping to y can be efficiently approximated. However, A construction of statis-
tically hiding commitment scheme based on any arbitrary, unstructured OWF was
left by [HHK*05] as an open problem. The contribution of [HNO*09], which we

reviewed above, resolved this open problem.
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2.2 Commitments from One-Way Permutations

The constructions we review in this section were presented in [GK96, NOVY98,
TPYO08]. They all assume the existence of one-way permutations (OWPs). As
we will see, OWPs can be used to construct commitment schemes that are either
perfectly hiding or perfectly binding.

2.2.1 Perfectly Binding from [GK96]

Hereafter we review a non-interactive perfectly binding commitment scheme for
committing to single bits. The construction was proposed in [GK96], and uses the
Goldreich-Levin Theorem introduced in [GL89], which essentially gives a reduction
from inverting a one-way function to predicting a particular hard-core bit associated
with that function. Loosely speaking, a hard-core predicate of a function is a bit
that can be efficiently computed from the input to the function and yet is hard to
predict from the output of the function, i.e., the probability of predicting the bit
is not significantly better than one-half. Hard-core predicates were introduced in
[BM84]. A formal definition follows.

Definition 2.4 (Hard-Core Predicate). A polynomial-time computable predicate
h: {0,1}" — {0,1} is called a hard-core of a function f: {0,1}" — {0,1}", if for
every probabilistic polynomial-time algorithm A, there exists a negligible function
¢ such that

prob [A(1™, f(x)) = h(x)] < % ve(n),

where the probability is taken over the uniform choice of x € {0,1}" and the random
coin tosses of A.

Next we recall the Goldreich-Levin Theorem from [GL89] that gives a hard-core
predicate for a special form of OWFs.

Theorem 2.4 (Goldreich-Levin). Let f: {0,1}" — {0,1}" be an arbitrary one-
way permutation, and let g : {0,1}"x{0,1}" — {0,1}" x{0,1}" be the permutation
defined by g(x,r) = (f(x),r). Let h(x,r) = (x,r). Then the predicate h is a hard-
core of the function g.

In other words, the theorem states that if f is one-way permutation (OWP), then
it is infeasible to guess the XOR of a random subset of the bits of x when given
f(x) and the subset itself.
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Remark 2.3. A simple reduction proof shows that if f is OWP, then the function
g defined in Theorem 2.4 is OWP as well.

The construction in [GK96] uses the Goldreich-Levin Theorem to obtain a non-
interactive perfectly binding bit commitment scheme from any OWP with its asso-
ciated hard-core predicate defined in the theorem.

o Setup(17): The setup algorithm selects any OWP f: {0,1}" — {0,1}"
and the corresponding hard-core predicate h defined in the Goldreich-
Levin Theorem 2.4.

o Com(f,h,b): The algorithm Com works as follows.
Commit phase: To commit to a bit b. The prover P picks random

n-bit strings x, r, and computes ¢ = b® h(x,r). Thereafter, P computes
y = f(x) and sends the commitment (y,r,c) to the verifier V.
Reveal phase: To decommit b, P sends x to V.

o Ver(f,h,y,r,c,x): V verifies that f(x) =y, and then computes b =
c® h(x,r).

Since f is OWP, there is at most one value x, which is a valid opening for the com-
mitted bit b. Thus, the scheme is perfectly binding. Moreover, Theorem 2.4 implies
that the scheme is computationally hiding, since any probabilistic polynomial-time
algorithm P, which enables V to guess the bit b from the commitment (y,r,c) with
probability significantly better than one-half, can be converted to an algorithm that
inverts f with non-negligible probability, contradicting the one-wayness of f.

Remark 2.4. The above described construction proposed in [GK96] was also ap-
peared in [AC02], where the Goldreich-Levin Theorem 2.4 was investigated in the
context of quantum information. While in [AC02], the authors described the con-
struction as given above, the work of [GK96| described the construction in general
terms. More precisely, the work of [GK96] assumed without loss of generality that
the one-way permutation f has a hard-core predicate h. Thus, the commitment of
a bit b is the string (f(x), h(x) ®b), for a random bit string x € {0,1}".

2.2.2 Perfectly Hiding from [NOVY98]

This construction provides an interactive perfectly hiding commitment scheme that
commits to single bits. The construction was presented in [NOVY98| and employs

a technique called interactive hashing as a subroutine.
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Interactive hashing was introduced in [OVY91]. It is a cryptographic protocol that
allows two parties, a sender § and a receiver R, to interact. During the interaction,
S transfers a private input s to R such that R obtains two outputs, labeled s, s1
according to lexicographic order.

For a formal definition of an interactive hashing protocol, we refer to [OVY91] or
[HNO*09]. Instead, we informally recall the following two properties of such a
protocol which are sufficient for our purposes.

1. Binding: Provided that typically both outputs are also available to the sender,
the protocol guarantees that one of both outputs sy or s; is equal to the orig-
inal input s, which the sender can control. The other string is uniformly
distributed in the sense that it is chosen beyond the sender’s control, even if
it acts dishonestly.

2. Hiding: Provided that the sender’s private input s is uniformly random, the
protocol guarantees with probability more than one-half that the receiver can-
not guess which of the two strings sy, s; was the original input, even if the
receiver is a computationally unbounded malicious one.

Next we review the construction from [NOVY9S].

o Setup(1™): For a security parameter n € N, the setup algorithm selects
any one-way permutation f: {0,1}" — {0,1}".

o Com(f,b): The algorithm Com works as follows.
Commit phase: To commit to a bit b € {0,1}, the prover P and the

verifier V act as follows.

1. P selects a bit string r € {0,1}" uniformly at random, and computes
y = f(r).
2. P and V engage in the following interactive hashing protocol.
(a) V selects elements hy, hy,... h, ; € {0,1}" such that each h;,
for i € [n - 1], is a random vector over GF(2) of the form

0i-1|1]{0,1}"", i.e., i — 1 zeros followed by a one followed by
an arbitrary choice for the last n — i entries °.

(b) For j from 1 up ton -1
— V sends h; to P.
— P sends ¢; < (h;,y).
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(c) At this point there are exactly two vectors yq,y; € {0,1}" such
that ¢; = (h;,y;), forall 1 < j <n-1, and for bothi € {0,1}. Let
yo be the lexicographically smaller of the two vectors. Both
P and V compute yo and y; by solving the linear system. Let
d € {0,1} be such that y = yy.

3. P sends the commitment c=b&® d to V.

Reveal phase: To open the commitment, P sends b and r to V.

o Ver(f,c,hy,...;h, 1,¢1,...,¢,.1,b,1): V verifies that f(r) =y satisfies
¢; =(h;,y), for all 1 <j<n-1, and checks that y, =y, where d =ca®b.

®The vectors hy, ..., h,_; are linearly independent over the Galois field GF(2).

We provide an illustration of the protocol flow in Figure 2.4.

Since the bit string r is chosen uniformly at random and since f is one-way permu-
tation (OWP), then the bit string y is uniformly random as well. Moreover, by the
hiding property of the interactive hashing protocol, the verifier V does not know
if y =ygory =y, since both yg and y; are uniformly distributed, even if V is
computationally unbounded malicious. Consequently, V does not know if d =0 or
d = 1. It follows the perfectly hiding property. On the other hand, by the binding
property of the interactive hashing protocol, at least one of the outputs, say y,, for
a € {0,1}, is uniform in {0,1}" and outside the prover’s control. Thus, if the prover
is able to decommit to both b =0 and b = 1, it must find a preimage of y,. This
task is computationally infeasible since f is OWP. It follows the computationally
binding property.

2.2.3 Perfectly Hiding from [TPYO08]

In the following we review a construction that provides an interactive perfectly
hiding commitment scheme with two rounds. The protocol was proposed in [TPY08]

and commits to single bits.

7

o Setup(1"): For a security parameter n € N, the setup algorithm selects
any one-way permutation f: {0,1}" — {0,1}".

o Com(f,b): The algorithm Com works as follows.
Commit phase: To commit to a bit b € {0,1}, the prover P and the
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Prover P Verifier V
Commit to be {0,1}
Commit phase:
r<{0,1)"
y = f(r)
h17 h2a ) hn—l i {07 1}”7
h; € 01 1[{0, 1}"
forall1<j<n-1

h;
Cj = (h j ) y) X
j j ¢;
compute yo,y1 compute yo,y1
let y =yq, for d € {0,1}
c=bed ¢
Reveal phase:

b,r

" ? ?
f(I') =Yy, ¢ = (h]7y>
? ?
Ya=Y, d=c®b

Figure 2.4: Perfectly hiding bit commitment protocol from [NOVY98].

verifier V act as follows.

1. V picks a uniformly random bit string r € {0,1}" and sends the
string r to P.

2. Upon receiving r, P selects a bit string x € {0,1}" uniformly at
random and sends the commitment string c to V, where

.- f(x), ifb=0
) f(x)er, ifb=1.

Reveal phase: To open the commitment, P sends the string x to V.
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o Ver(f,r,c,x): V extracts the bit b, where

e 0, if f(x)=c
) 1, if f(x)er=c.

We illustrate the protocol flow in Figure 2.5.

Prover P Verifier V

Commit to b€ {0,1}
Commit phase:

r<{0,1)"
r
x < {0,1}"
f(x),  itb=0 ¢
c= >
f(x)er, ifb=1
Reveal phase:
X

. 0, ifc=f(x)
) 1, ifec=f(x)or

Figure 2.5: Perfectly hiding bit commitment protocol from [TPYO08].

The computationally binding property follows from the fact that valid openings for
both cases b = 0 and b = 1 with uniformly random bit strings x, and x;, respectively,
require that f(xg) = f(x1) @ r. However, the prover holds such bit strings with
negligible probability from f, since the strings r, f(x), and f(x) @ r are equally
distributed. The latter holds since f is OWP. On the other hand, inverting the
function f by any verifier, even a computationally unbounded, opens both cases
b =0 and b = 1 with the same probability, since it can find any unique x, such
that f(x¢) = ¢ and unique x; such that ¢ = f(x1) @r from f. Hence, any verifier
can correctly guess the committed bit from the commitment string with probability
exactly one-half. It follows the perfectly hiding property.
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2.3 Commitments from Collision-Free Hashing

This section reviews constructions of commitment schemes from general frameworks
that assume the existence of collision resistant hash functions (CRHFs). These
frameworks were proposed in [HM96, DPP97, DPP98]. They all provide statistically
hiding commitments. Beside these frameworks, we also review constructions of
CRHFs presented in [IKOO05], which are based on perfectly binding commitments
that hold additional properties. Consequently, we obtain in turn statistically hiding

commitments.

2.3.1 Statistically Hiding from [HM96]

The commitment scheme we review hereafter was presented in [HM96]. The proto-
col is non-interactive, commits to bit strings, and is statistically hiding. Addition-
ally, it uses 2-universal hash functions, introduced in [CW77], as a tool for adding
randomness to the message being committed to. A formal definition follows.

Definition 2.5 (2-Universal Hash Functions). A family of hash functions H =
(KGen(1"), H) from a domain X to a range Y with security parameter n € N is
called 2-universal, if for every two distinct domain elements x1, x5 € X it holds that

prob [k < KGen(1") : Hy(21) = Hy(22)] < ﬁ :

We let n denote the security parameter of the scheme. The security parameter
controls the success probability of the prover in changing the message after the
commit phase as well as the probabilistic advantage the verifier may get about the
message from its commitment. Furthermore, the construction sets a parameter ¢ to

be a positive integer at least 4n + 2¢ + 4, where /¢ is the message length.

o Setup(1™): The setup algorithm selects any collision-free hash function
f such that f: {0,1}" — {0,1}" and any family of 2-universal hash
functions H = (KGen(17), H) from {0,1}" to {0,1}".

o Com(f,H,m): The algorithm Com works as follows.
Commit phase: To commit to a message m € {0, 1}6, the prover P

selects a random bit string r € {0,1}" and computes y = f(r). Moreover,
P picks a random function Hy, from the family # for which Hy(r) = m.
The commitment is the string ¢ = (Hg,y).
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Reveal phase: Opening the commitment is performed by sending the

random string r.

o Ver(f,H,c,r): The verifier V checks that y = f(r) and then computes
m = Hy(r).

The selection of a random function Hj, from the family of 2-universal hash functions
H such that Hy(r) = m, depends on the structure of the chosen family. The following
example gives a family of 2-universal hash functions suggested in [HM96].

