DARMSTADT UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

CRYPTOGRAPHY AND COMPUTERALGEBRA

DIPLOMA THESIS

IMPROVED AUTHENTICATION PATH
COMPUTATION FOR MERKLE TREES

TECHNISCHE
UNIVERSITAT
DARMSTADT

MICHAEL SCHNEIDER

DARMSTADT UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF MATHEMATICS

March 2008

Supervisor: Prof. Dr. Johannes Buchmann

Erik Dahmen

Contents

1 Introduction

1.1 Outline.
1.2 About This Thesis
2 Background
2.1 Digital Signatures
2.2 Hash Functions
2.3 One Time Signatures e
2.3.1 The Winternitz One Time Signature Scheme
2.4 Merkle Trees
2.5 The Merkle Signature Scheme
2.5.1 MSS - Merkle Signature Scheme
2.5.2 GMSS - Generalized Merkle Signature Scheme
3 Common Traversal Algorithms
3.1 Overview
3.1.1 Notation
3.2 Szydlo’s Algorithm
3.2.1 Motivation
3.2.2 The Algorithm o
3.3 Drawbacks of Former Algorithms

11

11

12

14

14

16

18

19

21

23

23

27

34

CONTENTS

4 A New Authentication Path Algorithm

4.1 Notation

4.1.1 Treehash Stacks L.
4.2 Algorithm Description Lo

4.2.1 Initializationo Lo oL

4.2.2 Authentication Path Computation
4.3 Correctness of the Algorithm
4.4 Computational Bounds,
4.5 Storage Efficiencyo oo
4.6 Computing Leaves usinga PRNG

4.7 Comparison of Theoretical Bounds

5 Java Implementation
5.1 OVerview e e e e
5.2 Distributed Node Computation

5.3 Implementation of the Authentication Path Algorithm

6 Results
6.1 Comparison: Authentication Path Algorithm

6.2 Comparison: GMSS

7 Conclusion and Further Work

References

41

42

42

43

43

44

47

49

52

%)

%)

57

57

59

62

63

63

66

71

73

A Practical Results

B Code Examples

C ASN.1 Encoding

D Object Identifiers

77

79

81

83

LIST OF ABBREVIATIONS

List of Abbreviations

RSA Cypher and Signature Algorithm of Rivest,

Shamir and Adleman

DSA Digital Signature Algorithm

ECDSA Elliptic Curve Digital Signature Algorithm
PQC Post Quantum Cryptography

MD5 Message Digest Algorithm 5

SHA Secure Hash Algorithm

MAC Message Authentication Code

DL problem Discrete Logarithm problem

OTS One Time Signature

OTSS One Time Signature Scheme

PRNG Pseudo Random Number Generator
MSS Merkle Signature Scheme

CMSS Coronado Merkle Signature Scheme
GMSS Generalized Merkle Signature Scheme
JCA Java Cryptography Architecture

JCE Java Cryptography Extension

API Application Programming Interface

LIST OF FIGURES

List of Figures

A complete binary tree of height H = 2. The values 0...4 are the
leaf indices, h denotes the nodes’ height

A Merkle tree with leaf values A, B,C,D

Authentication data of leaf p. Hashing the concatenation of AUTH,
and ®(p) gives the upper node, continuing up the root finally gives
the root value. The dashed nodes denote the authentication path for

leaf . The arrows indicate the path from leaf ¢ to the root.

Sample of the treehash algorithm: value ’D’ is pushed on the stack.
Then ’C’ and 'D’ are hashed to a height 1 node which is then again
hashed with the bottom node to a height 2 node.

Seed generation for a single Merkle tree. Each array indicates one

call to the PRNG.

Basic construction of GMSS. Only the leaves on the lowest layer are

used for GMSS signatures.
Example of a GMSS signature

Example GMSS keys. The private key consists of the authentication
path for the first leaf of the first two trees on each layer, the SEED;,
for the first and the third tree on each layer, the root signatures SiG
of the first trees and the root values ROOT of the second trees. The

public key is the uppermost root value ROOTx,.

While advancing a leaf in tree 7; ;, the values S1G7, ,, and RooTz, .,
are updated, so that the computation of those values is distributed
over all 2% steps of tree 7; ;. While doing one step in 7;;; ; the leaf

of tree 7; j 1o is partly computed. 000000

23

LIST OF FIGURES

10

11

12

13

14

15

16

17

Left node computation: A Merkle tree of height 4 in rounds ¢ = 3 and
@ = 4. In the upper tree the height of the first parent of leaf ¢ that is
a left node is 7 = 2. The lower figure shows the authentication data
of leaf ¢ = 4. All lower authentication nodes (AUTH, and AUTH;)

are pushed from the stacks an reset in round p =3.

Values of the initialization, H = 5, K = 3. The dashed nodes are
authentication nodes, the black ones are stored in treehash, the grey

nodes are kept in retain stacks.

In round ¢ the node AUTH, is stored in KEEP,. This node is needed
in round ¢ + 27 for the computation of its parent node, which is part

of the dashed authentication path computed in round o +27..

In round ¢ the node AUTH; is popped from TREEHASH,. This in-
stance is then initialized anew with start index ¢ + 1 + 3 - 22 and
computes the declared right node on height 2. This node is needed
inround @ +25.

While advancing a leaf in tree 7, ;, the next leaf of tree 7, ; is partly

computed.

Suppose (H — K)/2 = 4, so that the four dark leaves of the upper
tree are required for treehash updates. They are computed while

advancing leaves in the lower tree.

Number of hashes needed for right nodes per round while advancing
one Merkle tree. On the x-axis the single rounds are assigned (tree
height H = 5 = 2° = 32 rounds), the y-axis shows the number of

needed hash function evaluations.

Number of hashes per round. The upper graph shows the result of
Algorithm 3, the lower graph belongs to Szydlo’s algorithm (H =
10 = 1024 rounds).

LIST OF FIGURES

18

Time needed for signing with GMSS. The red line shows the timings
using the new GMSS implementation, the blue line belongs to the old
implementation. The used parameterset is P = (4, (4,4,4,4), (8,8,8,3)),
Kisset 2oneachlayer. L. 67

LIST OF TABLES

List of Tables

Number of LEAFCALC operations
Total number of node stored in RETAIN (2K — K —1).

Comparison of complexity bounds. In concern of computation time,
Algorithm 3 distinguishes between hash function evaluations (first

row) and leaf calculations (second row)
Statistic data of the number of hashes required per round
Comparison of the number of hashes required in the worst case.

Measured values for the new GMSS implementation
Measured values for the old GMSS implementation, from [17]

Results of the new GMSS implementation: time and memory require-
ments of selected parameter sets. For the average timings, in each case

the mean value of the first 2'? signatures were considered.

Object Identifiers for GMSS

1 Introduction

1.1 Outline

Digital signatures are one of the most popular applications of cryptographical tech-
nics, besides encryption. The concern is to allow identification, authentication,
integrity, and liability in electronic applications. Digital signatures are used for
secure interaction over the internet by signing emails or protecting web browser
communications by SSL/TLS. They are necessary for procedures like digital voting

or bureaucratic solutions over the internet.

Today digital signatures are mostly implemented using asymmetric, also called pub-
lic key cryptography. Famous examples are the RSA, ECDSA, or DSA signature
schemes. In the majority of cases the security of these methods is based on math-
ematical, number theoretical assumptions, like the factoring of big numbers or the
discrete logarithm problem. Today all of these algorithms and schemes can be con-
sidered as sufficiently secure. However, new algorithms already exist to solve these
number theoretical problems on quantum computers [1, 2|. The established sig-
nature algorithms can be used without worries, as long as no practically useable
quantum computers exist. But additionally, new techniques must be found to be
prepared for the case of working quantum computers. This field of work is called
post quantum computing (PQC). Another weakness of the established techniques is
the increasing key size. Because today’s computers performance develops rapidly,
the key size of the used public key schemes must be raised to assure security [3]. This
procedure of rising key lengths ends, if algorithms independent of number theoretical

assumptions are found.

An alternative way is to use so called one time signatures (OTS). These signature
schemes are considered to be secure also on quantum computers. Their security
relies on the security of hash functions. A hash function is a mathematical function
which is easy to compute but hard to invert. While the keys of a usual signature
algorithm can be used more often, the keys of a one time signature must not be used

more than once. Otherwise the security of the signature scheme would be reduced,

11

1.2 About This Thesis

as an OTS signature reveals parts of the security of the scheme. The problem with
one time signatures is that the number of keys that have to be stored and delivered
increases enormously. This is a well known problem by symmetric cryptography.
To solve this key management problem, Merkle proposed his idea of using binary
trees for authentication of big amounts of OTS public keys in 1989 [4]. Using this
new idea, it is possible to authenticate up to 22° (and even more) OTS private keys
with one single public key. This leads to efficiency in storage concerns, as only
one key has to be permanently stored instead of many. Merkle’s idea offered the
possibility to create a multi-time signature scheme, called Merkle signature scheme
(MSS), based on any one time signature scheme. Extending this idea of MSS some
extensions and andvancements were proposed: CMSS [5, 6] and GMSS [7], which is
a generalization of CMSS. The advantage of GMSS (Generalized Merkle signature
scheme) compared to the original merkle scheme is the smaller size of the signatures
and a better scheduling of the signature generation. Furthermore the GMSS scheme
is parameterized. This feature allows to customize the scheme for different applica-
tions, like usage on smartcards or comparable low computation devices where low
storage space plays an important role. One important part of the Merkle signature
scheme is the traversal of the authentication tree. Whereas simple traversal algo-
rithms arrest the signature generation, a fast traversal algorithm enhances the whole

scheme. Thus it is important to develop good authentication path algorithms.

1.2 About This Thesis

The subject of this thesis is the introduction of a new traversal algorithm for Merkle
trees and the integration of this algorithm in GMSS, including an implementation
in Java for the FlexiProvider. Section 2 gives the background information needed,
while section 3 describes former known traversal algorithms. In section 4 the new
traversal algorithm is introduced. Correctness and efficiency proofs complete this
section. The Java implementation for the FlexiProvider is considered in section 5. In
section 6 the comparison of GMSS using the new authentication path algorithm with
other established signature algorithms is drawn. Section 7 finally gives a conclusion
of the thesis.

12

1.2 About This Thesis

The reader of this thesis is supposed to be familiar with fundamental mathematical
notations of cryptographic considerations like signing or encryption functions, as
well as simple mathematical principles like geometric series. Understanding of basic
complexity theoretical ideas (like the O-notation) and algorithm notation might also

be necessary to understand the main parts of this thesis.

13

2 Background

This section informs about the basic mathematical and cryptographical principles
and techniques needed for the considered applications. First an introduction of digi-
tal signatures is given. Then the principles of hash functions and one time signatures
are explained, followed by an example one time signature scheme, the Winternitz
OTS scheme, which will be used for the implementation of the new algorithm. After
that the idea of Merkle trees and the Merkle signatures are illustrated. Finally, a

short explanation of the GMSS extension is given.

2.1 Digital Signatures

The purpose of a digital signature is to offer special security purposes like identifi-
cation, authentication, integrity or liability. It can, in some parts, be compared to a
handwritten signature: only one person can create its own signature, every forgery
can be determined. One big difference is that the digital exponent is a mathematical
function of the message. If the document changes, the signature changes as well.
The digital signature could otherwise be moved from one document to another, as

all digital data can be easily copied.

Not only documents are signed digitally. Digital signatures are also used for package
transport security in transport protocols. In principle every kind of digital data can
be signed. In most applications not the data or document itself is signed but a
message digest of it. That is a kind of fingerprint of the data. The principles of

message digests are explained in section 2.2.

Digital signatures are always based on asymmetric cryptography. Such a system
was first introduced by Diffie and Hellman in 1976 [8], which was one of the greatest
advances in modern cryptology. For such a digital signature, two different types
of keys are needed: a private key for signature generation and a public key for
verification. The private key in this purpose is also called the signing key and the
public key is also called the verification key. As one could guess from the name,

the private key has to be kept secret, whereas the public key can be spread widely.

14

2.1 Digital Signatures

Everyone knowing this public key can verify the signature, but only the owner of
the private key is able to create one. For one time signature schemes, these keys are
generated newly for every signature. In contrast, for multi-time signature schemes
both keys are used for bigger amounts of signatures. Some of the commonly used
signature algorithms are also used for encryption (like RSA), whereas some of the
systems are only applicable to signatures (like DSA and ECDSA). Some attributes

of a digital signature scheme are:

Authenticity: Everyone should be able to control that the signer really is the
originator of a signature. This is possible because everyone can use the public
verification key. Nobody else shall be able to sign a document in the signers

name. For this purpose the private signing key must be kept secret.

Non-Repudiation: This property means that the signer can not successfully deny
the fact of having signed a document. Everyone possessing the signature and
the original document can prove that the signature was really created with the
signer’s private key.

Since a signature is also a function of the private key and no one besides the
signer knows this signing key, then nobody is able to construct signatures
which can be verified by the corresponding public key. The signer can never
deny having signed a message if a verifiable signature exists.

When the liability has to be proved, a third person (for example a court)
has to control if a signature really belongs to the person it should. The non-
reusability property of a signature in this concern means that this action can
be performed without revealing the private key, so that it can be used again

by the user.

Integrity: If a document changes or is manipulated, the signature of the origi-
nal document (a contract for example) will not match this forged document
and will be refused. Therefore changes in data can be proved using digital

signatures.

15

2.2 Hash Functions

Mathematically, digital signatures are based on one-way functions with trapdoor.
A one-way function is a mathematical function which is easy to compute in one
direction. However to compute the inversion of the function is hard. If y = f(x)
(with a one-way function f) it is easy to compute y given x and f, but it is hard
to get z, if only y and f are known. A trapdoor means a secret (e.g. a secret
number) which allows to apply the inverse function easily by knowing the secret. In
a signature scheme the private key can be considered as the trapdoor. Creation of
the signature is the inverse function, which is hard or impossible to compute when
the signing key is unknown. When it is said that a function is hard to invert it is
meant in today’s context: it is possible that in a few years (when the performance
of computers has raised furthermore or even quantum computers exist) today’s one-

way functions will be invertible without problems.

A digital signature scheme consists of three parts: a key generation algorithm, the
signature construction, and the verification phase. Asthe name implies, the first part
serves for the creation of the private and the public key. The second part is the use
of the private signing key for creating the signature of a message. Finally, using the
public key and the original message the autenticity of the signature is revised. The
individual phases will be described later in the introduction of particular signature

schemes.

