
Darmstadt University of Te
hnologyDepartment of Computer S
ien
eCryptography and ComputeralgebraDiploma Thesis
Improved Authenti
ation PathComputation For Merkle Trees

Mi
hael S
hneiderDarmstadt University of Te
hnologyDepartment of Mathemati
sMar
h 2008Supervisor: Prof. Dr. Johannes Bu
hmannErik Dahmen

Contents1 Introdu
tion 111.1 Outline . 111.2 About This Thesis . 122 Ba
kground 142.1 Digital Signatures . 142.2 Hash Fun
tions . 162.3 One Time Signatures . 182.3.1 The Winternitz One Time Signature S
heme 192.4 Merkle Trees . 212.5 The Merkle Signature S
heme . 232.5.1 MSS - Merkle Signature S
heme 232.5.2 GMSS - Generalized Merkle Signature S
heme 273 Common Traversal Algorithms 343.1 Overview . 343.1.1 Notation . 353.2 Szydlo's Algorithm . 363.2.1 Motivation . 363.2.2 The Algorithm . 363.3 Drawba
ks of Former Algorithms . 40

CONTENTS4 A New Authenti
ation Path Algorithm 414.1 Notation . 424.1.1 Treehash Sta
ks . 424.2 Algorithm Des
ription . 434.2.1 Initialization . 434.2.2 Authenti
ation Path Computation 444.3 Corre
tness of the Algorithm . 474.4 Computational Bounds . 494.5 Storage E�
ien
y . 524.6 Computing Leaves using a PRNG . 554.7 Comparison of Theoreti
al Bounds 555 Java Implementation 575.1 Overview . 575.2 Distributed Node Computation . 595.3 Implementation of the Authenti
ation Path Algorithm 626 Results 636.1 Comparison: Authenti
ation Path Algorithm 636.2 Comparison: GMSS . 667 Con
lusion and Further Work 71Referen
es 733

A Pra
ti
al Results 77B Code Examples 79C ASN.1 En
oding 81D Obje
t Identi�ers 83

LIST OF ABBREVIATIONSList of AbbreviationsRSA Cypher and Signature Algorithm of Rivest,Shamir and AdlemanDSA Digital Signature AlgorithmECDSA Ellipti
 Curve Digital Signature AlgorithmPQC Post Quantum CryptographyMD5 Message Digest Algorithm 5SHA Se
ure Hash AlgorithmMAC Message Authenti
ation CodeDL problem Dis
rete Logarithm problemOTS One Time SignatureOTSS One Time Signature S
hemePRNG Pseudo Random Number GeneratorMSS Merkle Signature S
hemeCMSS Coronado Merkle Signature S
hemeGMSS Generalized Merkle Signature S
hemeJCA Java Cryptography Ar
hite
tureJCE Java Cryptography ExtensionAPI Appli
ation Programming Interfa
e
5

LIST OF FIGURESList of Figures1 A
omplete binary tree of height H = 2. The values 0 . . . 4 are theleaf indi
es, h denotes the nodes' height 222 A Merkle tree with leaf values A, B, C, D 223 Authenti
ation data of leaf ϕ. Hashing the
on
atenation of Auth0and Φ(ϕ) gives the upper node,
ontinuing up the root �nally givesthe root value. The dashed nodes denote the authenti
ation path forleaf ϕ. The arrows indi
ate the path from leaf ϕ to the root. 234 Sample of the treehash algorithm: value 'D' is pushed on the sta
k.Then 'C' and 'D' are hashed to a height 1 node whi
h is then againhashed with the bottom node to a height 2 node. 255 Seed generation for a single Merkle tree. Ea
h array indi
ates one
all to the Prng. 266 Basi

onstru
tion of GMSS. Only the leaves on the lowest layer areused for GMSS signatures. 287 Example of a GMSS signature . 298 Example GMSS keys. The private key
onsists of the authenti
ationpath for the �rst leaf of the �rst two trees on ea
h layer, the Seedinfor the �rst and the third tree on ea
h layer, the root signatures Sigof the �rst trees and the root values Root of the se
ond trees. Thepubli
 key is the uppermost root value RootT1,0
. 319 While advan
ing a leaf in tree Ti,j, the values SigTi,j+1

and RootTi,j+2are updated, so that the
omputation of those values is distributedover all 2hi steps of tree Ti,j. While doing one step in Ti+1,j the leafof tree Ti,j+2 is partly
omputed. 32
6

LIST OF FIGURES10 Left node
omputation: A Merkle tree of height 4 in rounds ϕ = 3 and
ϕ = 4. In the upper tree the height of the �rst parent of leaf ϕ that isa left node is τ = 2. The lower �gure shows the authenti
ation dataof leaf ϕ = 4. All lower authenti
ation nodes (Auth0 and Auth1)are pushed from the sta
ks an reset in round ϕ = 3. 3711 Values of the initialization, H = 5, K = 3. The dashed nodes areauthenti
ation nodes, the bla
k ones are stored in treehash, the greynodes are kept in retain sta
ks. 4312 In round ϕ the node Authτ is stored in Keepτ . This node is neededin round ϕ + 2τ for the
omputation of its parent node, whi
h is partof the dashed authenti
ation path
omputed in round ϕ + 2τ 4413 In round ϕ the node Auth2 is popped from Treehash2. This in-stan
e is then initialized anew with start index ϕ + 1 + 3 · 22 and
omputes the de
lared right node on height 2. This node is neededin round ϕ + 23. 4514 While advan
ing a leaf in tree Ti+1,j , the next leaf of tree Ti,j is partly
omputed. 6015 Suppose (H − K)/2 = 4, so that the four dark leaves of the uppertree are required for treehash updates. They are
omputed whileadvan
ing leaves in the lower tree. 6116 Number of hashes needed for right nodes per round while advan
ingone Merkle tree. On the x-axis the single rounds are assigned (treeheight H = 5 =⇒ 25 = 32 rounds), the y-axis shows the number ofneeded hash fun
tion evaluations. 6417 Number of hashes per round. The upper graph shows the result ofAlgorithm 3, the lower graph belongs to Szydlo's algorithm (H =

10 =⇒ 1024 rounds). 64
7

LIST OF FIGURES18 Time needed for signing with GMSS. The red line shows the timingsusing the new GMSS implementation, the blue line belongs to the oldimplementation. The used parameterset is P = (4, (4, 4, 4, 4), (8, 8, 8, 3)),
K is set 2 on ea
h layer. 67

8

LIST OF TABLESList of Tables1 Number of Leaf
al
 operations . 472 Total number of node stored in Retain (2K −K − 1) 543 Comparison of
omplexity bounds. In
on
ern of
omputation time,Algorithm 3 distinguishes between hash fun
tion evaluations (�rstrow) and leaf
al
ulations (se
ond row) 564 Statisti
 data of the number of hashes required per round 635 Comparison of the number of hashes required in the worst
ase. . . . 656 Measured values for the new GMSS implementation 697 Measured values for the old GMSS implementation, from [17℄ 698 Results of the new GMSS implementation: time and memory require-ments of sele
ted parameter sets. For the average timings, in ea
h
asethe mean value of the �rst 212 signatures were
onsidered. 789 Obje
t Identi�ers for GMSS . 83

9

1 Introdu
tion1.1 OutlineDigital signatures are one of the most popular appli
ations of
ryptographi
al te
h-ni
s, besides en
ryption. The
on
ern is to allow identi�
ation, authenti
ation,integrity, and liability in ele
troni
 appli
ations. Digital signatures are used forse
ure intera
tion over the internet by signing emails or prote
ting web browser
ommuni
ations by SSL/TLS. They are ne
essary for pro
edures like digital votingor bureau
rati
 solutions over the internet.Today digital signatures are mostly implemented using asymmetri
, also
alled pub-li
 key
ryptography. Famous examples are the RSA, ECDSA, or DSA signatures
hemes. In the majority of
ases the se
urity of these methods is based on math-emati
al, number theoreti
al assumptions, like the fa
toring of big numbers or thedis
rete logarithm problem. Today all of these algorithms and s
hemes
an be
on-sidered as su�
iently se
ure. However, new algorithms already exist to solve thesenumber theoreti
al problems on quantum
omputers [1, 2℄. The established sig-nature algorithms
an be used without worries, as long as no pra
ti
ally useablequantum
omputers exist. But additionally, new te
hniques must be found to beprepared for the
ase of working quantum
omputers. This �eld of work is
alledpost quantum
omputing (PQC). Another weakness of the established te
hniques isthe in
reasing key size. Be
ause today's
omputers performan
e develops rapidly,the key size of the used publi
 key s
hemes must be raised to assure se
urity [3℄. Thispro
edure of rising key lengths ends, if algorithms independent of number theoreti
alassumptions are found.An alternative way is to use so
alled one time signatures (OTS). These signatures
hemes are
onsidered to be se
ure also on quantum
omputers. Their se
urityrelies on the se
urity of hash fun
tions. A hash fun
tion is a mathemati
al fun
tionwhi
h is easy to
ompute but hard to invert. While the keys of a usual signaturealgorithm
an be used more often, the keys of a one time signature must not be usedmore than on
e. Otherwise the se
urity of the signature s
heme would be redu
ed,11

1.2 About This Thesisas an OTS signature reveals parts of the se
urity of the s
heme. The problem withone time signatures is that the number of keys that have to be stored and deliveredin
reases enormously. This is a well known problem by symmetri

ryptography.To solve this key management problem, Merkle proposed his idea of using binarytrees for authenti
ation of big amounts of OTS publi
 keys in 1989 [4℄. Using thisnew idea, it is possible to authenti
ate up to 220 (and even more) OTS private keyswith one single publi
 key. This leads to e�
ien
y in storage
on
erns, as onlyone key has to be permanently stored instead of many. Merkle's idea o�ered thepossibility to
reate a multi-time signature s
heme,
alled Merkle signature s
heme(MSS), based on any one time signature s
heme. Extending this idea of MSS someextensions and andvan
ements were proposed: CMSS [5, 6℄ and GMSS [7℄, whi
h isa generalization of CMSS. The advantage of GMSS (Generalized Merkle signatures
heme)
ompared to the original merkle s
heme is the smaller size of the signaturesand a better s
heduling of the signature generation. Furthermore the GMSS s
hemeis parameterized. This feature allows to
ustomize the s
heme for di�erent appli
a-tions, like usage on smart
ards or
omparable low
omputation devi
es where lowstorage spa
e plays an important role. One important part of the Merkle signatures
heme is the traversal of the authenti
ation tree. Whereas simple traversal algo-rithms arrest the signature generation, a fast traversal algorithm enhan
es the wholes
heme. Thus it is important to develop good authenti
ation path algorithms.1.2 About This ThesisThe subje
t of this thesis is the introdu
tion of a new traversal algorithm for Merkletrees and the integration of this algorithm in GMSS, in
luding an implementationin Java for the FlexiProvider. Se
tion 2 gives the ba
kground information needed,while se
tion 3 des
ribes former known traversal algorithms. In se
tion 4 the newtraversal algorithm is introdu
ed. Corre
tness and e�
ien
y proofs
omplete thisse
tion. The Java implementation for the FlexiProvider is
onsidered in se
tion 5. Inse
tion 6 the
omparison of GMSS using the new authenti
ation path algorithm withother established signature algorithms is drawn. Se
tion 7 �nally gives a
on
lusionof the thesis. 12

1.2 About This ThesisThe reader of this thesis is supposed to be familiar with fundamental mathemati
alnotations of
ryptographi

onsiderations like signing or en
ryption fun
tions, aswell as simple mathemati
al prin
iples like geometri
 series. Understanding of basi

omplexity theoreti
al ideas (like the O-notation) and algorithm notation might alsobe ne
essary to understand the main parts of this thesis.

13

2 Ba
kgroundThis se
tion informs about the basi
 mathemati
al and
ryptographi
al prin
iplesand te
hniques needed for the
onsidered appli
ations. First an introdu
tion of digi-tal signatures is given. Then the prin
iples of hash fun
tions and one time signaturesare explained, followed by an example one time signature s
heme, the WinternitzOTS s
heme, whi
h will be used for the implementation of the new algorithm. Afterthat the idea of Merkle trees and the Merkle signatures are illustrated. Finally, ashort explanation of the GMSS extension is given.2.1 Digital SignaturesThe purpose of a digital signature is to o�er spe
ial se
urity purposes like identi�-
ation, authenti
ation, integrity or liability. It
an, in some parts, be
ompared to ahandwritten signature: only one person
an
reate its own signature, every forgery
an be determined. One big di�eren
e is that the digital exponent is a mathemati
alfun
tion of the message. If the do
ument
hanges, the signature
hanges as well.The digital signature
ould otherwise be moved from one do
ument to another, asall digital data
an be easily
opied.Not only do
uments are signed digitally. Digital signatures are also used for pa
kagetransport se
urity in transport proto
ols. In prin
iple every kind of digital data
anbe signed. In most appli
ations not the data or do
ument itself is signed but amessage digest of it. That is a kind of �ngerprint of the data. The prin
iples ofmessage digests are explained in se
tion 2.2.Digital signatures are always based on asymmetri

ryptography. Su
h a systemwas �rst introdu
ed by Di�e and Hellman in 1976 [8℄, whi
h was one of the greatestadvan
es in modern
ryptology. For su
h a digital signature, two di�erent typesof keys are needed: a private key for signature generation and a publi
 key forveri�
ation. The private key in this purpose is also
alled the signing key and thepubli
 key is also
alled the veri�
ation key. As one
ould guess from the name,the private key has to be kept se
ret, whereas the publi
 key
an be spread widely.14

2.1 Digital SignaturesEveryone knowing this publi
 key
an verify the signature, but only the owner ofthe private key is able to
reate one. For one time signature s
hemes, these keys aregenerated newly for every signature. In
ontrast, for multi-time signature s
hemesboth keys are used for bigger amounts of signatures. Some of the
ommonly usedsignature algorithms are also used for en
ryption (like RSA), whereas some of thesystems are only appli
able to signatures (like DSA and ECDSA). Some attributesof a digital signature s
heme are:Authenti
ity: Everyone should be able to
ontrol that the signer really is theoriginator of a signature. This is possible be
ause everyone
an use the publi
veri�
ation key. Nobody else shall be able to sign a do
ument in the signersname. For this purpose the private signing key must be kept se
ret.Non-Repudiation: This property means that the signer
an not su

essfully denythe fa
t of having signed a do
ument. Everyone possessing the signature andthe original do
ument
an prove that the signature was really
reated with thesigner's private key.Sin
e a signature is also a fun
tion of the private key and no one besides thesigner knows this signing key, then nobody is able to
onstru
t signatureswhi
h
an be veri�ed by the
orresponding publi
 key. The signer
an neverdeny having signed a message if a veri�able signature exists.When the liability has to be proved, a third person (for example a
ourt)has to
ontrol if a signature really belongs to the person it should. The non-reusability property of a signature in this
on
ern means that this a
tion
anbe performed without revealing the private key, so that it
an be used againby the user.Integrity: If a do
ument
hanges or is manipulated, the signature of the origi-nal do
ument (a
ontra
t for example) will not mat
h this forged do
umentand will be refused. Therefore
hanges in data
an be proved using digitalsignatures.
15

2.2 Hash Fun
tionsMathemati
ally, digital signatures are based on one-way fun
tions with trapdoor.A one-way fun
tion is a mathemati
al fun
tion whi
h is easy to
ompute in onedire
tion. However to
ompute the inversion of the fun
tion is hard. If y = f(x)(with a one-way fun
tion f) it is easy to
ompute y given x and f , but it is hardto get x, if only y and f are known. A trapdoor means a se
ret (e.g. a se
retnumber) whi
h allows to apply the inverse fun
tion easily by knowing the se
ret. Ina signature s
heme the private key
an be
onsidered as the trapdoor. Creation ofthe signature is the inverse fun
tion, whi
h is hard or impossible to
ompute whenthe signing key is unknown. When it is said that a fun
tion is hard to invert it ismeant in today's
ontext: it is possible that in a few years (when the performan
eof
omputers has raised furthermore or even quantum
omputers exist) today's one-way fun
tions will be invertible without problems.A digital signature s
heme
onsists of three parts: a key generation algorithm, thesignature
onstru
tion, and the veri�
ation phase. As the name implies, the �rst partserves for the
reation of the private and the publi
 key. The se
ond part is the useof the private signing key for
reating the signature of a message. Finally, using thepubli
 key and the original message the autenti
ity of the signature is revised. Theindividual phases will be des
ribed later in the introdu
tion of parti
ular signatures
hemes.2.2 Hash Fun
tionsMost of the known multi-signature s
hemes are based on mathemati
al assumptionslike fa
toring of big numbers or the dis
rete logarithm problem. However, one timesignatures are mostly based on
ryptographi
 hash fun
tions. For this reason, thosemessage digest prin
iples are illustrated in this se
tion.A hash fun
tion maps any kind of digital data to a shorter, random looking sequen
eof numbers
alled the hash value or message digest of the data, whi
h
an be seenas kind of a '�ngerprint.' It is mostly represented by a hexade
imal depi
tion. Asan example, the hexade
imal depi
tion of the 160 bit long SHA1 hash value of the16