Example 2.1 (2-Universal Hashing Construction I). For ¢ > ¢, consider the family
H={Hap : Ac{0,1}"" be{0,1}}, where A = (ai;) is a Toeplitz matrix, i.e., a
matrix with all diagonals being homogeneous: a;; = a;.1 541, for all 4,j. Each pair
(A,b) describes a function Hap, @ {0,1} — {0, 1}* such that Hap(x) = Ax +b,
for all x € {0,1}", where the operations are taken over the field GF(2). Any function
from this family can be described using ¢ + 2¢ — 1 bits.

If the family of 2-universal hash functions given in Example 2.1 is used for the
commitment scheme described above, a random function Ha p has to be selected
such that Hap(r) = m. To do this, the matrix A is first chosen randomly from
{0,1}*" and then the vector b is computed such that b =m - Ar ¢ {0,1}".

For analyzing the commitment scheme, it is clear that opening the commitment for
two different messages m, m’ implies finding a collision in f, i.e., finding r’ such that
y = f(x"). It follows that the scheme is computationally binding. On the other hand,
applying a collision-free hash function on a random string r leaks no information
about the committed message m. Furthermore, using a 2-universal hash function
produces randomness to the message, so that the verifier gets almost no statistical
advantage about the message from the commitment string c. It follows that for
any two messages mp, my, the distribution (f,,c1) and (f,H,co) are statistically
close, where cq, ¢y are the commitment strings of the messages m, my, respectively.

Hence, the scheme is statistically hiding.

As proposed in [HM96], the communication complexity of the commitment scheme
described above can be reduced by committing to the hash value s = f(m) of the
message m instead of the message itself. To decommit m, the prover sends m along
with the random string r. The verifier checks that s is the string being committed
to, and that f(m) =s. Consequently, the commitment and decommitment strings
are of length ¢+ O(n) instead of O(¢ +n) bits.

Remark 2.5. A simple non-interactive string commitment scheme was suggested

45



2. COMMITMENT SCHEMES FROM GENERAL CONSTRUCTIONS

in [Ste96]. The scheme uses some collision resistant hash function f as well. The
commitment of a bit string m is the string f(r|(r®m)), for a random bit string r.
The computationally binding property follows directly from the collision resistance

of f. However, its hiding property was not proven.

2.3.2 Statistically Hiding from [DPP97]

Hereafter we review a construction presented in [DPP97], which transforms any
fail-stop signature (FSS) scheme with a property called almost unique secret key
into an interactive statistically hiding bit commitment scheme. FSS schemes were
introduced in [WP89], and can be constructed from any collision resistant hash
function, as shown in [DPP97]. Hence, the transformation can be based on any

collision resistant hash function.

F'SS schemes hold additional properties that make them differ from ordinary signa-
ture schemes. For a formal definition of F'SS schemes and their properties, we refer
to [WP89, DPP9I7]. Instead, we follow [DPP97] to informally recall the description
of the properties of FSS schemes, which are sufficient for our purposes.

A FSS scheme has several possible secret keys corresponding to a given public
key. Any adversary, even computationally unbounded, cannot guess from
publicly available information which of the possible secret keys is known to
the signer. Consequently, it is impossible to predict which signature the signer
would produce on a given message, if it has not been signed yet. This is

because usage of different secret keys in general leads to different signatures.

e From two different signatures on the same message, the signer can produce
a proof of forgery. On the other hand, the signer cannot falsely repudiate its
own signature, if it has in fact not been forged, unless the signer breaks the

computational assumption on which the security of the F'SS scheme is based.

o To ensure that the signer does not generate a key pair for which it can prove
its own signatures to be forgeries, the key generation process must not carried
out by the signer alone. Thus, it is a protocol (rather than an algorithm)

executed by the signer and a center trusted by the recipients.

o Except with an extremely small probability, it is impossible, even for a compu-
tationally unbounded forger, to produce a signature, which the signer cannot

prove to be a forgery.
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o The almost unique secret key property means that it is infeasible for a signer to
compute more than one significantly different secret key corresponding to its
public key. Keys are not significantly different if they lead to equal signatures.

The main idea in the transformation of a FSS scheme with the almost unique secret
key property into a bit commitment scheme, is to use the key generation protocol
as a commitment protocol, where the verifier plays the role of the trusted center.
The key generation protocol has two main security parameters n, k, where n is the
security parameter for the recipient, and « is for the signer. The transformation

uses some family of 2-universal hash functions (see Definition 2.5).

7

o Setup(17): The setup algorithm initializes the key generation protocol
KGen(17,1%) of some FSS scheme with the almost unique secret key
property, where n is the security parameter of the commitment scheme
and x = 4(n+1). The part of the secret key sk that makes differences in
the signatures is denoted by n(sk). Moreover, the algorithm selects any
family of 2-universal hash functions # = (KGen(17), H) from {0, 1}
to {0,1}, where p(n) is an upper bound on the length of the values of
n(sk) for the parameters n, k.

o Com(KGen(17,1%),H,b): The algorithm Com works as follows.
Commit phase: To commit to a bit b € {0,1}, the prover P and the

verifier V act as follows.

1. P and V engage in the key generation protocol KGen(1",1%). If P
or V reject in the key generation, the commit phase stops. Let pk
and sk be the resulting public and private key, respectively.

2. P signs the bit 0, and generates a proof of forgery on the result-
ing signature. If this results in a valid proof of forgery, P stops.
Otherwise P continues.

3. P picks a random 2-universal hash function Hy from the family H.

4. P computes ¢ = Hi(n(sk)) @ b, and sends (Hy,c) to V.

Reveal phase: To open the commitment, P sends b and sk to V.

o Ver(KGen(17,1%), H, pk, Hy, c,b,sk): V verifies that sk fits to pk, and
compares b with ¢ & Hy(n(sk)).

We illustrate the protocol flow in Figure 2.6.
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Prover P Verifier V

Commit to be {0,1}

Commit phase:

KGen(17, 1)

pk, sk pk
H, <X
c=Hi(n(sk)) @b
(Hk> C)
Reveal phase:
b, sk

Y

sk fits to pk?
bZce Hy(n(sk))

Figure 2.6: Statistically hiding bit commitment protocol from [DPP97].

The computationally binding property follows directly from the almost unique secret
key property of the FSS scheme. Additionally, since the distribution of the secret
key, given the public key, is not necessarily uniform, a family of 2-universal hash
functions is used to add randomness to the commitment value. Moreover, FSS
schemes do not exclude that a cheating center (here, the verifier) can carry out
key generation so that it can guess the secret key afterward. Thus, the extended
privacy amplification Theorem, introduced in [BBCMO95], is used as well, to derive
that the verifier has very little collision information about Hy(n(sk)), as the bit b is
encrypted with the privacy-amplified significant part of pk, i.e., ¢ = Hi(n(sk)) & b.
Hence, the family of 2-universal hash functions together with the extended privacy
amplification Theorem achieve the statistically hiding property.

Remark 2.6. As stated in [DPP97], the security proof of the construction allows
to commit to more than one bit, i.e., there is no need to hash n(sk) down to a 1-bit

value to wipe out the verifier’s information.
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2.3.3 Statistically Hiding from [DPP98]

We review below a construction proposed in [DPP98] which provides a statistically
hiding commitment scheme. The scheme is non-interactive, commits to bit strings,

and uses some family of 2-universal hash functions (see Definition 2.5).

In order to achieve efficiency, a particular family of 2-universal hash functions was
suggested in [DPP98]. The following example gives this particular family, which is
essentially from [CW77].

Example 2.2 (2-Universal Hashing Construction II). For ¢ > ¢, consider the family
H={Hap : a,be{0,1}'}. Each pair (a,b) describes a function

Hap: {0,1} — {0,1}" such that H,p(x) = ax + b|£, for all bit strings x € {0,1}",
where ‘ , means taking the £ least significant bits from the output of the function.
The operations are taken over the field GF(2). Any function from this family can
be described using 2t bits.

We let n denote the security parameter, and ¢ the length of the message being
committed to. Furthermore, the commitment scheme sets a parameter ¢ to be a
positive integer such that ¢ = 3(n + 1).

o Setup(1™): The setup algorithm selects any collision-free hash function
f such that f: {0,1}* — {0,1}™"", and any family of 2-universal hash
functions H = (KGen(1"), H) from {0,1}" to {0,1}"*".

o Com(f,H,m): The algorithm Com works as follows.
Commit phase: To commit to a message m € {0, l}e, the prover P

selects a random bit string r € {0,1}", and a random function Hj from
the family H. The commitment is the hash value

¢ = f(Hil £ ()] (m) ® Hy(x))

Reveal phase: Opening the commitment is performed by sending

Hy,r, and m.

o Ver(f,H,c, Hy,r,m): The verifier V checks that

F(H£(r)]f(m) @ Hy(r)) = c .

The computationally binding property is an immediate consequence of the collision

resistance of the function f. In order to analyze the statistically hiding property, we
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follow the observation from [DPP98] which states that it is enough to show the hid-
ing property for a modified commitment string in which Hy, f(r), and f(m)® Hy(r)
are sent. This modification gives the verifier even more information than the orig-
inal commitment string. The extended privacy amplification Theorem, introduced
in [BBCM95], interprets the part f(m) & Hg(r) as encrypting f(m) with the pri-
vacy amplified version of r. Applying this theorem gives a bound on the verifier’s
expected uncertainty about Hy(r), if it knows f, Hy, and f(r). This bound is at
least n+1—2"". Thus, the verifier has almost no information about the committed

message.

As mentioned in [DPP98|, among the three applications of the function f in the

commit phase f(r), f(m), and f(Hka(r)Hf(m) ® Hk(r)), only f(r) is essential
for the security of the scheme.

In [DPP98], the authors stated that hashing the message m may be omitted if it
is short. The final hashing of the commitment may be also omitted in applications
where the efficiency of the reveal phase is more important than that of the com-
mit phase. The above described version with very short commitments and longer
revealing is particularly suitable if not all commitments are opened.

Remark 2.7. In [DPP98], the authors stated that their construction is an im-
provement of a commitment scheme suggested in [NY89]. This scheme employs the
Lamport-Diffie one-time signature scheme (LD-OTS) proposed in [Lam79]. The
LD-OTS scheme uses any collision resistant hash function to hash the message to
be signed and then use any one-way function for signing the message. The resulting
commitment scheme needs interaction between the prover and the verifier in an
initialization phase (the setup phase) for each commitment, i.e., each time when
the prover wants to commit to a message, a one-time public key has to be provided

for both the prover and the verifier before the commit phase.

2.3.4 Sufficient Conditions for Collision-Free Hashing

Since the beginning of this section, we have seen that the existence of collision
resistant hash functions (CRHFs) implies commitment schemes that are statisti-
cally hiding. Essentially, CRHFs are important cryptographic primitive that can
be constructed from general assumptions. For example, there are two constructions
of CRHFs presented in [IKOO05] that are related to commitments. Namely, they
used commitment schemes with additional properties to obtain CRHFs, which in
turn imply statistically hiding commitments, as seen in this section. Therefore, we
review here these two constructions.
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The first construction of CRHFs is based on homomorphic encryption. Roughly
speaking, a homomorphic encryption scheme is, according to [IKOO05], a semanti-
cally secure encryption scheme in which the plaintexts are taken from some group
GG, and given encryptions ¢y, co of two group elements my,mo, it is possible to effi-
ciently compute an encryption of m, @ msy from ¢; and ¢y, where & is the operation
defined on the group. Usually, a group G with an operation @ defined on it, is
written as (G, ®).

Since the decryption algorithm is not used in the construction of CRHFs, the au-
thors in [IKOO05] reduced the construction to a weaker assumption. Namely, to the
existence of homomorphic commitments. Loosely speaking, a homomorphic com-
mitment scheme is, according to [IKOO05], a semantically secure, perfectly binding,
non-interactive commitment scheme with homomorphic property, i.e., from com-
mitments ¢, ¢’ of two messages m,m’ from some group (G,®), it is possible to
efficiently compute a commitment to m 8 m’ from ¢ and ¢’. A formal definition
follows according to [IKOO05].