2.2 Hash Functions

Most of the known multi-signature schemes are based on mathematical assumptions
like factoring of big numbers or the discrete logarithm problem. However, one time
signatures are mostly based on cryptographic hash functions. For this reason, those

message digest principles are illustrated in this section.

A hash function maps any kind of digital data to a shorter, random looking sequence
of numbers called the hash value or message digest of the data, which can be seen
as kind of a ’fingerprint.” It is mostly represented by a hexadecimal depiction. As

an example, the hexadecimal depiction of the 160 bit long SHA1 hash value of the

16

2.2 Hash Functions

string 'Improved Authentication Path Computation’ is
' fa072597154 f81ba39b841 f265acc8 fa2d47d937’

Changing only one letter in the original data will change the whole message digest:
the SHA1-hash of 'improved Authentication Path Computation’ is

'70€053246a5€9 f591bcaecb5bd7173295899¢62cha’
More mathematically, a hash function can be denoted as the following:
Hasu: X ={0,1}* - Y ={0,1}"

where the domain X includes all bitstrings with arbitrary length and the codomain
Y consists of all n bit strings. An important attitude of a hash function is it’s ability
to only go one way. This means that it is not possible to generate the original data
out of its hash value. A hash function can be considered secure if it assures the

following assumptions:

e pre-image resistance
Given the hash function HASH and a value y, it is not possible to find an x

with HASH(z) = y.

e second-pre-image resistance
Given HASH and z, it is not possible to find an 2’ (with z # 2’) and
HasH(z) = HASH(z').

e collision resistance
Given HAsH, it is not possible to find x,2’ (with x # 2') and HASH(z) =
HAsH(z'). As the size of the co-domain Y is smaller than the domain size it is
clear that there are collisions between different messages out of X. Collision
resistance means the impossibility of finding such a collision with non random

propability.

In [6] Coronado shows that, for the security of the Merkle signature scheme, one-

way-ness and collision resistance of the integrated hash function are sufficient.

17

2.3 One Time Signatures

Hash functions have different applications in cryptography. They are used for fin-
gerprinting or message authentication codes (MAC) to securely identify data. In
most signature algorithms, the message is hashed before it is signed, so that the
security increases. For example, without application of a hash function to the mes-
sage the RSA scheme is not secure against chosen message attacks [9]. Most famous
representatives of hash functions are the SHA-family [10] and the Message Digest
Algorithm 5 (MD5) [11].

In this thesis HAsH : {0,1}* — {0,1}" is always an arbitrary hash function.
The consecutive application of this function is denoted with superscript numbers:

HasH?(m) stands for HAsH(HASH(m)).

2.3 One Time Signatures

As mentioned in the introduction, one time signature (OTS) schemes are special
kinds of signature algorithms where the signing key must not be used more than
once, as every further use of these keys would reveal information which could weaken
the security of the signature. Most OTS schemes are based on hash functions [12].
The security does not rely on mathematical problems, but only on the security of
the hash function. As mentioned above this is dependent on properties like collision
resistance. The security of most algorithms used today for multi-time signatures
can only be increased by raising the length of the used keys. In the last 20 years,
the key lengths of algorithms like RSA or ECDSA have been constantly increasing
[3]. Furthermore if large scale quantum computers exist, the search for collisions of
hash functions is hard, whereas the underlying problems of ECDSA and RSA can
be computed in linear time. These schemes can be broken on quantum computers,

while one time signature schemes based on hash functions remain secure.

As the computation of hash functions is fast, one time signatures are very efficient.

Their application is possible on low computation complexity devices like smart cards.

18

2.3 One Time Signatures

2.3.1 The Winternitz One Time Signature Scheme

In this thesis, as in the actual GMSS, the Winternitz One Time Signature Scheme
is used [4] [12]. The usage of other one time signature schemes like the BiBa scheme
[13] would be possible as well. The Winternitz scheme uses a parameter w, which is
typically chosen a small power of two. This parameter w allows a trade-off between
generation cost and signature size. It defines the bit length of the single parts of the

private key, whereas t,, is the count of components. With n as length of a hash, we
define

to = [nfw| + | (Loga(Tn/w])] +1+w) /u]

The private signature key is X = (z1,...,x,), where x; ...z, are random values.

For the generation of random data, a pseudo random number generator (PRNG) is

used:
PrRNG: {0,1}"+— {0,1}" x {0,1}": SEED;;, — (SEED,;, RAND)

It uses a value SEED;,, to generate two random looking values SEED,,; and RAND.
If SEED,,; is again used as input for the same PRNG we get a chain of values RAND;
which can always be reproduced by knowledge of only the first SEED;,. In this
thesis the used PRNG is always the one described in the Digital Signature Standard
(Appendix 3.1) [14] which requires only one call to a hash function HASH:

RAND « HASH(SEED,,), SEED,,; < (1 + SEED;,, + RAND) mod 2"
Key Generation. For the public key we apply the hash function 2 — 1 times to

each z;, i.e. we calculate y; = HASH? ~!(z;) for i = 1...t,. The verification key is

then created out of the concatenation of the y;-values:

Y = HasH(y|| ... ||ye,)

Signature Generation. For generation of the signature of a message first of all

the n-bit message digest of this message is created. The digest md is then split

19

2.3 One Time Signatures

into [n/w] parts md; ... mdp,), each with a length of w (if necessary zeros are
padded first). Then the checksum C' = ZIZ{“]] 2 — md; is built. This checksum is
also divided into blocks of length w, namely md, u)+1 .. . md;, . The final signature
is created by concatenating the hash-values s; = HASH™% (z;) for i = 1...t,. The
signature is then

SIG = (1] - - ||St,)

Verification. For verifying the message digest, the signature and the verification
key are needed. First the values md; are computed in the same manner as in
the signing process. Then v; = Hasu> ™% (s,) is generated. Now the vector
V = HASH(v{||...||vs,) can be compared to the verification key. Each of the z;
values should now have been hashed 2 — 1 times. The signature is declared to
be verified if and only if V = Y. Example 1 explains a Winternitz OTS sample

instance.

Without using the checksum an attacker could hash again some of the s; values. The
result would be a valid signature which could not be verified by the original public
key. Therefore the scheme would not be secure against known signature attacks
leading to existential forgery. For this, the checksum is appended to the signature,

so that every additional hash to one of the s; can be detected.

Example 1. Consider a 15 bit message digest to be signed: md = 101100000010010.
Choose w = 4.

Key Generation

PRNG = X = (0101 1100 1010 1110 0011 1111) (Private key)

~
g
I

[15/4] + [(LtogalT15/47)) + 1+ 4) /4]
_ g {(2+1+4)/4] —6

= Public key: Y = (HasH"(zy), ..., HasH" (24))

20

2.4 Merkle Trees

Signature Generation

md = 0101 1000 0001 0010
1 2 3 4

C = (10000 — 0101) + (10000 — 1000) + (10000 — 0001) + (10000 — 0010)
— 1011+ 1000 + 1111 + 1110 = 110000

= b; = 0011 and bg = 0000

Si6 = <HASH5(QE1) | HASH® (25) || HASH(x5) || HASH? () || HASH® (25) | x6>

= (sull--Ils6)
Verification (b; the same as above)

vV o= <HASH10(51) | HASH (so) || HASH"(s3) |
HasH(s4) || HASH!2(s5) | HASH15(36))

- <HASH15(x1) . HASH15(:E6)) Ly

2.4 Merkle Trees

A problem which occurs by usage of one time signatures is well known from sym-
metric cryptography applications: the space needed to store all involved keys rises
too fast. For every message a user A wants to send to another user B, a private
key must be created for user A. Additionally, user B has to store one public key for

every message.

Merkle’s idea was to use a complete binary tree for verification of one time signatures.
With this approach many signatures can be verified by one single public key. The
storage needed for the verification key is extremely small (only one key has to be
stored). Every one time signature scheme can be extended to a multi-time one by

using such an authentication tree.

21

2.4 Merkle Trees

A complete binary tree of height H consists of 27 leaves and 27 — 1 inner nodes.
The height of a leaf is defined to be 0, whereas the height of inner nodes denotes
the length of a path down to a leaf. Thus, the root node has height H. The leaves
are numbered consecutively from left to right, starting with 0. An example tree can

be seen in Figure 1.

Figure 1: A complete binary tree of height H = 2. The values 0...4 are the leaf indices,
h denotes the nodes’ height

Merkle trees were first introduced by Merkle in 1989 [4]. A Merkle tree is a complete
binary tree equipped with a hash function HASH. The values ®(n) of a leaf can be
chosen arbitrarily, whereas the values of inner nodes are calculated by the following:
for each inner node np4en: the value ®(n,4ene) is defined to be the hash of the

concatenation of the left and right child nodes njc s and n,igp:

(I)(nparent) = HASH(nleft H nright)

By this construction the Merkle tree is completely determined by the leaf values. A

sample tree is shown in Figure 2.

HasH (HASH(AB) I HASH(CD))

PN

HasH(AB) Hasu(CD)

/N /

A B C D

Figure 2: A Merkle tree with leaf values A, B,C, D

22

2.5 The Merkle Signature Scheme

Merkle trees are used for authenticating the leaf data using the root value. For this
purpose additional data is required, called the authentication data. For authenti-
cating leaf 7, on each height h (h = 0...H — 1) one node value AUTH,, is stored,
namely the sibling of the nodes on the path from leaf i up to the root. An example
for the authentication path is illustrated in Figure 3. For authenticating leaf ¢, one
starts at the bottom of the tree. Using the leaf value and the authentication data on
each height by concatenating and hashing the root value can be computed. If the
original stored root value is identical to the newly calculated one, the leaf value is

truely authenticated.

Figure 3: Authentication data of leaf ¢. Hashing the concatenation of AUTH(and ®(y)
gives the upper node, continuing up the root finally gives the root value. The dashed nodes
denote the authentication path for leaf . The arrows indicate the path from leaf ¢ to the

root.

Besides digital signatures Merkle trees have been implemented for other useful ap-
plications like wireless security [15]. As authentication is the real purpose of the
Merkle tree and not signature verification, lots of other applications are imaginable.

However, this thesis will only focus on the application of digital signatures.

2.5 The Merkle Signature Scheme
2.5.1 MSS - Merkle Signature Scheme

The Merkle Signature Scheme (MSS) proposed in [4] consists of a one time signature
scheme like the Winternitz OTSS and a Merkle tree. A Merkle tree of height H can
be used to authenticate 27 OTS keys (one for each leaf of the tree). The leaf values

23

2.5 The Merkle Signature Scheme

of the tree are formed by the OTS public keys Y;. More precisely the three signature

steps are:

MSS Key Generation. The MSS private key is the set of OTS private keys
(Y1, ..., Yom) which are computed as usual, depending on the used scheme (for the
Winternitz scheme e.g. see section 2.3.1). The OTS public keys are hashed and
stored as the tree’s leaf values. By concatenating and hashing each two child nodes,
the node labels of the tree can be computed from bottom up to the root. The root

value of the tree forms the MSS public key for verification.

The key pair generation uses an algorithm called treehash (Algorithm 1) [16]. This
algorithm is used to compute the root of a Merkle tree using a stack structure
equipped with the usual push and pop operations '. It consecutively computes
the 27 leaf values consisting of the OTS verification keys Y; from left to right and
pushs them on the stack. When two nodes of the same height lie on the stack,
they are concatenated and hashed to the next upper node. After complete 27 leaf
calculations and 27 — 1 hash evaluations, the root of the Merkle tree is the upper

node on the stack. Figure 4 illustrates an example.

Algorithm 1 Treehash

Input: Leaf [, stack STACK
Output: updated stack STACK

1. push | to STACK

2. while top two nodes of STACK have same height do

(a) pop ni from STACK, pop ng from STACK

(b) push HASH(nq||n2) to STACK

3. return STACK.

MSS Signature Generation. Complete 2 signatures can be created using one
Merkle Tree. For each new signature the next OTS key is used so that each OTS

LA stack is a data structure using a ’first in - first out’ strategy: push stores a node on top of

the stack, pop delivers the top node of the stack.

24

2.5 The Merkle Signature Scheme

D height 0
C height 0
HASH(AB) | height 1 HasH(HASH(AB|HASH(CD))) | height 2
Stack before hashing Stack after hashing

Figure 4: Sample of the treehash algorithm: value ’D’ is pushed on the stack. Then 'C’
and 'D’ are hashed to a height 1 node which is then again hashed with the bottom node
to a height 2 node.

key is only used once. The MSS signature consists of the index ¢ that appoints
which OTS key is used for the current signature. Furthermore the OTS signature,
the OTS verification key Y, and the authentication data of leaf ¢ are components

of the MSS signature: SiGuss = (¢, SIGors, Yy, {AUTH,}).

MSS Verification. The first step of verification is the control of the OTS sig-
nature using the key Y. If this phase fails, the whole MSS signature is rejected
as invalid. Otherwise the authentication of this key is necessary. This happens by
calculating the root value of the tree using the value Y, and the authentication data
stored in the MSS signature. First Y, is concatenated and hashed with AUTH, on
the lowest level, then the result is hashed again with AUTH; and so on up to the
root. If the thus computed root is equal to the public MSS key, the signature is

considered to be valid.

SEED calculation. Every leaf of the Merkle tree requires a random value SEEDorg
for the generation of the x; values needed for generation of the Winternitz OTS keys.

This random data is calculated using the PRNG as described in section 2.3.1:
(1) (SEED,41, SEEDors) < PRNG(SEED,)
(2) (SEEDors,xr) <« PRNG(SEEDors), k=1...1,

i

As input a random value SEEDy is required. Formula (1) generates the seeds needed

for the leaves. Formula (2) delivers the random data xj. This seed calculation can

25

2.5 The Merkle Signature Scheme

be seen as a lattice of seed values, as Figure 5 illustrates: the upper line shows the
consecutive calculation of the SEEDog values, whereas the downside lines show the

generation of the z; values.

SEEDoT SEED] T SEED» -|'—> SEED, T SEEDyH

SEEDOTS SEEDOTS SEEDOTS SEEDOTS
1 1 1 X1

Tk T T Tk

Tt Tt,, Tt,, Tt

Figure 5: Seed generation for a single Merkle tree. Each array indicates one call to

the PRNG.

With this construction of the seed values we get a value SEEDy# as output of the
seed calculation. This output will be used in GMSS later on. Here we conclude
that for the generation of all private and public keys only one initial seed value is

required.

