
Physical Attack Vulnerability
of Hash-Based Signature
Schemes
Verwundbarkeit von Hash-basierten Signaturverfahren durch Physikalische Angriffe
Master-Thesis von Matthias Julius Kannwischer
Tag der Einreichung:

1. Gutachten: Prof. Dr. Dr. h.c. Johannes A. Buchmann
2. Gutachten: Dr. Juliane Krämer
3. Gutachten: Dr. Denis Butin

Department of Computer Science
Cryptography and Computer Algebra

Physical Attack Vulnerability of Hash-Based Signature Schemes
Verwundbarkeit von Hash-basierten Signaturverfahren durch Physikalische Angriffe

Vorgelegte Master-Thesis von Matthias Julius Kannwischer

1. Gutachten: Prof. Dr. Dr. h.c. Johannes A. Buchmann
2. Gutachten: Dr. Juliane Krämer
3. Gutachten: Dr. Denis Butin

Tag der Einreichung:

Erklärung zur Master-Thesis

Hiermit versichere ich, die vorliegende Master-Thesis ohne Hilfe Dritter nur mit den an-
gegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen
entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder
ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den September 18, 2017

(M. Kannwischer)

I

Abstract

The eXtended Merkle signature scheme (XMSS), one of the most promising post-quantum digital signa-
ture schemes, is currently being standardized by the Internet Engineering Task Force (IETF). Once fully
standardized, XMSS is expected to be implemented in a wide variety of applications to replace existing
digital signature schemes like RSA and DSA which are vulnerable to quantum computer attacks. Secure
implementations need to be resistant to physical attacks, i.e., fault attacks and side-channel attacks. This
thesis provides an extensive analysis of the physical attack vulnerability of XMSS.

We confirm the general conjecture that hash-based signature schemes, including XMSS, inherently
provide a very strong resistance against passive side-channel attacks. Timing attacks are impossible due
to the constant runtime of all building blocks processing secret data. The only component that may be
vulnerable to power analysis attacks is the pseudorandom number generator (PRNG) which is used to
generate the Winternitz one-time signature (W-OTS)+ secret keys within XMSS. Since this component is
not standardized by the XMSS Internet Draft, an implementer may choose a PRNG susceptible to power
analysis attacks. This thesis proposes, implements, and simulates a differential power analysis (DPA) on
a SHA2 PRNG which allows the recovery of a secret intermediate value. This enables an adversary to
compute all W-OTS+ secret keys, consequently allowing universal XMSS forgeries. We show that the
attack, while, in theory, also applicable to the PRNG recommended by the XMSS Internet Draft, is not
relevant for practical parameters of XMSS. This emphasizes that the choice of the PRNG is essential for
side-channel resistance of XMSS.

While XMSS provides strong resistance against passive side-channel attacks, we show that it is vulner-
able to fault attacks when used in its hypertree variant XMSSMT. This thesis adapts a very recent fault
attack, which was initially proposed for the related hash-based signature scheme SPHINCS. The vulner-
ability is induced by the recomputation of W-OTS+ signatures for XMSS tree roots. We implement and
simulate the attack upon XMSS and show that caching these signatures, which should be implemented
for performance optimization anyway, entirely prevents the fault attack.

II

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Contributions and Thesis Structure . 3

2 Physical Attacks on Cryptographic Schemes 4
2.1 Power Analysis Attacks . 5

2.1.1 Simple Power Analysis (SPA) . 6
2.1.2 Differential Power Analysis (DPA) . 7

2.2 Timing Attacks . 8
2.3 Fault Attacks . 10

3 Hash-Based Signature Schemes 12
3.1 One-Time Signature Schemes . 12

3.1.1 Lamport-Diffie One-Time Signatures (LD-OTS) . 12
3.1.2 Winternitz One-Time Signatures (W-OTS) . 14
3.1.3 W-OTS+ . 17

3.2 Construction of Many-Time Signature Schemes . 18
3.2.1 Merkle Signature Scheme (MSS) . 18
3.2.2 The eXtended Merkle Signature Scheme (XMSS) . 20
3.2.3 Multi-Tree XMSS (XMSSMT) . 21