Definition 2.6 (Homomorphic Commitment Scheme). Let (G, &) be some group of
size « = poly(n), for a security parameter n € N. A homomorphic commitment scheme
consists of a triple of probabilistic polynomial-time algorithms (KGen,Com,Eval)
defined as follows.

o KGen(1"): Given 1", output a public key pk.

o Com(pk,m): Given the public key pk, and a group element m € G, output
the value ¢ of some length o/ = poly(n). The commitment ¢ hides the group
element m, i.e., given ¢, the message m is semantically secure. Moreover, the
commitment c is perfectly binding, i.e., given the public key pk, the commit-

ment ¢ uniquely determines m.

Remark 2.8. The notation Com(pk, m) hides the fact that the algorithm
Com is probabilistic. A deterministic value can be obtained by fixing some
randomness 7 to the algorithm. In this case, we use the notation Com(pk, m;r).

o Eval(pk,c,c): Given the public key pk, and commitments Com(pk, m),Com(pk, m’)
of two group elements m,m’ € GG, compute a commitment to m 8 m/, i.e.,
Com(pk,m @ m/;r), where r is any possible randomness for the algorithm
Com. For any ¢ > 0 and randomness r, the algorithm Eval guarantees that a
commitment Com(pk,tm;r) can be efficiently computed from Com(pk,m;r)
as well. This can be performed by applying the algorithm Eval O(logt) times.
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The second construction of CRHFs uses homomorphic one-way commitments defined
in [IKOO05]. Homomorphic one-way commitments do not provide semantic security
for committed values, i.e., they do not guarantee that no information about some
committed value m is leaked. However, they guarantee that it is hard to find m
from its commitment. In other words, only one-wayness security is required. A
formal definition follows according to [IKOO5].

Definition 2.7 (Homomorphic One-Way Commitment Scheme). Let (G,®) be
some group of size a = poly(n), for a security parameter n € N. A homomorphic
one-way commitment scheme is defined as a homomorphic commitment scheme (see

Definition 2.6), except for the security requirement one-wayness defined as follows.

- Every probabilistic polynomial-time algorithm A that is given Com(pk, m;r)
has a negligible probability of finding m, where the probability is taken over
a random choice of m € G, the choice of r by the algorithm Com, and the
internal random choices of the algorithm A.

Remark 2.9. The perfectly binding property implies that there is a unique
preimage m of the value Com(pk, m;7).

The following two remarks are concerning Definition 2.7.
Remark 2.10. Commitments are required to be re-randomized, i.e., there is a prob-
abilistic polynomial-time algorithm such that given any commitment Com(pk,m;r),

it outputs a re-randomized commitment.

Remark 2.11. The one-wayness requirement in particular implies that the group
size a needs to be large.

Next we give both constructions of CRHFs shown in [IKOO05].

I. CRHFs from homomorphic commitments

Given an arbitrary homomorphic commitment scheme (KGen’,Com,Eval) on some
group (G, m) of size a = poly(n), and commitment length o' = poly(n) with security
parameter n, the construction of a family of CRHFs F,, =(KGen,Hash) is given as

follows.
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o KGen(1"): Given 17, proceed as follows.

1. Run the algorithm KGen’(1") to obtain a public key pk’ for the
homomorphic commitment scheme.

2. Choose a random n xny matrix M, whose entries are elements from

G, where n; = [Uogfaﬂ, and nsy is chosen such that n;a’ < nyloga
@ If the group size « is sufficiently large, then the value n; might

be as small as 1.

3. Run the algorithm Com(pk’, M), i.e., commit to each of the nj-ngy
elements of the matrix M.

4. Finally, output k = (pk’,Com(pk’,M)) as a key for the function.

« Hash(k,x): Given the key k, and a message x = (x1,...,2,,), where
z; € G, |z;| = |log a|, for all i € [ny], output the digest

Fi(x) = Com(pk',M - x;71),

where the commitment to M -x can be efficiently computed from k and
x using the algorithm Eval (without knowledge of the matrix M), and
r is the randomness implicitly defined by this computation.

®This condition provides the compression property of the hash functions, i.e., the length
of the output is required to be shorter than the length of its input.

The collision resistance property follows directly from the perfectly binding prop-
erty of the homomorphic commitments in addition to the semantic security of the

homomorphic commitment scheme.

II. CRHFs from homomorphic one-way commitments

Given an arbitrary homomorphic one-way commitment scheme (KGen’,Com,Eval)
on some group (G, ®) of size o = poly(n), and commitment length o’ = poly(n) with
security parameter n, the construction of a family of CRHFs F, =(KGen,Hash) is

given as follows.

o KGen(1"): Given 17, proceed as follows.

1. Run the algorithm KGen’(1") to obtain a public key pk’ for the

homomorphic one-way commitment scheme.
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2. Choose ¢ elements my, ..., m, randomly from G, where ¢ is chosen
such that o' < flogar .

3. Choose random strings ry,...,7, to be used by the commitment
algorithm Com.

4. Run the algorithm Com(pk’, m;;r;), for each i € [£].
5. Finally, output k = (pk’,{Com(pk’,mi;ri)}le) as a key for the

function.

o Hash(k,x): Given the key k, and a message x = (x1,...,2¢), where
z; € G, |z;| = |log a|, for all i € [¢], output the digest

¢
Fk(x) = Com(pk', Zmzxm T)?
i=1
where the commitment to Y*_, m;z; can be efficiently computed from k

and x using the algorithm Eval (without knowledge of my, ..., my), and
r is the randomness implicitly defined by this computation.

%This condition provides the compression property of the hash functions, i.e., the output
length is required to be shorter than the input length.

The collision resistance property follows directly from the perfectly binding property
of the homomorphic one-way commitments in addition to the one-wayness property

of the homomorphic one-way commitment scheme.

2.4 Commitments from Public-Key Cryptosystems

This section includes one construction of a commitment scheme introduced in

[CDO04], which uses public-key encryption.

2.4.1 Statistically Binding from [CDO04]

The commitment scheme we review below is non-interactive, commits to bit strings,
and is statistically binding. The scheme was presented in [CD04], and assumes
the existence of public-key cryptosystems whose encryption and decryption func-
tions commute, i.e., either public or private key can be used in either function.
More precisely, for some public-key cryptosystem (KGen,Enc,Dec) with public key
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pk, and secret key sk, the encryption and decryption functions must satisfy that
Enc(pk,Enc(sk,m))= m, for any message m. In such cryptosystems, encrypting
some message using the secret key essentially corresponds to digitally signing the
message. Thus we can write Enc(pk,Sig(sk, m))=m. For simplicity, we let Sig(m),
Enc(m) denote signing and encrypting any message m using the private and public
key, respectively.

o Setup(1™): The setup algorithm generates a key pair (pk, sk) for some
commutative public-key cryptosystem (KGen,Enc,Dec) with security
parameter n, where pk, sk denote the public and private key, respec-
tively. The public key pk® is set as a public commitment key, while the
secret key sk is kept private for the prover P.

« Com(pk,m): The algorithm Com works as follows.
Commit phase: To commit to a bit string m, P generates a pseudo-

random bit string r. Thereafter, using the private key sk, P signs (or
encrypts) the bit string Id|m to obtain Sig(Id|m), where Id denotes
the identifier of P. Furthermore, P encrypts the bit string Id||r by using
the public key pk to obtain Enc(Id|r). Finally, P sends the following

commitment string to the verifier.
c = Sig(Id|m) ® Enc(Id|r) .

Reveal phase: For opening the commitment, P reveals the string r.

» Ver(pk,c,r): The verifier V encrypts Id||r using pk to obtain Enc(Id|r),
and computes ¢ ® Enc(Id|r) to retrieve Sig(Id|m). Finally, V encrypts
Sig(Id|m) using pk to obtain Id|m, and takes the suffix m of Id|m as
the value committed to.

?Public keys are assumed to be certified and publicly accessible.

The commitment string ¢ can be viewed as encrypting the string Sig(Id|m) using
a symmetric stream cipher with a pseudorandom key Enc(Id|r). Thus, hiding the
string Sig(Id|m) computationally, depends on the pseudorandom string r being
generated using a cryptographically pseudorandom generator. Moreover, opening
the commitment for two different messages m, m’ requires that ¢ @ Enc(Id|r’) =
Sig(Id|m’), for a string r’. This implies that Id|r’ = Sig(c @ Sig(Id|m’)). The
probability that the prefix of Sig(c @ Sig(Id|m’)) matches the identifier string Id
is roughly 2-Mdl| where |Id| is the bit length of Id. Thus, it follows the statistically
binding property.
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Remark 2.12. In order to obtain a negligible probability for opening a commit-
ment for two different messages, the identifier string Id has to satisfy [Id| > 32, as
suggested in [CDO04].

2.5 Commitments from Different Protocols

In this section we review two frameworks for commitment schemes introduced in
[Dam89, BIKM99]. Both frameworks employ a cryptographic protocol that has to
be executed or simulated each time during the commit phase.

2.5.1 Perfectly Hiding from X-Protocols

We review hereafter a construction of the perfectly hiding commitment scheme pre-
sented in [Dam89] which uses ¥-protocols. 3-protocols were introduced in [Cra96]
as an abstract concept. Many works including the one of [Dam89] used X-protocols
before conceptually presenting them in [Cra96]. First, we recall the definition of
Y-protocols and their properties. We mostly follow [Dam02], with some details from
[DFS04].

A Y-protocol is defined on some relation R = {(x,w)}. The language defined by R
is written as Lg = {z | Jw: (z,w) € R}. For x € Lg, any w such that (z,w) € R is
called a witness for x € Lr. The length of any witness w is restricted to be at most
poly(|xl)-

Remark 2.13. For some (z,w) € R, x can be considered as an instance of some
computational problem, and w as the solution to that instance.

Definition 2.8 (3-Protocols). Let R = {(x,w)} be some relation, and Ly be a
language defined by R. A X-protocol for R is a three-round interactive protocol
between a prover P and a verifier V, where some x € L is a common input for P,V,
and some w such that (x,w) € R is a private input for P. Both P,V are probabilistic

polynomial-time algorithms which act as follows.

1. First, P sends some message ¢ to V.

2. Then, V is only required to send a random ¢-bit string m as a challenge to P,
where ¢ = poly(|z|).
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3. Finally, P sends an answer 2z back to V which decides to accept or reject based
on the input and the exchanged data, i.e., x,c,m, and z.

A Y-protocol for some relation R requires the following properties.

o Completeness: If P,V follow the protocol on input x and private input w to

P, where (z,w) € R, then V always accepts.

o Special soundness: From any z and any pair (¢, m, z),(c, m’, z’) of accept-

ing conversations on input x, where m # m’, there exists a probabilistic
polynomial-time algorithm £ which can efficiently compute a witness w such

that (z,w) € R.

e Special honest-verifier zero-knowledge: There exists a probabilistic polynomial-

time simulator M, which on input = and a random m, it outputs an accepting
conversation of the form (¢,m, z) with the same probability distribution as
conversations between the honest P and V on input .

A relation R is defined to be hard if it is possible to efficiently generate pairs (x,w)
such that, when given only z, it is hard to find a witness w for z. A formal definition

follows.
Definition 2.9 (Hard Relation). A relation R is called hard if the following condi-
tions are satisfied.
o There exists a probabilistic polynomial-time algorithm G, called the generator,
which on input 17, outputs a pair (z,w) € R, where |z| = n.
o For all probabilistic polynomial-time algorithms A, the following holds.
prob [(:v,w) < G(1"), wy < A(x): (z,wy) € R] <negl(n) .
In other words, on input x generated from G, the algorithm A produces a

valid witness for x only with negligible probability.

Next we review the construction of a perfectly hiding commitment scheme shown
in [Dam89]. The scheme commits to single bits. However, according to [Dam02],
the scheme allows committing to bit strings. We adopt the description of [Dam02]

to review the construction of the commitment scheme.
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o Setup(17): The setup algorithm selects some hard relation R with gen-
erator G, and X-protocol ¥ for R. R is selected such that it is easy to
verify membership in Lg, i.e., given z, it is easy to decide if there exists
w such that (z,w) € R.

Furthermore, the prover P and the verifier V interact as follows.

1. V runs the generator G to obtain (x,w) € R and sends z to P.

2. P checks that =z € R;.

o Com(Rp, %, z,m): The algorithm Com works as follows.
Commit phase: To commit to an ¢-bit string m, P runs the simulator

M of ¥ on input x and m to obtain (¢, m, z), and sends the commitment
cto V.
Reveal phase: To open the commitment, P sends m and z to V.

o Ver(Ry,¥,x,c,m,z): V checks that (¢, m, z) is an accepting conversa-
tion with respect to x.