Security Of MSS. The security of MSS was regarded in [6]. It can be proved
that the Merkle signature scheme resists any adaptive chosen message attack if

1. a secure, that means collision resistant hash function exists and

2. the underlying one time signature scheme resists any forgery.
A chosen message attack is an attack where the adversary has the possibility to get a
valid signature to every chosen message. He can use this message/signature pairs ei-

ther to forge a signature or to break the private key. Adaptive in this concern means

that the attackers messages can be chosen dependent on further message/signature

26

2.5 The Merkle Signature Scheme

pairs. As Coronado shows in [6], this attack will fail if the above mentioned assump-
tions hold. The Merkle signature scheme can be constructed using an arbitrary hash
function. So if a hash function should get insecure, it can be easily substituted by

a secure one. The MSS remains secure.

2.5.2 GMSS - Generalized Merkle Signature Scheme

As mentioned above GMSS is an expansion of the Merkle signature scheme. GMSS
stands for generalized Merkle signature scheme and was proposed in 2007 [7]. One
instance of GMSS is CMSS, which was proposed in 2006 [5]. When MSS and CMSS
have relatively large sized signatures, GMSS is adressed to allow smaller signatures,
and faster generation and verification. Additionally with GMSS it is possible to sign
up to 2% and even more messages, while with MSS this number is only applicable
up to 22°. This attribute is helpful considering practical appliances like web server
applications, where big amounts of signatures are necessary. The parameterization of
GMSS allows the choice of either fast runtime, small signatures or a trade-off between
both depending on the application. This section introduces the main characteristics
and gives an overview about GMSS. A more detailed description can be found in [7]
and [17].

General Construction. The general GMSS construction is made up of a tree
with height 7. The nodes of this tree are again Merkle trees. Each of the Merkle
trees on layer 7 of the basic tree has height h; and is parent of 2" Merkle trees on
the layer 7 + 1. The Merkle trees are labeled 7; ;, where ¢ is the level in the basic
tree and j is the number of the node on height 7, consecutively numbered from left
to right with 0...2mh*hetFhi=1 1 The root tree is labeled 7 o.

Again the Winternitz OTS scheme is used for the signatures in the Merkle trees. For
each layer a different parameter w;, ¢ = 1...7T is allowed. GMSS is parameterized by
the height of the basic tree, the heights of the trees on each layer and the Winternitz
parameters. Altogether the parameter set P of GMSS is

P = (T, (hy,....hy), (wi,..., wy))

27

2.5 The Merkle Signature Scheme

CMSS is the variant defined by the parameters P = (2, (h, h), (w, w)).

The root of each Merkle tree T; ; is labeled ROOTr, ;. It gets signed with the OTS
key of the corresponding parent leaf: the root of tree 7; ; is signed using the signature
key of a leaf of the parent tree on height i — 1. The signature of tree 7’s root is
called SiG7. To sign a message digest the signature keys of the Merkle trees on the
deepest layer T' are used. These signatures are denoted with SiG4. Following this
construction the number of message digests that can be signed is 2#1+h2--hr ~ The

general construction of GMSS is illustrated in figure 6.

Tr0 T Ir,;

Figure 6: Basic construction of GMSS. Only the leaves on the lowest layer are used for

GMSS signatures.

As on upper layers the leaves advance less frequently, the precomputation of these
trees can be distributed over many steps. This property allows an advance in sig-
nature generation time. As well it allows the choice of higher parameters w; for the

OTS scheme, which leads to a smaller signature size in total.

A GMSS signature. As known from MSS for each signature there is a unique
path from the leaf ¢ up to the root. Here this path contains one Merkle tree on
each layer. Additional to the one time signature of the message digest, the one time
signatures of the root values of these trees are stored in the GMSS signature. Also
the authentication data on the path existing of AUTH7; for each tree 7 is appended
to the GMSS signature. Hereby [is the index of the leaf of tree 7 used for signing

28

2.5 The Merkle Signature Scheme

the root of the tree on the layer below. On the deepest layer the authentication data
of the leaf used to sign the message digest is appended. An example of this process

is depicted in figure 7.
Totally the GMSS signature consists of the following:
e the index ¢ of the leaf used

e the one time signature SiG, of the document d signed with the key correspond-

ing to a leaf of the lowest layer
e the one time signatures SIG, ; of the roots

e the authentication paths AUTH7; ; of each tree on the path from the bottom
leaf ¢ to the GMSS root

#» S1Gq

Figure 7: Example of a GMSS signature

29

2.5 The Merkle Signature Scheme

Seed calculation in GMSS. For every single Merkle tree of the GMSS construct
the seed generation procedure described on page 25 is used. There an initial seed
for every tree is needed. For every tree of the GMSS structure this is an initial seed
value SEEDmTi’j. The SEED;, for the first tree in each layer (SEEDmTw) is required
as input. The following seed;, values are computed as the output of the last leaf of

the previous tree:
(SEEDmTi e SEEDors) < PRNG(SEED,,)

Here SEED,», is the seed of the last leaf of tree 7; ;. Hence using one initial seed for

each layer all required seed values can be constucted.

GMSS Key Generation. This phase uses the initial seed values for constructing
the public and private keys needed for GMSS. The GMSS public key is the root of
the top Merkle tree: ROOT, ,. The private key is built by the following:

SEEDmTi’O, i = 1...T SEEDmTM, 1 = 2...7T
SiGr,,, i« = 2...T RooTs,, 1 = 2...T
AUTH7, g0, @ = 1...T AUTHf, 0, @ = 2...T

Using the treehash algorithm (Algorithm 1) the root values of the first Merkle tree
on each layer 7;, (including the GMSS public key ROOT7, ;) are built. For this
the initial seed values SEEDingO are needed. While calculating these roots the
authentication data of the first tree AUTH7, o of each layer can be stored, so that
the AUTH values for these trees are obtained for free. The initial seeds for the
second trees are now available. The same as above the root values of the second
trees ROOT7;, and the corresponding authentication data AUTH7, , o are generated
with Algorithm 1. After this the initial seed values for the third tree of each layer
SEED;;,. 5 is ready and can be stored in the private key. The signatures S1Gr;, ; are

the one time signatures of the root values already known.

30

2.5 The Merkle Signature Scheme

Roorr, , = Public key

AuTHQ

SEED;;, —» .

Sia

RooT
AuTHQ AuTHQ
SEED;p, —» —» SEEDout
Sic
RooT
AuTHQ AuTH(Q
SEED;, —» —» SEEDout

Figure 8: Example GMSS keys. The private key consists of the authentication path for
the first leaf of the first two trees on each layer, the SEED;,, for the first and the third tree
on each layer, the root signatures SI1G of the first trees and the root values ROOT of the

second trees. The public key is the uppermost root value ROOT7, ,.

This private GMSS key is the key for the first signature. Having created this sig-
nature the key is updated and so changes for every new signature. Therefore the
GMSS scheme is called a key evolving signature scheme [18]. As the private signing
key changes (evolves) frequently, this leads to a special security feature of GMSS,
so called forward security. Also if an adversary compromises the actual signing key,
it is impossible to forge signatures belonging to former signing keys. Using the

introduced seed scheduling, MSS does contain this security feature as well [6].

GMSS Signature Generation. The signature generation is distributed in an
online and an offline part. Such a separated framework is described in [19]. The
offline part can be seen as preparation of the next online part. This online part can
not be done until the message is known. It is a fast process, so that the signature can
be generated rapidly, when the offline part has already been done. The offline part
belonging to the first signature was done during the key generation phase. Later

during the offline phase the private key has to be updated (as mentioned above, key

31

2.5 The Merkle Signature Scheme

evolving scheme). The online part only consists of the generation of the signature.
All parts needed for this signature were created and provided by the previous offline

part. A detailled description of both phases can be found in |7, 17].

The offline part distributes the computation of the needed RooT, leaf and Sic
values, so that for each signature the time to spend is not too different. If a ROOT or
a SIG value is computed at once, the actual round lasts longer than previous rounds
where no such time expensive operations were done. Therefore the computation of
those values is distributed over the calculation of the leaves of the underlying layer,

i.e. over 2"+1 steps. Figure 9 illustrates the precomputation of those values.

ROOTTM“

and RooT+

ij+2 A€

Figure 9: While advancing a leaf in tree 7;;, the values SiG7,

updated, so that the computation of those values is distributed over all 2" steps of tree T ;.

While doing one step in 7;11 ; the leaf of tree 7; ;o is partly computed.

GMSS Verification. The GMSS verification is nearly the same as in the orig-
inal Merkle scheme. The first part is the verification of the one time signature of
the original data. If this already fails, the verification can be stopped. Next the
authentication starts with the tree on the lowest layer. Using the corresponding

authentication data the root value of all trees can be calculated. The one time sig-

32

2.5 The Merkle Signature Scheme

nature of the roots are compared to the values SIG in the signature. Also if one of
these signatures cannot be verified truly, the GMSS verification fails with a nega-
tive result. Ending up at the root ROOT, , of the GMSS construction, this can be
compared to the GMSS public key. Only if this comparison is successful the whole

signature is accepted.

Needed Storage. Following [7] the size of the keys and the signature is:

Mpubkey = N bits
T T
Mprivkey = (Z(hz + 1) + Z(h@ -+ thl —+ 2)) -n bits
i=1 1=2
T

Msgignature = Z(hz + twi) -n bits

=1

The variable n again denotes the length of the output of the hash function HASH.
The public key is only one single hash value, that’s why its bit length is n. The size

of the private key and the signature can easily be derived from the listings above.

In practice these numbers will not hold. Some additional data has to be stored, for
example the parameters P must be added to the public key as they are needed for
the verification process. So these numbers are more theoretical, but they give an
idea of the overall sizes of signatures and keys. A comparison of the needed storage

capacity can be found in section 6.

33

3 Common Traversal Algorithms

3.1 Overview

The Merkle tree traversal problem is the challenge of computing the authentica-
tion paths of consecutive leaves of one single Merkle tree. This is one of the most
crucial steps in the Merkle signature scheme and its derivatives. Today MSS and
its descendants are not often used in practice, because they are too slow or the
signature size is too big. Better traversal techniques may speed up the signature
generation (as well as better implementations like GMSS shall make the system
more useful for practical considerations). As consecutive leaves mostly share a lot
of authentication nodes, only the changes have to be computed from one leaf to the
following. Good scheduling algorithms use this fact to speed up the computation of

new authentication data.

With digital signatures a tree traversal algorithm for authentication data consist of

three phases: key generation, output and verification.

During the key generation phase the root of the Merkle tree is constructed and the
first authentication path is stored. Some additional authentication data can

be stored used as input for the traversal algorithm as well.

The output phase consists of 2 rounds. In each round the leaf value ®() and
the authentication data {AUTH} of leaf ¢ is output and then updated for the

next round. This is the main part, requiring good scheduling ideas.

The wverification phase is always the same as for the original Merkle tree.

In his original paper Merkle introduced a simple traversal algorithm [4]. Jakobsson
et. al. proposed an algorithm using subtrees in [20|. This algorithm allows a trade-
off between storage and computation time. It needs a maximum of 2H / log(H)
hash function evaluations and maximum storage of 1.5H? / log(H) hash values per
round. An implementation of the Merkle signature scheme using Jakobsson’s ideas

can be found in [21].

34

3.1 Overview

Szydlo presented a log-time and log-space algorithm in [22] and a slightly differ-
ent version in a preprint in [16]. An algorithm is called logarithmic if its time per
round respectively the maximum memory capacity needed is logarithmic in the to-
tal number of signatures N. He also proves that these bounds are optimal for the
authentication path computation, i.e. that it is not possible to create an algorithm
that in both time and space complexity is better than O(log N). Other work con-
sidering authentication path computation can be found in [23]. The new algorithm
presented in this thesis is an improvement of Szydlo’s algorithms. For this reason
the outline of this section is the introduction of Szydlo’s traversal algorithm (the
more efficient preprint version of [16], not the more simple, published version of [22]).
The description of Merkle’s classical algorithm leads to Szydlo’s improved algorithm
version (Algorithm 2). Finally some drawbacks of Szydlo’s algorithm are presented

to motivate the improved algorithm presented in the main part of this thesis.

3.1.1 Notation

For authentication data the notation already known is used: AUTH,, is the height
h sibling on the path from the current leaf ¢ to the root. Further on for each level
h of the tree one instance of the treehash algorithm (Algorithm 1) called STACK,, is
used. For practical considerations two methods initialize() and update() exist
for these instances. The first method only sets the start node index and the desired
height of the instance. The update () method either computes a node and pushs it
on the stack or it once hashes the stack’s top nodes if possible (if top nodes have
same height). Temporarily stored nodes on a stack are called tail nodes. If STACKy,
is completed, the top node is stored in an array NEED;,. There all upcoming right

nodes are stored until they are needed for an authentication path.

Some computed nodes are later on again helpful for speeding up the computation
of higher left nodes. For each height i at most one such additional node can be
kept. For this the set KEEP;, is used. The height of the tree is denoted H, hence
the number of nodes is N = 2, numbered from 0 to N — 1 from left to right. All
papers [4, 16, 20, 22, 23| do not consider the complexity of the calculation of one
leaf. They use an oracle LEAFCALC(y) which computes the leaf value ®(¢). The

35

3.2 Szydlo’s Algorithm

call of this oracle is counted as one computation unit for the complexity analysis, as

well as hash function evaluations are counted one unit each.

3.2 Szydlo’s Algorithm
3.2.1 Motivation

The classical algorithm introduced by Merkle in his original paper distinguishes
between computation of left and right authentication nodes. It uses one treehash
instance for each height, as described above. Using these, new upcoming right
authentication nodes are precomputed, for that they are ready when they are needed
for AUTH values. In each round ¢ € [0...2% — 1] every trechash instance gets one
update, if it was not already completed. This leads to the following problem: in the
worst case all H treehash instances are active at the same time. So the maximum
number of required space units is 0.5(log(N))%. Szydlo’s idea was to change the

scheduling strategy for the treehash instances to save memory.

The generation of left nodes is quite easy, because their child nodes have already
been computed. Saving those child nodes only one hash operation is required for

computation of a left authentication node.

As Merkle did in his original algorithm, Szydlo distinguishes between the computa-
tion of left and right authentication nodes. The computation of left nodes is quite

the same as in Merkle’s paper.

3.2.2 The Algorithm

As input Algorithm 2 needs the authentication path of the first leaf of the Merkle
tree. These values {AUTH;, h = 0...H} can be stored during the key generation
phase when computing the root of the tree. So the first authentication path is
obtained for free. Every round of the authentication path algorithm of Szydlo the

same steps are executed:

36

3.2 Szydlo’s Algorithm

Generating an output. Every round starts with the output of the previous com-
puted authentication path. This will always be completed when it is needed. Ad-
ditionally the current leaf value ® () is output. If the leaf index is even, this value

must be computed using one LEAFCALC operation, otherwise it is always available.