2.2 Hash Fun
tionsstring 'Improved Authenti
ation Path Computation' is
′fa072597154f81ba39b841f265acc8fa2d47d937′Changing only one letter in the original data will
hange the whole message digest:the SHA1-hash of 'improved Authenti
ation Path Computation' is
′70e053246a5e9f591bcae5b47173295899e62cba′More mathemati
ally, a hash fun
tion
an be denoted as the following:Hash : X = {0, 1}∗ → Y = {0, 1}nwhere the domain X in
ludes all bitstrings with arbitrary length and the
odomainY
onsists of all n bit strings. An important attitude of a hash fun
tion is it's abilityto only go one way. This means that it is not possible to generate the original dataout of its hash value. A hash fun
tion
an be
onsidered se
ure if it assures thefollowing assumptions:

• pre-image resistan
eGiven the hash fun
tion Hash and a value y, it is not possible to �nd an xwith Hash(x) = y.
• se
ond-pre-image resistan
eGiven Hash and x, it is not possible to �nd an x′ (with x 6= x′) andHash(x) = Hash(x′).
•
ollision resistan
eGiven Hash, it is not possible to �nd x, x′ (with x 6= x′) and Hash(x) =Hash(x′). As the size of the
o-domain Y is smaller than the domain size it is
lear that there are
ollisions between di�erent messages out of X. Collisionresistan
e means the impossibility of �nding su
h a
ollision with non randompropability.In [6℄ Coronado shows that, for the se
urity of the Merkle signature s
heme, one-way-ness and
ollision resistan
e of the integrated hash fun
tion are su�
ient.17

2.3 One Time SignaturesHash fun
tions have di�erent appli
ations in
ryptography. They are used for �n-gerprinting or message authenti
ation
odes (MAC) to se
urely identify data. Inmost signature algorithms, the message is hashed before it is signed, so that these
urity in
reases. For example, without appli
ation of a hash fun
tion to the mes-sage the RSA s
heme is not se
ure against
hosen message atta
ks [9℄. Most famousrepresentatives of hash fun
tions are the SHA-family [10℄ and the Message DigestAlgorithm 5 (MD5) [11℄.In this thesis Hash : {0, 1}∗ → {0, 1}n is always an arbitrary hash fun
tion.The
onse
utive appli
ation of this fun
tion is denoted with supers
ript numbers:Hash2(m) stands for Hash(Hash(m)).2.3 One Time SignaturesAs mentioned in the introdu
tion, one time signature (OTS) s
hemes are spe
ialkinds of signature algorithms where the signing key must not be used more thanon
e, as every further use of these keys would reveal information whi
h
ould weakenthe se
urity of the signature. Most OTS s
hemes are based on hash fun
tions [12℄.The se
urity does not rely on mathemati
al problems, but only on the se
urity ofthe hash fun
tion. As mentioned above this is dependent on properties like
ollisionresistan
e. The se
urity of most algorithms used today for multi-time signatures
an only be in
reased by raising the length of the used keys. In the last 20 years,the key lengths of algorithms like RSA or ECDSA have been
onstantly in
reasing[3℄. Furthermore if large s
ale quantum
omputers exist, the sear
h for
ollisions ofhash fun
tions is hard, whereas the underlying problems of ECDSA and RSA
anbe
omputed in linear time. These s
hemes
an be broken on quantum
omputers,while one time signature s
hemes based on hash fun
tions remain se
ure.As the
omputation of hash fun
tions is fast, one time signatures are very e�
ient.Their appli
ation is possible on low
omputation
omplexity devi
es like smart
ards.
18

2.3 One Time Signatures2.3.1 The Winternitz One Time Signature S
hemeIn this thesis, as in the a
tual GMSS, the Winternitz One Time Signature S
hemeis used [4℄ [12℄. The usage of other one time signature s
hemes like the BiBa s
heme[13℄ would be possible as well. The Winternitz s
heme uses a parameter w, whi
h istypi
ally
hosen a small power of two. This parameter w allows a trade-o� betweengeneration
ost and signature size. It de�nes the bit length of the single parts of theprivate key, whereas tw is the
ount of
omponents. With n as length of a hash, wede�ne
tw =

⌈

n/w
⌉

+
⌈(

⌊log2(⌈n/w⌉)⌋+ 1 + w
)

/w
⌉The private signature key is X = (x1, . . . , xtw), where x1 . . . xtw are random values.For the generation of random data, a pseudo random number generator (Prng) isused: Prng : {0, 1}n 7→ {0, 1}n × {0, 1}n : Seedin 7→ (Seedout,Rand)It uses a value Seedin to generate two random looking values Seedout and Rand.If Seedout is again used as input for the same Prng we get a
hain of values Randiwhi
h
an always be reprodu
ed by knowledge of only the �rst Seedin. In thisthesis the used Prng is always the one des
ribed in the Digital Signature Standard(Appendix 3.1) [14℄ whi
h requires only one
all to a hash fun
tion Hash:Rand← Hash(Seedin), Seedout ← (1 + Seedin +Rand) mod 2nKey Generation. For the publi
 key we apply the hash fun
tion 2w − 1 times toea
h xi, i.e. we
al
ulate yi = Hash2w−1(xi) for i = 1 . . . tw. The veri�
ation key isthen
reated out of the
on
atenation of the yi-values:

Y = Hash(y1‖ . . . ‖ytw)Signature Generation. For generation of the signature of a message �rst of allthe n-bit message digest of this message is
reated. The digest md is then split19

2.3 One Time Signaturesinto ⌈n/w⌉ parts md1 . . .md⌈n/w⌉, ea
h with a length of w (if ne
essary zeros arepadded �rst). Then the
he
ksum C =
∑⌈n/w⌉

i=1 2w −mdi is built. This
he
ksum isalso divided into blo
ks of length w, namely md⌈n/w⌉+1 . . .mdtw . The �nal signatureis
reated by
on
atenating the hash-values si = Hashmdi(xi) for i = 1 . . . tw. Thesignature is then Sig = (s1‖ . . . ‖stw)Veri�
ation. For verifying the message digest, the signature and the veri�
ationkey are needed. First the values mdi are
omputed in the same manner as inthe signing pro
ess. Then vi = Hash2w−mdi−1(si) is generated. Now the ve
tor
V = Hash(v1‖ . . .‖vtw)
an be
ompared to the veri�
ation key. Ea
h of the xivalues should now have been hashed 2w − 1 times. The signature is de
lared tobe veri�ed if and only if V = Y . Example 1 explains a Winternitz OTS sampleinstan
e.Without using the
he
ksum an atta
ker
ould hash again some of the si values. Theresult would be a valid signature whi
h
ould not be veri�ed by the original publi
key. Therefore the s
heme would not be se
ure against known signature atta
ksleading to existential forgery. For this, the
he
ksum is appended to the signature,so that every additional hash to one of the si
an be dete
ted.Example 1. Consider a 15 bit message digest to be signed: md = 101100000010010.Choose w = 4.Key GenerationPrng⇒ X = (0101

︸︷︷︸

x1

1100
︸︷︷︸

x2

1010
︸︷︷︸

x3

1110
︸︷︷︸

x4

0011
︸︷︷︸

x5

1111
︸︷︷︸

x6

) (Private key)
tw =

⌈

15/4
⌉

+
⌈(

⌊log2(⌈15/4⌉)⌋+ 1 + 4
)

/ 4
⌉

= 4 +
⌈

(2 + 1 + 4) / 4
⌉

= 6

⇒ Publi
 key: Y = (Hash15(x1), . . . ,Hash15(x6))20

2.4 Merkle TreesSignature Generation
md = 0101

︸︷︷︸

b1

1000
︸︷︷︸

b2

0001
︸︷︷︸

b3

0010
︸︷︷︸

b4

C = (10000− 0101) + (10000− 1000) + (10000− 0001) + (10000− 0010)

= 1011 + 1000 + 1111 + 1110 = 110000

⇒ b5 = 0011 and b6 = 0000Sig =
(Hash5(x1) ‖Hash8(x2) ‖Hash(x3) ‖Hash2(x4) ‖Hash3(x5) ‖ x6

)

= (s1‖ . . . ‖s6)Veri�
ation (bi the same as above)
V =

(Hash10(s1) ‖Hash7(s2) ‖Hash14(s3) ‖Hash13(s4) ‖Hash12(s5) ‖Hash15(s6)
)

=
(Hash15(x1) ‖ . . . ‖Hash15(x6)

)
!
= Y

�2.4 Merkle TreesA problem whi
h o

urs by usage of one time signatures is well known from sym-metri

ryptography appli
ations: the spa
e needed to store all involved keys risestoo fast. For every message a user A wants to send to another user B, a privatekey must be
reated for user A. Additionally, user B has to store one publi
 key forevery message.Merkle's idea was to use a
omplete binary tree for veri�
ation of one time signatures.With this approa
h many signatures
an be veri�ed by one single publi
 key. Thestorage needed for the veri�
ation key is extremely small (only one key has to bestored). Every one time signature s
heme
an be extended to a multi-time one byusing su
h an authenti
ation tree. 21

2.4 Merkle TreesA
omplete binary tree of height H
onsists of 2H leaves and 2H − 1 inner nodes.The height of a leaf is de�ned to be 0, whereas the height of inner nodes denotesthe length of a path down to a leaf. Thus, the root node has height H . The leavesare numbered
onse
utively from left to right, starting with 0. An example tree
anbe seen in Figure 1.
��
��

���
HHH

��
��

��
��

�� @@ �� @@

��
��

��
��

��
��

��
��

root
0 1 2 3

h = 2

h = 1

h = 0Figure 1: A
omplete binary tree of height H = 2. The values 0 . . . 4 are the leaf indi
es,
h denotes the nodes' heightMerkle trees were �rst introdu
ed by Merkle in 1989 [4℄. A Merkle tree is a
ompletebinary tree equipped with a hash fun
tion Hash. The values Φ(n) of a leaf
an be
hosen arbitrarily, whereas the values of inner nodes are
al
ulated by the following:for ea
h inner node nparent the value Φ(nparent) is de�ned to be the hash of the
on
atenation of the left and right
hild nodes nleft and nright:

Φ(nparent) = Hash(nleft ‖nright)By this
onstru
tion the Merkle tree is
ompletely determined by the leaf values. Asample tree is shown in Figure 2.
���

HHH

�� @@ �� @@

Hash(Hash(AB)
∥
∥Hash(CD)

)Hash(AB) Hash(CD)

A B C DFigure 2: A Merkle tree with leaf values A,B,C,D22

2.5 The Merkle Signature S
hemeMerkle trees are used for authenti
ating the leaf data using the root value. For thispurpose additional data is required,
alled the authenti
ation data. For authenti-
ating leaf i, on ea
h height h (h = 0 . . .H − 1) one node value Authh is stored,namely the sibling of the nodes on the path from leaf i up to the root. An examplefor the authenti
ation path is illustrated in Figure 3. For authenti
ating leaf i, onestarts at the bottom of the tree. Using the leaf value and the authenti
ation data onea
h height by
on
atenating and hashing the root value
an be
omputed. If theoriginal stored root value is identi
al to the newly
al
ulated one, the leaf value istruely authenti
ated.PSfrag repla
ements
Auth0

ϕ

Auth1

Auth2

Figure 3: Authenti
ation data of leaf ϕ. Hashing the
on
atenation of Auth0 and Φ(ϕ)gives the upper node,
ontinuing up the root �nally gives the root value. The dashed nodesdenote the authenti
ation path for leaf ϕ. The arrows indi
ate the path from leaf ϕ to theroot.Besides digital signatures Merkle trees have been implemented for other useful ap-pli
ations like wireless se
urity [15℄. As authenti
ation is the real purpose of theMerkle tree and not signature veri�
ation, lots of other appli
ations are imaginable.However, this thesis will only fo
us on the appli
ation of digital signatures.2.5 The Merkle Signature S
heme2.5.1 MSS - Merkle Signature S
hemeThe Merkle Signature S
heme (MSS) proposed in [4℄
onsists of a one time signatures
heme like the Winternitz OTSS and a Merkle tree. A Merkle tree of height H
anbe used to authenti
ate 2H OTS keys (one for ea
h leaf of the tree). The leaf values23

2.5 The Merkle Signature S
hemeof the tree are formed by the OTS publi
 keys Yi. More pre
isely the three signaturesteps are:MSS Key Generation. The MSS private key is the set of OTS private keys
(Y1, . . . , Y2H) whi
h are
omputed as usual, depending on the used s
heme (for theWinternitz s
heme e.g. see se
tion 2.3.1). The OTS publi
 keys are hashed andstored as the tree's leaf values. By
on
atenating and hashing ea
h two
hild nodes,the node labels of the tree
an be
omputed from bottom up to the root. The rootvalue of the tree forms the MSS publi
 key for veri�
ation.The key pair generation uses an algorithm
alled treehash (Algorithm 1) [16℄. Thisalgorithm is used to
ompute the root of a Merkle tree using a sta
k stru
tureequipped with the usual push and pop operations 1. It
onse
utively
omputesthe 2H leaf values
onsisting of the OTS veri�
ation keys Yj from left to right andpushs them on the sta
k. When two nodes of the same height lie on the sta
k,they are
on
atenated and hashed to the next upper node. After
omplete 2H leaf
al
ulations and 2H − 1 hash evaluations, the root of the Merkle tree is the uppernode on the sta
k. Figure 4 illustrates an example.Algorithm 1 TreehashInput: Leaf l, sta
k Sta
kOutput: updated sta
k Sta
k1. push l to Sta
k2. while top two nodes of Sta
k have same height do(a) pop n1 from Sta
k, pop n2 from Sta
k(b) push Hash(n1‖n2) to Sta
k3. return Sta
k.MSS Signature Generation. Complete 2H signatures
an be
reated using oneMerkle Tree. For ea
h new signature the next OTS key is used so that ea
h OTS1A sta
k is a data stru
ture using a '�rst in - �rst out' strategy: push stores a node on top ofthe sta
k, pop delivers the top node of the sta
k.24

2.5 The Merkle Signature S
heme
D height 0
C height 0Hash(AB) height 1Sta
k before hashing Hash(Hash(AB‖Hash(CD))) height 2Sta
k after hashingFigure 4: Sample of the treehash algorithm: value 'D' is pushed on the sta
k. Then 'C'and 'D' are hashed to a height 1 node whi
h is then again hashed with the bottom nodeto a height 2 node.key is only used on
e. The MSS signature
onsists of the index ϕ that appointswhi
h OTS key is used for the
urrent signature. Furthermore the OTS signature,the OTS veri�
ation key Yϕ and the authenti
ation data of leaf ϕ are
omponentsof the MSS signature: SigMSS = (ϕ,SigOTS, Yϕ, {Authϕ}).MSS Veri�
ation. The �rst step of veri�
ation is the
ontrol of the OTS sig-nature using the key Yϕ. If this phase fails, the whole MSS signature is reje
tedas invalid. Otherwise the authenti
ation of this key is ne
essary. This happens by
al
ulating the root value of the tree using the value Yϕ and the authenti
ation datastored in the MSS signature. First Yϕ is
on
atenated and hashed with Auth0 onthe lowest level, then the result is hashed again with Auth1 and so on up to theroot. If the thus
omputed root is equal to the publi
 MSS key, the signature is
onsidered to be valid.Seed
al
ulation. Every leaf of the Merkle tree requires a random value SeedOTSfor the generation of the xk values needed for generation of the Winternitz OTS keys.This random data is
al
ulated using the Prng as des
ribed in se
tion 2.3.1:

(Seedϕ+1,SeedOTS) ← Prng(Seedϕ)(1)
(SeedOTS, xk) ← Prng(SeedOTS), k = 1 . . . twi

(2)As input a random value Seed0 is required. Formula (1) generates the seeds neededfor the leaves. Formula (2) delivers the random data xk. This seed
al
ulation
an25

2.5 The Merkle Signature S
hemebe seen as a latti
e of seed values, as Figure 5 illustrates: the upper line shows the
onse
utive
al
ulation of the SeedOTS values, whereas the downside lines show thegeneration of the xk values.Seed0
- Seed1