3.3 Related Work . 22
3.3.1 McGrew Internet Draft and Leighton-Micali Signatures (LMS) 22
3.3.2 SPHINCS . 23

4 Side-Channel Analysis of XMSS 26
4.1 Related Work . 26
4.2 Assumptions . 27
4.3 Timing Side-Channels . 27

4.3.1 W-OTS+ . 27
4.3.2 XMSS . 28
4.3.3 Discussion . 28

4.4 Power-related Side-Channels . 29
4.4.1 W-OTS+ . 29
4.4.2 XMSS . 31
4.4.3 Discussion . 32

4.5 Generalization to Other Hash-Based Schemes . 32
4.5.1 LD-OTS, W-OTS and MSS . 32
4.5.2 LMS . 33
4.5.3 SPHINCS . 33

4.6 Pseudorandom Number Generator (PRNG) and Hash Function Side-Channel Resistance . 33
4.6.1 Hash Function Side-Channel Resistance . 33
4.6.2 PRNG Side-Channel Resistance . 35

III

5 Power Analysis Attack on the PRNG in XMSS 36
5.1 A DPA Attack on SHA2 HMAC . 36
5.2 Attack Design and Adversary Model . 38
5.3 Implementation . 40

5.3.1 Power Simulation . 40
5.3.2 DPA . 42

5.4 Results . 43
5.4.1 8-Bit Hamming Weight Leakage Model . 43
5.4.2 32-Bit Hamming Weight Leakage Model . 45

5.5 Applicability to Practical PRNGs . 48

6 Fault Attack on XMSSMT 50
6.1 Fault Attack on SPHINCS . 50
6.2 Attack Design and Adversary Model . 51
6.3 Implementation . 54
6.4 Results . 56
6.5 Countermeasures . 58

7 Discussion 59
7.1 Summary . 59
7.2 Conclusion . 60
7.3 Recommendations for Implementers . 61
7.4 Future Work . 61

IV

List of Figures

2.1 Power analysis attack setup . 5
2.2 Power trace showing the 16 rounds of Data Encryption Standard (DES) [KJJ99] 6
2.3 Timing attack setup . 8
2.4 Fault attack setup using the chosen-message model . 10

3.1 Illustration of the LD-OTS secret key, public key, and signature 13
3.2 Illustration of the W-OTS secret key, public key, and signature 15
3.3 Illustration of the W-OTS+ secret key, public key, and signature 17
3.4 Construction of a Merkle tree . 19

4.1 Parts of W-OTS relevant for side-channel analysis . 28
4.2 Parts of XMSS relevant for side-channel analysis . 29

5.1 DPA on SHA-256 HMAC (simplified from [BBD+13]) . 36
5.2 Simulation of a DPA attack on a SHA2-based PRNG . 40
5.3 Simulated power trace for PRNGv uln in the HW model for 32-bit words 41
5.4 Correlation values of correct and wrong key hypothesis over time 44
5.5 Maximum correlation of all possible key hypothesis . 44
5.6 Success rate of the full DPA key recovery attack on the vulnerable PRNG in the 8-bit HW

leakage model . 45
5.7 Maximum partial correlation values of correct hypothesis . 46
5.8 Success rate of recovering a single 32-bit value using a DPA on modular addition in the

32-bit HW leakage model . 47
5.9 Success rate of recovering a single 32-bit value using a DPA on bitwise AND in the 32-bit

HW leakage model . 47

6.1 Proposed fault attack on XMSSMT . 51
6.2 Forging an XMSSMT signature . 53
6.3 Results of fault attack simulation: effect of n . 56
6.4 Experimental results for the fault attack simulation for n= 512 and p = 1 57
6.5 Results of fault attack simulation: effect of p . 58

List of Tables

4.1 Guessing entropy for Hamming weight (HW)-leakage per byte 30

Listings

5.1 DPA attack on modular addition . 42

V

List of Algorithms

5.1 SHA-256 compression function f [Nat15a] . 37

6.1 Proposed fault attack on XMSSMT . 52
6.2 Fault attack: extract_and_merge . 54
6.3 Fault attack: forge_signature . 55

VI

Acronyms

AES Advanced Encryption Standard.
ASIC application-specifc integrated circuit.

CPU central processing unit.

DES Data Encryption Standard.
DLP discrete logarithm problem.
DPA differential power analysis.
DRAM dynamic random-access memory.
DSA digital signature algorithm.

ECC elliptic curve cryptography.
ECDSA elliptic curve digital signature algorithm.
EU-CMA existential unforgeability under adaptive chosen

message attack.

FPGA field programmable gate array.

GHz gigahertz.

HD Hamming distance.
HMAC hash-based message authentication code.
HW Hamming weight.