Left node computation. For each leaf ¢ exactly one new left authentication
node L must be added. The height of this node is the height of the first parent node
of leaf ¢ that is a left node. This height is denoted 7. If the current leaf is a left
node itself, 7 is set to 0. Figure 10 shows an example. The new node on height 7 is
stored as AUTH,. If 7 > 0, both child nodes of the new authentication node have
already been computed and stored in AUTH,_; and KEEP,_;. Out of these two
child nodes the parent node L can be computed (by concatenating and hashing), so
the new node requires only one hash calculation. All nodes AUTH; with index i < 7

are reset with values from completed treehash stacks (NEED;).

Figure 10: Left node computation: A Merkle tree of height 4 in rounds ¢ = 3 and ¢ = 4.
In the upper tree the height of the first parent of leaf ¢ that is a left node is 7 = 2. The
lower figure shows the authentication data of leaf ¢ = 4. All lower authentication nodes

(AUTHp and AUTH;) are pushed from the stacks an reset in round ¢ = 3.

37

3.2 Szydlo’s Algorithm

Releasing space. Some previously stored nodes are no more needed after the
computation of the new left node. Therefore some memory spaces can be freed by
deleting the values AUTH; for ¢ < 7 and KEEP,_;. The former value AUTH, is
stored in KEEP,, for possibly this node is needed for a new left node creation one

layer above.

Stack creation. Every round one stack is initialized anew: the stack belonging to
height 7. The new left node L has replaced AUTH, in this round. Then 27 rounds
later again this authentication node will change to a right node. This right node is
created by STACK,, the one which is initialized anew. The starting index for this
stack is ¢ +1 4 271,

Building needed future nodes. In total, exactly H operations shall be per-
formed in one round. One is already spent either in step 2 (if ¢ is even) or in step 4
(if 7 = 0 which is equivalent to ¢ is odd) of Algorithm 2. So still H — 1 operations
are to perform in step 6. Here the main improvement to Merkle’s classical algorithm
takes place: the scheduling for choosing which stack gets an update. Szydlo always
chooses the stack with the lowest top node. One update (either LEAFCALC or hash
operation) is performed to this stack. This happens H — 1 times, so that exactly H

computation units are spent in each round.

The whole algorithm description is depicted in Algorithm 2.

38

3.2 Szydlo’s Algorithm

Algorithm 2 Logarithmic Merkle Tree Traversal
Input: First authentication path {AUTH}}
Output: Auththentication paths for leaves ¢ + 1

1. Let p =0

2. Output If ¢ is even, compute ®(¢) = LEAFCALC(p). Output ®(¢p), for each h € [0, H — 1]
output AUTH,

3. Release nodes Let L be the current leaf if ¢ is even, or its first ancestor which is a left
node. Let 7 be the height of L (equal to the highest 7 with 27|(¢ 4+ 1)). Remove certain
expired nodes below L:

Remove all node values AUTH; for i < (7 — 1)

if 7 = 0 record ®(¢ + 1) = AUTH,

if L’s parent is a right node, remove L’s sibling, AUTH,
if L’s parent is a left node, set KEEP, = AUTH,

4. Add left node

if 7 =0 set AuTHy = ®(p)

if 7 > 0 compute AUTH, = HASH(AUTH,_1||KEEP,_1)
Remove node values AUTH,_; and KEEP,_;.

Copy new lower right nodes: for i < 7 set AUTH; = NEED;

5. Add stack Create STACK, at height 7, with starting value ¢ + 1 + 271

6. Building needed nodes
Repeat H — 1 times

e set active to be the stack with the lowest node (choose the lowest of such index in
case of a tie)

e if there is no such active stack, break and go to step 7

e Spend one unit building STACK,¢tive, as in TREEHASH

e if STACK tive is complete, put result in NEED,cti0e and destroy STACK etive

7. Loop to next round

o Set p=¢p+1
o if ¢ < 2 go to Step 2

It is an important task to show that every right authentication node is completed
when it is needed by the traversal algorithm. The proof of correctness of the pre-
sented authentication path algorithm can be found in [16]|. Exactly H computation
units are spent in each round of the algorithm, so the computing time is in O(H).
Szydlo shows that the maximum space needed with 3H — 2 is likewise algorithmic

in the total number of signatures (since H = log,(NV)).

As an interesting concern, Szydlo proves that the bounds of O(H) for both time and
space complexity he found are optimal. It is impossible to find an authentication
path algorithm that is in both better than O(log,(NN)). It is clear that at least H —2

39

3.3 Drawbacks of Former Algorithms

nodes have to be stored. So it suffices to show that if an algorithm needs a storage
capacity of O(log,(N)), then at least O(log,(N)) computation units per round are
required. A trade-off between time and space bounds can always be found, as no
constants are given. But the complexity bounds of O(log,(/N)) for both at the same

time are hard.

3.3 Drawbacks of Former Algorithms

All known work on traversal algorithms consider the leaf-calculation and the hash-
function evaluation to require the same amount of computation. Both operations
are counted as one computation unit each. When applying a one time signature
scheme for the leaf calculation, many hash value computations are needed to gen-
erate a single leaf, i.e. up to thousands. One can expect that leaf-calculation is
much more expensive considering the computation time needed than a single hash-
function evaluation. This leads to the problem that one cannot predict the number
of hashes really needed during one step of the authentication path algorithms. So

the generation time of a signature varies enormously from round to round.

Szydlo’s algorithm is the one that provably allows the best time and memory prop-
erties. Using H stacks which store at most H nodes each, the maximum number of
nodes stored is in O(H?). He shows that the memory needed for the stacks is at
most H, so that all other memory spaces are not needed at once. But implementing
this algorithm on a platform without dynamic memory allocation would need the

complete space of O(H?), as space for all H% nodes has to be reserved.

These ideas were included constructing the new traversal algorithm (Algorithm 3)
which is presented in the next section. Counting the number of hashes and the
number of leaf calculations separately leads to more balanced timings. Furthermore
we show that it is possible that all treehash instances share one single stack, so
that the storage needed is bounded linearly in H even on system without dynamic

memory allocation.

40

4 A New Authentication Path Algorithm

This section introduces a new algorithm for Merkle tree authentication path com-
putation. It is an improvement of Szydlo’s preprint algorithm [16] and addresses
it’s drawbacks mentioned in section 3. The correctness of the new algorithm will be
proved below. Further, some calculations on runtime and storage requirements are
made for comparison with former algorithms. This section presents the theoretical

results, whereas practical results are given later in section 6.

Our new algorithm will allow a time-memory trade-off. In the key generation phase
the whole Merkle tree has to be computed completely once. In this phase the
first authentication path was stored as input for Merkle’s and Szydlo’s scheduling
algorithms. Now we are going to store some more nodes: as the computation of
right nodes near to the root is most expensive, the idea is to store those right nodes
from the beginning, so that the time to compute these nodes is saved later. The
parameter K denotes the number of top layers in the tree where all right nodes are

stored. K is chosen so that H — K is even (we perform (H — K)/2 steps per round).

As mentioned above, our new algorithm yields to a more balanced signature gener-
ation time and also a moderate space requirement. Clearly the logarithmic bounds
in space and time complexity shall be maintained. We will show that an amount of
less than H /2 leaf calculations per round are sufficient to compute authentication

paths and that storage is also bounded logarithmically in the number of leaves.

We use stacks that are slightly different from the ones used by Szydlo. For each
height we apply a structure TREEHASH, which computes the upcoming right nodes
for the authentication path (again using Algorithm 1). All these instances share
one single stack, whereas in former algorithms every instance had its own stack to
store nodes on. We achieve a logarithmic total number of nodes stored at once, also
on devices without dynamic memory allocation. We will show that sharing a single
stack for all TREEHASHsS works well. Further on we are using a slightly modified
scheduling of the computation of right nodes, so that the amount of (H — K)/2
leaf calculations per round are sufficient. The computation of right nodes changes,

whereas left nodes are computed in the same manner as with Szydlo’s algorithm.

41

4.1 Notation

4.1 Notation

The main part of the notation is already known from previous sections. H denotes
again the height of the Merkle tree. With y,[j] the jth node on height h (i =
0...H,j=0...287" — 1) is referred. The authentication path of the current leaf
@ is again AUTH,..., AUTHy ;. The values KEEPy, ..., KEEPy 5 are the same
certain nodes to quickly compute left children. With 7 we denote the height of the
first parent of the actual leaf ¢ which is a left node. The stacks to store the right
nodes near to the root (on the upper K levels, K > 2) are called RETAIN,(h =
H —2...H — K). They are filled from left to right, so that the top node of a

RETAIN stack is always the next one needed for the authentication path.

Again we use an oracle LEAFCALC which computes the leaf value of the leaf with the
omitted index. Using the Merkle tree for digital signatures this method computes the
verification key of the underlying one time signature scheme. In difference to former
algorithms we do not just count it as one computation unit, we will distinguish

between the computation of leaves and single hash evaluations.

4.1.1 Treehash Stacks

With TREEHASH, ... TREEHASHy g1 we denote the structures to compute right
children. Each such instance stores the first node itself, further nodes are pushed
on the commonly shared stack. A node stored on a TREEHASH stack is called
a tail node. Additionally to the push and pop operations each treehash stack is
equipped with three methods: initialize(), height() and update(). The method
TREEHASH;,.initialize() sets the start node which tells the TREEHASH with which
leaf the computation of the stack has to begin. TREEHASH.height() returns the
height of the lowest node stored in the instance, either on the stack or in TREEHASH,,
itself. This method is required for the scheduling of the (H — K)/2 LEAFCALC
operations, which are always assigned to the one instance with the lowest tail node. If
there is more than one instance with same lowest node height, the one with the lowest
index is chosen for the update. In order to skip instances that are already finished or

not yet initialized, TREEHASH;.height() is set to infinity in these cases. When the

42

4.2 Algorithm Description

treehash stack was initialized, the first call of the last method TREEHASH,.update()
calculates the leaf with the start index. It is stored in the instance itself. The next
updates work in analogy to Algorithm 1: the next leaf is calculated and stored on
the stack. If the top two nodes have the same height they are hashed together and
the result is pushed on the stack. If the top node on the stack and the first node in
the treehash have same height, the result replaces the first node of the treehash.

4.2 Algorithm Description
4.2.1 Initialization

During the key generation, we store certain nodes of the Merkle tree. First we store

the authentication path for the first leaf ¢ = 0:
AuTH, = yu[l], h=0...H—-1

We also store the next right authentication node for each height h =0... H - K —1

on the stacks
TREEHASH,.push(y,[3]), h=0...H—-K -1
Depending on K, we store all right authentication nodes on the retain stacks:
RETAINy,.push(yn[27 +3]), h=H-K..H-2 j=20"1_2 0

Figure 11 illustrates the initialization process.

i iRy

Figure 11: Values of the initialization, H = 5, K = 3. The dashed nodes are authen-

tication nodes, the black ones are stored in treehash, the grey nodes are kept in retain

stacks.

43

4.2 Algorithm Description

4.2.2 Authentication Path Computation

As input, Algorithm 3 requires a node index ¢ between 0 and 2% — 2 and the
actual algorithm state (which means the TREEHASH instances, the stack and the
authentication path of the current leaf). As output, it returns the authentication

path of the next leaf ¢ + 1.

Left node computation. The first steps are again handling the left node com-
putation. The value 7 is the height of the first parent node of leaf ¢ which is a
left node, remember 7 = 0 if the current leaf itself is a right node. In formula
we have 7 = max{h : 2"| (¢ + 1)}. For left node computation the current AUTH
node on height 7 is stored in KEEP, if |¢/27!] is even (which means that the
parent of ¢ on height 7 + 1 is a left node). This node is required in round ¢ + 27
for the next authentication node on height 7 + 1, which can then be computed as

HASH(AUTH, ||KEEP,). See figure 12 of an example for the left node computation.

VSN
i \
\ 1
¢
N- -
B \
1
W/
TN
i \
\ 1
N

Figure 12: In round ¢ the node AUTH; is stored in KEEP,. This node is needed in

¥ ®+27

round ¢ + 27 for the computation of its parent node, which is part of the dashed authen-

tication path computed in round ¢ + 27.

If 7 = 0, which occurs in the rounds where leaf ¢ is a left node itself, we use
LEAFCALC(yp) to compute the leaf value itself. This node is the lowest authentication
node for the next round, i.e. AUTHy = LEAFCALC(¢p).

Considering this, the computation of the left authentication node requires either one
hash function call (if ¢ is a right node) or one LEAFCALC operation (in case that ¢

is even).

44

4.2 Algorithm Description

Right node computation. If the new left node for the authentication path was
computed, the values AUTH), for h = 0...7 — 1 must change as well (compare
figure 10 on page 37). The required nodes were either stored on the RETAIN stacks
(for all h > H — K) or they were precomputed in the TREEHASH instances. So
the call RETAIN,.pop respective the call TREEHASH,.pop delivers the newly needed
authentication nodes on heights lower than 7. In section 4.3 we will show that every

treehash in fact is completed when its top node is needed.

If an AUTH node was taken from a TREEHASH instance, it must be reinitialized for
the precomputation of the next right nodes. The instance with height A must again
be completed in round ¢ + 2"+, For that the instance is initialized with start index

¢ + 1+ 3-2" An illustration of this process can be seen in Figure 13.

O
O O
. . AuUTHg TREEHASH2
@, @, @, Q2 @,
¢ QO O O O O O . ééﬁ@ . o
000000000000........ OO0000000
<P <p+23 sa+1+3 22

Figure 13: In round ¢ the node AUTH3 is popped from TREEHASH2. This instance is
then initialized anew with start index ¢ + 1+ 3- 22 and computes the declared right node
on height 2. This node is needed in round ¢ + 23.

The next step is the scheduled computation of the remaining (H — K)/2 compu-
tations of LEAFCALC operations. We use the same scheduling as Szydlo did: the
TREEHASH instance with the lowest tail node on his top gets the current update. If
more than one instances have tail nodes at the same minimal height we choose the

one which has the lowest index.

The last step of the algorithm is the output of the authentication path {AuTH :
h=0...H —1}. Algorithm 3 shows the complete algorithm listing.