- Seed2 · · · - Seedϕ · · · - Seed2H

?SeedOTS

?

x1...
?

xk...
?

xtω

?SeedOTS

?

x1...
?

xk...
?

xtω

?SeedOTS

?

x1...
?

xk...
?

xtω

?SeedOTS

?

x1...
?

xk...
?

xtωFigure 5: Seed generation for a single Merkle tree. Ea
h array indi
ates one
all tothe Prng.With this
onstru
tion of the seed values we get a value Seed2H as output of theseed
al
ulation. This output will be used in GMSS later on. Here we
on
ludethat for the generation of all private and publi
 keys only one initial seed value isrequired.Se
urity Of MSS. The se
urity of MSS was regarded in [6℄. It
an be provedthat the Merkle signature s
heme resists any adaptive
hosen message atta
k if1. a se
ure, that means
ollision resistant hash fun
tion exists and2. the underlying one time signature s
heme resists any forgery.A
hosen message atta
k is an atta
k where the adversary has the possibility to get avalid signature to every
hosen message. He
an use this message/signature pairs ei-ther to forge a signature or to break the private key. Adaptive in this
on
ern meansthat the atta
kers messages
an be
hosen dependent on further message/signature26

2.5 The Merkle Signature S
hemepairs. As Coronado shows in [6℄, this atta
k will fail if the above mentioned assump-tions hold. The Merkle signature s
heme
an be
onstru
ted using an arbitrary hashfun
tion. So if a hash fun
tion should get inse
ure, it
an be easily substituted bya se
ure one. The MSS remains se
ure.2.5.2 GMSS - Generalized Merkle Signature S
hemeAs mentioned above GMSS is an expansion of the Merkle signature s
heme. GMSSstands for generalized Merkle signature s
heme and was proposed in 2007 [7℄. Oneinstan
e of GMSS is CMSS, whi
h was proposed in 2006 [5℄. When MSS and CMSShave relatively large sized signatures, GMSS is adressed to allow smaller signatures,and faster generation and veri�
ation. Additionally with GMSS it is possible to signup to 280 and even more messages, while with MSS this number is only appli
ableup to 220. This attribute is helpful
onsidering pra
ti
al applian
es like web serverappli
ations, where big amounts of signatures are ne
essary. The parameterization ofGMSS allows the
hoi
e of either fast runtime, small signatures or a trade-o� betweenboth depending on the appli
ation. This se
tion introdu
es the main
hara
teristi
sand gives an overview about GMSS. A more detailed des
ription
an be found in [7℄and [17℄.General Constru
tion. The general GMSS
onstru
tion is made up of a treewith height T . The nodes of this tree are again Merkle trees. Ea
h of the Merkletrees on layer i of the basi
 tree has height hi and is parent of 2hi Merkle trees onthe layer i + 1. The Merkle trees are labeled Ti,j , where i is the level in the basi
tree and j is the number of the node on height i,
onse
utively numbered from leftto right with 0 . . . 2h1+h2+...+hi−1 − 1. The root tree is labeled T1,0.Again the Winternitz OTS s
heme is used for the signatures in the Merkle trees. Forea
h layer a di�erent parameter wi, i = 1 . . . T is allowed. GMSS is parameterized bythe height of the basi
 tree, the heights of the trees on ea
h layer and the Winternitzparameters. Altogether the parameter set P of GMSS is
P = (T, (h1, . . . , hT), (w1, . . . , wT))27

2.5 The Merkle Signature S
hemeCMSS is the variant de�ned by the parameters P = (2, (h, h), (w, w)).The root of ea
h Merkle tree Ti,j is labeled RootTi,j
. It gets signed with the OTSkey of the
orresponding parent leaf: the root of tree Ti,j is signed using the signaturekey of a leaf of the parent tree on height i − 1. The signature of tree T 's root is
alled SigT . To sign a message digest the signature keys of the Merkle trees on thedeepest layer T are used. These signatures are denoted with Sigd. Following this
onstru
tion the number of message digests that
an be signed is 2h1+h2...hT . Thegeneral
onstru
tion of GMSS is illustrated in �gure 6.PSfrag repla
ements

TT,0 TT,1 TT,j

T2,0 T2,1

T1,0

T

SigT RootT
Figure 6: Basi

onstru
tion of GMSS. Only the leaves on the lowest layer are used forGMSS signatures.As on upper layers the leaves advan
e less frequently, the pre
omputation of thesetrees
an be distributed over many steps. This property allows an advan
e in sig-nature generation time. As well it allows the
hoi
e of higher parameters wi for theOTS s
heme, whi
h leads to a smaller signature size in total.A GMSS signature. As known from MSS for ea
h signature there is a uniquepath from the leaf ϕ up to the root. Here this path
ontains one Merkle tree onea
h layer. Additional to the one time signature of the message digest, the one timesignatures of the root values of these trees are stored in the GMSS signature. Alsothe authenti
ation data on the path existing of AuthT ,l for ea
h tree T is appendedto the GMSS signature. Hereby l is the index of the leaf of tree T used for signing28

2.5 The Merkle Signature S
hemethe root of the tree on the layer below. On the deepest layer the authenti
ation dataof the leaf used to sign the message digest is appended. An example of this pro
essis depi
ted in �gure 7.Totally the GMSS signature
onsists of the following:
• the index ϕ of the leaf used
• the one time signature Sigd of the do
ument d signed with the key
orrespond-ing to a leaf of the lowest layer
• the one time signatures SigTi,j

of the roots
• the authenti
ation paths AuthT i,j of ea
h tree on the path from the bottomleaf ϕ to the GMSS root

PSfrag repla
ements

ϕ,Sigd

SigTT,0

SigTi,j

AuthTT,0

AuthTi,j

AuthT1,0

TT,0

Ti,j

T1,0

Figure 7: Example of a GMSS signature29

2.5 The Merkle Signature S
hemeSeed
al
ulation in GMSS. For every single Merkle tree of the GMSS
onstru
tthe seed generation pro
edure des
ribed on page 25 is used. There an initial seedfor every tree is needed. For every tree of the GMSS stru
ture this is an initial seedvalue SeedinTi,j
. The Seedin for the �rst tree in ea
h layer (SeedinTi,0

) is requiredas input. The following seedin values are
omputed as the output of the last leaf ofthe previous tree:
(SeedinTi,j+1

,SeedOTS)← Prng(Seed2hi)Here Seed2hi is the seed of the last leaf of tree Ti,j . Hen
e using one initial seed forea
h layer all required seed values
an be
onstu
ted.GMSS Key Generation. This phase uses the initial seed values for
onstru
tingthe publi
 and private keys needed for GMSS. The GMSS publi
 key is the root ofthe top Merkle tree: RootT1,0
. The private key is built by the following:SeedinTi,0

, i = 1 . . . T SeedinTi,2
, i = 2 . . . TSigTi,0

, i = 2 . . . T RootTi,1
, i = 2 . . . TAuthTi,0,0, i = 1 . . . T AuthTi,1,0, i = 2 . . . TUsing the treehash algorithm (Algorithm 1) the root values of the �rst Merkle treeon ea
h layer Ti,0 (in
luding the GMSS publi
 key RootT1,0

) are built. For thisthe initial seed values SeedinTi,0
are needed. While
al
ulating these roots theauthenti
ation data of the �rst tree AuthTi,0,0 of ea
h layer
an be stored, so thatthe Auth values for these trees are obtained for free. The initial seeds for these
ond trees are now available. The same as above the root values of the se
ondtrees RootTi,1

and the
orresponding authenti
ation data AuthTi,1,0 are generatedwith Algorithm 1. After this the initial seed values for the third tree of ea
h layerSeedinTi,2
is ready and
an be stored in the private key. The signatures SigTi,0

arethe one time signatures of the root values already known.
30

2.5 The Merkle Signature S
heme
PSfrag repla
ements Auth0

Auth0Auth0Auth0

Auth0

Seedin

Seedin

Seedin SeedoutSeedout

Sig
Sig

Root
Root
RootT1,0

= Publi
 key

Figure 8: Example GMSS keys. The private key
onsists of the authenti
ation path forthe �rst leaf of the �rst two trees on ea
h layer, the Seedin for the �rst and the third treeon ea
h layer, the root signatures Sig of the �rst trees and the root values Root of these
ond trees. The publi
 key is the uppermost root value RootT1,0
.This private GMSS key is the key for the �rst signature. Having
reated this sig-nature the key is updated and so
hanges for every new signature. Therefore theGMSS s
heme is
alled a key evolving signature s
heme [18℄. As the private signingkey
hanges (evolves) frequently, this leads to a spe
ial se
urity feature of GMSS,so
alled forward se
urity. Also if an adversary
ompromises the a
tual signing key,it is impossible to forge signatures belonging to former signing keys. Using theintrodu
ed seed s
heduling, MSS does
ontain this se
urity feature as well [6℄.GMSS Signature Generation. The signature generation is distributed in anonline and an o�ine part. Su
h a separated framework is des
ribed in [19℄. Theo�ine part
an be seen as preparation of the next online part. This online part
annot be done until the message is known. It is a fast pro
ess, so that the signature
anbe generated rapidly, when the o�ine part has already been done. The o�ine partbelonging to the �rst signature was done during the key generation phase. Laterduring the o�ine phase the private key has to be updated (as mentioned above, key31

2.5 The Merkle Signature S
hemeevolving s
heme). The online part only
onsists of the generation of the signature.All parts needed for this signature were
reated and provided by the previous o�inepart. A detailled des
ription of both phases
an be found in [7, 17℄.The o�ine part distributes the
omputation of the needed Root, leaf and Sigvalues, so that for ea
h signature the time to spend is not too di�erent. If a Root ora Sig value is
omputed at on
e, the a
tual round lasts longer than previous roundswhere no su
h time expensive operations were done. Therefore the
omputation ofthose values is distributed over the
al
ulation of the leaves of the underlying layer,i.e. over 2hi+1 steps. Figure 9 illustrates the pre
omputation of those values.
PSfrag repla
ements RootTi,j+2

SigTi,j+1

Ti−1,j

Ti,j Ti,j+1 Ti,j+2

Ti+1,jFigure 9: While advan
ing a leaf in tree Ti,j, the values SigTi,j+1
and RootTi,j+2

areupdated, so that the
omputation of those values is distributed over all 2hi steps of tree Ti,j.While doing one step in Ti+1,j the leaf of tree Ti,j+2 is partly
omputed.GMSS Veri�
ation. The GMSS veri�
ation is nearly the same as in the orig-inal Merkle s
heme. The �rst part is the veri�
ation of the one time signature ofthe original data. If this already fails, the veri�
ation
an be stopped. Next theauthenti
ation starts with the tree on the lowest layer. Using the
orrespondingauthenti
ation data the root value of all trees
an be
al
ulated. The one time sig-32

2.5 The Merkle Signature S
hemenature of the roots are
ompared to the values Sig in the signature. Also if one ofthese signatures
annot be veri�ed truly, the GMSS veri�
ation fails with a nega-tive result. Ending up at the root RootT1,0
of the GMSS
onstru
tion, this
an be
ompared to the GMSS publi
 key. Only if this
omparison is su

essful the wholesignature is a

epted.Needed Storage. Following [7℄ the size of the keys and the signature is:

mpubkey = n bits
mprivkey =

(T∑

i=1

(hi + 1) +
T∑

i=2

(hi + twi−1
+ 2)

)

· n bits
msignature =

T∑

i=1

(hi + twi
) · n bitsThe variable n again denotes the length of the output of the hash fun
tion Hash.The publi
 key is only one single hash value, that's why its bit length is n. The sizeof the private key and the signature
an easily be derived from the listings above.In pra
ti
e these numbers will not hold. Some additional data has to be stored, forexample the parameters P must be added to the publi
 key as they are needed forthe veri�
ation pro
ess. So these numbers are more theoreti
al, but they give anidea of the overall sizes of signatures and keys. A
omparison of the needed storage
apa
ity
an be found in se
tion 6.

33

3 Common Traversal Algorithms3.1 OverviewThe Merkle tree traversal problem is the
hallenge of
omputing the authenti
a-tion paths of
onse
utive leaves of one single Merkle tree. This is one of the most
ru
ial steps in the Merkle signature s
heme and its derivatives. Today MSS andits des
endants are not often used in pra
ti
e, be
ause they are too slow or thesignature size is too big. Better traversal te
hniques may speed up the signaturegeneration (as well as better implementations like GMSS shall make the systemmore useful for pra
ti
al
onsiderations). As
onse
utive leaves mostly share a lotof authenti
ation nodes, only the
hanges have to be
omputed from one leaf to thefollowing. Good s
heduling algorithms use this fa
t to speed up the
omputation ofnew authenti
ation data.With digital signatures a tree traversal algorithm for authenti
ation data
onsist ofthree phases: key generation, output and veri�
ation.During the key generation phase the root of the Merkle tree is
onstru
ted and the�rst authenti
ation path is stored. Some additional authenti
ation data
anbe stored used as input for the traversal algorithm as well.The output phase
onsists of 2H rounds. In ea
h round the leaf value Φ(ϕ) andthe authenti
ation data {Authh} of leaf ϕ is output and then updated for thenext round. This is the main part, requiring good s
heduling ideas.The veri�
ation phase is always the same as for the original Merkle tree.In his original paper Merkle introdu
ed a simple traversal algorithm [4℄. Jakobssonet. al. proposed an algorithm using subtrees in [20℄. This algorithm allows a trade-o� between storage and
omputation time. It needs a maximum of 2H / log(H)hash fun
tion evaluations and maximum storage of 1.5H2 / log(H) hash values perround. An implementation of the Merkle signature s
heme using Jakobsson's ideas
an be found in [21℄. 34

3.1 OverviewSzydlo presented a log-time and log-spa
e algorithm in [22℄ and a slightly di�er-ent version in a preprint in [16℄. An algorithm is
alled logarithmi
 if its time perround respe
tively the maximum memory
apa
ity needed is logarithmi
 in the to-tal number of signatures N . He also proves that these bounds are optimal for theauthenti
ation path
omputation, i.e. that it is not possible to
reate an algorithmthat in both time and spa
e
omplexity is better than O(log N). Other work
on-sidering authenti
ation path
omputation
an be found in [23℄. The new algorithmpresented in this thesis is an improvement of Szydlo's algorithms. For this reasonthe outline of this se
tion is the introdu
tion of Szydlo's traversal algorithm (themore e�
ient preprint version of [16℄, not the more simple, published version of [22℄).The des
ription of Merkle's
lassi
al algorithm leads to Szydlo's improved algorithmversion (Algorithm 2). Finally some drawba
ks of Szydlo's algorithm are presentedto motivate the improved algorithm presented in the main part of this thesis.3.1.1 NotationFor authenti
ation data the notation already known is used: Authh is the height
h sibling on the path from the
urrent leaf ϕ to the root. Further on for ea
h level
h of the tree one instan
e of the treehash algorithm (Algorithm 1)
alled Sta
kh isused. For pra
ti
al
onsiderations two methods initialize() and update() existfor these instan
es. The �rst method only sets the start node index and the desiredheight of the instan
e. The update() method either
omputes a node and pushs iton the sta
k or it on
e hashes the sta
k's top nodes if possible (if top nodes havesame height). Temporarily stored nodes on a sta
k are
alled tail nodes. If Sta
khis
ompleted, the top node is stored in an array Needh. There all up
oming rightnodes are stored until they are needed for an authenti
ation path.Some
omputed nodes are later on again helpful for speeding up the
omputationof higher left nodes. For ea
h height h at most one su
h additional node
an bekept. For this the set Keeph is used. The height of the tree is denoted H , hen
ethe number of nodes is N = 2H , numbered from 0 to N − 1 from left to right. Allpapers [4, 16, 20, 22, 23℄ do not
onsider the
omplexity of the
al
ulation of oneleaf. They use an ora
le Leaf
al
(ϕ) whi
h
omputes the leaf value Φ(ϕ). The35