IETF Internet Engineering Task Force.
IV initialization vector.

KiB kibibyte.

LD-OTS Lamport-Diffie one-time signature.
LM-OTS Leighton Micali one-time signature.
LMS Leighton Micali signature.
LUT look-up table.

MAC message authentication code.
MHz megahertz.
MiB mebibyte.
MSS Merkle signature scheme.

NIST National Institute of Standards and Technology.

VII

OTS one-time signature.

PRF pseudorandom function.
PRNG pseudorandom number generator.

SPA simple power analysis.

TiB tebibyte.

W-OTS Winternitz one-time signature.

XMSS eXtended Merkle signature scheme.

VIII

1 Introduction

The majority of the currently deployed cryptographic public key schemes are at risk of becoming insecure
once large scale quantum computers become practical. This is due to Shor’s algorithm [Sho97] which
enables the factoring of large integers and the computation of discrete logarithms in polynomial time.
Since these are the two fundamental mathematical problems upon which our current public key cryp-
tography including RSA, digital signature algorithm (DSA), and ElGamal is built, it will become insecure
as soon as quantum computers exist. Also, the elliptic curve cryptography (ECC) version of the discrete
logarithm problem (DLP) which are, e.g., used in the elliptic curve digital signature algorithm (ECDSA)
and EC-ElGamal will be broken then.

Current research in modern cryptography is trying to develop schemes that resist quantum attacks
and, thus, are secure in the long term. This area of research is called post-quantum cryptography or
quantum-resistant cryptography and denotes cryptographic schemes that can resist both, attacks carried
out on classical computers and quantum computers. Note that these cryptographic schemes can be
implemented and used on classical computers, such that a quantum computer is not required.

Although it is not certain if a large scale quantum computer will be available in the near future,
recent advances in quantum computer research [IBM17,BIS+16,Rey17] both, at large corporations and
universities, alert the cryptographic community. A replacement of current schemes is imperative and
time-critical. The National Institute of Standards and Technology (NIST) announced in December 2016,
that it will move to post-quantum cryptography [Nat16b] and calls for proposals of suitable cryptographic
schemes with a deadline of November 2017.

Even though there are attempts to future proof the existing schemes, the resulting schemes currently
are infeasible in practice. For example, Bernstein et al. proposed a post-quantum version of RSA called
pqRSA [BHLV17] which can provide a post quantum security of approximately 100 bits, i.e., 2100 quan-
tum operations are required to decrypt a given ciphertext without the knowledge of the corresponding
secret key. However, to achieve this level of security a 1 tebibyte (TiB) secret key is required, which is
infeasible for most applications. Additionally, the creation of such a key alone requires several days of
computation on current hardware, while the encryption and decryption last several hours. Thus, while
Bernstein et al. proved that a scheme based upon the hardness of factoring large integers can be built to
resist quantum attacks, these schemes are currently of little practical value.

Most other post-quantum research over the last decades focused on proposing schemes that are built
upon different mathematical problems, for which currently no quantum attacks are known, i.e., they
are believed to be post-quantum secure. There are currently five categories of post-quantum problems
upon which several schemes have been proposed; these are code-based cryptography [McE78], lattice-
based cryptography [GGH97, HPS98], multivariate cryptography [MI88, KPG99], hash-based cryptog-
raphy [Mer90, DSS05, BDS09, BDH11], and the relatively young field of isogeny-based cryptography
[JF11].

One promising hash-based scheme is XMSS, proposed by Buchmann et al. [BDH11], which is currently
being standardized by the IETF [HBGM17] and is expected to become an Internet standard soon. XMSS
is an improved version of the Merkle signature scheme (MSS), which dates back nearly 40 years to the
thesis of Merkle [Mer79]. XMSS comes with several security proofs that provide strong evidence that it
is post-quantum secure under minimal security assumptions when treated as a black-box.

1

1.1 Problem Statement

Once XMSS has been fully standardized, the next step is the efficient implementation of the scheme in
software and hardware. However, physical attacks, also known as implementation attacks, have been
used to attack and break various implementations of cryptographic schemes that were believed to be
secure in a mathematical sense. Thus, implementers of cryptographic schemes today try to prevent or
mitigate such attacks upfront. To the best of the author’s knowledge, there is no extensive analysis of
physical attack vulnerability of XMSS, which is required to create such resistant implementations. This
thesis aims to provide such an analysis. Physical attacks include side-channel attacks and fault attacks,
which are both covered by this thesis.