45

4.2 Algorithm Description

Algorithm 3 Improved Authentication Path Computation

Input: ¢ € {0,...,27 — 2}, H, K and the algorithm state.
Output: Auththentication path for leaf p + 1

1. Let 7 = 0 if leaf ¢ is a left node or let 7 be the height of the first parent of leaf ¢ which is
a left node:
7« max{h : 2" (o + 1)}

2. If the parent of leaf ¢ on height 7 + 1 is a left node, store the current authentication node
on height 7 in KEEP,:
if [¢/271!| is even and 7 < H — 1 then KEEP, «— AUTH,

3. If leaf ¢ is a left node, it is required for the authentication path of leaf ¢ + 1:
if 7 = 0 then AUTH) <+ LEAFCALC(p)

4. Otherwise, if leaf ¢ is a right node, the authentication path for leaf o+ 1 changes on heights
0,...,7:
if 7 > 0 then

(a) The authentication path for leaf ¢ + 1 requires a new left node on height 7. It is
computed using the current authentication node on height 7 — 1 and the node on
height 7 — 1 previously stored in KEEP,_;. The node stored in KEEP,_; can then be
removed:

AuTH,; < f(AUTH,_||KEEP,_1), remove KEEP,_;

(b) The authentication path for leaf ¢ + 1 requires new right nodes on heights h =
0,...,7—1. For h < H — K — 1 these nodes are stored in TREEHASH;, and for
h > H — K in RETAINy:
for h=0to7—1do

if h <H — K —1 then AUuTH;, «+ TREEHASH},.pop()
if h > H— K — 1 then AuTH;, < RETAIN}.pop()

(c) ForheightsO,...,min{r—1, H—K —1} the treehash instances must be initialized anew.
The treehash instance on height h is initialized with the start index ¢+ 143-2" < 28
for h =0 to min{7 — 1, H — K — 1} do TREEHASHj initialize(p + 1 + 3 - 2)

5. Next we spend the budget of (H — K)/2 updates on the treehash instances to prepare
upcoming authentication nodes:
repeat (H — K)/2 times

(a) We consider only stacks which are initialized and not finished. Let s be the index of
the treehash instance whose top node has the lowest height. In case there is more than
one treehash instance whose top node has the lowest height we choose the instance
with the lowest index:

.....

$ «— min {h : TREEHASH, height() = mlgn o {TREEHASHj.height()}}

(b) The treehash instance with index s receives one update:
TREEHASH;.update()

6. The last step is to output the authentication path for leaf ¢ + 1:
return AUTHg,..., AUTHy — 1.

46

4.3 Correctness of the Algorithm

4.3 Correctness of the Algorithm

This subsection proves that the new authentication path algorithm works correctly.
First we will show that the amount of (H — K)/2 LEAFCALC operations per round
is sufficient for computation of the right authentication nodes, which means that

each treehash instance is ready when needed.

Lemma 1. In Algorithm & every right node is completed in time.

Proof. In this proof we show that every TREEHASH instance is definitely completed
when its top node is required for the authentication path.

On height h we need 2" LEAFCALC-operations and 2" — 1 hash value operations to
complete TREEHASH;,. When TREEHASH,, is initialized in round ¢, the authentica-
tion node on height i computed by this instance is needed in round ¢-+2"*1. So there
is an amount of 2"*! rounds until TREEHASH;, must be completed. In each round we
perform (H — K)/2 LEAFCALC-operations. Our total is Z55 . (2"1) = (H — K) - 2"
operations to spend before the treehashs top node is required. The chart of Table
1 shows which TREEHASH instances can be computed during the computation of

TREEHASH;, and what costs they need.

TREEHASH Quantity LEAFCALC-ops each
TREEHASHy 4 1 max 2"
TREEHASH), | 1 max 2"
TREEHASH,, 1 2h
TREEHASH;,_; 2 2h—1
TREEHASH),; 21 2h=i
TREEHASH, 2h 1

Table 1: Number of LEAFCALC operations

47

4.3 Correctness of the Algorithm

As shown in the Table 1, active TREEHASH instances on higher levels than h can
apply at most 2" LEAFCALC operations each (the total cost of completing a stack
on height h). Before they were continued on higher levels, TREEHASH;, must have
been completed. There are H — K — 1 — h exemplars of higher instances (indices
h+1...H—K —1). The computation of a lower instance TREEHASH;,_; with index
j € {1...h} requires 2"J LEAFCALC operations. During the available 2" rounds

TREEHASH;,_; is initialized 27 times.

Summing up the number of the maximal count of LEAFCALC operations, we get less
than (H — K — 1 — h) - 2" for the stacks with index higher than A and

(h+1)-27.2"9 = (h+1)-2"
for the stacks with index less or equal & (down to 0). Totally we get at most
(H-K-1-h)-2"+(h+1)-2"=(H-K) 2"

This is an upper bound for the maximum number of LEAFCALC operations per-
formed until TREEHASH;, must be completed. As we have seen above we have a
total amount of (H — K) - 2" LEAFCALC operations. So we determine that every
stack is completed when its top node is needed in the algorithm. The upper bound
is tight for h = H — K — 1. O

In his algorithm Szydlo uses one stack for each height h = 0... H — 1. In our new
algorithm all TREEHASH instances share one single stack. For the correctness of the

algorithm we have to show that sharing one single stack really works.
Lemma 2. In Algorithm 3 it is sufficient to share one single stack for all TREEHASH

nstances.

Proof. We have to show that tail nodes belonging to different TREEHASH instances
do not interfere on the stack. If TREEHASH, gets an update and has previously

stored nodes on the stack, we have to show that these nodes lie on top of the stack.

First we consider TREEHASH instances with index greater than A. When TREEHASH;,

receives its first update, the lowest tail node of higher TREEHASH instances has a

48

4.4 Computational Bounds

height of at least h. That implies that TREEHASH;, is completed before those in-
stances get another update. So TREEHASH;, and instances on higher levels never

interfere on the shared stack.

Let us now examine lower TREEHASH instances. [t is possible that TREEHASH; with
index ¢ < h gets updates and stores nodes on the stack while TREEHASH}, is not
completed and stores tail nodes on the stack. This can happen only if the lowest
tail node of TREEHASH,, has height greater or eqal <. But in this case TREEHASH; is
completed before TREEHASH;, gets another update, and the top nodes on the stack
are again the tail nodes of TREEHASH,. We have shown that lower TREEHASH
instances do not interfere with the tail nodes of TREEHASH,,, and so the proof is

completed. O

4.4 Computational Bounds

Lemma 3. Algorithm 3 needs (H — K)/2 + 1 many LEAFCALC operations per
round. The number of performed hash value evaluations per round is bounded by
%(H — K — 1) + 1. Therefore the total computation cost of Algorithm 3 lies in
O(log, N).

Proof. LEAFCALC operations. In step 3 of our algorithm one LEAFCALC opera-
tion is performed, if ¢ is a left node. In step 5 at most (H — K)/2 calculations are

executed. Totally we have at most (H — K)/2 + 1 LEAFCALC operations.

Hash operations. Now we give an upper bound for the number of hash calculations

H-K
2

hash evaluations is performed in the following case: the instance TREEHASHy g1

. We will show that the maximum number of

performed in one round. Let u =

receives all © updates and is completed by the last one of these updates.

We will now give an upper bound for the number of hashes required in this worst
case. On height 0 every second round a hash is required. Every fourth round one
additional hash is required on height 1. Generally on height h every 2"*'th round
an additional hash is performed (h =0...[u/2"] —1).

Since we have at all u updates to perform, on height 0 we get totally [u/2] hashes,

49

4.4 Computational Bounds

on height 1 there are additional [u/4] hashes and generally for height h we have to
add [u/2"*1] hashes, which makes totally

[logy ul—1 u [logg u] u
Z [oh+1 -‘ - Z [Q_h-‘
h=0 h=1

The last update requires H — K — 1 = 2u — 1 hashes to complete TREEHASHy _x_1
up to height H — K — 1. So far only [log, u| of these hashes were considered, so we
have to add 2u — 1 — [log, u| hash value evaluations. In total for the worst case we

get the following upper bound for the number of hashes required for one round:

[log ul

(3) >

W +2u — 1 — [log, u]

VAN
~ A~ —
2=
+
[a—
~—
+
[\

S
|
—_
|
-
o
09

[\
S
JR—|

Using the geometric series it is

[log, u]
1 (1/2)Mes2ult+l _(1/2) 1
— = — —9.((1/2)\Mog2ul+1 _ /9y =1 — ——

> 5 71 ((1/2) /2) =1~ g

Additionally it is
1 1 1 1 1

_ < — — =
2ﬂog2 ul — 9logy u+1 2 . logyu 2 H-K

Including this we get

1 H-K H-K 1 3
+H-K—1= —ytH-K-1= (H-K-1)

(3) < (1~ (=) -3

One additional hash is performed in step 4a of Algorithm 3. This leads to the

maximum of 2(H — K — 1) + 1 hashs per round. What remains now is to show

50

4.4 Computational Bounds

that there is no other case that requires more hash evaluations, so that the above

mentioned case is indeed the worst case.

If a treehash instance on height less than H — K — 1 receives all updates and is
completed in this round, less than (3) hashes are required. The same holds if the
treehash instance receives all updates but is not completed in this round.

The last case to consider is the one where the u available updates are spent on
treehash instances on different heights. If the active treehash instance has a tail
node on height j, it will receive updates until it has a tail node on height j + 1,
which requires 2/ updates and 27 hashes (so 2/ < wu, otherwise again only one
treehash instance would receive updates). First consider the case that the active
treehash instance is not completed by the u updates. Additional to the 27 hashes
there can be t € {0... H — K — j — 2} hashes which take nodes from the stack, as
on the stack nodes on heights 7 +1... H — K — 3 could be stored. Then the next
treehash instance worked on has a tail node on heights j or 7+ 1 (> j + 1 is not
possible, otherwise the old treehash instance would get the next updates again, < j
is not possible because then this treehash instance would have gotten the updates
earlier) and it cannot store nodes on the stack on heights < j + ¢ (on each height
at most one node is stored on the stack). But this is the same case which appears
in the above mentioned worst case if it computes a node on height j and gets the
next updates for the same instance. The last case to consider is the case where the
active treehash instance is completed by the first 2/ updates and hashes. Again it is
possible that t € {0... H — K — j — 2} hashes are additionally needed for nodes on
the stack. Then the next active treehash instance has a tail node on height > 7, and
on the stack there can only be nodes with height at least j + ¢+ 1. Again this case
appears in our worst case scenario, as it makes no difference if the same instance
receives the next update or another one. So we could show that all other cases can

be reduced to the worst case and this bound was given above.

Considering the bounds of (H — K)/2 + 1 LEAFCALC operations and
3(H — K — 1) + 1 hash evaluations per round it is easy to see that the compu-
tation costs of our algorithm is bounded linearly in H. Since H = log, N the cost is

logarithmically in the number of leaves N, so that it lies in O(log, N). O

51

4.5 Storage Efficiency

4.5 Storage Efficiency

Lemma 4. KEEP consists of at most | H/2] + 1 node values. For the upper K — 1
RETAIN stacks 25 — K —1 nodes are stored. On the shared stack at most H — K — 1

nodes are stored. Therefore the total space required by Algorithm 3 is bounded by
3H + |H/2| + 2% — 3K — 1.

Proof. Space requirements for KEEP nodes. Consider that in step 2 of Algo-
rithm 3 a node gets stored in KEEP;, (h =1...H — 2). Then the node in KEEP,_4

is removed in the same round in step 4a.

Next we will show that if a node is stored in KEEP,, h = 0,...,H — 3, then
KEEP;, ;1 is empty. A node is stored in KEEP,; in rounds ¢ € A, = {2h+1 -1+
a-2M3 022 1 4 203) a € Ny. In rounds ¢ = 2" —1+b-2"2 b e Ny, a
node gets stored in KEEP,. We will show that ¢’ ¢ A,. Assume

(4) el & &0’22h+1—1+a-2h+3 and &0’§2h+2—1+a-2h+‘i

J

(Zl) (43)
(4.1) ¢ > 2"l 1 4q. 203
e oh 14 p.omH2 > ohtl {4 g . 0ht3
& 1+b-22 > 2'4q-23
& 4 > 1+8a
& b > 1/4+2a
(4.2) o < 2214 g 20F3
e b 14 b.oht2 < oht2 |4 g . 0ht3
REN 140-22 < 2244-2°
& 4 < 3+8a
& b < 3/4+2a

So ¢’ € A, is equivalent to 1/4 + 2a < b < 3/4 4+ 2a. Since a € Ny this is a
contradiction to b € Ny. That shows that KEEP,, is always empty when KEEP,

gets a node to store.

52

4.5 Storage Efficiency

We have shown that if a node gets stored in KEEP,,, then KEEP,,; is empty and
KEEP,_; gets removed in the same round. So at most every second KEEP stores
a node at the same time, totally we have to store less then | H/2] nodes. Between
steps 2 and 4a of Algorithm 3 we need to store one temporary node, what gives us

a total space requirement of | H/2| + 1 for the KEEP nodes.

Nodes stored in RETAIN. In the highest K —1 RETAIN stacks all right nodes are
stored. During the initialization, for heights H — K, ..., H — 2, the nodes y;[2j + 3]

for j = 2871 — 2 down to 0 are stored. This makes totally

| — (2H7i71 . 1) _ _Z (27#1 . 1) _ Z(Qifl _ 1) — A_ (2i+1) . (K . 1)

Using the geometric series we have

Including this, we get
2.2 -1 -K+1=2 K -1

This is the storage needed for the highest K —1 RETAIN stacks where all right nodes

are stored.

Nodes stored on the stack. We will show that at most one tail node can be
stored on each height h =0... H — K — 3. An instance TREEHASH,, stores at most
h tailnodes. While the first one is stored in TREEHASH;, itself, the remaining A — 1
nodes are pushed on the stack. Additionally one temporary node could be stored

short before the top nodes on the stack are hashed together to a higher node.

When TREEHASH,, gets active and receives its first update, all lower instances with
height less than h are either completed or not initialized. Otherwise the height of
such an instance would be less than h and it would have received updates before
TREEHASH;, did. For the same reason, instances with index > A can only store nodes
on height greater than h, or they are as well either completed or empty. Consider

the case that an instance on height ¢ stores a node on the stack. Then all other

53

4.5 Storage Efficiency

TREEHASH instances on heights > 4 can only store nodes on height > i, because
otherwise TREEHASH; would not have received updates. And since TREEHASH; can
only store nodes up to height : — 1 on the stack we have seen that there can never

be two nodes with the same height stored on the stack.

The instance TREEHASHy i1 is the one with the highest index. It stores nodes
up to height H — K — 2, where nodes on height 0... H — K — 3 can be stored on the
stack (the first one is stored in TREEHASHy_ i itself). This is the case in round
@ = 2H=K+1 _ 9 the round where the update that completes TREEHASHy_g_; is
performed. Considering the temporary node created by LEAFCALC we get a total
bound of H — K — 1 of the nodes stored on the stack.