The computationally binding property follows from the fact that opening the com-
mitment ¢ to both (m,z) and (m’,z’), for m # m’, implies having two accepting
conversations (¢, m, z) and (¢, m’, 2’). By the special soundness property, this means
efficiently computing the witness w. This contradicts the assumption that the re-
lation R is hard. Moreover, since z € Ry, the special honest-verifier zero-knowledge
property implies that the simulation by M is perfect. Hence, the message ¢ gen-
erated by M is independent of the challenge m. It follows the perfectly hiding

property.

2.5.2 Statistically Hiding from PIR Protocols

Finally, we review below a construction proposed in [BIKM99] which provides a
statistically hiding commitment scheme. The scheme is interactive, commits to
single bits, and employs private information retrieval (PIR) protocols introduced in
[CGKS9S].

Roughly speaking, a PIR protocol is an interactive protocol that allows a user
to access some database stored on a server without revealing to the server which
information has been accessed, i.e., the retrieved data remain oblivious for the
server. The database is modeled as an n-bit string x = (z1,...,2,). When a user

wishes to privately retrieve an item x;, for i € [n], the retrieval process is performed
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such that the server cannot (in polynomial-time) gain any information about the
index the client is interested in.

We basically follow [BIKM99] to recall the formal definition of PIR protocols and
their properties.

Definition 2.10 (Private Information Retrieval (PIR)). A private information re-
trieval (PIR) protocol involves two parties: a server S which hosts a database mod-
eled as an n-bit string x = (z1,...,,) and a user Y who wants to retrieve a bit x;
from the database, where i € [n]. The protocol consists of a triple of the following
polynomial-time computational algorithms.

e Query: U acts first by selecting a random string r, computing a query g¢, i.e.,
q <Query(17,4,r), and then sending ¢ to S.

o Answer: S responds with an answer s, i.e., s <Answer(1",x,q).

o Decode: U computes the bit z;, i.e., z; «Decode(17,1i,r, s).
A PIR protocol requires the following properties.

e Perfect correctness: The user always computes the correct value of x;,

i.e., for every index i € [n], every random string r, and every database
x = (x1,...,2,), it holds that

prob [Decode(l",i,r,Answer(l”,x, Query(l”,i,r))) = %] =1.

o Privacy: The server cannot (in polynomial-time) gain information about the
bit that the user tries to retrieve, i.e., for any probabilistic polynomial-time
adversary A, and any two sequences of indices {i,}>2, and {j,}>>,, where
1<i,,j, <n, it holds that

‘pI’Ob [A(lna ina QuerY(1n7 ina )) = 1]_pr0b I:A(lnajrw QuerY(lnajna )) = 1:” < negl(n) :

In other words, the distributions Query(17,i,,-) and Query(1",j,,-) are com-
putationally indistinguishable.

Next we review the construction of a statistically hiding bit commitment protocol
presented in [BIKM99]. The binding property of the scheme is weak, i.e., a prover
can open a commitment ambiguously with probability at most 1—1/p(n), for some
polynomial p(n).
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According to [BIKM99], the weak binding property can be strengthened by requiring
the prover P to independently commit to the same bit b polynomially many times
(e.g., n?) and letting the verifier V to output a bit b’ only if the same bit o' was suc-
cessfully decommitted every time, otherwise reject. The sequential repetition yields
strong binding property without compromising the statistically hiding property, i.e.,
P can cheat successfully only if it cheats successfully in each of the polynomially
many repetitions, and this happens with exponentially small probability.

7

o Setup(17): The setup algorithm initializes a (multi-round) PIR proto-
col PI R=(Query,Answer,Decode), in which the server communicates at
most n/2 bits.

o Com(PIR,b): The algorithm Com works as follows.
Commit phase: To commit to a bit b € {0,1}, the prover P and the

verifier V act as follows.

1. P picks two n-bit strings x,y uniformly at random.
2. V selects a uniformly random index i € [n].

3. P and V engage in the PIR protocol PIR, where P simulates the
server on the database x = (z1,...,,), and V simulates the user
on retrieval index .

4. Psends y and c=b@ (x,y) to V.

Reveal phase: To open the commitment, P sends the string x to V.

o Ver(PIR,x;,y,c,x): V verifies that the string x is consistent with the
bit x; retrieved by V during the execution of the protocol PI R in commit
phase, and then computes (x,y) and b=c® (x,y).

We illustrate the protocol flow in Figure 2.7.

The weak binding property follows from the privacy requirement of the PIR proto-
col, i.e., the prover P can open the commitment ambiguously by coming up with
a bit string x’ = (2f,...,},) € {0,1}" and an index j # i such that z; # z and
c=(1-b)e@ (x',;y). This can be only performed with probability that negligibly
greater than 1 -1/n. Otherwise the privacy of the underlying PIR protocol is com-
promised. Breaking the statistically hiding property is reduced to predicting the
inner product of two uniformly random bit strings. According to the randomized
communication complexity of the inner product shown in [CG88], the advantage of

predicting such an inner product is exponentially small, i.e., 1/2 + negl(n).
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2.5. COMMITMENTS FROM DIFFERENT PROTOCOLS

Prover P Verifier V

Commit to be {0,1}

Commit phase:

x,y < {0,1}" i1, n)
’PIR protocol

q
s <Answer(1",x, q) < q <Query(1™,i,r)
s
c=beo(x,y) x; < Decode(17, 1,1, 5)
y,c
Reveal phase:
X

X consistent with x; 7
b=ce(x,y)

Figure 2.7: Statistically hiding bit commitment protocol from [BIKM99].
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Chapter 3

Post-Quantum Commitment
Schemes

In this chapter we provide a survey on concrete constructions of post-quantum com-
mitment schemes. The security of their computational (hiding or binding) property
is based on computational problems that are believed to be secure even under quan-
tum attacks. Concrete constructions are not general frameworks for commitment

schemes like those reviewed in the previous chapter.

As mentioned in the previous chapter, we are only interested in commitment schemes
with unconditionally hiding or unconditionally binding property, i.e., we do not
consider trapdoor schemes, multi-committer schemes, or universally composable
schemes.

In particular, there are many works showing that commitment schemes can be
implemented using quantum computing devices, and require quantum computation
or exchanging quantum information. The first such scheme is the (flawed) one
proposed in [BB84]. Many other better contributions were later proposed like the
constructions proposed in [DMS00, Yam13]. However, we focus on post-quantum
commitment schemes. These are commitment schemes that run on conventional

computers, and whose security is believed to hold up against quantum computers.

To the best of our knowledge, there are no other concrete commitment schemes
under the stated conditions so far, which are believed to be secure even under
quantum attacks.

In Figure 3.1 we give an overview of the commitment schemes we review in this chap-
ter in form of two simple trees. The leafs of both trees include the (sub) sections
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3.1. STATISTICALLY HIDING COMMITMENTS FROM
(RING-) SIS

where the schemes are reviewed, followed by the respective original papers in which
the constructions appeared. The parent (middle) nodes of the leafs include the com-
putational assumptions on which the computational (hiding or binding) property of
the commitment schemes are based. These computational assumptions are: small
integer solution (SIS) and its ring variant (Ring-SIS), learning parity with noise
(LPN), learning with errors (LWE), and the LWE ring variant (RLWE). The two
roots represent the resulting schemes, where UHC and UBC stand for uncondition-
ally hiding commitments and unconditionally binding commitments, respectively.

UHC UBC

&S

3.2 3.3 3.4
[BXH10]| |[JKPT12]| |[XXW13]

Figure 3.1: Overview of post-quantum commitment schemes.

Section 3.1 reviews the unconditionally hiding commitment schemes proposed in
[KTX08, Xagl0]. Section 3.2, 3.3, and 3.4 reviews the unconditionally binding
commitment schemes proposed in [BXH10, JKPT12, XXW13]|, respectively.

3.1 Statistically Hiding Commitments from
(Ring-) SIS

Hereafter we review two statistically hiding commitment schemes. Both schemes are
non-interactive, commit to bit strings, and their binding property is based on the
collision resistance of a lattice-based and ideal-lattice-based family of hash functions.
More precisely, breaking the binding property implies solving the SIS or Ring-SIS
problem, which both are considered as the source of lattice-based and ideal-lattice-
based hash functions. Originally, the commitment scheme based on SIS assumption
was presented in [KTXO08]. Thereafter, an ideal lattice variant of the scheme based
on Ring-SIS was shown in [Xagl0]. First we recall in Subsection 3.1.1 the definition
of the lattice-based and ideal-lattice-based family of hash functions. Then we review

in Subsection 3.1.2 the construction of both commitment schemes.
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3. POST-QUANTUM COMMITMENT SCHEMES

3.1.1 (Ideal-) Lattice-Based Hash Functions

First we recall the definition of the lattice-based family of hash functions. Then
we review the definition of the ideal-lattice-based family of hash functions. We
basically follow [Xagl0] with some details from [MR09, LMPROS].

Definition 3.1 (Lattice-Based Hash Functions). Let n be a security parameter
which corresponds to the underlying lattice dimension. For a modulus ¢ = n°®), a
small integer d > 1, and an integer m = poly(n) > nlogq/logd, let the set

Fo={fa: {0, d-1}" —Z; | AeZp™)

be a family of hash functions parametrized by ¢, d, and m, where

o KGen(1"): Given 17, output a uniformly random matrix A b2 VA

o Hash(A,x): Given the key A, and a message x € {0,...,d-1}", output the
digest
fa(x)=Ax (modq)€eZyj .

The family of hash functions F,, defined above was originally presented in [Ajt96].
The work of [Ajt96] shows that F,, is a family of one-way functions whose security
is based on the worst case hardness of GapSVP2, for v = poly(n), i.e., being able to
invert a function chosen from the family F,, with non-negligible probability implies

the ability to solve any instance of GapSVP2.

A followup work in [GGH96] shows that the family is indeed collision resistant for
an appropriate choice of ¢,d, and m. The main statement is that finding a collision
(x1,x2) for any fa € F, means that Ax; = Axs (mod ¢), which immediately yields
finding a short non-zero vector x = x; — x5 such that Ax =0 (mod ¢) and |x|s <

m _1\2 _ _ : : 2
VX1 (d-1)"=(d-1)y/m. This means solving SISq,m,(d—l)\/E'

Many subsequent works were established which all focused on obtaining optimiza-
tions and improving the security assumption. Nevertheless, these hash functions
are not particularly efficient, because the key size grows at least quadratically in
the security parameter n. This is practically considered too large for a simple cryp-
tographic primitive like collision resistant hash function.

A highly optimized and efficient family of hash functions was proposed in [LMO06]
and [LMPROS8] whose collision resistance property is based on the worst case hard-

ness of finding relatively short non-zero vectors in n-dimensional ideal lattices. For
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3.1. STATISTICALLY HIDING COMMITMENTS FROM
(RING-) SIS

simplicity, we describe below the family of hash functions introduced in [LMPROS],
which can be considered as a special case of the family presented in [LM06]. More
precisely, the work of [LMPROS8] considered a concrete instance from the family
presented in [LMO6]. This instance enjoys very efficient implementation from a
practical point of view.

The security parameter n, which corresponds to the underlying ideal lattice dimen-
sion, is a power of two, so that the monic polynomial " +1 is irreducible. We define
the ring R, = Z,[x]/(z™ + 1), whose elements are residue classes of polynomials of
degree less than n with integer coefficients modulo ¢. For d = 2, we define the ring

Ry in a similar way.

Definition 3.2 (Ideal-Lattice-Based Hash Functions). Let F, =(KGen,Hash) be a
family of hash functions parametrized by d = 2, a prime modulus ¢ such that 2n
divides ¢ — 1, and an integer m = poly(n) > nlogq, where

ﬁnz{fal _____ am/n: RZT/”—>Rq|a1,...,am/neRq}.

The algorithms KGen and Hash are defined as follows.

« KGen(1"): Given 17, output random fixed polynomials a1, ..., Gp/m b R,.

« Hash((ai,...,amnm),x): Given the key (aq, ..., amn/s), and a message x = (z1, ...