3.2 Szydlo's Algorithm
all of this ora
le is
ounted as one
omputation unit for the
omplexity analysis, aswell as hash fun
tion evaluations are
ounted one unit ea
h.3.2 Szydlo's Algorithm3.2.1 MotivationThe
lassi
al algorithm introdu
ed by Merkle in his original paper distinguishesbetween
omputation of left and right authenti
ation nodes. It uses one treehashinstan
e for ea
h height, as des
ribed above. Using these, new up
oming rightauthenti
ation nodes are pre
omputed, for that they are ready when they are neededfor Auth values. In ea
h round ϕ ∈ [0 . . . 2H − 1] every treehash instan
e gets oneupdate, if it was not already
ompleted. This leads to the following problem: in theworst
ase all H treehash instan
es are a
tive at the same time. So the maximumnumber of required spa
e units is 0.5(log(N))2. Szydlo's idea was to
hange thes
heduling strategy for the treehash instan
es to save memory.The generation of left nodes is quite easy, be
ause their
hild nodes have alreadybeen
omputed. Saving those
hild nodes only one hash operation is required for
omputation of a left authenti
ation node.As Merkle did in his original algorithm, Szydlo distinguishes between the
omputa-tion of left and right authenti
ation nodes. The
omputation of left nodes is quitethe same as in Merkle's paper.3.2.2 The AlgorithmAs input Algorithm 2 needs the authenti
ation path of the �rst leaf of the Merkletree. These values {Authh, h = 0 . . .H}
an be stored during the key generationphase when
omputing the root of the tree. So the �rst authenti
ation path isobtained for free. Every round of the authenti
ation path algorithm of Szydlo thesame steps are exe
uted: 36

3.2 Szydlo's AlgorithmGenerating an output. Every round starts with the output of the previous
om-puted authenti
ation path. This will always be
ompleted when it is needed. Ad-ditionally the
urrent leaf value Φ(ϕ) is output. If the leaf index is even, this valuemust be
omputed using one Leaf
al
 operation, otherwise it is always available.Left node
omputation. For ea
h leaf ϕ exa
tly one new left authenti
ationnode L must be added. The height of this node is the height of the �rst parent nodeof leaf ϕ that is a left node. This height is denoted τ . If the
urrent leaf is a leftnode itself, τ is set to 0. Figure 10 shows an example. The new node on height τ isstored as Authτ . If τ > 0, both
hild nodes of the new authenti
ation node havealready been
omputed and stored in Authτ−1 and Keepτ−1. Out of these two
hild nodes the parent node L
an be
omputed (by
on
atenating and hashing), sothe new node requires only one hash
al
ulation. All nodes Authi with index i < τare reset with values from
ompleted treehash sta
ks (Needi).
PSfrag repla
ementsAuthAuthAuth

Auth0 ϕ = 3

τ = 2Auth1

Auth2Keep1 Need0

Need1

⇓

PSfrag repla
ements
Auth2

ϕ = 4 Auth0

Auth1

AuthAuthAuthKeepNeedNeedFigure 10: Left node
omputation: A Merkle tree of height 4 in rounds ϕ = 3 and ϕ = 4.In the upper tree the height of the �rst parent of leaf ϕ that is a left node is τ = 2. Thelower �gure shows the authenti
ation data of leaf ϕ = 4. All lower authenti
ation nodes(Auth0 and Auth1) are pushed from the sta
ks an reset in round ϕ = 3.37

3.2 Szydlo's AlgorithmReleasing spa
e. Some previously stored nodes are no more needed after the
omputation of the new left node. Therefore some memory spa
es
an be freed bydeleting the values Authi for i < τ and Keepτ−1. The former value Authτ isstored in Keepτ , for possibly this node is needed for a new left node
reation onelayer above.Sta
k
reation. Every round one sta
k is initialized anew: the sta
k belonging toheight τ . The new left node L has repla
ed Authτ in this round. Then 2τ roundslater again this authenti
ation node will
hange to a right node. This right node is
reated by Sta
kτ , the one whi
h is initialized anew. The starting index for thissta
k is ϕ + 1 + 2τ+1.Building needed future nodes. In total, exa
tly H operations shall be per-formed in one round. One is already spent either in step 2 (if ϕ is even) or in step 4(if τ = 0 whi
h is equivalent to ϕ is odd) of Algorithm 2. So still H − 1 operationsare to perform in step 6. Here the main improvement to Merkle's
lassi
al algorithmtakes pla
e: the s
heduling for
hoosing whi
h sta
k gets an update. Szydlo always
hooses the sta
k with the lowest top node. One update (either Leaf
al
 or hashoperation) is performed to this sta
k. This happens H − 1 times, so that exa
tly H
omputation units are spent in ea
h round.The whole algorithm des
ription is depi
ted in Algorithm 2.

38

3.2 Szydlo's AlgorithmAlgorithm 2 Logarithmi
 Merkle Tree TraversalInput: First authenti
ation path {Authh}Output: Auththenti
ation paths for leaves ϕ + 11. Let ϕ = 02. Output If ϕ is even,
ompute Φ(ϕ) = Leaf
al
(ϕ). Output Φ(ϕ), for ea
h h ∈ [0, H − 1]output Authh3. Release nodes Let L be the
urrent leaf if ϕ is even, or its �rst an
estor whi
h is a leftnode. Let τ be the height of L (equal to the highest τ with 2τ |(ϕ + 1)). Remove
ertainexpired nodes below L:
• Remove all node values Authi for i < (τ − 1)
• if τ = 0 re
ord Φ(ϕ + 1) = Auth0

• if L's parent is a right node, remove L's sibling, Authτ

• if L's parent is a left node, set Keepτ = Authτ4. Add left node
• if τ = 0 set Auth0 = Φ(ϕ)
• if τ > 0
ompute Authτ = Hash(Authτ−1‖Keepτ−1)
• Remove node values Authτ−1 and Keepτ−1.
• Copy new lower right nodes: for i < τ set Authi = Needi5. Add sta
k Create Sta
kτ at height τ , with starting value ϕ + 1 + 2τ+16. Building needed nodesRepeat H − 1 times
• set active to be the sta
k with the lowest node (
hoose the lowest of su
h index in
ase of a tie)
• if there is no su
h a
tive sta
k, break and go to step 7
• Spend one unit building Sta
kactive, as in Treehash
• if Sta
kactive is
omplete, put result in Needactive and destroy Sta
kactive7. Loop to next round
• Set ϕ = ϕ + 1
• if ϕ < 2H go to Step 2It is an important task to show that every right authenti
ation node is
ompletedwhen it is needed by the traversal algorithm. The proof of
orre
tness of the pre-sented authenti
ation path algorithm
an be found in [16℄. Exa
tly H
omputationunits are spent in ea
h round of the algorithm, so the
omputing time is in O(H).Szydlo shows that the maximum spa
e needed with 3H − 2 is likewise algorithmi
in the total number of signatures (sin
e H = log2(N)).As an interesting
on
ern, Szydlo proves that the bounds of O(H) for both time andspa
e
omplexity he found are optimal. It is impossible to �nd an authenti
ationpath algorithm that is in both better than O(log2(N)). It is
lear that at least H−239

3.3 Drawba
ks of Former Algorithmsnodes have to be stored. So it su�
es to show that if an algorithm needs a storage
apa
ity of O(log2(N)), then at least O(log2(N))
omputation units per round arerequired. A trade-o� between time and spa
e bounds
an always be found, as no
onstants are given. But the
omplexity bounds of O(log2(N)) for both at the sametime are hard.3.3 Drawba
ks of Former AlgorithmsAll known work on traversal algorithms
onsider the leaf-
al
ulation and the hash-fun
tion evaluation to require the same amount of
omputation. Both operationsare
ounted as one
omputation unit ea
h. When applying a one time signatures
heme for the leaf
al
ulation, many hash value
omputations are needed to gen-erate a single leaf, i.e. up to thousands. One
an expe
t that leaf-
al
ulation ismu
h more expensive
onsidering the
omputation time needed than a single hash-fun
tion evaluation. This leads to the problem that one
annot predi
t the numberof hashes really needed during one step of the authenti
ation path algorithms. Sothe generation time of a signature varies enormously from round to round.Szydlo's algorithm is the one that provably allows the best time and memory prop-erties. Using H sta
ks whi
h store at most H nodes ea
h, the maximum number ofnodes stored is in O(H2). He shows that the memory needed for the sta
ks is atmost H , so that all other memory spa
es are not needed at on
e. But implementingthis algorithm on a platform without dynami
 memory allo
ation would need the
omplete spa
e of O(H2), as spa
e for all H2 nodes has to be reserved.These ideas were in
luded
onstru
ting the new traversal algorithm (Algorithm 3)whi
h is presented in the next se
tion. Counting the number of hashes and thenumber of leaf
al
ulations separately leads to more balan
ed timings. Furthermorewe show that it is possible that all treehash instan
es share one single sta
k, sothat the storage needed is bounded linearly in H even on system without dynami
memory allo
ation.
40

4 A New Authenti
ation Path AlgorithmThis se
tion introdu
es a new algorithm for Merkle tree authenti
ation path
om-putation. It is an improvement of Szydlo's preprint algorithm [16℄ and addressesit's drawba
ks mentioned in se
tion 3. The
orre
tness of the new algorithm will beproved below. Further, some
al
ulations on runtime and storage requirements aremade for
omparison with former algorithms. This se
tion presents the theoreti
alresults, whereas pra
ti
al results are given later in se
tion 6.Our new algorithm will allow a time-memory trade-o�. In the key generation phasethe whole Merkle tree has to be
omputed
ompletely on
e. In this phase the�rst authenti
ation path was stored as input for Merkle's and Szydlo's s
hedulingalgorithms. Now we are going to store some more nodes: as the
omputation ofright nodes near to the root is most expensive, the idea is to store those right nodesfrom the beginning, so that the time to
ompute these nodes is saved later. Theparameter K denotes the number of top layers in the tree where all right nodes arestored. K is
hosen so that H−K is even (we perform (H−K)/2 steps per round).As mentioned above, our new algorithm yields to a more balan
ed signature gener-ation time and also a moderate spa
e requirement. Clearly the logarithmi
 boundsin spa
e and time
omplexity shall be maintained. We will show that an amount ofless than H/2 leaf
al
ulations per round are su�
ient to
ompute authenti
ationpaths and that storage is also bounded logarithmi
ally in the number of leaves.We use sta
ks that are slightly di�erent from the ones used by Szydlo. For ea
hheight we apply a stru
ture Treehash, whi
h
omputes the up
oming right nodesfor the authenti
ation path (again using Algorithm 1). All these instan
es shareone single sta
k, whereas in former algorithms every instan
e had its own sta
k tostore nodes on. We a
hieve a logarithmi
 total number of nodes stored at on
e, alsoon devi
es without dynami
 memory allo
ation. We will show that sharing a singlesta
k for all Treehashs works well. Further on we are using a slightly modi�eds
heduling of the
omputation of right nodes, so that the amount of (H − K)/2leaf
al
ulations per round are su�
ient. The
omputation of right nodes
hanges,whereas left nodes are
omputed in the same manner as with Szydlo's algorithm.41

4.1 Notation4.1 NotationThe main part of the notation is already known from previous se
tions. H denotesagain the height of the Merkle tree. With yh[j] the jth node on height h (i =

0 . . .H, j = 0 . . . 2H−h − 1) is referred. The authenti
ation path of the
urrent leaf
ϕ is again Auth0, . . . ,AuthH−1. The values Keep0, . . . ,KeepH−2 are the same
ertain nodes to qui
kly
ompute left
hildren. With τ we denote the height of the�rst parent of the a
tual leaf ϕ whi
h is a left node. The sta
ks to store the rightnodes near to the root (on the upper K levels, K ≥ 2) are
alled Retainh(h =

H − 2 . . .H − K). They are �lled from left to right, so that the top node of aRetain sta
k is always the next one needed for the authenti
ation path.Again we use an ora
le Leaf
al
 whi
h
omputes the leaf value of the leaf with theomitted index. Using the Merkle tree for digital signatures this method
omputes theveri�
ation key of the underlying one time signature s
heme. In di�eren
e to formeralgorithms we do not just
ount it as one
omputation unit, we will distinguishbetween the
omputation of leaves and single hash evaluations.4.1.1 Treehash Sta
ksWith Treehash0 . . .TreehashH−K−1 we denote the stru
tures to
ompute right
hildren. Ea
h su
h instan
e stores the �rst node itself, further nodes are pushedon the
ommonly shared sta
k. A node stored on a Treehash sta
k is
alleda tail node. Additionally to the push and pop operations ea
h treehash sta
k isequipped with three methods: initialize(), height() and update(). The methodTreehashh.initialize() sets the start node whi
h tells the Treehash with whi
hleaf the
omputation of the sta
k has to begin. Treehashh.height() returns theheight of the lowest node stored in the instan
e, either on the sta
k or in Treehashhitself. This method is required for the s
heduling of the (H − K)/2 Leaf
al
operations, whi
h are always assigned to the one instan
e with the lowest tail node. Ifthere is more than one instan
e with same lowest node height, the one with the lowestindex is
hosen for the update. In order to skip instan
es that are already �nished ornot yet initialized, Treehashh.height() is set to in�nity in these
ases. When the42

4.2 Algorithm Des
riptiontreehash sta
k was initialized, the �rst
all of the last method Treehashh.update()
al
ulates the leaf with the start index. It is stored in the instan
e itself. The nextupdates work in analogy to Algorithm 1: the next leaf is
al
ulated and stored onthe sta
k. If the top two nodes have the same height they are hashed together andthe result is pushed on the sta
k. If the top node on the sta
k and the �rst node inthe treehash have same height, the result repla
es the �rst node of the treehash.4.2 Algorithm Des
ription4.2.1 InitializationDuring the key generation, we store
ertain nodes of the Merkle tree. First we storethe authenti
ation path for the �rst leaf ϕ = 0:Authh = yh[1], h = 0 . . .H − 1We also store the next right authenti
ation node for ea
h height h = 0 . . .H−K−1on the sta
ks Treehashh.push(yh[3]), h = 0 . . .H −K − 1Depending on K, we store all right authenti
ation nodes on the retain sta
ks:Retainh.push(yh[2j + 3]), h = H −K . . .H − 2, j = 2H−h−1 − 2 . . . 0Figure 11 illustrates the initialization pro
ess.
Figure 11: Values of the initialization, H = 5,K = 3. The dashed nodes are authen-ti
ation nodes, the bla
k ones are stored in treehash, the grey nodes are kept in retainsta
ks. 43

4.2 Algorithm Des
ription4.2.2 Authenti
ation Path ComputationAs input, Algorithm 3 requires a node index ϕ between 0 and 2H − 2 and thea
tual algorithm state (whi
h means the Treehash instan
es, the sta
k and theauthenti
ation path of the
urrent leaf). As output, it returns the authenti
ationpath of the next leaf ϕ + 1.Left node
omputation. The �rst steps are again handling the left node
om-putation. The value τ is the height of the �rst parent node of leaf ϕ whi
h is aleft node, remember τ = 0 if the
urrent leaf itself is a right node. In formulawe have τ = max{h : 2h | (ϕ + 1)}. For left node
omputation the
urrent Authnode on height τ is stored in Keepτ if ⌊ϕ/2τ+1⌋ is even (whi
h means that theparent of ϕ on height τ + 1 is a left node). This node is required in round ϕ + 2τfor the next authenti
ation node on height τ + 1, whi
h
an then be
omputed asHash(Authτ‖Keepτ). See �gure 12 of an example for the left node
omputation.PSfrag repla
ements
ϕ ϕ + 2τ

τ = 2 → Keepτ

Figure 12: In round ϕ the node Authτ is stored in Keepτ . This node is needed inround ϕ + 2τ for the
omputation of its parent node, whi
h is part of the dashed authen-ti
ation path
omputed in round ϕ + 2τ .If τ = 0, whi
h o

urs in the rounds where leaf ϕ is a left node itself, we useLeaf
al
(ϕ) to
ompute the leaf value itself. This node is the lowest authenti
ationnode for the next round, i.e. Auth0 = Leaf
al
(ϕ).Considering this, the
omputation of the left authenti
ation node requires either onehash fun
tion
all (if ϕ is a right node) or one Leaf
al
 operation (in
ase that ϕis even). 44

4.2 Algorithm Des
riptionRight node
omputation. If the new left node for the authenti
ation path was
omputed, the values Authh for h = 0 . . . τ − 1 must
hange as well (
ompare�gure 10 on page 37). The required nodes were either stored on the Retain sta
ks(for all h ≥ H − K) or they were pre
omputed in the Treehash instan
es. Sothe
all Retainh.pop respe
tive the
all Treehashh.pop delivers the newly neededauthenti
ation nodes on heights lower than τ . In se
tion 4.3 we will show that everytreehash in fa
t is
ompleted when its top node is needed.If an Auth node was taken from a Treehash instan
e, it must be reinitialized forthe pre
omputation of the next right nodes. The instan
e with height h must againbe
ompleted in round ϕ+2h+1. For that the instan
e is initialized with start index
ϕ + 1 + 3 · 2h. An illustration of this pro
ess
an be seen in Figure 13.PSfrag repla
ements