Space requirements in total. On each height h € {0... H — 1} there is always
one authentication node stored. For this reason, the space needed for authentication
nodes is H. Each of the H — K TREEHASHs saves one node. Summing up gives us

totally
H+(|H2+D)+02 -~ K-1)+(H~-K—-1)+(H - K)
=3H + |H/2] +28 —3K -1

O

Since the space requirements are exponential in K, this parameter should be chosen
small. The following chart shows the size of the RETAIN stacks corresponding to
the value K. The number of 720 nodes is a big amount and should never be needed

for the retain nodes. So K could be chosen 2 if H is even or 3 if H is odd.

K 2 3 4 Y 6 7
Size of RETAIN 1 4 11 26 57 120

Table 2: Total number of node stored in RETAIN (2K — K — 1)

54

4.6 Computing Leaves using a PRNG

4.6 Computing Leaves using a PRNG

For the computation of each leaf of the Merkle tree a random number SEED,, is
required. Out of this seed the keys of the one time signature are created. Remember

that these SEEDs are computed consecutively using the forward secure PRNG:
SEED,41 < PRNG(SEED,,)

In the flow of authentication path computation not only consecutive leaves are com-
puted: for upcoming right nodes computed by the TREEHASHS some future nodes
are required as well. It would be very inefficient to compute every SEED value in
time when it is needed: the maximum number of PRNG calls would be 3 - 27— K-1
which occurs when TREEHASHy i1 gets its first update. A special scheduling for
these seeds has to be implemented to distribute the calls to the PRNG.

Our proposed scheduling strategy requires H — K calls to the PRNG each round. We
have to store two seeds for each height h = 0,..., H—K—1. The first (SEEDACTIVE)
is used to successively compute the leaves for the authentication node currently con-
structed by TREEHASH;, and the second (SEEDNEXT) is used for upcoming right
nodes on this height. SEEDNEXT is updated using the PRNG in each round. Dur-
ing the initialization, we set SEEDNEXT;,, = SEED3,x for h = 0,..., H — K — 1.
In each round, at first all seeds SEEDNEXT),, are updated using the PRNG. If in
round ¢ a new treehash instance is initialized on height h, we copy SEEDNEXT,,
to SEEDACTIVEy,. In that case SEEDNEXT;, = SEED;,39r holds and thus is the

correct seed to begin computing the next authentication node on height h.

4.7 Comparison of Theoretical Bounds
This section is terminated with a comparison of the theoretical bounds of the former
discussed authentication path algorithms. Table 3 shows the composition in short.

Comparing our new algorithm to Szydlo’s, the computation time needed per round
seems to increase. The difference is the distinction between leaf calculations and

simple hashes. As the number of LEAFCALC operations with Szydlo’s algorithm

%)

4.7 Comparison of Theoretical Bounds

could grow up to H, at most (H — K)/2 4+ 1 are done with our scheduling. With
this the maximum number of hashes to perform per round is more balanced and in

total lower using the new algorithm.

Algorithm Computation Time Space

Merkle 2logy(N) — 2 1/2(logy(N))?
Jakobsson et. al. 21log,(N)/logy(logy(N)) 1.5(logy(N))?/ logy(logy(N))
Szydlo log, (V) 3logy(N) — 2

3(logy(N) — K —1)+1 3.5logy(N) + 2% —3K -1

Algorithm 3
+(logy(N) — K)/2+1

Table 3: Comparison of complexity bounds. In concern of computation time, Algorithm 3
distinguishes between hash function evaluations (first row) and leaf calculations (second

row)

Concerning the memory, we first saved half of the KEEP nodes, as only every second
has to be stored at once. The parameter K provides a time-memory trade-off for our
algorithm. For the stacks the bound we found is really tight, whereas for Szydlo’s
algorithm this is only true if dynamic memory allocation is possible. Otherwise the

space needed could grow quadraticly in H.

These theoretical results are analyzed in section 6 of this thesis by some practical

work.

56

5 Java Implementation

5.1 Overview

As one part of this thesis, the GMSS signature scheme was implemented using the
Java programming language. Responsible for the use of cryptographic algorithms in
Java applications is the Java Cryptography Architecture (JCA) [24]. Tt is the Java
security API, providing standardized programming interfaces for message digests,
digital signatures, key exchange or cyphers for use with all Java applications. As it
is an API, it strictly separates the implementation of algorithms from their usage.
Some interfaces are required out of a Java Cryptography Extension (JCE), which is

a part of the the Java Platform.

GMSS was integrated into the FlexiProvider package [25], which is an open source
cryptographic service provider for the JCA. A provider for the JCA has two func-
tions: it administrates the implementation of the cryptographic algorithms and it
is responsible for the assignment of algorithms to their names. The FlexiProvider
contains modules for integration into any application built on top of the JCA. As
GMSS is topic of the post quantum computing research, it was implemented as part
of the FlexiPQCProvider, which contains algorithms secure against quantum com-
puter attacks. The FlexiProvider includes established algorithms like RSA or DSA
as well as algorithms that are still research topics, like GMSS.

As the JCA provides interfaces, it allows the simple exchange of cryptographic al-
gorithms. For this GMSS can easily be integrated into other applications based
on the JCA. GMSS was implemented so that the underlying message digest algo-
rithm (used for the OTSS and the Merkle tree) can be exchanged easily. So the
FlexiProvider implementation will stay secure if a message digest algorithm drops
out. Some predefined versions of GMSS (using the hash functions SHA1, SHA224,
SHA256, SHA384 and SHA512) can be integrated into applications by using some
predefinded object identifiers (OIDs). Those OIDs assigned to GMSS can be found
in Appendix D. The complete source code can be found as download on the website

of the FlexiProvider project [25].

57

5.1 Overview

For the implementation of GMSS the JCE of Fraunhofer Gesellschaft (FhG) was
used. For encoding and decoding of an ASN.1 representation of the GMSS keys, the
ASN.1 codec package provided by sourcefourge.net? was imported. Both packages
can also be found via the FlexiProvider website. ASN.1 stands for Abstract Syntaz
Notation One. It is a description language for the definition of data structures, stan-
dardized by the ITU-T [26]. It is used for interoperability with other applications.
Using this notation it is for example commonly possible to use the GMSS keys for
X.509 certificates.

A former Java implementation of GMSS already existed [17]. The main drawback
of this work was the implementation of the authentication path algorithm. It used
the Szydlo algorithm for the scheduling of the authentication path computation.
The absence of a seed scheduling was the first fact slowing down the computation.
But even worse was the fact that each stack was computed at once, which meant
the computation of 2" leaves at once. The distributed computation of these leaves
in combination with the more balanced authentication path algorithm of section 4

balances the whole signature generation time.

The GMSS parameter set was upgraded: now it contains additionally the K values
for each layer of the GMSS structure. In summary the GMSS parameter set P is

now

P = (T, (hl,...,hT),(wl,.--,wT)a(Kla'“aKT))

For the application of the new authentication path algorithm with GMSS a data
structure for the treehash instances is required. For this the class Treehash was
implemented. It stores the first node itself and uses a shared stack for the storage
of additional tail nodes. The update method of this class executes the treehash

algorithm (Algorithm 1) once.

There are more nodes being precomputed in the new implementation. Not only
the leaves of the tree after the following are precomputed, but as well those nodes
needed for the actual tree. This additional distributed leaf computation is shown in

the next section.

2SourceForge.net is one of the most famous Open Source software collection, available

at http://sourceforge.net

o8

5.2 Distributed Node Computation

5.2 Distributed Node Computation

The former GMSS implementation distributed the calculation of the next leaf in
7 j+2, the tree after the following of the currently processed tree 7;;. For the
actual tree, every leaf is calculated at once. The idea is now to distribute the
computation of those leaves as well over the pass of the underneath tree 7;,; ;. This
tree consists of 2%+1 leaves, thus the computation of upper nodes is distributed over
2hi+1 steps. Distributed generation of a leaf means the computation of the OTS key
corresponding to the leaf. Using the Winternitz OTS scheme each random value
x; is hashed 2% — 1 times (i = 1...%,) to get the values y;. The concatenation of
these values is hashed once to get the OTS public key Y. For creation of every
random value x; one hash is required. So the total number of hash function calls is
(2@ — 1) - t, + 1+ t,. For each of the 2"+! leaves of the underneath tree we get an
amount of
[((2“’ 1)ty 141 / 2’%]

This is the number of hashes performed per round, so that after 2"+! rounds the leaf
is completed. In the implementation, the class GMSSLeaf already existing adopts this

distributed computation. A detailed description of this class can be found in [17].

Actual Processed Nodes. The first leaf to precompute is the following leaf on
the actual layer ¢ which is needed when in the layer beneath a next tree is begun.
The next leaf of tree 7; ; is partly computed when advancing a leaf in the lower tree
7i+1,; (see Figure 14). On the lowest layer H — 1 each leaf has to be computed at

once, no distribution is possible (as no lower tree exists).

Another way to compute this leaf would be the verification of the signature belonging
to the root of the following tree on the lower level. This one time signature is already
known, it was precomputed out of its root value. For the next leaf of tree 7; ;, the
OTS public key belonging to the signature is required. It can be computed by just
verifying the precomputed signature. On average half of the hashes for the leaf could

be saved using this approach.

99

5.2 Distributed Node Computation

Figure 14: While advancing a leaf in tree 7;;1;, the next leaf of tree 7;; is partly

computed.

Treehash Nodes. Secondly the leaves needed for the authentication path algo-
rithm, used for the computation of upcoming right nodes, can be precomputed. In
round ¢ of tree 7; ; at maximum (H — K')/2 LEAFCALC operations have to be done
for the authentication path algorithm. The leaves are directly passed to the treehash
updates. On each layer besides the lowest one the calculation of these (H — K)/2
leaves is distributed equally over the flow of the 2"+ leaves of the underlying tree
7i+1,;.- So while advancing
ohit1 ohit1+1
(H-K))2 H-K

steps in the lower tree, one single leaf of the upper tree 7; ; is computed. Since every
leaf requires an amount of (2* —1)-t,,+ 1 +t,, the total number of hashs to perform

while advancing a leaf in 74 ; is
((Zw - 1) “ty + 1 +tw) . (H — K) / 9hit1+1

When all 2"i+1 leaves of the lower tree were passed, all (H — K)/2 leaves needed for
the treehash updates have been computed. Figure 15 depicts this precomputation
process. The implementation of the treehash update process is described below,

when handling the implementation of the authentication algorithm.

60

5.2 Distributed Node Computation

@)
@ @)
o D5
GQG. .GQG.

O
@] @)
e
IO .0..0. 0..0.

[E——

Figure 15: Suppose (H — K)/2 = 4, so that the four dark leaves of the upper tree are
required for treehash updates. They are computed while advancing leaves in the lower

tree.

Distributed Root Calculation. The implementation of the distributed precom-
putation of the root of tree 7; ;.o was changed as well. For the new authentication
path algorithm additional values have to be computed, not only the root of the
next but one tree is neccessary. The authentication path of the first leaf of tree
7; j+2 is stored in AUTH7, ,,. This is the standard approach in the MSS key gen-
eration, where the value of the first leaf of each height of the tree is stored. The

third leaf of each height is again stored in TREEHASH7, ., and the upper nodes

it2
close to the root are stored in RETAIN7, . All treehash instances share one single

stack STACK7, which is stored as well. When advancing to the first leaf of 7; ;1o

G20
the authentication path computation will start with those stored values. The value

RooT+

- i.» 1s applied for the distributed signature generation, like it was described

in section 2.5.2.

In Java the class GMSSRootCalc is responsible for the precomputation of the next but
one tree; this class is also used in the keypair generator of GMSS for the computation
of the first two trees of each GMSS layer. For this reason the implementation of the
key pair generator was rewritten (and shortened because of the re-use of this part

of code) in the new implementation.

61

5.3 Implementation of the Authentication Path Algorithm

5.3 Implementation of the Authentication Path Algorithm

Most of Algorithm 3 was implemented exactly following the algorithm description.
The computation of 7, the storage of nodes in KEEP if necessary, the computation
of left nodes and so on. The KEEP array was implemented in a way that each two
consecutive levels share one entry of the array: nodes on layer h and h — 1 are
both stored in KEEP|;, /o). Temporarily in step 2 of Algorithm 3 the higher node is
stored until step 4a was performed and the shared keep entry is surely empty. The
LEAFCALC operation in the third step was replaced on upper layers: the leaf was
already precalculated and must only be copied. The initialization of the treehash
instances can be performed without committing the start index: the seed scheduling
described at the end of the last section makes sure that the SEEDACTIVE is always
the right seed belonging to the leaf ¢ + 1 + 3 - 2" when restarting a treehash.

The most crucial part of the implementation is the update of the treehashs. As
mentioned above, the computation of each of the (H — K)/2 leaves is distributed.

hit1+1
7 leaves

This fact conditions that the update of the treehash is paused until all
of the lower tree 7,1, ; have been finished. So step 5a is computed partly for layer ¢

when advancing one leaf in layer ¢ + 1.

Conclusion

As a result of these improvements, the new implementation provides more balanced
time characteristics. The divergence in time needed for the generation of a signature
is essentially smaller than before. This is achieved by application of the new, more
balanced authentication path algorithm as well as by spending more attention to
the distribution of upper tree computation. The next section shows some practical

results which shall state this pronouncement.

62

6 Results

This section presents some results obtained using the new authentication path al-
gorithm. First Algorithm 3 is compared to Szydlo’s scheduling algorithm. The
theoretical improvements of section 4 shall be confirmed using practical results.
The second part gives some results of the revised GMSS scheme, compared to the
previous GMSS implementation [7, 17| as well as other known schemes for digital
signatures like DSA or ECDSA. At this juncture the size of keys and signatures as
well as the time needed for key pair generation, signature generation, and verification

respectively, are considered.

6.1 Comparison: Authentication Path Algorithm

Both authentication path algorithms were used for the pass of one single Merkle
tree. The graphs of Figures 16 and 17 illustrate the number of hash evaluations
needed for each round; the blue line is the result using Szydlo’s algorithm, the
red line used Algorithm 3. The leaves and hashes for left node computation were
not considered, because both algorithms use the same procedure here. For the
comparison a Winternitz parameter w = 2 and a 160 bit hash function was chosen.
This leads to the cost of 256 hash function evaluations for one leaf calculation
(t, = 85 and we need (2% — 1) - t,, + 1 = 256 hashes). Table 4 shows the statistical
data belonging to the tests. H denotes the height of the Merkle tree.