The key point of side-channel attacks is that, while the inputs and outputs (i.e., the primary channel)
of a cryptographic operation (e.g., signature generation) are not enough to break the scheme, some
additional information leaked via a different channel (e.g., power consumption) allows an adversary
to attack it (e.g., recover the key or forge a signature). In this thesis we consider timing and power
side-channels, since the majority of attacks are based upon them.

In the context of side-channel attacks, the terms side-channel resistant and side-channel resilience can be
easily mixed up, despite having completely different meanings: An implementation of a cryptographic
scheme is considered side-channel resistant if the leaked information is not sufficient for a successful
attack. The resistance is specific to the actual implementation and cannot be proven for a scheme
in general. On the other hand, a cryptographic scheme is called λ-leakage resilient (or side-channel
resilient), if the scheme remains secure, even if at most λ bits of the secret key are leaked. The resilience
is independent of the implementation, which allows for exact mathematical proofs. However, it remains
crucial to ensure that the leakage bound is not exceeded by an implementation. This thesis focuses on
the side-channel resistance of XMSS.

Fault attacks, which are the second category of physical attacks covered in this thesis, have also been
used to break the security of various cryptographic schemes in the past [Ott04,BMM00,BOS06]. A fault,
which can be either natural or malicious, is a misbehavior of a device that causes the computation to
deviate from its specification. For example, this can be the flipping of a bit in a certain memory cell.
In a fault attack, an adversary actively injects malicious faults into a cryptographic device, such that it
outputs faulty data. This faulty output, which is potentially combined with several other faulty and valid
outputs, is then used to reconstruct parts of the secret key or any other secret value.

Overall this thesis tries to answer the central research question:
How can XMSS be implemented in practice to resist physical attacks?

2

1.2 Contributions and Thesis Structure

The previous section presented the general motivation and problem statement of this thesis. The rest
of the thesis is structured as follows: Chapter 2 provides the necessary background on physical attacks
with a focus on the techniques applicable to hash-based cryptography. In Chapter 3, a brief overview of
hash-based cryptography is given with emphasis on the work from which XMSS and, thus, the Internet
Draft was derived. Chapter 4 to 7 constitute the main contributions of this thesis which are as follows:

• Side-channel analysis of XMSS: The extensive analysis of the XMSS side-channel resistance in
Chapter 4 confirms the conjecture, that XMSS inherently provides a good protection against side-
channel attacks, if the building blocks, namely the used hash functions and PRNG, are side-channel
resistant. The results are coherent with related work on other hash-based signature schemes. We
find that hash functions can be assumed to provide strong side-channel resistance, while the PRNG
can be vulnerable in certain scenarios.

• A differential power analysis (DPA) attack on PRNG: Since an implementer of XMSS can choose
which PRNG to use, he may choose a PRNG susceptible to power analysis attacks. We propose,
implement, and evaluate a DPA on a SHA2-based PRNG in Chapter 5. We simulate our attack and
show that the attack can be used to fully recover all W-OTS+ secret keys used for XMSS, which
trivially allows an adversary to forge XMSS signatures.e show that the attack, while, in theory, also
applicable to the PRNG recommended by the XMSS Internet Draft, is not relevant for practical
parameters of XMSS. This emphasizes that the choice of the PRNG is essential for side-channel
resistance of XMSS.

• Fault attack on XMSSMT : We propose a modified version of a very recent fault attack on SPHINCS
in Chapter 6, which can be used to break the multi-tree variant of XMSS. The attack is imple-
mented and simulated and shows that a very small error, occurring during a very long computation
period, leads to the leakage of a partial W-OTS+ secret key. This allows an adversary to cre-
ate an existential W-OTS+ forgery, which in consequence allows him to create universal XMSSMT

forgeries.

• Countermeasures against fault attacks: We show in Section 6.5 that the use of existing XMSS per-
formance optimizations mitigates the fault vulnerability presented. These optimizations should be
implemented to properly protected against powerful adversaries, even if they are declared optional
by the XMSS Internet Draft.

• Generalization to other advanced hash-based signatures: The comparison of XMSS to two other
recent practical hash-based signature schemes, namely SPHINCS and the Leighton Micali signature
(LMS) scheme, shows that they provide similar side-channel resistance and the same attacks apply
to them.