€ R;”/ " output the digest

m/n

For d = 2, the original representation from [Ajt96] has a key size of at most nm[log ¢]
bits, while the construction from [LMPROS8] has a key size of at most m[logg] bits.
Moreover, the main technique underlying the construction from [LMPROS] is the use
of Fast Fourier Transform (FEF'T) over the ring R, in order to perform the operations

a;-x; very efficiently. Finally, finding a collision for any f,, € F,, on the average

~~~~~ A/

with any non-negligible probability means solving Ring—SIS;"m In.g

where [ is the upper bound of the /., norm of vectors in RZL/ "

over the ring R,

Remark 3.1. Unlike the special family defined in [LMPROS], the ideal lattice family
of hash functions presented in [LMO06] can be instantiated using any monic and
irreducible polynomial g of degree n € N from the polynomial ring Z[z], i.e., g is
not restricted to be the polynomial 2™ + 1, where n is a power of two. Furthermore,

the modulus ¢ is not necessarily prime, and the parameter d is not necessarily 2.
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3. POST-QUANTUM COMMITMENT SCHEMES

3.1.2 Commitments from (Ring-) SIS

In the following we review the two non-interactive statistically hiding commitment
schemes presented in [KTX08, Xagl0] which use the lattice and ideal lattice family
of hash functions given in Definition 3.1 and 3.2, respectively.

I. Lattice-based commitment scheme

The first commitment scheme, shown in [KTXO08], uses the lattice-based family of
hash functions JF,, given in Definition 3.1. The scheme is a direct application of the
family F,, with the parameters ¢ > 4mn?®?2, m > 10nlogq, and d = 2, i.e., the message
space of the family F,, are m-bit strings. The matrix A is wide enough such that it
can be multiplied by the concatenation of the message m being committed to, and
a random bit string r.

7

o Setup(17): The setup algorithm samples a uniformly random matrix
A € Zyp*™ and sets A as a public commitment key.

o Com(A,m): The algorithm Com works as follows.

m/2

Commit phase: To commit to a message m € {0,1}""“, the prover P

samples a uniformly random bit string r € {0, 1}m/ ? computes
c=A(r|m) (mod q)eZy,

and sends the commitment c to the verifier V.
Reveal phase: To open the commitment, P sends the message m, and

the randomness r to V.

o Ver(A,c,m,r): The verifier V checks that m,r € {0, 1}m/2 and verifies
that A(r|m) =c (mod gq).

The computationally binding property simply follows from the collision resistance
property of the family F,. On the other hand, the statistically hiding property is
derived from a claim shown in [Reg09] which informally states that for some integer
¢ and ¢ uniformly random elements g, ..., g, from some finite Abelian group, a ran-
dom subset sum ¥4 73g; for uniformly random elements r; € {0, 1} is statistically
close to the uniform distribution for almost all choices of the elements gy, ..., gs.
In the above commitment scheme, the finite Abelian group is the set Zy, and the
columns of the matrix A, denoted by a; € Zj for all i € [m], are the group elements
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3.1. STATISTICALLY HIDING COMMITMENTS FROM
(RING-) SIS

chosen uniformly at random. Hence, the commitment ¢ can be written as

m/2 m/2

c=A(r|m) = Z r;a; + Z M;Qm/2  (mod q),

i=1 i=1
where 7;, m; are the entries of r,m, respectively. Following the claim implies that
the subset sum ZZ? r;a; is statistically close to the uniform distribution with over-
whelming probability over the choice of the columns a; € Z7. This shows that
for all but negligible fraction of choice of the matrix A, the distributions of two
commitments are statistically close.

The following theorem, shown in [KTXO08|, summarizes the previous results.

Theorem 3.1. Let ¢ > 4mn32, m > 10nlogq, and d = 2. If SIS;W\/E is hard
on the average, then Protocol 1 is a statistically hiding and computationally binding
string commitment scheme. In particular, if GapSVP is hard in the worst case, for
v = 1dm\/nm, then Protocol 1 is a statistically hiding and computationally binding

string commitment scheme.

As suggested in [KTXO08], the message space can be simply extended using the
Merkle-Damgérd technique [Mer90, Dam90], which uses an appropriate padding
function and a collision resistant compression function for a fixed message length
to obtain a collision resistant hash function for messages with arbitrary length.
Applying the Merkle-Damgard construction to the above commitment function

(0,13 % {0,13"” — z7, (m,r) — A(r|m) (mod g),
yields the function
(0,1} x {0,1}"™* — 7, (m,r) — A(r|m) (mod q) .

I1. Ideal-lattice-based commitment scheme

Next we use the ideal-lattice-based family of hash functions F,,, defined in [LMPROS]
and given in Definition 3.2, to review an instance of the ring variant of the commit-
ment scheme presented in [KTX08]. More precisely, the scheme we describe below is
an instance of the Ring-SIS-based construction presented in [Xagl0]. This instance
uses the ring R, = Z,[x]/(z™ + 1), where ¢ is prime, and n is a power of two. To
commit to a bit string, the construction given in [Xagl0] selects a random string,
whose entries are from the set {—1,0,+1}. The instance we describe below restricts
this set to {0,1} as in the SIS-based commitment scheme given in [KTX08] *. This

!This restriction does not affect the security of the commitment scheme, since the resulting
scheme corresponds to the one given in [KTXO08].

67



3. POST-QUANTUM COMMITMENT SCHEMES

restriction simplifies the comparison that we later perform between the SIS-based
and the Ring-SIS-based commitment scheme (see Subsection 4.2.1).

o Setup(1™): The setup algorithm samples uniformly random fixed poly-

nomials ay, ..., am/m & Ry, and sets (a1, ..., Gp/,) as a public commit-
ment key.
o Com((ai,...,amm), m): The algorithm Com works as follows.

Commit phase: To commit to a message m € {0, l}m/ ? the prover P

samples a uniformly random bit string r € {0, 1}m/ ?_ computes the hash

value
C= fal,...,am/n (r||m),

and sends the commitment c € R, to the verifier V.
Reveal phase: To open the commitment, P sends the message m, and

the randomness r to V.

o Ver((ai,...,amm),c,m,r): V verifies that m,r € {0,1}m/2, computes
the hash value of r|m, and compares the result with c.

The following theorem, shown in [Xag10], establishes the security of the commitment

scheme described above.

Theorem 3.2. Let E= EF(2"+1,3) <32, A=1A(q,2"+1,3), ¢ >3Em+/nlogn,
m >4nlogq, and d = 2. If Ring-SI, oo/l is hard on the average, and the statistical
distance A is negligible in n, then Protocol 2 is a statistically hiding and compu-
tationally binding string commitment scheme. In particular, if SVPY is hard in
the worst case for v = 8E2mlog®n, and A is negligible in n, then Protocol 2 is a

statistically hiding and computationally binding string commitment scheme.

According to [XaglO], the message space of the ideal-lattice-based commitment
scheme described above can also be extended using the Merkle-Damgard technique

to obtain a commitment function for bit strings with arbitrary length.

2The value EF(z™ + 1,3) is the expansion factor of the polynomial 2" + 1 (see Equation 1.3).
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3.2. STATISTICALLY BINDING COMMITMENTS FROM LWE-BASED
ENCRYPTION

3.2 Statistically Binding Commitments from LWE-
Based Encryption

This section describes the commitment scheme proposed in [BXH10], which employs
the LWE-based public-key cryptosystem presented in [GPVO0S].

First we review the required parameters for the cryptosystem, proposed in [GPV08|,
in order to decrypt correctly with overwhelming probability, and achieve the re-
quired security assuming the hardness of LWE. For a security parameter n, the

cryptosystem uses the parameters r > w(y/logm), a < 1/(ry/m-w(y/logn)), m >
2(n+1)Ing, and a prime modulus ¢ > 5rm. Furthermore, the cryptosystem sets

T, to be the distribution on Z4 obtained by sampling a normal variable with mean
0 and standard deviation aq/v/27, rounding the result to the nearest integer and

reducing it modulo q.

Next we recall the LWE-based public-key cryptosystem from [GPVO08].

« KGen(1"): Given 1", choose a uniformly random vector s € Z7, a uni-
formly random matrix A € Z7*™, and compute the vector p = ATs+x €
27, where each entry x; from x is chosen independently from the error
distribution W, for all i € [m]. Finally, set sk = s, pk = (A,p) as the

private and public key, respectively.

o Enc((A,p),b): Given a public key pk = (A,p), and a bit b € {0,1} to
encrypt, choose a vector r € Z™ from the discrete Gaussian distribution
Dzm ., and compute u = Ar,c = p’r +b-|¢/2|. Finally, output the
ciphertext (u,c) € Zp*!.

o Dec(s, (u,c)): Given a secret key sk =s, and a ciphertext (u,c), com-
pute V' = ¢ —sTu € Z,, and output the bit 0 if b’ is closer to 0 than to
|¢/2] modulo ¢, otherwise output 1.

The following lemma, shown in [GPV08], indicates that it is possible to extract the
secret key sk =s from a properly-generated public key pk = (A, p) using a trapdoor
T for the matrix A.

Lemma 3.1. There exists an efficient algorithm for the above cryptosystem such
that for all but at most negligible fraction of public keys generated by the algorithm
KGen(1"), given a trapdoor T for the matrizx A and a public key (A,p), it can
efficiently extract the unique secret key s.
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3. POST-QUANTUM COMMITMENT SCHEMES

We proceed to review the statistically binding commitment scheme proposed in
[BXH10], which is non-interactive, and commits to single bits. The scheme directly
employs the public-key cryptosystem described above. We denote this public-key
cryptosystem by £.

7

o Setup(17): The setup algorithm chooses some security parameter n € N
for the public-key cryptosystem £ described above.

o Com(n,b): The algorithm Com works as follows.
Commit phase: To commit to a bit b € {0,1}, the prover P chooses

parameters r,m, g, ¥, for the cryptosystem &, and invokes the algorithm
KGen and Enc of £ to obtain a public key and a ciphertext, i.e.,

(pk = (A,p),sk =s) <« KGen(1"), and (u,c)<« Enc((A,p),b),

where the matrix A admits a trapdoor T. The commitment ¢ consists
of the chosen parameters, and the public key along with the encryption
pair, i.e.,

c=(r,m,q, V., A, p,u,c) .

Reveal phase: To open the commitment, P sends to the verifier the

committed bit b, the trapdoor T of the matrix A, and the vectors x,r
used in generating the public key and the encryption pair, respectively.

o Ver(n,c,b, T,x,r): The verifier V checks that the commitment is legally
generated by computing the public key and the ciphertext. Moreover, V
verifies that the secret key is extractable and corresponds to the public
key.

The extraction algorithm guaranteed by Lemma 3.1 is deterministic. This implies
that almost all legitimate public keys correspond to a unique private key. Thus,
the bit committed by an encryption relative to such legitimate public key has a
unique decryption. Therefore, it holds the statistically binding property. Further-
more, the computationally hiding property follows directly from the security of the
cryptosystem.

Remark 3.2. An extension of the above commitment scheme for committing to
(-bit strings was appeared in [BLX11]. More precisely, the length ¢ is set to be
public along with the security parameter n. The authors stated that their scheme
is perfectly binding. The commitment of an ¢-bit string (b1, ba, ..., b,) is the tuple

Cc= (T,m,q,‘i’a,A,p,EIlC((A,p),bl),EnC((A,p),bQ), s ,EHC((A,p),b3)> .
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3.3 Perfectly Binding Commitments from LPN

We review below a non-interactive perfectly binding commitment scheme proposed
in [JKPT12]. The scheme commits to bit strings, and its hiding property is based on
the exact learning parity with noise (xLPN) assumption. The assumption was defined
in [JKPT12], which is a new version of the LPN problem. The xLPN,, ; problem is
defined exactly like LPN,, -, except that the Hamming weight w of the error vector
is exactly |¢7], where ¢ is the length of the error vector, and 0 < 7 < 1/2 is the noise
parameter, i.e., the error vector is sampled uniformly at random from the set of all
t-bit strings of Hamming weight w = |t7]. We denote this set by {0,1}’,.

The commitment scheme is parameterized by a security parameter n, which is cho-
sen such that LPN,, ; is hard, where 0 < 7 < 1/4. Furthermore, the scheme uses the
parameters ¢t € O(n + {),w = |t7], where £ is the length of the message being com-
mitted to. The message length ¢ can be arbitrary. However, to perform efficiency,
it was suggested in [JKPT12] to choose it roughly of the same size as n.

s a

« Setup(17): The algorithm sets a binary matrix A = A’|A” ¢ {0, 1}
as a public commitment key, where A’ € {0,1}”", and A” € {0,1}"* are

chosen uniformly at random.

o Com(A,m): The algorithm Com works as follows.
Commit phase: To commit to a message m € {0, 1}6, the prover P

selects uniformly random strings r € {0,1}",e € {0,1}, compute
c=A(rlm)ee=Aro A"meoe,

and sends the commitment c € {0,1}" to the verifier V.
Reveal phase: To open the commitment, P sends m and r to V.

o Ver(A,c,m,r): V verifies that the bit string c® A (r|m) has Hamming
weight exactly w.

Setting ¢t € ©(n + ) large enough implies that the distance of the code generated by
the random matrix A € {0, 1}“("%) is large. Thus, it follows the perfectly binding