Mean Value Standard Deviation

H Algorithm 3 Szydlo Algorithm 3 Szydlo
5 214.9 405.4 95.8 263.0
10 899.9 1028 314.0 452.1

Table 4: Statistic data of the number of hashes required per round

63

6.1 Comparison: Authentication Path Algorithm

T
— Algorithm 3
700 — Szydlo i
600 [N
500 N
0
<]
<
0
<
<
400 -
=
[«
s
E
Z 300 -
200 T
100 T
O | | | |
0 5 10 15 20 25 30
Round ¢

Figure 16: Number of hashes needed for right nodes per round while advancing one Merkle
tree. On the x-axis the single rounds are assigned (tree height H = 5 = 2° = 32 rounds),

the y-axis shows the number of needed hash function evaluations.

1500

2O I 1 |
500
0 | | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000
= | gl | | |
1000 —
500 “
0 | | | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000

Figure 17: Number of hashes per round. The upper graph shows the result of Algorithm 3,
the lower graph belongs to Szydlo’s algorithm (H = 10 = 1024 rounds).

64

6.1 Comparison: Authentication Path Algorithm

It is evidently noticeable that the scheduling used within the new algorithm leads to
a more balanced authentication path computation and with this to a more balanced
signature generation. Also the total number of hash values was reduced. As one
can see in Table 4 the mean value of the number of hashes per round is reduced
compared to Szydlo’s algorithm. This shows that the new algorithm actually gets
along with less hashes per round. The standard deviation, which indicates the
balancing, decreases drastically. By this we assert the better balancing of our new

algorithm.

Visually these improvements are recognizable by the fact that in Figures 16 and 17
the red line proceeds mostly below the blue one and the blue graph shows much

more oszillating properties. For higher values of H we get related results.

Worst Case Values. We are going to compare the results gained theoretically
in section 4 with some measured practical values. The following table presents
some results obtained with a practical implementation of both hash tree traversal
algorithms. It presents the worst case number of hashes and leaves required per
round. Again a Winternitz parameter w = 2 and a 160 bit hash function are chosen,
so that the number of hashes for one leaf calculation is 256. The values in brackets

are the theoretically forecasted costs of lemma 3 and 4.

Our Algorithm Szydlo’s Algorithm
H leaves hashes hashes total leaves hashes hashes total
5 1(1) 1(2.5) 257 3 1 769
10 4 (4) 8(11.5) 1032 3 1539
15 6 (6) 14 (17.5) 1551 9 5 2309
20 9(9) 24 (26.5) 2328 12 7 3079

Table 5: Comparison of the number of hashes required in the worst case.

It is considerable that the precomputed bounds hold. The number of leaves com-
puted per round is tight. Even in the worst case, our new algorithm needs less

hashes than Szydlo’s former algorithm.

65

6.2 Comparison: GMSS

6.2 Comparison: GMSS

In this part the GMSS implementation is analyzed. As hash function, all tests used
the SHA1 version out of the FlexiCoreProvider. As pseudo random number gener-
ator the ShalPRNG of the Sun provider was used. All tests were performed on an
Intel Core 2 Duo T7200 2GHz processor with 1 GB RAM. As runtime environment
the Sun JRE 1.3 was deployed.

The time needed for generation and verification of a single signature is quite small.
For this it is essential to measure timings in microseconds. Following [27] we use
the hrtlib.dll library, which provides a timer to exactly measure time differences in
those spheres. Just creating a signature more than once and computing the mean
value would not be a solution: the private key changes with every signature, so it is

not easy to create the same signature more than once.

Nearly all parametersets P used for the testings are characterized by the fact that
the Winternitz parameter belonging to the lowest layer is smaller than all others.
Smaller parameter w allows faster signature generation, but is responsible for bigger
signatures. As on the lowest layer the public keys for the leaf values have to be
computed at once and cannot be distributed, a smaller parameter on this layer
speeds up the whole process, even more than the parameters on upper layers would
do. For this the Winternitz parameter on the lowest layer is mostly chosen smaller
than the others.

Balancing. First a comparison between the old GMSS implementation of [17] is
compared to the new one. Using the parameterset P = (4, (4,4,4,4), (8,8,8,3)) the
signature generation lasts arbitrarily four milliseconds, whatever implementation is
used. But among different signatures the duration varies more or less, because the
offline part does not always compute the same parts. Figure 18 depicts the resulting
timings for both implementations for 200 signatures. The red line indicates the
timings of the new implementation, the blue line belongs the old one. The parameter

K is set to 2 on each layer.

66

6.2 Comparison: GMSS

a5k | T new implementation N
—— old implementation

30 T
25 T

)

E)

[

£ 20]

H

)

E=

=

)

tn 151 |
10 T
" WMW = &WWJWZWMWTW
0 1 1 1 1 1 1 1 1 1 1
900 920 940 960 980 1000 1020 1040 1060 1080 1100

Signature Index ¢

Figure 18: Time needed for signing with GMSS. The red line shows the timings using
the new GMSS implementation, the blue line belongs to the old implementation. The used
parameterset is P = (4, (4,4,4,4),(8,8,8,3)), K is set 2 on each layer.

67

6.2 Comparison: GMSS

Figure 18 illustrates that the time needed for signing is much more balanced using
the new GMSS implementation. The edges within the blue graph come up every
16 signatures. Using a bottom tree of height 4 (which means 2* = 16 leaves),
the old implementation needs much time for advancing a leaf on the second lowest
layer. This is the situation where the new implementation uses the better balanced
authentication path algorithm. Furthermore the precomputation of the actual and
the coming (treehash) leaves of this tree saves time. Those leaves are computed
completely within the old implementation, whereas in the other case they can be
simply copied. So the applied changes really affect the timings the way it was
supposed.

The statistical analysis of the data emphasizes the better balancing of the new im-
plementation: whereas the mean value remains nearly the same (5.0 ms (old) to 4.2
ms (new)), the standard deviation of the timings was reduced to more than a sev-
enth part: it decreases from 4.6 ms to 0.6 ms using the new GMSS implementation.
This evidently shows that the scheduling of the nodes in the upper tree really leads

to better balancing attributes for the signature generation.

Greater Amounts Of Signatures. In [7] some linear optimization was used to
find optimal GMSS parameter sets, allowing modular key and signature sizes besides
applicable timings. The optimal sets for an amount of 2% and 2% signatures were
adopted and the parameter K was included. So we get the following parameter sets

for our test:
P = (2,(20,20), (10, 5), (2,2)) PQO = (2,(20,20),(9,3),(2,2))

Pgo = (4,(20,20,20,20),(7,7,7,3),(2,2,2,2))

The following tabular shows the resulting timings and memory requirements. The
key size always denotes the byte length of the ASN.1 encoded keys. The timings
were obtained on the above mentioned platform as mean value of the first 2!? sig-
natures. With a tree of height 20 on the lowest layer, for comparison the first 22!

or even more signatures should have been created, so that an advance on upper

68

6.2 Comparison: GMSS

layers was considered. But this test would take too long, so only the first 2!? were
constructed. To show how this effects the final results, we compared the timings and
key sizes of a GMSS structure with lowest layer height 10 with 21 and 2'° signa-
tures: the difference in the private key size is 0.2%, whereas in timings no difference
is recognizable. So we adopt that for our parametersets it is adequate to compare

only the first 22 signatures.

The values in the tables represent the following: m values are memory requirements
for the keys and the signature. The time needed for key pair generation, signature

construction or verification, respectively, is denoted by t values.

Mpublic key Mprivate key Mesignature tkeygen tsign tverify

Piwo 75 bytes 12341 bytes 1868 bytes 539 min 13.4 ms 13.1 ms
Py 75 bytes 12501 bytes 2348 bytes 299 min 6.6 ms 8.1 ms
Pl 93 bytes 30372 bytes 4256 bytes 464 min 7.4 ms 8.4 ms

Table 6: Measured values for the new GMSS implementation

For comparing these numbers with the old GMSS implementation, we adopt the
results from [17] measured on an Asus V6J (1.83GHz CPU).

Mpublic key Mprivate key Mesignature tkeygen tsign tverify

Piw 67 bytes 5467 bytes 1868 bytes 579 min 22.6 ms 19.4 ms
Py, 67 bytes 5547 bytes 2348 bytes 321 min 11.6 ms 10.6 ms
Py 79 bytes 14731 bytes 4256 bytes 498 min 11.6 ms 9.5 ms

Table 7: Measured values for the old GMSS implementation, from [17]

The timings are quite the same using both implementations, the discrepancies are
mostly caused by the different platforms. The signature size remains exactly the
same, it was not touched by the revision of GMSS. The public key rises few, as the
K parameters for each layer have to be stored additionally. The private key size
nearly doubles. For the better authentication path computation, more upcoming

data has to be stored, like the treehash instances or the stacks of the following trees

69

6.2 Comparison: GMSS

on each height. This data is stored in the private key, and that is why its size grows.
However, the sizes of up to 30 kilobytes are still useable in practice. The table only
shows a mean value of the private key sizes: for P}, it ranges from 10541 to 12731
bytes, for P, it differs between 28413 and 30602 bytes. The balancing of the timings
cannot be seen in this tables, the achievements in this concern have been shown in

the last section.

Some more measures are depicted in Appendix A. Therefrom we get some more
information of the affects of the GMSS parameters: if the parameters K raise, the
private key size rises as well. Higher K makes sure that more upper nodes are
permanently stored in the private key, so it is clear that its size increases. Simulta-
neously the signing time declines, as the upper nodes must no more be computed
chosing higher K values. The signature size is not affected by this parameter.

The impacts of the parameter w are the same as before in GMSS: choosing bigger
w values, the signature and the private key sizes decline, whereas the timings grow

a bit. Smaller w’s have exactly the contrary impact.

It is concluded that GMSS is ready to use in practical applications. The timings
are comparable to other signature schemes that are used widely today, like ECDSA,
DSA or RSA. For measured results of these schemes see for example [5]. Even if
the key sizes, especially of the private signing keys, are relatively big, GMSS is still

applicable. We have created up to 2%

signature keys with reasonable effort and
costs. This amount should be adequate for todays use, even in online applications

like packet signing in broadcast protocols.

70

7 Conclusion and Further Work

Merkle Tree Traversal. This thesis presented a new algorithm for the compu-
tation of consecutive authentication paths in Merkle trees. Compared to the best
formerly known, the new algorithm features a better balancing concerning the real
number of hash function calls per round. This property could be obtained theoreti-
cally, and it could be approved by practical results as well. The worst case number
of leaves calculated per round was reduced to (H — K)/2 + 1, while the maximum

number of hashes to perform is bounded linearly in H.

Parameterization allows a trade-off between computation time and memory de-
mands. This allows the application of the algorithm on different kinds of devices,
for example on smart cards and similar low computation appliances. The storage
needed for the flow of the algorithm is bounded logarithmically in the number of
leaves, which is the best complexity to reach. Even on hardware which does not
allow dynamic memory allocation, the new algorithm does only need linear space.

This results in the utilization of one single stack shared by all treehash instances.

For heights H greater than twenty the advantages of Algorithm 3 decline. But in
practice Merkle trees with heights H > 20 should not be applied. The key pair
generation, which must always compute the whole tree at once, lasts too long in this
case. It is much more comfortable to use the extensions of MSS, if greater amounts

of signatures are demanded.

Practical Part: GMSS. The second part of this thesis was the implementation
of the new algorithm into an existing GMSS implementation for the FlexiProvider.
The construction and use of the JCA assures maximal flexibility. The generalized
Merkle signature scheme can be plugged into every application based on the JCA. As
an example there exists a MS Outlook plugin for signing emails with any algorithm
of the FlexiPovider [5]. The Winternitz one time signature scheme can easily be
replaced by any other OTS scheme. As a first further work the BiBa OTS scheme [13]
shall be integrated into GMSS, as it allows smaller signatures than the Winternitz

scheme. For the hash function, used for the construction of the Merkle trees, different

71

variants have been implemented, e.g. SHA1 or SHA512. But even if the SHA-family
should turn out insecure, the message digest function could be exchanged easily. The
same occurs to the used pseudo random number generator. While we used the one

described in [14], another one could be made use of.

Still one drawback of GMSS is the long key generation time. As an amount of 2%
keys can be regarded as cryptographically unlimited, in practice this problem can
be disregarded, because it only must be run once before all signatures are created.

So this part can be done offline, before the creation of the first signature.

The Merkle signature schemes are characterized by an enormous flexibility. Equipped
with so many parameters these schemes can be used on nearly every imaginable plat-
form. The size of the keys and the signatures can be adjusted as well as the timings
for signature generation or verification, respectively. This makes GMSS (as actual

the best implementation of the Merkle schemes) applicable on all hardware devices.

The timings for signature generation and verification, respectively, are comparable
to the widely used schemes like RSA, DSA or ECDSA. The GMSS public key is
even smaller than former keys. The private key is relatively big, but for today’s
practical usage still reasonable. Therefore, a conclusion is that today there are
digital signature schemes that exist out of the post quantum computing field with

possible practicable use.

72

References

1]

2]

3]

4]

[5]

(6]

7]

18]

19]

Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and

factoring. In IEEE Symposium on Foundations of Computer Science, pages
124-134, 1994.

Lov K. Grover. A fast quantum mechanical algorithm for database search. In
STOC °96: Proceedings of the twenty-eighth annual ACM symposium on Theory
of computing, pages 212-219, New York, NY, USA, 1996. ACM.

Arjen K. Lenstra and Eric R. Verheul. Selecting cryptographic key sizes. Jour-
nal of Cryptology, 14(4):255-293, 2001. Updated version from 2004 available at
http://plan9.bell-labs.com/who/akl/index.html.

Ralph C. Merkle. A certified digital signature. In Proc. Advances in Cryptology
(Crypto’89), volume 435 of Lecture Notes in Computer Science, pages 218-238.
Springer-Verlag, 1989.

Johannes Buchmann, Luis Carlos Coronado Garcia, Erik Dahmen, Martin
Déring, and Elena Klintsevich. CMSS — an improved Merkle signature scheme.
In Proc. Progress in Cryptology (Indocrypt’06), volume 4329 of Lecture Notes
in Computer Science, pages 349-363. Springer-Verlag, 2006.

Luis Carlos Coronado Garcia. On the security and the efficiency of the Merkle
signature scheme. Cryptology ePrint Archive, Report 2005/192, 2005.