3

2 Physical Attacks on Cryptographic Schemes

Physical attacks, also known as implementation attacks, have been used to attack and break various
implementations of cryptographic schemes that are believed to be secure in a mathematical sense
[Koc96, KJJ99, MOP07]. These attacks usually target different categories of cryptographic devices. A
cryptographic device is a device which implements cryptographic operations and stores secret keys, i.e., it
can be anything from a highly specialized implementation with a single purpose (e.g., a smart card) to a
multi-purpose PC with a full-fledged operating system [MOP07].

The key point of side-channel attacks is that, while the inputs and outputs (i.e., the primary channel)
of the cryptographic device are not enough to break the scheme, some additional information leaked via
a different channel (e.g., power consumption) allows an adversary to attack it (e.g., recover the key). In
this thesis we consider timing [Koc96, RMB15] and power side-channels [KJJ99, MOP07] since the ma-
jority of attacks are based upon them. However, other side-channels have also been used to successfully
attack cryptographic schemes including electromagnetic [QS01, GMO01], photonic [KNSS13, CSW17]
and acoustic emissions [GST14]. These side-channels are explicitly out-of-scope of this thesis and may
form the basis for future work.

Another category of physical attacks considered are fault attacks [Ott04, BMM00], in which an ad-
versary actively tampers with the cryptographic device, such that it behaves abnormally and outputs
faulty data. This may allow an adversary to deduce parts of the secret key. In the worst case, the cryp-
tographic device outputs the secret key itself. Forcing a device to behave abnormally can be achieved
using a wide variety of techniques, but the most prominent ones are introducing power spikes and clock
glitches [Ott04]. The tampering is often possible without the permanent destruction of the cryptographic
device, such that no evidence is left behind.

While classical cryptography often excludes such “powerful” physical attacks, a lot of research has
shown that the assumptions being made in such attacks about the adversaries’ power are practical
[HMP10,BB03,FLRV09]. Indeed, physical attacks present a severe threat to real world cryptography.

To describe the attacks presented and used in this thesis and emphasize the required adversary capa-
bilities, the following classification of attacks as adapted from [MOP07] is helpful:

• The literature distinguishs invasive and non-invasive physical attacks. Non-invasive attacks do not
damage the cryptographic device, e.g., the adversary is not allowed to de-package the chip, solder
additional probes to it or permanently damage a hardware component. Non-invasive attacks can
often stay undetected by the owner of the cryptographic device, while invasive attacks often tamper
with the device such that it cannot be returned to the owner without notice of the attack. Both
side-channel and fault attacks can be either invasive or non-invasive, but for most published attacks
a non-invasive model suffices.

• Physical attacks can be active or passive. In a passive attack, the adversary uses the cryptographic
device in the intended manner while collecting information leaked via some primary and side-
channel. In contrast, an active adversary is allowed to inject faults into the cryptographic device
that cause abnormal behavior. We consider side-channel attacks to be purely passive and fault
attacks to be active. Some related work [Ott04] refers to fault attacks as active side-channel attacks
and, thus, using side-channel attacks in a broader sense. However, we stick to the terminology used
in [Krä15] to emphasize the fundamental difference of passive side-channel and fault attacks.

• Attacks can be carried out locally or remotely. When an attack is local, the adversary needs to be in
(temporary) possession of the cryptographic device or at least in close proximity. While the majority
of physical attacks are limited to local adversaries, some attacks can be carried out remotely (e.g.,
timing attacks on RSA [BB03] or ECDSA [BT11]).

4

Cryptographic

Device

m

𝜎

V

Adversary

Digital

Oscilloscope

traces

sk

Figure 2.1: Power analysis attack setup

• Since digital signatures are considered in this thesis, we use the common distinction between
known message attacks and (adaptively) chosen message attacks. Both fault attacks and side-channel
attacks can use both models.

The following subsections present the considered attacks in this thesis in a very brief fashion. Sec-
tion 2.1 covers power analysis attacks including simple power analysis (SPA) and differential power
analysis (DPA). Section 2.2 introduces timing attacks starting with the first practical timing attack pro-
posed by Kocher in 1996 [Koc96] and briefly sketching more advanced timing attacks. Fault attacks are
covered in Section 2.3.