property. Moreover, the computationally hiding property follows directly from the

xLPN,, ; assumption, which implies that A’r @ e, and hence c, is pseudorandom.
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3. POST-QUANTUM COMMITMENT SCHEMES

3.4 Perfectly Binding Commitments from RLWE

Eventually, we review a perfectly binding commitment scheme presented in [XXW13].
The scheme is non-interactive, commits to vectors of integers from a finite ring, and
its hiding property is based on the RLWE assumption. This work can be seen as an
extended construction of the scheme from the previous section, which was shown in
[JKPT12], since LPN can be considered as a special case of the LWE problem.

The security parameter n is a power of two, and the message space is Rf; for ¢ =
poly(n), where R = Z[z]/(®Ppn(2)), Pm(x) is the m-th cyclotomic polynomial of
degree ¢(m) =n, and R, = R/qR for a prime ¢ = poly(n) such that ¢ =1 mod m.
Additionally, the scheme uses the parameters t = (£ + 1) -w(logn), 5 < q/2n, and a
[S-bounded distribution y over R, i.e., y outputs elements of R with norm at most 8
with overwhelming probability. To perform efficiency, it was suggested in [XXW13]
to choose £ € O(1), and t = w(logn).

o Setup(17): The setup algorithm samples a & R, A b R, and sets
A =a|A’ e R¥“ a5 a public commitment key.

o Com(A,m): The algorithm Com works as follows.
Commit phase: The commitment of a message m € Rf is the value

c=A(rlm)+e=ar+A'm+ecR],

where r € R, is chosen uniformly at random, and e < x*.
Reveal phase: Opening the commitment is performed by sending the

message m, and the randomness r.

o Ver(A,c,m,r): The verifier checks if [c — A(7|m)]| < B.

The perfectly binding property is due to the fact that the shortest non-zero vector
in the g-ary lattice defined by the matrix A is not too small with overwhelming
probability. The computationally hiding property follows directly from the RLWE,

assumption, i.e., ¢ is pseudorandom.

Remark 3.3. The commitment scheme described above was proposed in [BKLP14]
as well, but with a slight difference such that requirements on valid openings are
relaxed to be able to realize better zero-knowledge proofs while still preserving
the perfectly binding property of the scheme. More precisely, the ring is set to
R = Z[x]/(x™ + 1), the parameter ¢ is chosen to be 1, i.e., the message space is

Ry, and an additional small polynomial f € R, is allowed in valid openings, where

72



3.4. PERFECTLY BINDING COMMITMENTS FROM RLWE

[ fllo <1, and deg(f) < n/2. An honest prover can always set f = 1 when opening
the commitment c. Therefore, the verification is not affected by this relaxation,

while a malicious prover still cannot open a commitment to two different messages.
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Chapter 4

Comparing Commitment Schemes

In this chapter we compare the commitment schemes included in Chapter 2 and 3.
The goal of the comparison is to evaluate the properties that each scheme enjoys,
and to obtain two schemes, one that is unconditionally hiding, and one that is
unconditionally binding. Both commitment schemes are desired to be “efficient”

and secure even against quantum computers.

In fact, the efficiency of a protocol depends on different factors. The most impor-
tant factors are interaction and communication complexity. Protocols are typically
interactive, since their parties exchange messages back and forth. Thus, interaction
is very expensive, because the number of rounds of communication heavily reflects
on the overall running time of a protocol. Communication complexity refers to the
total number of bits sent by the parties during the execution of a protocol and plays
a major role for its efficiency. In our comparison we consider these two factors to
measure the efficiency of the commitment schemes.

We separately compare unconditionally hiding commitment schemes, and uncondi-
tionally binding commitment schemes among each other. This is reasonable and
meaningful, since unconditionally hiding and binding commitments have different
applications. For example, unconditionally hiding commitments are required when
commitment schemes are used as a building block in constructions of larger pro-
tocols. In such applications, the binding property is typically required to ensure
the unambiguity of commitments that are opened during the protocol execution.
However, the hiding property is required to ensure that the unopened commitments
remain secret even after the protocol execution. Thus, it is sufficient for the bind-
ing property to be computational, whereas the hiding property is required to hold
unconditionally. On the other hand, commitment schemes were used in the work of
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[GMWO91] on building zero-knowledge interactive proof systems for every language
in NP. In this work, it is sufficient for the hiding property to be computational,
whereas the binding property is required to hold unconditionally.

We start in Section 4.1 by comparing the general constructions of commitment
schemes from Chapter 2. Then we compare the concrete commitment schemes from
Chapter 3 in Section 4.2. Finally, we compare in Section 4.3 the results of Section
4.1 with the results of Section 4.2.

We give an overview of our comparison plan in Figure 4.1, where UHC and UBC
stand for unconditionally hiding and unconditionally binding commitment schemes,

respectively.

UHC UBC

constructions: 4.2.1 || constructions: 4.1.2 || constructions: 4.2.2

Comparing general || Comparing concrete || Comparing general || Comparing concrete
constructions: 4.1.1

Result Result Result Result

Comparlng both Comparlng both
results: 4.3.1 results: 4.3.2

Res'ult Res'ult

Figure 4.1: Overview of comparing the commitment schemes.

4.1 Comparison Between General Constructions

In this section we compare the general constructions of commitment schemes from
Chapter 2. We start by comparing the constructions of unconditionally hiding
commitment schemes with each other. Then, we compare the constructions of

unconditionally binding commitment schemes with each other.
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4.1.1 Unconditionally Hiding

We first provide a brief review of the general constructions that provide uncondi-
tionally hiding commitment schemes in form of a table (see Table 4.1). This table
includes some features, which are set in columns. We declare these features in the

following.

In the first column we refer to the corresponding subsection and original paper
of each protocol. The second column includes the model of each protocol, which
indicates if the scheme is statistically (sta.) or perfectly (per.) hiding. We then
consider the protocol interaction in the third column, i.e., we provide the number
of rounds (or an upper bound) required for sending the commitment. The next
two columns include the message type being committed to (bit or bit string), and
the computational assumption or protocol, on which each construction is based.
This includes one-way functions (OWF), one-way permutations (OWP), collision
resistant hash functions (CRHF'), ¥-protocols, and PIR protocols. The last column
is for communication overhead, i.e., we give in this column the total number of bits
(or an upper bound) required for sending and opening a commitment. For the rest
of this chapter, the security parameter of all schemes is denoted by n.

The scheme Model | Interaction Message type Computat%onal Communlc?xtlon
assumption complexity

2.1.2 [HNO*09] | sta. n®® rounds | bit OWF poly(n)

2.2.2 [INOVY98] | per. 2n -1 rounds | bit OWP n?+n+1

2.2.3 [TPY08] | per. 2 rounds bit OWP 3n

2.3.1 [HM96] sta. 1 round bit string CRHF (+0(n)*

2.3.2 [DPPI7] | sta. > 2 rounds bit/bit string | CRHF poly(n)

2.3.3 [DPP98] | sta. 1 round bit string CRHF (+0(n)*

2.5.1 [Dam89] per. 1 round bit string Y-protocol poly(n)

2.5.2 [BIKM99] | sta. >3n? rounds | bit PIR protocol | poly(n)

* { is the message length.

Table 4.1: A brief review of the unconditionally hiding schemes from Chapter 2.

Assuming that the hiding property is not required to hold perfectly, Table 4.1
shows that there are only two constructions that are interesting for the comparison.
Namely, the construction [HM96] and [DPP98|. In the following we justify this
statement by gradually excluding the other constructions from consideration and
giving a significant reason for the exclusion.

o The authors of [HNO*09] stated that their construction is very inefficient and
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certainly would never be utilized in practice. This can also be seen from Table
4.1, since the construction utilizes n®™ rounds of interaction and poly(n) bits
of communication for committing to only a single bit. The same reasoning

applies to the construction [BIKM99] which employs some PIR, protocol.

o By comparing the constructions [NOVY98, TPY08] which both use OWPs,
we observe that the construction [NOVY98] is also inefficient. This is because
it calls for 2n — 1 rounds to commit to a single bit and requires polynomially
many bits of communication. On the other hand, the construction [TPY0§]
calls for only two rounds and requires linearly many bits of communication.
Hence, it is obviously more efficient than [NOVY98]. Nevertheless, there is
unfortunately no one-way permutation known so far, which is believed to be
secure under quantum attacks.

« Although the construction [DPP97] may have communication cost of O(n)
rather than poly(n) bits, we observe that it requires at least two rounds. This
depends on the key generation algorithm of the utilized fail-stop signature
scheme which can be constructed from any CRHF. In contrast, the construc-
tions [HM96, DPP98| are non-interactive and use CRHFs as well. Therefore,
provided that the construction [DPP97] achieves O(n) bits of communication,
and it can be used for committing to bit strings, the drawback of this construc-
tion is then the interaction, compared with the constructions [HM96, DPP9S].

« The construction [Dam89] may have communication cost of O(n) rather than
poly(n) bits. This depends on the complexity of the utilized 3-protocol. How-
ever, the utilized »-protocol must have the perfect zero-knowledge property.
In addition, the hard relation on which the utilized »-protocol is defined, must
have the property that it is easy to verify membership in the language defined
by this relation. Nevertheless, the construction is suitable for applications,
where the hiding property is required to hold perfectly.

As a first result, the construction [HM96] and [DPP98] are left to compare. In
fact, they are very similar to each other. Both constructions are non-interactive,
statistically hiding, commit to ¢-bit strings, use some family of 2-universal hash

functions, and require ¢+ O(n) bits of communication.

In order to get precise values for the communication complexity and obtain concrete
results, we assume that both commitment schemes have the same security parameter
n, and use the same CRHF f. Thus, we first have to determine which family of
2-universal hash functions is better to use. We have seen two constructions of such a

family in Example 2.1 and 2.2. Any function from Construction I given in Example
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2.1 can be described using t + 2¢ — 1 bits, where ¢,/ are the bit length of the input
and output, respectively. On the other hand, any function from Construction II
given in Example 2.2 requires 2¢ bits, where ¢ is the bit length of the input as well.
Therefore, determining which construction is more efficient, depends on the value

of t and ¢. We distinguish the following cases.

- Case 1: If t > 2¢ — 1, then Construction I is more efficient than II.
- Case 2: If t =2/ -1, then Construction I and II are equivalent.

- Case 3: If t <2 -1, then Construction II is more efficient than I.

The parameters t, ¢ have different values in the commitment schemes [HM96, DPP9S].
The former scheme sets t = 6n + 4, and ¢ = n, whereas the latter sets ¢ = 3(n + 1),
and ¢ =n+ 1. Thus, for both schemes, the parameter ¢ is greater than 2¢ -1, which
corresponds to Case 1 given above. Therefore, Construction I given in Example 2.1
is better to use in either commitment scheme. Hence, we employ Construction I for
our comparison as a family of 2-universal hash functions H = (KGen(1"), H). Any
function Hy, € H requires t+2¢ -1 = 8n+ 3 bits for the commitment scheme [HM96],
and 5n + 4 bits for the scheme [DPP9S].

Table 4.2 gives the required details for the comparison.

The scheme [HM96] [DPP9S]

Message m e {0,1} m e {0,1}"

Parameter ¢ t=6n+4 t=3(n+1)

CRHF f f:{0,1} — {0,1}" £+ {0,1}" — {0,1}""

H = (KGen(1"), H) Hy: {0,1}' — {0,1}" Hy: {0,1}' — {0,1}""
Random string re{0,1} re{0,1}

Commitment string (Hy, f(x)) € 0,1 | f(Hil f(x)] f(m) @ Hy(r)) € {0,1}"
Decommitment string (r,m) e {0, 1} (H,r,m) ¢ {0,1}¥"7
Communication complexity 15n+7+/ In+8+/¢

Table 4.2: Comparison between the construction [HM96] and [DPP9S].

Finally, Table 4.2 shows that the construction [DPP98] requires lower communica-
tion complexity than the construction [HM96]. Therefore, the construction [DPP9S§]
is the result of comparing the general constructions of unconditionally hiding com-

mitment schemes from Table 4.1.

Remark 4.1. We note that our comparison assumed that the hiding property is

not required to hold perfectly. If a post-quantum commitment scheme with the