Johannes Buchmann, Erik Dahmen, Elena Klintsevich, Katsuyuki Okeya, and
Camille Vuillaume. Merkle signatures with virtually unlimited signature ca-
pacity. 5th International Conference on Applied Cryptography and Network
Security - ACNS’07, LNCS 4521, Springer, 2007, pp. 31-45.

Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 1T-22(6):644-654, 1976.

Alexander May. Skript zur Vorlesung Public Key Kryptanalyse, TU Darmstadt,
2005/2006.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Digital signature standard. FIPS PUB 180-2, 2002. Available at http://csrc.
nist.gov/publications/PubsFIPS.html.

Ron Rivest. The MD5 Message-Digest Algorithm, 1992.

Chris Dods, Nigel Smart, and Martijn Stam. Hash based digital signature
schemes. In Proc. Cryptography and Coding, volume 3796 of Lecture Notes in
Computer Science, pages 96-115. Springer-Verlag, 2005.

Adrian Perrig. The BiBa one-time signature and broadcast authentication pro-
tocol. In ACM Conference on Computer and Communications Security, pages
28-37, 2001.

Digital signature standard. FIPS PUB 186-2, 2000. Available at http://csrc.
nist.gov/publications/PubsFIPS.html.

Y. Hu, A. Perrig, and D. Johnson. Packet leashes: A defense against wormhole
attacks in wireless ad hoc networks. Technical report, Department of Computer

Science, Rice University, 2001.

Michael Szydlo. Merkle tree traversal in log space and time (preprint version),

2003. Available at http://www.szydlo.com.
Sebastian Blume. Efficient Java implementation of GMSS, diploma thesis, 2007.

Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme.
Lecture Notes in Computer Science, 1666:431-448, 1999.

Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital signa-
tures. In CRYPTO ’89: Proceedings on Advances in cryptology, pages 263-275,
New York, NY, USA, 1989. Springer-Verlag New York, Inc.

Markus Jakobsson, Tom Leighton, Silvio Micali, and Michael Szydlo. Fractal
Merkle tree representation and traversal. In Proc. Cryptographer’s Track at
RSA Conference (CT-RSA’03), volume 2612 of Lecture Notes in Computer
Science, pages 314-326. Springer-Verlag, 2003.

[21]

22]

[23]

[24]

[25]

[26]

27]

28]

[29]

[30]

Dalit Naor, Amir Shenhav, and Avishai Wool. One-time signatures revisited:
Have they become practical. Cryptology ePrint Archive, Report 2005/442,
2005.

Michael Szydlo. Merkle tree traversal in log space and time. In Proc. Advances
in Cryptology (Eurocrypt’04), volume 3027 of Lecture Notes in Computer Sci-
ence, pages 541-554. Springer-Verlag, 2004.

Piotr Berman, Marek Karpinski, and Yakov Nekrich. Optimal trade-off for
Merkle tree traversal. El. Coll. on Comp. Complezity, 49, 2004.

Sun Microsystems. JavaTM Cryptography Architecture - API Specification
and Reference, 2004. Available at http://java.sun.com/j2se/1.5.0/docs/
guide/security/CryptoSpec.html.

FlexiProvider research group at Technische Universitit Darmstadt. Flexi -
provider - an open source java cryptographic service provider, 2001 - 2008.

Available at http://www.flexiprovider.de.

International Telecommunication Union Telecommunication Standardiza-
tion Sector (ITU-T). Abstract Syntax Notation One (ASN.1) X.680: Speci-
fication of basic notation, ITU Standard, 2002.

Vladimir Roubtsov. My kingdom for a good timer! Reach submillisecond timing
precision in Java. JavaWorld.com, January 2003, http://www. javaworld.com/

javaworld/javaqa/2003-01/01-qa-0110-timing.html.

Don Johnson and Alfred Menezes. The elliptic curve digital signature algorithm
ECDSA, 1999.

Ron Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120-126, 1978.

Taher El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In Proceedings of CRYPTO 84 on Advances in cryptology,
pages 10-18, New York, NY, USA, 1985. Springer-Verlag New York, Inc.

[31] Boris Ederov. Merkle tree traversal techniques, bachelor thesis, 2007.

[32] S. Micali. Efficient certificate revocation. Technical Report MIT/LCS/TM-
542b, 1996.

[33] A. Perrig, R. Canetti, D. Tygar, and D. Song. The tesla broadcast authentica-
tion protocol, 2002.

[34] Charanjit Jutla and Moti Yung. Paytree: ’'amortized-signature’ for flexible
micropayments. In 2nd Workshop on FElectronic Commerce, pages 213-221.
USENIX, 1996.

[35] Ronald L. Rivest and Adi Shamir. Payword and micromint: Two simple mi-

cropayment schemes. In Security Protocols Workshop, pages 69-87, 1996.

A Practical Results

Mpublic key Mprivate key Mesignature tkeygen tsign tverify
P =(2,(8,8),(10,5),(2,2))

75 bytes 5852 bytes 1388 bytes 8.0 sec 8.9 ms 15.1 ms
P =(2,(8,8),(10,5),(6,6))

75 bytes 7780 bytes 1388 bytes 8.1 sec 5.8 ms 14.6 ms
P=(4,(8,8,8,8),(3,3,3,3),(2,2,2,2))

93 bytes 26261 bytes 5216 bytes 1.9 sec 42 ms 2.1 ms
P =(4,(8,8,8,8),(8,8,8,3),(2,2,2,2))

93 bytes 16464 bytes 3116 bytes 11.6sec 4.1 ms 13.9 ms
P=(4,(8,8,8,8),(8,8,8,3),(6,6,6,6))

93 bytes 21315 bytes 3116 bytes 11.8sec 2.5 ms 14.3 ms
P = (4,(10,10,10,10),(9,9,9,3),(2,2,2,2))

93 bytes 18205 bytes 3156 bytes 80.2sec 5.2 ms 24.8 ms
P =(4,(12,12,12,12),(9,9,9,3), (2,2, 2,2))

93 bytes 20585 bytes 3256 bytes 136 sec 12.7 ms 11.4 ms
P = (4,(16, 16,16, 16), (8,8,8,3),(2,2,2,2))

93 bytes 20000 bytes 3316 bytes 322.9sec 63 ms 22.1 ms
P = (2,(10,10), (5,4),(2,2))

75 bytes 8335 bytes 1968 bytes 4.8 sec 6.9 ms 1.2 ms
P = (2,(10,10),(10,5),(2,2))

75 bytes 6977 bytes 1468 bytes 32.6 sec 10.6 ms 15.1 ms
P = (2,(15,15),(5,4),(3,3))

75 bytes 10873 bytes 2168 bytes 149 sec 9.3 ms 2.1 ms
P =(2,(15,15),(8,5),(3,3))

75 bytes 9834 bytes 1748 bytes 409 sec 13.8 ms 5.1 ms

Continues on next page...

77

Mpublic key Mprivate key Mesignature tkeygen tsign tverify

P = (3,(15,15,10), (5,5,4), (3,3,2))
84 bytes 17982 bytes 3072 bytes 193 sec 7.4 ms 2.9 ms

P = (3,(15,15,10),(8,8,5), (3, 3,2))
84 bytes 15644 bytes 2392 bytes 849 sec 11.1 ms 10.4 ms

Pio = (2,(20,20),(9,3),(2,2))
75 bytes 12501 bytes 2348 bytes 299 min 6.6 ms 8.1 ms

Py = (2,(20,20),(10,5),(2,2))
75 bytes 12341 bytes 1868 bytes 539 min 13.4 ms 13.1 ms

P, = (4,(20,20,20,20),(7,7,7,3),(2,2,2,2))
93 bytes 30372 bytes 4256 bytes 464 min 7.4 ms 8.4 ms

Table 8: Results of the new GMSS implementation: time and memory requirements of
selected parameter sets. For the average timings, in each case the mean value of the first

212 signatures were considered.

78

B Code Examples

This section presents an example code extract that shows how to use the Flexi-
Provider implementation of GMSS. It is divided into three steps: Generating a key

pair, generating a signature and verifying the signature.

Generating a Key Pair.

Input: Parameterset, Output: ASN.1 encoded keys

1. Add Providers
Security.addProvider(new FlexiCoreProvider());

Security.addProvider (new FlexiPQCProvider());

2. Get KPG instance
KeyPairGenerator kpg = KeyPairGenerator.getInstance ("GMSSwithSHA1");

3. Set the required Parameterset, create corresponding Parameterspec
GMSSParameterset gps = new GMSSParameterset(3, {10, 10, 10}, {2, 4,
3}, {2, 2, 21);

GMSSParameterSpec gpsp = new GMSSParameterSpec(gps);

4. Initializing Key Pair Generator

kpg.initialize(gpsp);

5. Generating key pair
KeyPair GMSSkeyPair = kpg.generateKeyPair();
GMSSPrivateKey privateKey = (GMSSPrivateKey)GMSSkeyPair.getPrivate();
GMSSPublicKey publicKey = (GMSSPublicKey)GMSSkeyPair.getPublic();
byte[] privKey = privateKey.getEncoded();
byte[] pubKey = publicKey.getEncoded();

79

Generating a Signature.

Input: encoded keys, message, Output: signature

1. Get the private key
KeySpec privKeySpec = new PKCS8EncodedKeySpec (privKey) ;
KeyFactory kf = KeyFactory.getInstance("GMSS", "FlexiPQC");
privateKey = (GMSSPrivateKey)kf.generatePrivate(privKeySpec);

2. Initialize the signature generation phase
Signature Sig = Signature.getInstance("GMSSwithSHA1","FlexiPQC");
Sig.initSign(privateKey) ;

3. Create the signature
Sig.update(message.getBytes());
byte[] sigBytes = Sig.sign();

Verifying the Signature.

Input: signature, message, encoded public key

1. decode public key
KeySpec pubKeySpec = new X509EncodedKeySpec (pubKey) ;
publicKey = (GMSSPublicKey)kf.generatePublic (pubKeySpec) ;

2. Initialize Verification

Sig.initVerify(publicKey);

3. Verification Process, returns either true or false
Sig.update(message.getBytes());
Sig.verify(sigBytes);

80

C ASN.1 Encoding

This part presents the ASN.1 encoding [26] of the GMSS keys. The public key

encoding was modified only marginally: the ParameterSet was extended by the

sequence of the parameter K for each layer. This is the new ASN.1 definition of the

GMSS public key:

GMSSPublicKey
publicKey
heightOfTrees
Parameterset

}

ParSet
T
h
W
K

}

SEQUENCE {

SEQUENCE OF OCTET STRING
SEQUENCE OF INTEGER
ParSet

SEQUENCE {

INTEGER

SEQUENCE OF INTEGER
SEQUENCE OF INTEGER
SEQUENCE OF INTEGER

The private key ASN.1 definition was enlarged with the treehash, stack and re-

tain parts. DistrRoot and TreehashStack were added as well. The whole ASN.1
definition of the GMSS private key is the following:

GMSSPrivateKey
algorithm
index
curSeeds
nextNextSeeds
curAuth
nextAuth
curTreehash
nextTreehash
StackKeep
curStack
nextStack
curRetain
nextRetain
nextNextLeaf

::= SEQUENCE {
OBJECT IDENTIFIER
SEQUENCE OF INTEGER
SEQUENCE OF OCTET STRING
SEQUENCE OF OCTET STRING
SEQUENCE OF AuthPath
SEQUENCE OF AuthPath
SEQUENCE OF TreehashStack
SEQUENCE OF TreehashStack
SEQUENCE OF Stack
SEQUENCE OF Stack
SEQUENCE OF Stack
SEQUENCE OF Retain
SEQUENCE OF Retain
SEQUENCE OF DistrLeaf

81

upperLeaf

upperTHLeaf
minTreehash

nextRoot

nextNextRoot

curRootSig

nextRootSig
Parameterset

names

}

DistrLeaf
name
statBytes
statInts

}

DistrRootSig
name
statBytes
statInts

}

DistrRoot
name
statBytes
statInts
treeH
ret

}

TreehashStack

Treehash
name
statBytes
statInts

}

ParSet
T

h

W

K
}
Retain
AuthPath
Stack

SEQUENCE
SEQUENCE
SEQUENCE
SEQUENCE
SEQUENCE
SEQUENCE
SEQUENCE
ParSet

SEQUENCE

SEQUENCE
SEQUENCE
SEQUENCE
SEQUENCE

SEQUENCE
SEQUENCE
SEQUENCE
SEQUENCE

SEQUENCE
SEQUENCE
SEQUENCE
SEQUENCE
SEQUENCE
SEQUENCE

SEQUENCE
SEQUENCE
SEQUENCE
SEQUENCE
SEQUENCE

SEQUENCE
INTEGER

SEQUENCE
SEQUENCE
SEQUENCE

SEQUENCE
SEQUENCE
SEQUENCE

OF
OF
OF
OF
OF
OF
OF

OF

OF
OF
OF

OF
OF
OF

OF
OF
OF
OF
OF

OF

OF
OF
OF

OF
OF
OF

OF
OF
OF

DistrLeaf
DistrLeaf
INTEGER
OCTET STRING
DistrRoot
OCTET STRING
DistrRootSig

ASN1IA5String

ASN1IA5String
OCTET STRING
INTEGER

ASN1IA5String
OCTET STRING
INTEGER

ASN1IA5String
OCTET STRING
INTEGER
Treehash
Retain

Treehash

ASN1IA5String
OCTET STRING
INTEGER

INTEGER
INTEGER
INTEGER

Stack

OCTET STRING
OCTET STRING

82

D Object Ident

The following table shows

ifiers

the object identifiers of some predefined GMSS imple-

mentations. Those use the given hash function for the OTS scheme as well as for

the Merkle tree construction. For all cases the hash functions are taken out of the

FlexiCoreProvider.
Hash function Object Identifier (OID)
SHA1 1.3.6.1.4.1.8301.3.1.3.3.1
SHA224 1.3.6.1.4.1.8301.3.1.3.3.2
SHA256 1.3.6.1.4.1.8301.3.1.3.3.3
SHA384 1.3.6.1.4.1.8301.3.1.3.3.4
SHA512 1.3.6.1.4.1.8301.3.1.3.3.5

Table 9: Object Identifiers for GMSS

The different number groups of the above given object identifiers signify the follow-

ing:

1.3.6.1.4.1.8301
1.3.6.1.4.1.8301.3
1.3.6.1.4.1.8301.3.1
1.3.6.1.4.1.8301.3.1.3
1.3.6.1.4.1.8301.3.1.3.3

Darmstadt University of Technology

Cryptography and Computer Algebra Research Group
Cryptographic Algorithms

Post Quantum Cryptography

GMSS

83