2.1 Power Analysis Attacks

Power analysis attacks mainly target relatively simple cryptographic devices that implement crypto-
graphic primitives (e.g., smart cards, specialized microprocessors or Field programmable gate array
(FPGA)). By carefully monitoring the power consumption of the cryptographic device during the compu-
tation of the primitives, usually collecting thousands of power traces, the adversary tries to recover some
secret information (e.g., the secret key). If the devices were more complex, e.g., running a full operating
system, the traces would contain too much noise for successful recovery. [MOP07]

Figure 2.1 illustrates a possible setup of a power analysis attack, although others are possible. The
adversary is in (temporary) possession of the cryptographic device and is allowed to create signatures for
a limited number of messages of his choice, i.e., a chosen-message attack. During the computations he
collects power traces using a digital oscilloscope with a high sampling rate of several hundred megahertz
(MHz) to a few gigahertz (GHz). To do so, the adversary inserts a small resistor (e.g., 1Ω) into the power
supply and measures the voltage drop at the resistor which is proportional to the power consumption
of the device. The adversary then uses the traces together with the known message-signature pairs to
recover some secret data that allows him to forge a signature. This might be the entire secret key or
some intermediate value.

Attacks like these are possible, because the power consumption of a cryptographic device depends on
the data processed and the instructions executed. This is modeled using a leakage function. A leakage
function maps the internal data to a value observable by an adversary. When using the most advanced
(but purely theoretical) adversary model, the attacker is allowed to choose this function on his own and
is sometimes also allowed to change the function in-between executions of the cryptographic primitive.
However, this is a highly unrealistic model [SPY+10]. In practice, the leakage function mainly depends

5

Figure 2.2: Power trace showing the 16 rounds of DES [KJJ99]

on the hardware used. Two models used for practical attacks are the Hamming weight (HW)-model
and the Hamming distance (HD)-model. In the HW-model, the leakage of the Hamming weight, i.e., the
number of 1’s of each intermediate value, is assumed. The HW-model mainly applies to implementations
on microprocessors due to their internal architecture. When using the HD-model, the device is assumed
to leak the Hamming distance (HD(x , y) = HW (x ⊕ y)) of two consecutive values in a certain register.
The HD model works best for FPGA and application-specifc integrated circuit (ASIC) implementations
[MOP07].

Although not in the focus of this thesis, mitigating those attacks is an important field of research. Two
common countermeasures that are often implemented to prevent power analysis attacks are hiding and
masking. Hiding tries to remove the data dependency of the power consumption of a cryptographic
device. This can either be achieved in software, e.g., by randomizing the execution of the algorithm, or
in hardware, by changing the cryptographic device, such that each operation requires approximately the
same amount of energy or a random amount of energy. The data dependency can usually not be removed
entirely, but reducing it makes attacks a lot harder. Masking uses randomization of the intermediate val-
ues to produce random power consumption. This needs to be integrated into the cryptographic primitive
and is, thus, a software countermeasure. [MOP07]

The following sections introduce the two main types of power analysis attacks that have been success-
fully used to break many cryptographic schemes in the past.

2.1.1 Simple Power Analysis (SPA)

In SPA attacks the adversary directly analyzes and interprets the acquired power. SPA attacks use either a
single or a very limited number of traces to recover the key or gain some additional knowledge about the
implementation of the cryptographic scheme. The simplest form of this is a visual analysis of the plot of a
power trace. Since the power consumptions depends on the instructions executed, it is possible to iden-
tify different parts of the algorithm. This can be very helpful for reverse engineering an implementation
for which actual code or even the cryptographic scheme is unknown to an adversary. Figure 2.2 shows
the power trace of an entire Data Encryption Standard (DES) encryption. It is possible to distinguish the
16 encryption rounds, which might enable an experienced adversary to detect that this device is indeed
executing DES.

By zooming into the power trace, it is possible to distinguish different instructions. Each instruction
has a characteristic power trace and if the adversary is able to record several samples per clock cycle, it
would be possible to identify the actual executed instructions. If the executed code were known, which
is often the case, an adversary would be able to recover the execution path for an execution. If the
execution path depends upon the secret key, these leaks of information might be enough to allow the
adversary to recover the key. In an extreme case, the implementation has conditional branches that

6

depend on a single bit of the secret key, which can then, in consequence, be easily recovered. SPA has
been used to successfully attack several implementations of asymmetric cryptographic schemes, where
the execution path either leaked the entire secret key or determined enough key bits that the remaining
search space can be iterated exhaustively by an adversary [MOP07].