ϕ ϕ + 1 + 3 · 22ϕ + 23

Auth2
Treehash2

Figure 13: In round ϕ the node Auth2 is popped from Treehash2. This instan
e isthen initialized anew with start index ϕ + 1 + 3 · 22 and
omputes the de
lared right nodeon height 2. This node is needed in round ϕ + 23.The next step is the s
heduled
omputation of the remaining (H − K)/2
ompu-tations of Leaf
al
 operations. We use the same s
heduling as Szydlo did: theTreehash instan
e with the lowest tail node on his top gets the
urrent update. Ifmore than one instan
es have tail nodes at the same minimal height we
hoose theone whi
h has the lowest index.The last step of the algorithm is the output of the authenti
ation path {Authh :

h = 0 . . .H − 1}. Algorithm 3 shows the
omplete algorithm listing.
45

4.2 Algorithm Des
riptionAlgorithm 3 Improved Authenti
ation Path ComputationInput: ϕ ∈ {0, . . . , 2H − 2}, H , K and the algorithm state.Output: Auththenti
ation path for leaf ϕ + 11. Let τ = 0 if leaf ϕ is a left node or let τ be the height of the �rst parent of leaf ϕ whi
h isa left node:
τ ← max{h : 2h|(ϕ + 1)}2. If the parent of leaf ϕ on height τ + 1 is a left node, store the
urrent authenti
ation nodeon height τ in Keepτ :if ⌊ϕ/2τ+1⌋ is even and τ < H − 1 then Keepτ ← Authτ3. If leaf ϕ is a left node, it is required for the authenti
ation path of leaf ϕ + 1:if τ = 0 then Auth0 ← Leaf
al
(ϕ)4. Otherwise, if leaf ϕ is a right node, the authenti
ation path for leaf ϕ+1
hanges on heights
0, . . . , τ :if τ > 0 then(a) The authenti
ation path for leaf ϕ + 1 requires a new left node on height τ . It is
omputed using the
urrent authenti
ation node on height τ − 1 and the node onheight τ − 1 previously stored in Keepτ−1. The node stored in Keepτ−1
an then beremoved:Authτ ← f(Authτ−1||Keepτ−1), remove Keepτ−1(b) The authenti
ation path for leaf ϕ + 1 requires new right nodes on heights h =

0, . . . , τ − 1. For h ≤ H − K − 1 these nodes are stored in Treehashh and for
h ≥ H −K in Retainh:for h = 0 to τ − 1 doif h ≤ H −K − 1 then Authh ← Treehashh.pop()if h > H −K − 1 then Authh ← Retainh.pop()(
) For heights 0, . . . , min{τ−1, H−K−1} the treehash instan
es must be initialized anew.The treehash instan
e on height h is initialized with the start index ϕ+1+3 ·2h < 2H :for h = 0 to min{τ − 1, H −K − 1} do Treehashh.initialize(ϕ + 1 + 3 · 2h)5. Next we spend the budget of (H − K)/2 updates on the treehash instan
es to prepareup
oming authenti
ation nodes:repeat (H −K)/2 times(a) We
onsider only sta
ks whi
h are initialized and not �nished. Let s be the index ofthe treehash instan
e whose top node has the lowest height. In
ase there is more thanone treehash instan
e whose top node has the lowest height we
hoose the instan
ewith the lowest index:
s← min

{

h : Treehashh.height() = min
j=0,...,H−K−1

{Treehashj .height()}}(b) The treehash instan
e with index s re
eives one update:Treehashs.update()6. The last step is to output the authenti
ation path for leaf ϕ + 1:return Auth0, . . . ,AuthH − 1. 46

4.3 Corre
tness of the Algorithm4.3 Corre
tness of the AlgorithmThis subse
tion proves that the new authenti
ation path algorithm works
orre
tly.First we will show that the amount of (H −K)/2 Leaf
al
 operations per roundis su�
ient for
omputation of the right authenti
ation nodes, whi
h means thatea
h treehash instan
e is ready when needed.Lemma 1. In Algorithm 3 every right node is
ompleted in time.Proof. In this proof we show that every Treehash instan
e is de�nitely
ompletedwhen its top node is required for the authenti
ation path.On height h we need 2h Leaf
al
-operations and 2h − 1 hash value operations to
omplete Treehashh. When Treehashh is initialized in round ϕ, the authenti
a-tion node on height h
omputed by this instan
e is needed in round ϕ+2h+1. So thereis an amount of 2h+1 rounds until Treehashh must be
ompleted. In ea
h round weperform (H−K)/2 Leaf
al
-operations. Our total is H−K
2
· (2h+1) = (H−K) ·2hoperations to spend before the treehashs top node is required. The
hart of Table1 shows whi
h Treehash instan
es
an be
omputed during the
omputation ofTreehashh and what
osts they need.Treehash Quantity Leaf
al
-ops ea
hTreehashH−K−1 1 max 2h...Treehashh+1 1 max 2hTreehashh 1 2hTreehashh−1 2 2h−1...Treehashh−j 2j 2h−j...Treehash0 2h 1Table 1: Number of Leaf
al
 operations47

4.3 Corre
tness of the AlgorithmAs shown in the Table 1, a
tive Treehash instan
es on higher levels than h
anapply at most 2h Leaf
al
 operations ea
h (the total
ost of
ompleting a sta
kon height h). Before they were
ontinued on higher levels, Treehashh must havebeen
ompleted. There are H − K − 1 − h exemplars of higher instan
es (indi
es
h+1 . . .H−K−1). The
omputation of a lower instan
e Treehashh−j with index
j ∈ {1 . . . h} requires 2h−j Leaf
al
 operations. During the available 2h+1 roundsTreehashh−j is initialized 2j times.Summing up the number of the maximal
ount of Leaf
al
 operations, we get lessthan (H −K − 1− h) · 2h for the sta
ks with index higher than h and

(h + 1) · 2j · 2h−j = (h + 1) · 2hfor the sta
ks with index less or equal h (down to 0). Totally we get at most
(H −K − 1− h) · 2h + (h + 1) · 2h = (H −K) · 2hThis is an upper bound for the maximum number of Leaf
al
 operations per-formed until Treehashh must be
ompleted. As we have seen above we have atotal amount of (H − K) · 2h Leaf
al
 operations. So we determine that everysta
k is
ompleted when its top node is needed in the algorithm. The upper boundis tight for h = H −K − 1.In his algorithm Szydlo uses one sta
k for ea
h height h = 0 . . .H − 1. In our newalgorithm all Treehash instan
es share one single sta
k. For the
orre
tness of thealgorithm we have to show that sharing one single sta
k really works.Lemma 2. In Algorithm 3 it is su�
ient to share one single sta
k for all Treehashinstan
es.Proof. We have to show that tail nodes belonging to di�erent Treehash instan
esdo not interfere on the sta
k. If Treehashh gets an update and has previouslystored nodes on the sta
k, we have to show that these nodes lie on top of the sta
k.First we
onsiderTreehash instan
es with index greater than h. When Treehashhre
eives its �rst update, the lowest tail node of higher Treehash instan
es has a48

4.4 Computational Boundsheight of at least h. That implies that Treehashh is
ompleted before those in-stan
es get another update. So Treehashh and instan
es on higher levels neverinterfere on the shared sta
k.Let us now examine lower Treehash instan
es. It is possible that Treehashi withindex i < h gets updates and stores nodes on the sta
k while Treehashh is not
ompleted and stores tail nodes on the sta
k. This
an happen only if the lowesttail node of Treehashh has height greater or eqal i. But in this
ase Treehashi is
ompleted before Treehashh gets another update, and the top nodes on the sta
kare again the tail nodes of Treehashh. We have shown that lower Treehashinstan
es do not interfere with the tail nodes of Treehashh, and so the proof is
ompleted.4.4 Computational BoundsLemma 3. Algorithm 3 needs (H − K)/2 + 1 many Leaf
al
 operations perround. The number of performed hash value evaluations per round is bounded by
3
2
(H − K − 1) + 1. Therefore the total
omputation
ost of Algorithm 3 lies in
O(log2 N).Proof. Leaf
al
 operations. In step 3 of our algorithm one Leaf
al
 opera-tion is performed, if ϕ is a left node. In step 5 at most (H −K)/2
al
ulations areexe
uted. Totally we have at most (H −K)/2 + 1 Leaf
al
 operations.Hash operations. Now we give an upper bound for the number of hash
al
ulationsperformed in one round. Let u = H−K

2
. We will show that the maximum number ofhash evaluations is performed in the following
ase: the instan
e TreehashH−K−1re
eives all u updates and is
ompleted by the last one of these updates.We will now give an upper bound for the number of hashes required in this worst
ase. On height 0 every se
ond round a hash is required. Every fourth round oneadditional hash is required on height 1. Generally on height h every 2h+1th roundan additional hash is performed (h = 0 . . . ⌈u/2h⌉ − 1).Sin
e we have at all u updates to perform, on height 0 we get totally ⌈u/2⌉ hashes,49

4.4 Computational Boundson height 1 there are additional ⌈u/4⌉ hashes and generally for height h we have toadd ⌈u/2h+1⌉ hashes, whi
h makes totally
⌈log2 u⌉−1

∑

h=0

⌈ u

2h+1

⌉

=

⌈log2 u⌉
∑

h=1

⌈ u

2h

⌉The last update requires H −K − 1 = 2u− 1 hashes to
omplete TreehashH−K−1up to height H −K − 1. So far only ⌈log2 u⌉ of these hashes were
onsidered, so wehave to add 2u− 1− ⌈log2 u⌉ hash value evaluations. In total for the worst
ase weget the following upper bound for the number of hashes required for one round:
⌈log2 u⌉
∑

h=1

⌈ u

2h

⌉

+ 2u− 1− ⌈log2 u⌉(3)
≤

⌈log2 u⌉
∑

h=1

(u

2h
+ 1

)

+ 2u− 1− ⌈log2 u⌉

=

⌈log2 u⌉
∑

h=1

(u

2h

)

+ ⌈log2 u⌉+ 2u− 1− ⌈log2 u⌉

= u

⌈log2 u⌉
∑

h=1

(1

2h

)

+ 2u− 1Using the geometri
 series it is
⌈log2 u⌉
∑

h=1

1

2h
=

(1/2)⌈log2 u⌉+1 − (1/2)

1/2− 1
= −2 · ((1/2)⌈log2 u⌉+1 − 1/2) = 1−

1

2⌈log2 u⌉Additionally it is
−

1

2⌈log2 u⌉
≤ −

1

2log2 u+1
= −

1

2 · 2log2 u
= −

1

2u
= −

1

H −KIn
luding this we get
(3) ≤ (1−(

1

H −K
))

H −K

2
+H−K−1 =

H −K

2
−

1

2
+H−K−1 =

3

2
(H−K−1)One additional hash is performed in step 4a of Algorithm 3. This leads to themaximum of 3

2
(H − K − 1) + 1 hashs per round. What remains now is to show50

4.4 Computational Boundsthat there is no other
ase that requires more hash evaluations, so that the abovementioned
ase is indeed the worst
ase.If a treehash instan
e on height less than H − K − 1 re
eives all updates and is
ompleted in this round, less than (3) hashes are required. The same holds if thetreehash instan
e re
eives all updates but is not
ompleted in this round.The last
ase to
onsider is the one where the u available updates are spent ontreehash instan
es on di�erent heights. If the a
tive treehash instan
e has a tailnode on height j, it will re
eive updates until it has a tail node on height j + 1,whi
h requires 2j updates and 2j hashes (so 2j < u, otherwise again only onetreehash instan
e would re
eive updates). First
onsider the
ase that the a
tivetreehash instan
e is not
ompleted by the u updates. Additional to the 2j hashesthere
an be t ∈ {0 . . .H −K − j − 2} hashes whi
h take nodes from the sta
k, ason the sta
k nodes on heights j + 1 . . .H −K − 3
ould be stored. Then the nexttreehash instan
e worked on has a tail node on heights j or j + 1 (> j + 1 is notpossible, otherwise the old treehash instan
e would get the next updates again, < jis not possible be
ause then this treehash instan
e would have gotten the updatesearlier) and it
annot store nodes on the sta
k on heights ≤ j + t (on ea
h heightat most one node is stored on the sta
k). But this is the same
ase whi
h appearsin the above mentioned worst
ase if it
omputes a node on height j and gets thenext updates for the same instan
e. The last
ase to
onsider is the
ase where thea
tive treehash instan
e is
ompleted by the �rst 2j updates and hashes. Again it ispossible that t ∈ {0 . . .H −K − j − 2} hashes are additionally needed for nodes onthe sta
k. Then the next a
tive treehash instan
e has a tail node on height ≥ j, andon the sta
k there
an only be nodes with height at least j + t + 1. Again this
aseappears in our worst
ase s
enario, as it makes no di�eren
e if the same instan
ere
eives the next update or another one. So we
ould show that all other
ases
anbe redu
ed to the worst
ase and this bound was given above.Considering the bounds of (H − K)/2 + 1 Leaf
al
 operations and
3
2
(H − K − 1) + 1 hash evaluations per round it is easy to see that the
ompu-tation
osts of our algorithm is bounded linearly in H. Sin
e H = log2 N the
ost islogarithmi
ally in the number of leaves N, so that it lies in O(log2 N).51

4.5 Storage E�
ien
y4.5 Storage E�
ien
yLemma 4. Keep
onsists of at most ⌊H/2⌋+ 1 node values. For the upper K − 1Retain sta
ks 2K−K−1 nodes are stored. On the shared sta
k at most H−K−1nodes are stored. Therefore the total spa
e required by Algorithm 3 is bounded by
3H + ⌊H/2⌋+ 2K − 3K − 1.Proof. Spa
e requirements for Keep nodes. Consider that in step 2 of Algo-rithm 3 a node gets stored in Keeph (h = 1 . . .H − 2). Then the node in Keeph−1is removed in the same round in step 4a.Next we will show that if a node is stored in Keeph, h = 0, . . . , H − 3, thenKeeph+1 is empty. A node is stored in Keeph+1 in rounds ϕ ∈ Aa = {2h+1 − 1 +

a · 2h+3, . . . , 2h+2 − 1 + a · 2h+3}, a ∈ N0. In rounds ϕ′ = 2h − 1 + b · 2h+2, b ∈ N0, anode gets stored in Keeph. We will show that ϕ′ /∈ Aa. Assume(4) ϕ′ ∈ Aa ⇔ ϕ′ ≥ 2h+1 − 1 + a · 2h+3

︸ ︷︷ ︸

(4.1)

and ϕ′ ≤ 2h+2 − 1 + a · 2h+3

︸ ︷︷ ︸

(4.2)(4.1) ϕ′ ≥ 2h+1 − 1 + a · 2h+3

⇔ 2h − 1 + b · 2h+2 ≥ 2h+1 − 1 + a · 2h+3

⇔ 1 + b · 22 ≥ 21 + a · 23

⇔ 4b ≥ 1 + 8a

⇔ b ≥ 1/4 + 2a(4.2) ϕ′ ≤ 2h+2 − 1 + a · 2h+3

⇔ 2h − 1 + b · 2h+2 ≤ 2h+2 − 1 + a · 2h+3

⇔ 1 + b · 22 ≤ 22 + a · 23

⇔ 4b ≤ 3 + 8a

⇔ b ≤ 3/4 + 2aSo ϕ′ ∈ Aa is equivalent to 1/4 + 2a ≤ b ≤ 3/4 + 2a. Sin
e a ∈ N0 this is a
ontradi
tion to b ∈ N0. That shows that Keeph+1 is always empty when Keephgets a node to store. 52

4.5 Storage E�
ien
yWe have shown that if a node gets stored in Keeph, then Keeph+1 is empty andKeeph−1 gets removed in the same round. So at most every se
ond Keep storesa node at the same time, totally we have to store less then ⌊H/2⌋ nodes. Betweensteps 2 and 4a of Algorithm 3 we need to store one temporary node, what gives usa total spa
e requirement of ⌊H/2⌋+ 1 for the Keep nodes.Nodes stored in Retain. In the highest K−1 Retain sta
ks all right nodes arestored. During the initialization, for heights H −K, . . . , H − 2, the nodes yi[2j + 3]for j = 2H−i−1 − 2 down to 0 are stored. This makes totally
H−2∑

i=H−K

(2H−i−1 − 1) =
−2∑

i=−K

(2−i−1 − 1) =
K∑

i=2

(2i−1 − 1) =
K−2∑

i=0

(2i+1)− (K − 1)Using the geometri
 series we have
K−2∑

i=0

2i =
2K−1 − 1

2− 1
= 2K−1 − 1In
luding this, we get

2 · (2K−1 − 1)−K + 1 = 2K −K − 1This is the storage needed for the highest K−1 Retain sta
ks where all right nodesare stored.Nodes stored on the sta
k. We will show that at most one tail node
an bestored on ea
h height h = 0 . . .H −K − 3. An instan
e Treehashh stores at most
h tailnodes. While the �rst one is stored in Treehashh itself, the remaining h− 1nodes are pushed on the sta
k. Additionally one temporary node
ould be storedshort before the top nodes on the sta
k are hashed together to a higher node.When Treehashh gets a
tive and re
eives its �rst update, all lower instan
es withheight less than h are either
ompleted or not initialized. Otherwise the height ofsu
h an instan
e would be less than h and it would have re
eived updates beforeTreehashh did. For the same reason, instan
es with index > h
an only store nodeson height greater than h, or they are as well either
ompleted or empty. Considerthe
ase that an instan
e on height i stores a node on the sta
k. Then all other53