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perfectly hiding property is required, then the construction [Dam89] is the only one

available from the general constructions of commitment schemes.

4.1.2 Unconditionally Binding

As in the previous subsection, we first give in Table 4.3 a brief review of the general
constructions from Chapter 2, which provide unconditionally binding commitment

schemes.
The scheme | Model | Interaction | Message type Computat?onal Commumc.atlon
assumption complexity
2.1.1 [Nao91] | sta. 2 rounds bit OWF n+1
2.1.1 [Nao91] | sta. 2 rounds bit string OWF O0),>0(n)*
2.2.1 [GK96] | per. 1 round bit OWP 3n+1
2.4.1 [CDO4] | sta. 1 round bit string PKE** poly(n)

* { is the message length.
** PKE means public-key encryption.

Table 4.3: A brief review of the unconditionally binding schemes from Chapter 2.

Table 4.3 shows that the construction [GK96] is the most efficient one, since it is
non-interactive, and requires only 3n + 1 bits of communication. The drawback is
that it only commits to single bits. Nevertheless, we unfortunately cannot consider
this construction, since there is no one-way permutation known so far, which is

believed to be secure under quantum attacks.

The construction [CDO04] is non-interactive and performs an additional property
beside hiding and binding. Namely, the scheme is non-repudiable, i.e. a prover
cannot deny having committed to any bit string, that already has been committed
to by the prover. Non-repudiability can be achieved in any commitment scheme
by having the commitment value digitally signed by the prover using some digital
signature scheme before sending the commitment to a verifier. The construction
[CDO04] utilizes the signing process implicitly so that there is no need for additionally
signing commitment values to achieve non-repudiability. However, this construction
uses public-key cryptosystems with commutative keys. According to [KLO7], the
corresponding signature scheme of such a cryptosystem is in most cases inapplicable,
and in cases when it is applicable, it results in signature schemes that are completely
insecure. Thus, there may be no such a post-quantum cryptosystem. Moreover,

public-key cryptography is in general more expensive than symmetric cryptography
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such as one-way functions (OWFs) or pseudorandom generators (PRGs). Therefore,
the construction [Nao91] that commits to bit strings is less expensive than [CD04],
since it uses some PRG.

On the other hand, committing to single bits is much limited, whereas committing
to bit strings is a fundamental need in many cryptographic applications. Therefore,
it is reasonable to only consider the construction [Nao91] that commits to bit strings,
and adopt it as our result of comparing the constructions from Table 4.3.

Remark 4.2. We note that the general constructions of unconditionally binding
commitment schemes given in Table 4.3 cannot provide a post-quantum commit-

ment scheme with the perfectly binding property.

4.2 Comparison Between Concrete Constructions

In this section we compare the commitment schemes from Chapter 3. We start by
comparing the unconditionally hiding commitment schemes with each other. Then,
we compare the unconditionally binding commitment schemes with each other. In
addition to the features included in the tables of the previous section, we consider
in this section homomorphic properties of the schemes. This is significant, since

commitment schemes can be even more useful if they are homomorphic.

4.2.1 Unconditionally Hiding

As in the previous section, we first give in Table 4.4 an overview of the uncondi-
tionally hiding commitment schemes from Chapter 3.

By considering our criteria for measuring the efficiency of commitment schemes,
Table 4.4 shows that both commitment schemes are non-interactive, and have com-
munication cost of m +n[loggq]| bits. The modulus ¢, and the parameter m differ in
either scheme. In order to simplify the comparison, we set the security parameter
to n =128, and obtain bounds on ¢ and m given in Table 4.5.

Table 4.5 indicates that the parameters ¢,m have smaller bounds in the scheme
[Xagl0] than those in the scheme [KTXO08]. Thus, we conclude that the scheme
[Xag10] has lower communication complexity than that of the scheme [KTXO08].

Remark 4.3. We stress that our comparison considered the interaction and com-

munication complexity, which we set in the beginning of this chapter. However, if
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The scheme 1 [KTX08] 2 [Xagl0]

Model statistically statistically
Interaction one round one round

Type of the message m (m/2)-bit string (m/2)-bit string
Computational assumption SIS Ring-SIS
Modulus ¢ q > 4mn3/? q>3Em\/nlogn, £ <3
Parameter m m > 10nlogq m > 4nlogq
Public key A & g a< Ry
Random string re{0,1}"? re{0,1}"?
Commitment string A(r|m)eZp | a(r|m)e R, =Zy[x]/(z"+1)
Decommitment string (r,m) e {0,1}" (r,m) e {0,1}"
Communication complexity | m + n[logq| m + nflogq|
Homomorphy - -

Table 4.4: An overview of the unconditionally hiding schemes from Chapter 3.

[KTX08] [Xagl0]
q>95793m q>712m
m > 1280logq | m > 512logq

Table 4.5: Bounds on the parameters q,m, where n = 128, and E = 3.

the parameters m, ¢ have the same values in both schemes, then regarding our cri-
teria, both schemes have the same efficiency. Nevertheless, the scheme [Xag10] still
outperforms the scheme [KTXO08]. This can be justified by considering the public
key size. The scheme [Xagl0] has at most m[logq] bits of public key, whereas the
public key size of the scheme [KTX08] is at most nm[loggq]| bits. Furthermore, if
we consider local computations, we maintain the same result, since multiplication

over the ring R, can be performed very efficiently using Fast Fourier Transform.

Remark 4.4. We note that both commitment schemes [KTX08] and [Xagl0] are
not additively homomorphic. This is because adding two correctly computed com-
mitments yields a commitment of a message, which is not necessarily a bit string.
This can affect the output of the verification algorithm of both commitment schemes,
since it can reject a correctly computed commitment. As a result, we don’t have
a post-quantum commitment scheme that is unconditionally hiding and additively
homomorphic.

Remark 4.5. We note that we don’t have a post-quantum commitment scheme
with the perfectly hiding property.
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4.2.2 Unconditionally Binding

First we give in Table 4.6 an overview of the unconditionally binding commitment
schemes from Chapter 3. All schemes are non-interactive. Therefore, we omit the

interaction column.

The scheme | Model | Message type Computat?onal Homomorphy Commumctatlon
assumption complexity

3.2 [BXH10] | sta. bit* ** LWE - poly(n)

3.3 [JKPT12] | per. bit string xLPN - t+n+0

3.4 [XXW13]*1 per. integer vector | RLWE - (t+£+1)nflogq]*

* The parameters /,t, and ¢ are explained below.
** This scheme was also proposed in [BKLP14] with a slight difference.
*** The work of [BLX11] performs bitwise commitment to commit to bit strings.

Table 4.6: An overview of the unconditionally binding schemes from Chapter 3.

Table 4.6 shows that the scheme [BXH10] is very inefficient, since it requires poly(n)
bits of communication for committing to only a single bit. This also applies to the
extended commitment scheme [BLX11], which performs bitwise commitment for

committing to bit strings.

In order to compare the remaining two schemes [JKPT12, XXW13], we examine
both schemes more precisely in Table 4.7, where n,n’ denote the security parameters
of the schemes [JKPT12, XXW13], respectively.

To obtain concrete results for the communication complexity of the commitment
schemes from Table 4.7, we have to select for both schemes concrete parameters,
which ensure that the computational problem is hard with respect to a particular
security level (e.g., 80-bit security), while still keeping parameters as small as possi-
ble for performance reasons. To achieve this, it is essential to determine the fastest
known algorithms for solving (R)LWE and LPN.

The best known algorithm for solving LPN was recently presented in [GJL14]. In
[GJL14], the authors suggested the instance LPNsg2 195 to achieve 80-bit security,
i.e., the length of the secret vector is n = 592 bits, and the error vector e € {0, 1}t is
chosen from Bernoulli distribution with parameter 7 = 0.125.

Recently, the work of [APS15] gathered and presented the available algorithms for
solving LWE. The authors of this work stated that in the literature, the hardness
of LWE was established only asymptotically, and most algorithms that solve LWE
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The scheme [JKPT12] [XXW13]
Model perfectly perfectly
Interaction one round one round
Type of the message m (-bit string** m € Rg’*
Computational assumption xLPN RLWE
Parameters ¢, ¢’ teO(n+Y) t'=("+1) w(logn')*
Public key AL {0,110 A & Ry
Random string re{0,1}" reR,
Commitment string A(rlm)®ec{0,1}' | A(r|m)+ec RY
Decommitment string (r,m)e{0,1}"* (r,m) e RE*1
Communication complexity t+n+/ (t"+ 0"+ 1)n'[log q]
Homomorphy - -

* Ry =Zy[z][(Pm(x)), @(m) =n', q¢=poly(n'), and for efficiency, ¢’ and #'
are chosen such that ¢’ € O(1), and ¢’ = w(logn').
** To perform efficiency, ¢ is chosen such that ¢ ~ n.

Table 4.7: Comparison between the scheme [JKPT12] and [XXW13].

have no tight closed formulae for expressing their complexities. Their work also
indicates that there is no particular algorithm, which always outperforms all others,
and the performance of the algorithms depends on the selected parameters. On
the other hand, in the work of [LPR13], where RLWE was defined, the authors
stated that the asymptotically fastest known algorithms for ideal lattices perform
essentially no better than their generic algorithms for general lattices.

Therefore, performing our comparison requires selecting parameters for the com-
mitment scheme [XXW13], which assure that the best attack strategy for solving
LWE takes at least 2" operations, for the lattice dimension n’ that achieves 80-bit
security. The results of [APS15] shows that the dimension n’ = 128 does not provide
80-bit security. Moreover, RLWE requires n’ to be a power of two. Thus we set the
dimension to n’ = 256, which should achieve 80-bit security, according to the results
of [APS15].

After estimating concrete security parameters on both commitment schemes for
some security level, we have to choose the remaining parameters of the schemes as
small as possible according to their bounds given in Table 4.7. Therefore, we set
¢ =n, so that t = 2n, and ¢' =1, ' = 1+ [logn’]. We obtain two minimal sets of
parameters given in Table 4.8.

The sets of parameters given in Table 4.8 show that the scheme [JKPT12] requires
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DKPT12] | [XXW13]

n =592 n' =256
lm| =592 | |m|=256[logq]|
t=1184 t'=9

Table 4.8: Minimal sets of parameters for the commitment schemes [JKPT12,
XXW13], for 80-bit security.

t +n+ ¢ =2368 bits of communication, whereas the scheme [XXW13] requires (¢’ +
"+ 1)n/[log q| = 2816[log q] bits, which are more than 2368, for any ¢ = poly(n').
Finally, we conclude that the scheme [JKPT12] has lower communication complexity
than that of the scheme [XXW13].

Remark 4.6. We point out that even if we commit to a message of the same bit
length in both commitment schemes, we obtain the same result. This can be seen
by setting |m| = ¢ = n’[logq]| = 256[log¢|, which implies t = n + ¢ = n + n'[logq]| =
592 + 256[log ¢|. The resulting communication complexity of the scheme [JKPT12]
is t + n+ ¢ = 1184 + 512[log ¢| bits, which is still smaller than that of the scheme
[XXW13], for any ¢ = poly(n').

Another fact that we can consider is that LWE is a natural extension of the LPN
problem, i.e., the special case ¢ = 2 of LWE corresponds to the LPN problem.
According to [Regl0], the security of (R)LWE requires ¢ to be somewhat large.
Therefore, at least the factor [logq| makes the communication complexity of the
scheme [XXW13] larger than that of the scheme [JKPT12].

Remark 4.7. We note that the commitment scheme [JKPT12] is not additively
homomorphic. This is due to the fact that the error vector e € {0,1}" from the
commitment string must have an exact Hamming weight. Hence, adding two error
vectors of some Hamming weight w does not necessarily yield a vector of the same
Hamming weight w. This can affect the output of the verification algorithm of the
scheme. A relatively similar reason applies to the commitment scheme [XXW13].
This is due to its verification algorithm, which verifies whether the norm of the error
vector is upper-bounded by the predetermined bound S of the error distribution.
However, a limited number of additions could be performed by selecting error vectors
that have norm much smaller than 5. This would not affect the output of the
verification algorithm of the scheme. As a result, we don’t have a post-quantum

commitment scheme that is unconditionally binding and additively homomorphic.
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4.3 Comparing All Together

In this section we compare the results of Section 4.1 with those of Section 4.2. More
precisely, we compare the resulting unconditionally hiding commitment schemes
from Subsection 4.1.1 and 4.2.1 with each other, and the resulting unconditionally
binding commitment schemes from Subsection 4.1.2 and 4.2.2 with each other. We