2.1.2 Differential Power Analysis (DPA)

A more advanced family of power analysis attacks are DPA attacks which were first proposed by Kocher
in 1999 [KJJ99]. They exploit the data dependency of the power consumption, i.e., the property that
the power consumption is dependent upon the processed data. While this is also the case for SPA, DPA
attacks use traces of many computations of the cryptographic primitive for different input values, to find
correlations within the traces, hence their name. Given enough traces, DPA attacks are able to find even
the tiniest correlations, no matter how much noise is included in the traces. Additionally, DPA attacks
do not require detailed knowledge about the cryptographic device to enable key recovery. It is often
enough to know the cryptographic scheme that is executed [KJJR11]. The idea is best illustrated using
a straightforward example: Assume that a cryptographic device that implements a symmetric cipher is
attacked using a chosen-message attack. It is known that for each encryption the same key k is used
and at some point of the algorithm a byte-wise XOR of key and message is computed (ki ⊕mi), where
ki and mi denote the i-th byte each. This is the case for several widely used ciphers, e.g., Advanced
Encryption Standard (AES) [Nat01], DES [Nat99], and Camellia [MMN04]. If the device implementing
this operation is unprotected and an HW leakage model is assumed, the attack is simple: The device is
queried with 8 different plain texts for each message byte mi = 2 j, 0≤ j < 8. Thus, the HW of ki⊕mi, j
is either 0 or 1, which directly corresponds to the value of the j-th bit of ki. However, in practice several
factors prevent that only such few traces suffice to mount an attack. Firstly, there is noise included
in the traces collected, which is both caused by the measurement setup and the physical properties of
the attacked device. Secondly, the adversary does not know exactly which sample of the power trace
corresponds to the computation he wants to attack. Therefore, the attack needs to be generalized, which
was done by Mangard et al. [MOP07]. They describe 5 steps of a DPA attack:

• Step 1: The adversary picks an intermediate value that is computed somewhere in the algorithm.
It needs to be a function f (d, k) of some known variable value d (e.g., the message digest to
be signed) and a part of the secret key k. A DPA requires the calculation of hypothetical power
consumption values for each possible key candidate. Therefore, the adversary cannot attack the
entire key, but only a smaller sub-key. It is important that the size of the sub-key space is small
enough, such that it is possible to iterate over it. Usually, this is done for each key byte separately.
Let K denote the size of the sub-key space, e.g., K = 256.

• Step 2: The adversary executes the cryptographic scheme and collects D (usually several thousand)
traces of length T for different (e.g., random) input values d = (d1, ..., dD). Thus, given the traces
ti = (t i,1, ..., t i,T), 1≤ i ≤ D, this results in a matrix T of size D× T .

• Step 3: For each input value di and each key candidate ki (e.g., 0, 1, ..., 255), the adversary calcu-
lates the hypothetical intermediate result corresponding to the chosen function f :

vi, j = f (di, k j), 1≤ i ≤ D 1≤ j ≤ K

This results in the matrix V of dimension D× K .

• Step 4: The calculated hypothetical intermediate values are mapped to hypothetical power con-
sumption values. This is usually the HW of the value, i.e.,

hi, j = HW (vi, j), 1≤ i ≤ D 1≤ j ≤ K

This yields the matrix H, also of dimension D× K .

7

Cryptographic

Device

m

𝜎

Adversary

sk

Figure 2.3: Timing attack setup

• Step 5: The adversary wants to find out which hypothetical power consumption values correlate
the most with the collected traces. There are several statistical measures that can be used to achieve
this, one of which is the Pearson correlation coefficient [MOP07]:

ri, j =

∑D
d=0

�

hd,i − hi

�

·
�

td, j − tj

�

È

∑D
d=0

�

hd,i − hi

�2
·
∑D

d=0

�

td, j − tj

�2
, 1≤ i ≤ K , 1≤ j ≤ T

Intuitively, the correlation coefficient evaluates for each sample in a trace ti how much it correlates
with the hypothetical power consumption value. Calculating ri, j for each column i of H and each
column j of T yields a K × T matrix. The maximum value ri, j in this matrix corresponds to the
correct key ki.

After the first sub-key is successfully recovered, the adversary repeats the same steps to recover the
other parts of the key using the same set of traces and potentially using the result of the previous DPA.

2.2 Timing Attacks

The second side-channel this thesis considers are timing channels. When exploiting a timing side-
channel, an adversary measures the time required to complete a cryptographic operation. If the exe-
cution time depends upon the secret key, this leaks information about it. In some cases this attack can
be used to extract the entire secret key and, thus, break the scheme under attack [Koc96,Ber05]. As all
physical attacks, timing attacks attack the actual implementation of the scheme. Thus, a scheme cannot
be proved to be timing side-channel resistant, since the implementation can still introduce additional
side-channels.