4.5 Storage E�
ien
yTreehash instan
es on heights > i
an only store nodes on height ≥ i, be
auseotherwise Treehashi would not have re
eived updates. And sin
e Treehashi
anonly store nodes up to height i − 1 on the sta
k we have seen that there
an neverbe two nodes with the same height stored on the sta
k.The instan
e TreehashH−K−1 is the one with the highest index. It stores nodesup to height H−K−2, where nodes on height 0 . . .H−K−3
an be stored on thesta
k (the �rst one is stored in TreehashH−K−1 itself). This is the
ase in round
ϕ = 2H−K+1 − 2, the round where the update that
ompletes TreehashH−K−1 isperformed. Considering the temporary node
reated by Leaf
al
 we get a totalbound of H −K − 1 of the nodes stored on the sta
k.Spa
e requirements in total. On ea
h height h ∈ {0 . . .H − 1} there is alwaysone authenti
ation node stored. For this reason, the spa
e needed for authenti
ationnodes is H. Ea
h of the H −K Treehashs saves one node. Summing up gives ustotally

H + (⌊H/2⌋+ 1) + (2K −K − 1) + (H −K − 1) + (H −K)

= 3H + ⌊H/2⌋+ 2K − 3K − 1

Sin
e the spa
e requirements are exponential in K, this parameter should be
hosensmall. The following
hart shows the size of the Retain sta
ks
orresponding tothe value K. The number of 720 nodes is a big amount and should never be neededfor the retain nodes. So K
ould be
hosen 2 if H is even or 3 if H is odd.
K 2 3 4 5 6 7Size of Retain 1 4 11 26 57 120Table 2: Total number of node stored in Retain (2K −K − 1)

54

4.6 Computing Leaves using a PRNG4.6 Computing Leaves using a PRNGFor the
omputation of ea
h leaf of the Merkle tree a random number Seedϕ isrequired. Out of this seed the keys of the one time signature are
reated. Rememberthat these Seeds are
omputed
onse
utively using the forward se
ure Prng:Seedϕ+1 ← Prng(Seedϕ)In the �ow of authenti
ation path
omputation not only
onse
utive leaves are
om-puted: for up
oming right nodes
omputed by the Treehashs some future nodesare required as well. It would be very ine�
ient to
ompute every Seed value intime when it is needed: the maximum number of PRNG
alls would be 3 · 2H−K−1whi
h o

urs when TreehashH−K−1 gets its �rst update. A spe
ial s
heduling forthese seeds has to be implemented to distribute the
alls to the Prng.Our proposed s
heduling strategy requires H−K
alls to the PRNG ea
h round. Wehave to store two seeds for ea
h height h = 0, . . . , H−K−1. The �rst (SeedA
tive)is used to su

essively
ompute the leaves for the authenti
ation node
urrently
on-stru
ted by Treehashh and the se
ond (SeedNext) is used for up
oming rightnodes on this height. SeedNext is updated using the PRNG in ea
h round. Dur-ing the initialization, we set SeedNexth = Seed3·2h for h = 0, . . . , H − K − 1.In ea
h round, at �rst all seeds SeedNexth are updated using the PRNG. If inround ϕ a new treehash instan
e is initialized on height h, we
opy SeedNexthto SeedA
tiveh. In that
ase SeedNexth = Seedϕ+1+3·2h holds and thus is the
orre
t seed to begin
omputing the next authenti
ation node on height h.4.7 Comparison of Theoreti
al BoundsThis se
tion is terminated with a
omparison of the theoreti
al bounds of the formerdis
ussed authenti
ation path algorithms. Table 3 shows the
omposition in short.Comparing our new algorithm to Szydlo's, the
omputation time needed per roundseems to in
rease. The di�eren
e is the distin
tion between leaf
al
ulations andsimple hashes. As the number of Leaf
al
 operations with Szydlo's algorithm55

4.7 Comparison of Theoreti
al Bounds
ould grow up to H , at most (H − K)/2 + 1 are done with our s
heduling. Withthis the maximum number of hashes to perform per round is more balan
ed and intotal lower using the new algorithm.Algorithm Computation Time Spa
eMerkle 2 log2(N)− 2 1/2(log2(N))2Jakobsson et. al. 2 log2(N)/ log2(log2(N)) 1.5(log2(N))2/ log2(log2(N))Szydlo log2(N) 3 log2(N)− 2Algorithm 3 3
2
(log2(N)−K − 1) + 1 3.5 log2(N) + 2K − 3K − 1

+(log2(N)−K)/2 + 1Table 3: Comparison of
omplexity bounds. In
on
ern of
omputation time, Algorithm 3distinguishes between hash fun
tion evaluations (�rst row) and leaf
al
ulations (se
ondrow)Con
erning the memory, we �rst saved half of the Keep nodes, as only every se
ondhas to be stored at on
e. The parameter K provides a time-memory trade-o� for ouralgorithm. For the sta
ks the bound we found is really tight, whereas for Szydlo'salgorithm this is only true if dynami
 memory allo
ation is possible. Otherwise thespa
e needed
ould grow quadrati
ly in H.These theoreti
al results are analyzed in se
tion 6 of this thesis by some pra
ti
alwork.

56

5 Java Implementation5.1 OverviewAs one part of this thesis, the GMSS signature s
heme was implemented using theJava programming language. Responsible for the use of
ryptographi
 algorithms inJava appli
ations is the Java Cryptography Ar
hite
ture (JCA) [24℄. It is the Javase
urity API, providing standardized programming interfa
es for message digests,digital signatures, key ex
hange or
yphers for use with all Java appli
ations. As itis an API, it stri
tly separates the implementation of algorithms from their usage.Some interfa
es are required out of a Java Cryptography Extension (JCE), whi
h isa part of the the Java Platform.GMSS was integrated into the FlexiProvider pa
kage [25℄, whi
h is an open sour
e
ryptographi
 servi
e provider for the JCA. A provider for the JCA has two fun
-tions: it administrates the implementation of the
ryptographi
 algorithms and itis responsible for the assignment of algorithms to their names. The FlexiProvider
ontains modules for integration into any appli
ation built on top of the JCA. AsGMSS is topi
 of the post quantum
omputing resear
h, it was implemented as partof the FlexiPQCProvider, whi
h
ontains algorithms se
ure against quantum
om-puter atta
ks. The FlexiProvider in
ludes established algorithms like RSA or DSAas well as algorithms that are still resear
h topi
s, like GMSS.As the JCA provides interfa
es, it allows the simple ex
hange of
ryptographi
 al-gorithms. For this GMSS
an easily be integrated into other appli
ations basedon the JCA. GMSS was implemented so that the underlying message digest algo-rithm (used for the OTSS and the Merkle tree)
an be ex
hanged easily. So theFlexiProvider implementation will stay se
ure if a message digest algorithm dropsout. Some prede�ned versions of GMSS (using the hash fun
tions SHA1, SHA224,SHA256, SHA384 and SHA512)
an be integrated into appli
ations by using someprede�nded obje
t identi�ers (OIDs). Those OIDs assigned to GMSS
an be foundin Appendix D. The
omplete sour
e
ode
an be found as download on the websiteof the FlexiProvider proje
t [25℄. 57

5.1 OverviewFor the implementation of GMSS the JCE of Fraunhofer Gesells
haft (FhG) wasused. For en
oding and de
oding of an ASN.1 representation of the GMSS keys, theASN.1
ode
 pa
kage provided by sour
efourge.net2 was imported. Both pa
kages
an also be found via the FlexiProvider website. ASN.1 stands for Abstra
t SyntaxNotation One. It is a des
ription language for the de�nition of data stru
tures, stan-dardized by the ITU-T [26℄. It is used for interoperability with other appli
ations.Using this notation it is for example
ommonly possible to use the GMSS keys forX.509
erti�
ates.A former Java implementation of GMSS already existed [17℄. The main drawba
kof this work was the implementation of the authenti
ation path algorithm. It usedthe Szydlo algorithm for the s
heduling of the authenti
ation path
omputation.The absen
e of a seed s
heduling was the �rst fa
t slowing down the
omputation.But even worse was the fa
t that ea
h sta
k was
omputed at on
e, whi
h meantthe
omputation of 2h leaves at on
e. The distributed
omputation of these leavesin
ombination with the more balan
ed authenti
ation path algorithm of se
tion 4balan
es the whole signature generation time.The GMSS parameter set was upgraded: now it
ontains additionally the K valuesfor ea
h layer of the GMSS stru
ture. In summary the GMSS parameter set P isnow
P = (T, (h1, . . . , hT), (w1, . . . , wT), (K1, . . . , KT))For the appli
ation of the new authenti
ation path algorithm with GMSS a datastru
ture for the treehash instan
es is required. For this the
lass Treehash wasimplemented. It stores the �rst node itself and uses a shared sta
k for the storageof additional tail nodes. The update method of this
lass exe
utes the treehashalgorithm (Algorithm 1) on
e.There are more nodes being pre
omputed in the new implementation. Not onlythe leaves of the tree after the following are pre
omputed, but as well those nodesneeded for the a
tual tree. This additional distributed leaf
omputation is shown inthe next se
tion.2Sour
eForge.net is one of the most famous Open Sour
e software
olle
tion, availableat http://sour
eforge.net 58

5.2 Distributed Node Computation5.2 Distributed Node ComputationThe former GMSS implementation distributed the
al
ulation of the next leaf in
Ti,j+2, the tree after the following of the
urrently pro
essed tree Ti,j . For thea
tual tree, every leaf is
al
ulated at on
e. The idea is now to distribute the
omputation of those leaves as well over the pass of the underneath tree Ti+1,j . Thistree
onsists of 2hi+1 leaves, thus the
omputation of upper nodes is distributed over
2hi+1 steps. Distributed generation of a leaf means the
omputation of the OTS key
orresponding to the leaf. Using the Winternitz OTS s
heme ea
h random value
xi is hashed 2w − 1 times (i = 1 . . . tw) to get the values yi. The
on
atenation ofthese values is hashed on
e to get the OTS publi
 key Y . For
reation of everyrandom value xi one hash is required. So the total number of hash fun
tion
alls is
(2w − 1) · tw + 1 + tw. For ea
h of the 2hi+1 leaves of the underneath tree we get anamount of

⌈(
(2w − 1) · tw + 1 + tw

)
/ 2hi+1

⌉This is the number of hashes performed per round, so that after 2hi+1 rounds the leafis
ompleted. In the implementation, the
lass GMSSLeaf already existing adopts thisdistributed
omputation. A detailed des
ription of this
lass
an be found in [17℄.A
tual Pro
essed Nodes. The �rst leaf to pre
ompute is the following leaf onthe a
tual layer i whi
h is needed when in the layer beneath a next tree is begun.The next leaf of tree Ti,j is partly
omputed when advan
ing a leaf in the lower tree
Ti+1,j (see Figure 14). On the lowest layer H − 1 ea
h leaf has to be
omputed aton
e, no distribution is possible (as no lower tree exists).Another way to
ompute this leaf would be the veri�
ation of the signature belongingto the root of the following tree on the lower level. This one time signature is alreadyknown, it was pre
omputed out of its root value. For the next leaf of tree Ti,j, theOTS publi
 key belonging to the signature is required. It
an be
omputed by justverifying the pre
omputed signature. On average half of the hashes for the leaf
ouldbe saved using this approa
h. 59

5.2 Distributed Node Computation

PSfrag repla
ements
Ti,j

Ti+1,jFigure 14: While advan
ing a leaf in tree Ti+1,j, the next leaf of tree Ti,j is partly
omputed.Treehash Nodes. Se
ondly the leaves needed for the authenti
ation path algo-rithm, used for the
omputation of up
oming right nodes,
an be pre
omputed. Inround ϕ of tree Ti,j at maximum (H −K)/2 Leaf
al
 operations have to be donefor the authenti
ation path algorithm. The leaves are dire
tly passed to the treehashupdates. On ea
h layer besides the lowest one the
al
ulation of these (H −K)/2leaves is distributed equally over the �ow of the 2hi+1 leaves of the underlying tree
Ti+1,j. So while advan
ing

2hi+1

(H −K)/2
=

2hi+1+1

H −Ksteps in the lower tree, one single leaf of the upper tree Ti,j is
omputed. Sin
e everyleaf requires an amount of (2w−1) · tw +1+ tw the total number of hashs to performwhile advan
ing a leaf in Ti+1,j is
((2w − 1) · tw + 1 + tw) · (H −K) / 2hi+1+1When all 2hi+1 leaves of the lower tree were passed, all (H −K)/2 leaves needed forthe treehash updates have been
omputed. Figure 15 depi
ts this pre
omputationpro
ess. The implementation of the treehash update pro
ess is des
ribed below,when handling the implementation of the authenti
ation algorithm.60

5.2 Distributed Node Computation

Figure 15: Suppose (H −K)/2 = 4, so that the four dark leaves of the upper tree arerequired for treehash updates. They are
omputed while advan
ing leaves in the lowertree.Distributed Root Cal
ulation. The implementation of the distributed pre
om-putation of the root of tree Ti,j+2 was
hanged as well. For the new authenti
ationpath algorithm additional values have to be
omputed, not only the root of thenext but one tree is ne

essary. The authenti
ation path of the �rst leaf of tree
Ti,j+2 is stored in AuthTi,j+2

. This is the standard approa
h in the MSS key gen-eration, where the value of the �rst leaf of ea
h height of the tree is stored. Thethird leaf of ea
h height is again stored in TreehashTi,j+2
and the upper nodes
lose to the root are stored in RetainTi,j+2

. All treehash instan
es share one singlesta
k Sta
kTi,j+2
, whi
h is stored as well. When advan
ing to the �rst leaf of Ti,j+2the authenti
ation path
omputation will start with those stored values. The valueRootTi,j+2

is applied for the distributed signature generation, like it was des
ribedin se
tion 2.5.2.In Java the
lass GMSSRootCal
 is responsible for the pre
omputation of the next butone tree; this
lass is also used in the keypair generator of GMSS for the
omputationof the �rst two trees of ea
h GMSS layer. For this reason the implementation of thekey pair generator was rewritten (and shortened be
ause of the re-use of this partof
ode) in the new implementation. 61

5.3 Implementation of the Authenti
ation Path Algorithm5.3 Implementation of the Authenti
ation Path AlgorithmMost of Algorithm 3 was implemented exa
tly following the algorithm des
ription.The
omputation of τ , the storage of nodes in Keep if ne
essary, the
omputationof left nodes and so on. The Keep array was implemented in a way that ea
h two
onse
utive levels share one entry of the array: nodes on layer h and h − 1 areboth stored in Keep⌊h / 2⌋. Temporarily in step 2 of Algorithm 3 the higher node isstored until step 4a was performed and the shared keep entry is surely empty. TheLeaf
al
 operation in the third step was repla
ed on upper layers: the leaf wasalready pre
al
ulated and must only be
opied. The initialization of the treehashinstan
es
an be performed without
ommitting the start index: the seed s
hedulingdes
ribed at the end of the last se
tion makes sure that the SeedA
tive is alwaysthe right seed belonging to the leaf ϕ + 1 + 3 · 2h when restarting a treehash.The most
ru
ial part of the implementation is the update of the treehashs. Asmentioned above, the
omputation of ea
h of the (H −K)/2 leaves is distributed.This fa
t
onditions that the update of the treehash is paused until all 2hi+1+1

H−K
leavesof the lower tree Ti+1,j have been �nished. So step 5a is
omputed partly for layer iwhen advan
ing one leaf in layer i + 1.Con
lusionAs a result of these improvements, the new implementation provides more balan
edtime
hara
teristi
s. The divergen
e in time needed for the generation of a signatureis essentially smaller than before. This is a
hieved by appli
ation of the new, morebalan
ed authenti
ation path algorithm as well as by spending more attention tothe distribution of upper tree
omputation. The next se
tion shows some pra
ti
alresults whi
h shall state this pronoun
ement.