recall that our comparison considers interaction and communication complexity.

4.3.1 Unconditionally Hiding

The results of Subsection 4.1.1 and 4.2.1 are the statistically hiding commitment
schemes [DPP98, Xagl0], respectively. The former scheme employs any family of
collision resistant hash function (CRHFs), whereas the latter scheme is based on
the Ring-SIS problem.

Before comparing both commitment schemes, it is substantial to consider works that
improve the parameters of the (Ring-) SIS problem, while preserving its hardness.
The most recent result was shown in [MP13]. This result shows that the SIS prob-

lem retains its hardness for moduli ¢ nearly equal to the solution bound . More
'4

yw(vlogn)
in the worst case on n-dimensional lattices to SISZm 5 on the average case, where

q > B-nD m = poly(n),y = max{1, 3/n*D} . O(By/n), and p > 1. In [MP13],
the authors stated that the lower bound given for ¢ is essentially optimal, since the

precisely, the work of [MP13] gives a polynomial-time reduction from SIVP

problem is trivially easy for ¢ < j3.

The result of [MP13] can be applied to the commitment scheme [Xagl0], whose
binding property is based on the ring variant of SIS (Ring-SIS) problem. This
requires setting n to be a power of two, m to be a multiple of n, and ¢ to be a
prime such that 2n divides ¢ — 1. However, the parameter m must be large enough
to ensure the statistically hiding property.

The commitment scheme [DPP98] uses any CRHF f* that maps bit strings of
arbitrary lengths to bit strings of length n’/+1, for a security parameter n’. According
to [DPP98], such a function can be constructed from any CRHF f with given
input length m/, and output length n’ < m’, using the Merkle-Damgard technique.
Therefore, the hash size n’ of the CRHF f corresponds to the security parameter
of the commitment scheme [DPP98]. Unlike the commitment scheme [Xagl0], the
scheme [DPP98] manages the statistically hiding property by using some family of

2-universal hash functions. We can use one of the 2-universal hashing constructions
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given in Example 2.1 and 2.2. However, since the utilized family of 2-universal
hash functions affects the communication complexity of the commitment scheme
[DPPI8], we adopt a family given in [Sho09]. Describing any function from this
family requires less bits than describing any function from the family given in either

Example 2.1 or Example 2.2.

Remark 4.8. We point out that there may be in the literature 2-universal hash
functions, whose description requires less bits than describing any function from
the family given in [Sho09]. This would make the communication complexity of the
commitment scheme [DPP98] even lower.

The following example describes the family of 2-universal hash functions which we
adopt from [Sho09].

Example 4.1 (2-Universal Hashing Construction III). For a positive integer ¢,
consider the family H = {Ha,  a,, : a1,...,a,1 € GF(2")}.

Each tuple (ai,...,a, 1) describes a function H,, _a, ,: GF(2")! — GF(2") such
that Ha,, a,,(X0,...,Xe-1) =Xo+a1X1 +...+a,_1X,_1, where each n-bit string x; is
interpreted as an element in GF(2"), for all i =0,...,¢—-1. Any function from this

family can be described using n(¢ - 1) bits.

The commitment scheme [DPP98] requires a family of 2-universal hash functions
that maps t-bit strings to (n’ + 1)-bit strings, where ¢ = 3(n/ + 1). In order to use
a function Hj from the 2-universal family H given in Example 4.1, we adjust the
function to Hy, 4, : GF(27*1)3 — GF(2"*1), where k = (a;,a,) b GF(27'+1)2,
Therefore, we need only 2(n’ + 1) bits to describe the function Ha, a,.

Table 4.9 gives a brief overview of the commitment schemes [DPP98, Xag10], where

n’,n denote their security parameters, respectively.

The scheme 2.3.3 [DPP9g] 2 [Xagl0]
Model statistically statistically
Interaction one round one round
Type of the message m ¢-bit string | (m/2)-bit string
Computational assumption CRHF Ring-SIS
Communication complexity | 6(n’+1)+/¢ m +n[logq|
Homomorphy - -

Table 4.9: Comparison between the commitment schemes [DPP98] and [Xag10].

Determining which commitment scheme has lower communication complexity de-

pends on the choice of the parameters for some security level. The parameters of
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the scheme [Xagl0] have to be chosen according to [MP13] such that the Ring-SIS
problem is hard for some security level. Furthermore, the parameter m has to be
chosen large enough in order to ensure some negligible statistical gap. However, es-
tablishing a concrete value for the security parameter n’ of the commitment scheme
[DPP98] for some security level, depends on the hash size of the employed CRHF.
Therefore, we give in the following an upper bound on the security parameter n’
(or the hash size n’ of the utilized CRHF), under which the commitment scheme
[DPPI8] outperforms the scheme [Xagl0] for any security level x. This upper bound
assumes that the message being committed to is of the same length in both schemes,
i.e., £ =m/2 (see Table 4.9).

We let n(x) denote the security parameter of the scheme [Xagl0O] and n/(x) the
security parameter of the scheme [DPP98]. The parameter n’(x) is also the hash
size of the employed CRHF that achieves a security level of x for collision resistance.
Furthermore, we use the family of 2-universal hash functions given in Example
4.1 for the scheme [DPP98]. Then, according to Table 4.9, the scheme [DPP9g]
requires 6(n’(k) + 1) + m/2 bits of communication, whereas the scheme [Xagl0]
requires m +n(k) - [log¢] bits. Therefore, the scheme [DPP98] has communication
complexity lower than that of the scheme [Xagl0], if it holds that

6(n'(k)+1)+m/2<m+n(x)-[logq] .

This implies

n'(k) < (2n(k) - [logg| +m —12)/6 . (4.1)

We conclude that our result of comparing the commitment scheme [DPP98] with
the scheme [Xagl0] depends on the upper bound on the hash size of the utilized
CRHEF in the scheme [DPP98] which we established in Inequation 4.1.

Remark 4.9. We note that we did not obtain a post-quantum commitment scheme

that is unconditionally hiding and additively homomorphic.

Remark 4.10. We point out that both commitment schemes we compared in this
subsection provide statistically hiding commitments. If a post-quantum commit-
ment scheme with the perfectly hiding property is required, then the only commit-
ment scheme that can be used is the scheme proposed in [Dam89]. This scheme
employs some Y-protocol with the perfect zero-knowledge property for some hard
relation. In addition, the hard relation must have the property that it is easy to
verify membership in the language defined by this relation.
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4.3.2 Unconditionally Binding

We give in Table 4.10 a brief overview of the resulting unconditionally binding
commitment schemes from Subsection 4.1.2 and 4.2.2.

The scheme 2.1.1 [Nao91] 3.3 [JKPT12]
Model statistically perfectly
Interaction two rounds one round
Type of the message (-bit string, ¢ > O(n) (-bit string*
Computational assumption PRG xLPN
Communication complexity O(¢) t+n+(, teO(n+/{)
Homomorphy - -

* To perform efficiency, ¢ is chosen such that ¢ ~ n.

Table 4.10: Comparison between the scheme [Nao91] and [JKPT12].

Table 4.10 shows that the communication complexity of both commitment schemes
are relatively close. The commitment scheme [Nao91] uses some pseudorandom
generator (PRG). On the other hand, the definition of the decisional xXLPN problem
already implies that xXLPN samples are pseudorandom. Hence, the commitment
value of the scheme [JKPT12] is pseudorandom as well. In the commitment scheme
[Na091], the bit length ¢ of the message being committed to is at least linear in the
security parameter n, whereas it is arbitrary in the scheme [JKPT12]. In order to
commit to a message of the same length, we set ¢ € O(n). This implies that both
schemes require O(n) bits of communication.

Regarding the interaction, it is obvious that the scheme [JKPT12] outperforms the
scheme [Nao91], since the former is non-interactive, whereas the latter is interactive
with two rounds. We conclude that the commitment scheme [JKPT12] is more
efficient than [Nao91].

Remark 4.11. It is also worth to point out that the binding property of the scheme
[JKPT12] holds perfectly, whereas it holds statistically in the construction [Nao91].

Remark 4.12. We note that we did not obtain a post-quantum commitment
scheme that is unconditionally binding and additively homomorphic.
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Conclusion and Future Work

In this thesis we provided a survey on unconditionally hiding and unconditionally
binding commitment schemes that run on conventional computers and are believed
to be secure even against quantum computers. The survey included commitment
schemes that can be obtained from general frameworks that employ cryptographic
primitives or protocols. In addition, the survey included commitment schemes that
are directly based on computational problems that are believed to be secure even
under quantum attacks. We have seen that most general constructions use addi-
tional tools in their framework such as hard-core predicates, interactive hashing
protocols, and 2-universal hash functions.

In addition to the survey, we provided a three-phase comparison of the commitment
schemes included in the survey. The purpose of this comparison is to obtain two
post-quantum commitment schemes, one that is unconditionally hiding, and one
that is unconditionally binding. Both desired schemes are required to be practi-
cal and efficient with respect to interaction and communication complexity. The
first phase of the comparison involved the general constructions of commitment
schemes from the survey, whereas the second phase involved the concrete commit-
ment schemes. The third phase involved the results of the first and second phase.

Regarding unconditionally binding commitments, the result of our comparison is
the non-interactive perfectly binding commitment scheme presented in [JKPT12].
This scheme is based on the learning parity with noise (LPN) problem.

The unconditionally hiding commitment schemes involved in the third phase of
the comparison are the non-interactive statistically hiding commitment schemes
proposed in [DPP98] and [Xagl0]. The construction presented in [DPP98] uses any
family of collision resistant hash functions (CRHFs) in addition to any family of
2-universal hash functions. The scheme presented in [Xagl0] is the ring variant of
the scheme introduced in [KTXO08]. It is based on the ring small integer solution
(Ring-SIS) problem which is the source of ideal-lattice-based hash functions. For
comparing both commitment schemes, we used the most recent results shown in
[MP13] to improve the parameters of the commitment scheme proposed in [Xag10].
Moreover, we improved the communication complexity of the commitment scheme
proposed in [DPP98] by adopting a family of 2-universal hash functions given in
[Sho09]. Describing any function from this family requires less bits than describing
any function from the 2-universal family suggested in [DPP98| for the efficiency
of the scheme. We concluded that determining the commitment scheme with the

lowest communication complexity depends on the hash size of the CRHF utilized
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in the scheme proposed in [DPP98], for some security level. We established an
upper bound on this hash size, under which the commitment scheme presented in
[DPPI8] outperforms the scheme presented in [Xagl0], for any security level. In
addition, we concluded that the only commitment scheme that provides perfectly
hiding commitments is the scheme proposed in [Dam89|. This scheme employs
some Y-protocol with the perfect zero-knowledge property for some hard relation.
In addition, the hard relation must have the property that it is easy to verify
membership in the language defined by this relation.

For applications that require additively homomorphic commitments, we concluded
that the commitment scheme presented in [XXW13] is the only scheme that could
be additively homomorphic to a limited degree. This scheme is non-interactive, per-
fectly binding, and is based on the ring learning with errors (RLWE) problem. This
shows the lack of post-quantum commitment schemes with homomorphic properties.

Regarding our limited result related to statistically hiding commitments, we see that
it is useful to search for practical post-quantum CRHFs. This allows to investigate
if their hash sizes satisfy the upper bound, which determines if the commitment
scheme introduced in [DPP98] outperforms the scheme introduced in [Xagl0]. In
addition to CRHFs, it is also useful to investigate if there exist 2-universal hash
functions that are more efficient than those considered in this work. This would
improve the established upper bound as well. Furthermore, we believe that addi-
tional research is required regarding post-quantum commitment schemes with the
perfectly hiding property. This is significant, since there exists only a general con-
struction that provides perfectly hiding commitments using Y-protocols with special
conditions. Finally, we think that further research regarding post-quantum com-
mitment schemes with homomorphic properties is required as well. This is due to
the lack of such commitment schemes.
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