62

6 ResultsThis se
tion presents some results obtained using the new authenti
ation path al-gorithm. First Algorithm 3 is
ompared to Szydlo's s
heduling algorithm. Thetheoreti
al improvements of se
tion 4 shall be
on�rmed using pra
ti
al results.The se
ond part gives some results of the revised GMSS s
heme,
ompared to theprevious GMSS implementation [7, 17℄ as well as other known s
hemes for digitalsignatures like DSA or ECDSA. At this jun
ture the size of keys and signatures aswell as the time needed for key pair generation, signature generation, and veri�
ationrespe
tively, are
onsidered.6.1 Comparison: Authenti
ation Path AlgorithmBoth authenti
ation path algorithms were used for the pass of one single Merkletree. The graphs of Figures 16 and 17 illustrate the number of hash evaluationsneeded for ea
h round; the blue line is the result using Szydlo's algorithm, thered line used Algorithm 3. The leaves and hashes for left node
omputation werenot
onsidered, be
ause both algorithms use the same pro
edure here. For the
omparison a Winternitz parameter w = 2 and a 160 bit hash fun
tion was
hosen.This leads to the
ost of 256 hash fun
tion evaluations for one leaf
al
ulation(tw = 85 and we need (22 − 1) · tw + 1 = 256 hashes). Table 4 shows the statisti
aldata belonging to the tests. H denotes the height of the Merkle tree.Mean Value Standard Deviation
H Algorithm 3 Szydlo Algorithm 3 Szydlo5 214.9 405.4 95.8 263.010 899.9 1028 314.0 452.1Table 4: Statisti
 data of the number of hashes required per round

63

6.1 Comparison: Authenti
ation Path Algorithm

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

PSfrag repla
ements
Round ϕ

Numberofhashe
s

SzydloAlgorithm 3

Figure 16: Number of hashes needed for right nodes per round while advan
ing one Merkletree. On the x-axis the single rounds are assigned (tree height H = 5 =⇒ 25 = 32 rounds),the y-axis shows the number of needed hash fun
tion evaluations.
0 100 200 300 400 500 600 700 800 900 1000

0

500

1000

1500

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

Figure 17: Number of hashes per round. The upper graph shows the result of Algorithm 3,the lower graph belongs to Szydlo's algorithm (H = 10 =⇒ 1024 rounds).64

6.1 Comparison: Authenti
ation Path AlgorithmIt is evidently noti
eable that the s
heduling used within the new algorithm leads toa more balan
ed authenti
ation path
omputation and with this to a more balan
edsignature generation. Also the total number of hash values was redu
ed. As one
an see in Table 4 the mean value of the number of hashes per round is redu
ed
ompared to Szydlo's algorithm. This shows that the new algorithm a
tually getsalong with less hashes per round. The standard deviation, whi
h indi
ates thebalan
ing, de
reases drasti
ally. By this we assert the better balan
ing of our newalgorithm.Visually these improvements are re
ognizable by the fa
t that in Figures 16 and 17the red line pro
eeds mostly below the blue one and the blue graph shows mu
hmore oszillating properties. For higher values of H we get related results.Worst Case Values. We are going to
ompare the results gained theoreti
allyin se
tion 4 with some measured pra
ti
al values. The following table presentssome results obtained with a pra
ti
al implementation of both hash tree traversalalgorithms. It presents the worst
ase number of hashes and leaves required perround. Again a Winternitz parameter w = 2 and a 160 bit hash fun
tion are
hosen,so that the number of hashes for one leaf
al
ulation is 256. The values in bra
ketsare the theoreti
ally fore
asted
osts of lemma 3 and 4.Our Algorithm Szydlo's Algorithm
H leaves hashes hashes total leaves hashes hashes total5 1 (1) 1 (2.5) 257 3 1 76910 4 (4) 8 (11.5) 1032 6 3 153915 6 (6) 14 (17.5) 1551 9 5 230920 9 (9) 24 (26.5) 2328 12 7 3079Table 5: Comparison of the number of hashes required in the worst
ase.It is
onsiderable that the pre
omputed bounds hold. The number of leaves
om-puted per round is tight. Even in the worst
ase, our new algorithm needs lesshashes than Szydlo's former algorithm. 65

6.2 Comparison: GMSS6.2 Comparison: GMSSIn this part the GMSS implementation is analyzed. As hash fun
tion, all tests usedthe SHA1 version out of the FlexiCoreProvider. As pseudo random number gener-ator the Sha1PRNG of the Sun provider was used. All tests were performed on anIntel Core 2 Duo T7200 2GHz pro
essor with 1 GB RAM. As runtime environmentthe Sun JRE 1.3 was deployed.The time needed for generation and veri�
ation of a single signature is quite small.For this it is essential to measure timings in mi
rose
onds. Following [27℄ we usethe hrtlib.dll library, whi
h provides a timer to exa
tly measure time di�eren
es inthose spheres. Just
reating a signature more than on
e and
omputing the meanvalue would not be a solution: the private key
hanges with every signature, so it isnot easy to
reate the same signature more than on
e.Nearly all parametersets P used for the testings are
hara
terized by the fa
t thatthe Winternitz parameter belonging to the lowest layer is smaller than all others.Smaller parameter w allows faster signature generation, but is responsible for biggersignatures. As on the lowest layer the publi
 keys for the leaf values have to be
omputed at on
e and
annot be distributed, a smaller parameter on this layerspeeds up the whole pro
ess, even more than the parameters on upper layers woulddo. For this the Winternitz parameter on the lowest layer is mostly
hosen smallerthan the others.Balan
ing. First a
omparison between the old GMSS implementation of [17℄ is
ompared to the new one. Using the parameterset P = (4, (4, 4, 4, 4), (8, 8, 8, 3)) thesignature generation lasts arbitrarily four millise
onds, whatever implementation isused. But among di�erent signatures the duration varies more or less, be
ause theo�ine part does not always
ompute the same parts. Figure 18 depi
ts the resultingtimings for both implementations for 200 signatures. The red line indi
ates thetimings of the new implementation, the blue line belongs the old one. The parameter
K is set to 2 on ea
h layer. 66

6.2 Comparison: GMSS

900 920 940 960 980 1000 1020 1040 1060 1080 1100
0

5

10

15

20

25

30

35

PSfrag repla
ements
Signature Index ϕ

SigningTime[m
s℄

old implementationnew implementation

Figure 18: Time needed for signing with GMSS. The red line shows the timings usingthe new GMSS implementation, the blue line belongs to the old implementation. The usedparameterset is P = (4, (4, 4, 4, 4), (8, 8, 8, 3)), K is set 2 on ea
h layer.

67

6.2 Comparison: GMSSFigure 18 illustrates that the time needed for signing is mu
h more balan
ed usingthe new GMSS implementation. The edges within the blue graph
ome up every
16 signatures. Using a bottom tree of height 4 (whi
h means 24 = 16 leaves),the old implementation needs mu
h time for advan
ing a leaf on the se
ond lowestlayer. This is the situation where the new implementation uses the better balan
edauthenti
ation path algorithm. Furthermore the pre
omputation of the a
tual andthe
oming (treehash) leaves of this tree saves time. Those leaves are
omputed
ompletely within the old implementation, whereas in the other
ase they
an besimply
opied. So the applied
hanges really a�e
t the timings the way it wassupposed.The statisti
al analysis of the data emphasizes the better balan
ing of the new im-plementation: whereas the mean value remains nearly the same (5.0 ms (old) to 4.2ms (new)), the standard deviation of the timings was redu
ed to more than a sev-enth part: it de
reases from 4.6 ms to 0.6 ms using the new GMSS implementation.This evidently shows that the s
heduling of the nodes in the upper tree really leadsto better balan
ing attributes for the signature generation.Greater Amounts Of Signatures. In [7℄ some linear optimization was used to�nd optimal GMSS parameter sets, allowing modular key and signature sizes besidesappli
able timings. The optimal sets for an amount of 240 and 280 signatures wereadopted and the parameter K was in
luded. So we get the following parameter setsfor our test:

P40 = (2, (20, 20), (10, 5), (2, 2)) P ′
40 = (2, (20, 20), (9, 3), (2, 2))

P ′
80 = (4, (20, 20, 20, 20), (7, 7, 7, 3), (2, 2, 2, 2))The following tabular shows the resulting timings and memory requirements. Thekey size always denotes the byte length of the ASN.1 en
oded keys. The timingswere obtained on the above mentioned platform as mean value of the �rst 212 sig-natures. With a tree of height 20 on the lowest layer, for
omparison the �rst 221or even more signatures should have been
reated, so that an advan
e on upper68

6.2 Comparison: GMSSlayers was
onsidered. But this test would take too long, so only the �rst 212 were
onstru
ted. To show how this e�e
ts the �nal results, we
ompared the timings andkey sizes of a GMSS stru
ture with lowest layer height 10 with 210 and 215 signa-tures: the di�eren
e in the private key size is 0.2%, whereas in timings no di�eren
eis re
ognizable. So we adopt that for our parametersets it is adequate to
ompareonly the �rst 212 signatures.The values in the tables represent the following: m values are memory requirementsfor the keys and the signature. The time needed for key pair generation, signature
onstru
tion or veri�
ation, respe
tively, is denoted by t values.
mpubli
 key mprivate key msignature tkeygen tsign tverify

P40 75 bytes 12341 bytes 1868 bytes 539 min 13.4 ms 13.1 ms
P ′

40 75 bytes 12501 bytes 2348 bytes 299 min 6.6 ms 8.1 ms
P ′

80 93 bytes 30372 bytes 4256 bytes 464 min 7.4 ms 8.4 msTable 6: Measured values for the new GMSS implementationFor
omparing these numbers with the old GMSS implementation, we adopt theresults from [17℄ measured on an Asus V6J (1.83GHz CPU).
mpubli
 key mprivate key msignature tkeygen tsign tverify

P40 67 bytes 5467 bytes 1868 bytes 579 min 22.6 ms 19.4 ms
P ′

40 67 bytes 5547 bytes 2348 bytes 321 min 11.6 ms 10.6 ms
P ′

80 79 bytes 14731 bytes 4256 bytes 498 min 11.6 ms 9.5 msTable 7: Measured values for the old GMSS implementation, from [17℄The timings are quite the same using both implementations, the dis
repan
ies aremostly
aused by the di�erent platforms. The signature size remains exa
tly thesame, it was not tou
hed by the revision of GMSS. The publi
 key rises few, as the
K parameters for ea
h layer have to be stored additionally. The private key sizenearly doubles. For the better authenti
ation path
omputation, more up
omingdata has to be stored, like the treehash instan
es or the sta
ks of the following trees69

6.2 Comparison: GMSSon ea
h height. This data is stored in the private key, and that is why its size grows.However, the sizes of up to 30 kilobytes are still useable in pra
ti
e. The table onlyshows a mean value of the private key sizes: for P ′
40 it ranges from 10541 to 12731bytes, for P ′

80 it di�ers between 28413 and 30602 bytes. The balan
ing of the timings
annot be seen in this tables, the a
hievements in this
on
ern have been shown inthe last se
tion.Some more measures are depi
ted in Appendix A. Therefrom we get some moreinformation of the a�e
ts of the GMSS parameters: if the parameters K raise, theprivate key size rises as well. Higher K makes sure that more upper nodes arepermanently stored in the private key, so it is
lear that its size in
reases. Simulta-neously the signing time de
lines, as the upper nodes must no more be
omputed
hosing higher K values. The signature size is not a�e
ted by this parameter.The impa
ts of the parameter w are the same as before in GMSS:
hoosing bigger
w values, the signature and the private key sizes de
line, whereas the timings growa bit. Smaller w's have exa
tly the
ontrary impa
t.It is
on
luded that GMSS is ready to use in pra
ti
al appli
ations. The timingsare
omparable to other signature s
hemes that are used widely today, like ECDSA,DSA or RSA. For measured results of these s
hemes see for example [5℄. Even ifthe key sizes, espe
ially of the private signing keys, are relatively big, GMSS is stillappli
able. We have
reated up to 280 signature keys with reasonable e�ort and
osts. This amount should be adequate for todays use, even in online appli
ationslike pa
ket signing in broad
ast proto
ols.

70

7 Con
lusion and Further WorkMerkle Tree Traversal. This thesis presented a new algorithm for the
ompu-tation of
onse
utive authenti
ation paths in Merkle trees. Compared to the bestformerly known, the new algorithm features a better balan
ing
on
erning the realnumber of hash fun
tion
alls per round. This property
ould be obtained theoreti-
ally, and it
ould be approved by pra
ti
al results as well. The worst
ase numberof leaves
al
ulated per round was redu
ed to (H −K)/2 + 1, while the maximumnumber of hashes to perform is bounded linearly in H .Parameterization allows a trade-o� between
omputation time and memory de-mands. This allows the appli
ation of the algorithm on di�erent kinds of devi
es,for example on smart
ards and similar low
omputation applian
es. The storageneeded for the �ow of the algorithm is bounded logarithmi
ally in the number ofleaves, whi
h is the best
omplexity to rea
h. Even on hardware whi
h does notallow dynami
 memory allo
ation, the new algorithm does only need linear spa
e.This results in the utilization of one single sta
k shared by all treehash instan
es.For heights H greater than twenty the advantages of Algorithm 3 de
line. But inpra
ti
e Merkle trees with heights H > 20 should not be applied. The key pairgeneration, whi
h must always
ompute the whole tree at on
e, lasts too long in this
ase. It is mu
h more
omfortable to use the extensions of MSS, if greater amountsof signatures are demanded.Pra
ti
al Part: GMSS. The se
ond part of this thesis was the implementationof the new algorithm into an existing GMSS implementation for the FlexiProvider.The
onstru
tion and use of the JCA assures maximal �exibility. The generalizedMerkle signature s
heme
an be plugged into every appli
ation based on the JCA. Asan example there exists a MS Outlook plugin for signing emails with any algorithmof the FlexiPovider [5℄. The Winternitz one time signature s
heme
an easily berepla
ed by any other OTS s
heme. As a �rst further work the BiBa OTS s
heme [13℄shall be integrated into GMSS, as it allows smaller signatures than the Winternitzs
heme. For the hash fun
tion, used for the
onstru
tion of the Merkle trees, di�erent71

variants have been implemented, e.g. SHA1 or SHA512. But even if the SHA-familyshould turn out inse
ure, the message digest fun
tion
ould be ex
hanged easily. Thesame o

urs to the used pseudo random number generator. While we used the onedes
ribed in [14℄, another one
ould be made use of.Still one drawba
k of GMSS is the long key generation time. As an amount of 280keys
an be regarded as
ryptographi
ally unlimited, in pra
ti
e this problem
anbe disregarded, be
ause it only must be run on
e before all signatures are
reated.So this part
an be done o�ine, before the
reation of the �rst signature.The Merkle signature s
hemes are
hara
terized by an enormous �exibility. Equippedwith so many parameters these s
hemes
an be used on nearly every imaginable plat-form. The size of the keys and the signatures
an be adjusted as well as the timingsfor signature generation or veri�
ation, respe
tively. This makes GMSS (as a
tualthe best implementation of the Merkle s
hemes) appli
able on all hardware devi
es.The timings for signature generation and veri�
ation, respe
tively, are
omparableto the widely used s
hemes like RSA, DSA or ECDSA. The GMSS publi
 key iseven smaller than former keys. The private key is relatively big, but for today'spra
ti
al usage still reasonable. Therefore, a
on
lusion is that today there aredigital signature s
hemes that exist out of the post quantum
omputing �eld withpossible pra
ti
able use.

72

Referen
es[1℄ Peter W. Shor. Algorithms for quantum
omputation: Dis
rete logarithms andfa
toring. In IEEE Symposium on Foundations of Computer S
ien
e, pages124�134, 1994.[2℄ Lov K. Grover. A fast quantum me
hani
al algorithm for database sear
h. InSTOC '96: Pro
eedings of the twenty-eighth annual ACM symposium on Theoryof
omputing, pages 212�219, New York, NY, USA, 1996. ACM.[3℄ Arjen K. Lenstra and Eri
 R. Verheul. Sele
ting
ryptographi
 key sizes. Jour-nal of Cryptology, 14(4):255�293, 2001. Updated version from 2004 available athttp://plan9.bell-labs.
om/who/akl/index.html.[4℄ Ralph C. Merkle. A
erti�ed digital signature. In Pro
. Advan
es in Cryptology(Crypto'89), volume 435 of Le
ture Notes in Computer S
ien
e, pages 218�238.Springer-Verlag, 1989.[5℄ Johannes Bu
hmann, Luis Carlos Coronado Gar
ia, Erik Dahmen, MartinDöring, and Elena Klintsevi
h. CMSS � an improved Merkle signature s
heme.In Pro
. Progress in Cryptology (Indo
rypt'06), volume 4329 of Le
ture Notesin Computer S
ien
e, pages 349�363. Springer-Verlag, 2006.[6℄ Luis Carlos Coronado Gar
ía. On the se
urity and the e�
ien
y of the Merklesignature s
heme. Cryptology ePrint Ar
hive, Report 2005/192, 2005.[7℄ Johannes Bu
hmann, Erik Dahmen, Elena Klintsevi
h, Katsuyuki Okeya, andCamille Vuillaume. Merkle signatures with virtually unlimited signature
a-pa
ity. 5th International Conferen
e on Applied Cryptography and NetworkSe
urity - ACNS'07, LNCS 4521, Springer, 2007, pp. 31-45.[8℄ Whit�eld Di�e and Martin E. Hellman. New dire
tions in
ryptography. IEEETransa
tions on Information Theory, IT-22(6):644�654, 1976.[9℄ Alexander May. Skript zur Vorlesung Publi
 Key Kryptanalyse, TU Darmstadt,2005/2006.

[10℄ Digital signature standard. FIPS PUB 180-2, 2002. Available at http://
sr
.nist.gov/publi
ations/PubsFIPS.html.[11℄ Ron Rivest. The MD5 Message-Digest Algorithm, 1992.[12℄ Chris Dods, Nigel Smart, and Martijn Stam. Hash based digital signatures
hemes. In Pro
. Cryptography and Coding, volume 3796 of Le
ture Notes inComputer S
ien
e, pages 96�115. Springer-Verlag, 2005.[13℄ Adrian Perrig. The BiBa one-time signature and broad
ast authenti
ation pro-to
ol. In ACM Conferen
e on Computer and Communi
ations Se
urity, pages28�37, 2001.[14℄ Digital signature standard. FIPS PUB 186-2, 2000. Available at http://
sr
.nist.gov/publi
ations/PubsFIPS.html.[15℄ Y. Hu, A. Perrig, and D. Johnson. Pa
ket leashes: A defense against wormholeatta
ks in wireless ad ho
 networks. Te
hni
al report, Department of ComputerS
ien
e, Ri
e University, 2001.[16℄ Mi
hael Szydlo. Merkle tree traversal in log spa
e and time (preprint version),2003. Available at http://www.szydlo.
om.[17℄ Sebastian Blume. E�
ient Java implementation of GMSS, diploma thesis, 2007.[18℄ Mihir Bellare and Sara K. Miner. A forward-se
ure digital signature s
heme.Le
ture Notes in Computer S
ien
e, 1666:431�448, 1999.[19℄ Shimon Even, Oded Goldrei
h, and Silvio Mi
ali. On-line/o�-line digital signa-tures. In CRYPTO '89: Pro
eedings on Advan
es in
ryptology, pages 263�275,New York, NY, USA, 1989. Springer-Verlag New York, In
.[20℄ Markus Jakobsson, Tom Leighton, Silvio Mi
ali, and Mi
hael Szydlo. Fra
talMerkle tree representation and traversal. In Pro
. Cryptographer's Tra
k atRSA Conferen
e (CT-RSA'03), volume 2612 of Le
ture Notes in ComputerS
ien
e, pages 314�326. Springer-Verlag, 2003.

[21℄ Dalit Naor, Amir Shenhav, and Avishai Wool. One-time signatures revisited:Have they be
ome pra
ti
al. Cryptology ePrint Ar
hive, Report 2005/442,2005.[22℄ Mi
hael Szydlo. Merkle tree traversal in log spa
e and time. In Pro
. Advan
esin Cryptology (Euro
rypt'04), volume 3027 of Le
ture Notes in Computer S
i-en
e, pages 541�554. Springer-Verlag, 2004.[23℄ Piotr Berman, Marek Karpinski, and Yakov Nekri
h. Optimal trade-o� forMerkle tree traversal. El. Coll. on Comp. Complexity, 49, 2004.[24℄ Sun Mi
rosystems. JavaTM Cryptography Ar
hite
ture - API Spe
i�
ationand Referen
e, 2004. Available at http://java.sun.
om/j2se/1.5.0/do
s/guide/se
urity/CryptoSpe
.html.[25℄ FlexiProvider resear
h group at Te
hnis
he Universität Darmstadt. Flexi -provider - an open sour
e java
ryptographi
 servi
e provider, 2001 - 2008.Available at http://www.flexiprovider.de.[26℄ International Tele
ommuni
ation Union Tele
ommuni
ation Standardiza-tion Se
tor (ITU-T). Abstra
t Syntax Notation One (ASN.1) X.680: Spe
i-�
ation of basi
 notation, ITU Standard, 2002.[27℄ Vladimir Roubtsov. My kingdom for a good timer! Rea
h submillise
ond timingpre
ision in Java. JavaWorld.
om, January 2003, http://www.javaworld.
om/javaworld/javaqa/2003-01/01-qa-0110-timing.html.[28℄ Don Johnson and Alfred Menezes. The ellipti

urve digital signature algorithmECDSA, 1999.[29℄ Ron Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digitalsignatures and publi
-key
ryptosystems. Commun. ACM, 21(2):120�126, 1978.[30℄ Taher El Gamal. A publi
 key
ryptosystem and a signature s
heme based ondis
rete logarithms. In Pro
eedings of CRYPTO 84 on Advan
es in
ryptology,pages 10�18, New York, NY, USA, 1985. Springer-Verlag New York, In
.

[31℄ Boris Ederov. Merkle tree traversal te
hniques, ba
helor thesis, 2007.[32℄ S. Mi
ali. E�
ient
erti�
ate revo
ation. Te
hni
al Report MIT/LCS/TM-542b, 1996.[33℄ A. Perrig, R. Canetti, D. Tygar, and D. Song. The tesla broad
ast authenti
a-tion proto
ol, 2002.[34℄ Charanjit Jutla and Moti Yung. Paytree: 'amortized-signature' for �exiblemi
ropayments. In 2nd Workshop on Ele
troni
 Commer
e, pages 213�221.USENIX, 1996.[35℄ Ronald L. Rivest and Adi Shamir. Payword and mi
romint: Two simple mi-
ropayment s
hemes. In Se
urity Proto
ols Workshop, pages 69�87, 1996.

A Pra
ti
al Results
mpubli
 key mprivate key msignature tkeygen tsign tverify

P = (2, (8, 8), (10, 5), (2, 2))

75 bytes 5852 bytes 1388 bytes 8.0 se
 8.9 ms 15.1 ms
P = (2, (8, 8), (10, 5), (6, 6))

75 bytes 7780 bytes 1388 bytes 8.1 se
 5.8 ms 14.6 ms
P = (4, (8, 8, 8, 8), (3, 3, 3, 3), (2, 2, 2, 2))

93 bytes 26261 bytes 5216 bytes 1.9 se
 4.2 ms 2.1 ms
P = (4, (8, 8, 8, 8), (8, 8, 8, 3), (2, 2, 2, 2))

93 bytes 16464 bytes 3116 bytes 11.6 se
 4.1 ms 13.9 ms
P = (4, (8, 8, 8, 8), (8, 8, 8, 3), (6, 6, 6, 6))

93 bytes 21315 bytes 3116 bytes 11.8 se
 2.5 ms 14.3 ms
P = (4, (10, 10, 10, 10), (9, 9, 9, 3), (2, 2, 2, 2))

93 bytes 18205 bytes 3156 bytes 80.2 se
 5.2 ms 24.8 ms
P = (4, (12, 12, 12, 12), (9, 9, 9, 3), (2, 2, 2, 2))

93 bytes 20585 bytes 3256 bytes 136 se
 12.7 ms 11.4 ms
P = (4, (16, 16, 16, 16), (8, 8, 8, 3), (2, 2, 2, 2))

93 bytes 20000 bytes 3316 bytes 322.9 se
 63 ms 22.1 ms
P = (2, (10, 10), (5, 4), (2, 2))

75 bytes 8335 bytes 1968 bytes 4.8 se
 6.9 ms 1.2 ms
P = (2, (10, 10), (10, 5), (2, 2))

75 bytes 6977 bytes 1468 bytes 32.6 se
 10.6 ms 15.1 ms
P = (2, (15, 15), (5, 4), (3, 3))

75 bytes 10873 bytes 2168 bytes 149 se
 9.3 ms 2.1 ms
P = (2, (15, 15), (8, 5), (3, 3))

75 bytes 9834 bytes 1748 bytes 409 se
 13.8 ms 5.1 msContinues on next page...77

mpubli
 key mprivate key msignature tkeygen tsign tverify
P = (3, (15, 15, 10), (5, 5, 4), (3, 3, 2))

84 bytes 17982 bytes 3072 bytes 193 se
 7.4 ms 2.9 ms
P = (3, (15, 15, 10), (8, 8, 5), (3, 3, 2))

84 bytes 15644 bytes 2392 bytes 849 se
 11.1 ms 10.4 ms
P ′

40 = (2, (20, 20), (9, 3), (2, 2))

75 bytes 12501 bytes 2348 bytes 299 min 6.6 ms 8.1 ms
P40 = (2, (20, 20), (10, 5), (2, 2))

75 bytes 12341 bytes 1868 bytes 539 min 13.4 ms 13.1 ms
P ′

80 = (4, (20, 20, 20, 20), (7, 7, 7, 3), (2, 2, 2, 2))

93 bytes 30372 bytes 4256 bytes 464 min 7.4 ms 8.4 msTable 8: Results of the new GMSS implementation: time and memory requirements ofsele
ted parameter sets. For the average timings, in ea
h
ase the mean value of the �rst
212 signatures were
onsidered.

78

B Code ExamplesThis se
tion presents an example
ode extra
t that shows how to use the Flexi-Provider implementation of GMSS. It is divided into three steps: Generating a keypair, generating a signature and verifying the signature.Generating a Key Pair.Input: Parameterset, Output: ASN.1 en
oded keys1. Add ProvidersSe
urity.addProvider(new FlexiCoreProvider());Se
urity.addProvider(new FlexiPQCProvider());2. Get KPG instan
eKeyPairGenerator kpg = KeyPairGenerator.getInstan
e("GMSSwithSHA1");3. Set the required Parameterset,
reate
orresponding Parameterspe
GMSSParameterset gps = new GMSSParameterset(3, {10, 10, 10}, {2, 4,3}, {2, 2, 2});GMSSParameterSpe
 gpsp = new GMSSParameterSpe
(gps);4. Initializing Key Pair Generatorkpg.initialize(gpsp);5. Generating key pairKeyPair GMSSkeyPair = kpg.generateKeyPair();GMSSPrivateKey privateKey = (GMSSPrivateKey)GMSSkeyPair.getPrivate();GMSSPubli
Key publi
Key = (GMSSPubli
Key)GMSSkeyPair.getPubli
();byte[℄ privKey = privateKey.getEn
oded();byte[℄ pubKey = publi
Key.getEn
oded();
79

Generating a Signature.Input: en
oded keys, message, Output: signature1. Get the private keyKeySpe
 privKeySpe
 = new PKCS8En
odedKeySpe
(privKey);KeyFa
tory kf = KeyFa
tory.getInstan
e("GMSS", "FlexiPQC");privateKey = (GMSSPrivateKey)kf.generatePrivate(privKeySpe
);2. Initialize the signature generation phaseSignature Sig = Signature.getInstan
e("GMSSwithSHA1","FlexiPQC");Sig.initSign(privateKey);3. Create the signatureSig.update(message.getBytes());byte[℄ sigBytes = Sig.sign();Verifying the Signature.Input: signature, message, en
oded publi
 key1. de
ode publi
 keyKeySpe
 pubKeySpe
 = new X509En
odedKeySpe
(pubKey);publi
Key = (GMSSPubli
Key)kf.generatePubli
(pubKeySpe
);2. Initialize Veri�
ationSig.initVerify(publi
Key);3. Veri�
ation Pro
ess, returns either true or falseSig.update(message.getBytes());Sig.verify(sigBytes);
80

C ASN.1 En
odingThis part presents the ASN.1 en
oding [26℄ of the GMSS keys. The publi
 keyen
oding was modi�ed only marginally: the ParameterSet was extended by thesequen
e of the parameter K for ea
h layer. This is the new ASN.1 de�nition of theGMSS publi
 key:GMSSPubli
Key ::= SEQUENCE {publi
Key SEQUENCE OF OCTET STRINGheightOfTrees SEQUENCE OF INTEGERParameterset ParSet}ParSet ::= SEQUENCE {T INTEGERh SEQUENCE OF INTEGERw SEQUENCE OF INTEGERK SEQUENCE OF INTEGER}The private key ASN.1 de�nition was enlarged with the treehash, sta
k and re-tain parts. DistrRoot and TreehashSta
k were added as well. The whole ASN.1de�nition of the GMSS private key is the following:GMSSPrivateKey ::= SEQUENCE {algorithm OBJECT IDENTIFIERindex SEQUENCE OF INTEGER
urSeeds SEQUENCE OF OCTET STRINGnextNextSeeds SEQUENCE OF OCTET STRING
urAuth SEQUENCE OF AuthPathnextAuth SEQUENCE OF AuthPath
urTreehash SEQUENCE OF TreehashSta
knextTreehash SEQUENCE OF TreehashSta
kSta
kKeep SEQUENCE OF Sta
k
urSta
k SEQUENCE OF Sta
knextSta
k SEQUENCE OF Sta
k
urRetain SEQUENCE OF RetainnextRetain SEQUENCE OF RetainnextNextLeaf SEQUENCE OF DistrLeaf81

upperLeaf SEQUENCE OF DistrLeafupperTHLeaf SEQUENCE OF DistrLeafminTreehash SEQUENCE OF INTEGERnextRoot SEQUENCE OF OCTET STRINGnextNextRoot SEQUENCE OF DistrRoot
urRootSig SEQUENCE OF OCTET STRINGnextRootSig SEQUENCE OF DistrRootSigParameterset ParSetnames SEQUENCE OF ASN1IA5String}DistrLeaf ::= SEQUENCE {name SEQUENCE OF ASN1IA5StringstatBytes SEQUENCE OF OCTET STRINGstatInts SEQUENCE OF INTEGER}DistrRootSig ::= SEQUENCE {name SEQUENCE OF ASN1IA5StringstatBytes SEQUENCE OF OCTET STRINGstatInts SEQUENCE OF INTEGER}DistrRoot ::= SEQUENCE {name SEQUENCE OF ASN1IA5StringstatBytes SEQUENCE OF OCTET STRINGstatInts SEQUENCE OF INTEGERtreeH SEQUENCE OF Treehashret SEQUENCE OF Retain}TreehashSta
k ::= SEQUENCE OF TreehashTreehash ::= SEQUENCE {name SEQUENCE OF ASN1IA5StringstatBytes SEQUENCE OF OCTET STRINGstatInts SEQUENCE OF INTEGER}ParSet ::= SEQUENCE {T INTEGERh SEQUENCE OF INTEGERw SEQUENCE OF INTEGERK SEQUENCE OF INTEGER}Retain ::= SEQUENCE OF Sta
kAuthPath ::= SEQUENCE OF OCTET STRINGSta
k ::= SEQUENCE OF OCTET STRING82

D Obje
t Identi�ersThe following table shows the obje
t identi�ers of some prede�ned GMSS imple-mentations. Those use the given hash fun
tion for the OTS s
heme as well as forthe Merkle tree
onstru
tion. For all
ases the hash fun
tions are taken out of theFlexiCoreProvider.Hash fun
tion Obje
t Identi�er (OID)SHA1 1.3.6.1.4.1.8301.3.1.3.3.1SHA224 1.3.6.1.4.1.8301.3.1.3.3.2SHA256 1.3.6.1.4.1.8301.3.1.3.3.3SHA384 1.3.6.1.4.1.8301.3.1.3.3.4SHA512 1.3.6.1.4.1.8301.3.1.3.3.5Table 9: Obje
t Identi�ers for GMSSThe di�erent number groups of the above given obje
t identi�ers signify the follow-ing:1.3.6.1.4.1.8301 Darmstadt University of Te
hnology1.3.6.1.4.1.8301.3 Cryptography and Computer Algebra Resear
h Group1.3.6.1.4.1.8301.3.1 Cryptographi
 Algorithms1.3.6.1.4.1.8301.3.1.3 Post Quantum Cryptography1.3.6.1.4.1.8301.3.1.3.3 GMSS

83