This thesis distinguishes between platform-independent timing attacks that exploit conditional
branches depending on secret data and advanced timing attacks that exploit more sophisticated fea-
tures of modern processors like cache hierarchies or branch predictors.

Other than power analysis attacks, timing attacks are not limited to cryptographic devices, but can
also be used to attack general purpose computers locally or even remotely [BB03,BT11].

To illustrate the idea of timing attacks, the original attack on RSA, DSA and other schemes which
involve modular exponentiation proposed in a paper by Kocher in 1996 [Koc96] is sketched: Suppose
RSA is used to sign a message m using the secret key d. To create the signature s the modular expo-
nentiation s = md mod n is computed, which can be done using the square-and-multiply algorithm.
The algorithm iterates over the bits of the exponent d, and either performs a squaring (if di = 0) or a
squaring followed by a multiplication (if d1 = 1). This obviously has an impact on the runtime of the
modular exponentiation. The attack works as follows: Let T = e+

∑w−1
i=0 t i denote the overall runtime of

a signature generation. t i is the time required for iteration i of the loop, whereas e includes everything
else like loop overhead and measurement error. The basis of the attack is, that a modular multiplication
is fast for some values and very slow for other values (depending if a modular reduction step is required
or not). The time of multiple signature generations for different messages m is measured. The bits of d
are then recovered iteratively:

8

• Assume all bits dc for c < b (initially b = 0) are already known, where d0 is the most significant bit
of d.

• The adversary guesses db.

• Since all dc, c < b are known tot he adversary, he can estimate
∑b

i=0 t i for each message, since he
knows which multiplications will be slow depending on the message and the known exponent bits.

• Given the total measured time T , the adversary calculates T ′ = T −
∑b−1

i=0 t i = e+
∑w−1

i=b t i.

• If the key guess db is correct, the variance of T ′ is expected to be Var(e) + (w− b)Var(t).

• If the key guess db is incorrect, the variance of T ′ is expected higher, since the estimate for the b-th
iteration will be inaccurate.

• By picking the key guess with the lower variance, the adversary recovers bit db.

It is important to note, that for all iterations the same measurements can be used.
Although this first attack only works for a straightforward implementation of the standard RSA sig-

nature scheme, the same paper also proposes an attack on an implementation using the Montgomery
multiplication which is used for faster modular multiplication without the need for costly modular re-
ductions after each step.

Since the initial proposal of timing attacks, a lot of other attacks based on timing side-channels have
been published. While most of them are due to conditional branches and are relatively easy to mitigate,
another, more sophisticated category has been found recently that exploits the architectural features of
modern Central processing unit (CPU). A recent book by Rebeiro et al. [RMB15] gives the current state-
of-the-art of such advanced timing attacks. While providing an extensive overview over this area is far
beyond the scope of this thesis, two two types of attacks need to be pointed out that show that timing
channels can be very subtle and easily overseen.

These attacks target general purpose PCs instead of special cryptographic devices and assume that the
adversary exactly knows the hardware used for the computations. Since they also require precise timing,
it usually requires some kind of malware on the attacked host as well. Although there are a lot more
prerequisites for a successful attack, the assumptions don’t seem too unrealistic.

The first family of advanced attacks are cache attacks [Ber05]. Cache attacks exploit that all modern
CPU use cache hierarchies, usually L1 to L3. If a cache line already resides in the L1-cache, a load
instruction will execute much faster than if the cache line needs to be fetched from L2, L3 or even
dynamic random-access memory (DRAM). This feature, which is essential for performance of modern
applications, can be exploited to mount an attack on cryptographic schemes. For example, efficient
implementations of AES use Look-up table (LUT) to implement the SubBytes step during encryption
and decryption. In this step each byte of the state is mapped to its multiplicative inverse in the Galois
field GF(28). By using a LUT containing all 256 precomputed substitutions, a complex inversion can
be replaced by a simple memory lookup. However, since the LUT occupies multiple cache lines and the
value of the state byte is used as an index, an adversary can obtain information about which state bytes
lead to colliding accesses, i.e., accesses to the same cache line. Since the each state byte is computed as
ki ⊕mi before the SubBytes step, these collisions leak information about the key ki. Similar to Kocher’s
Timing attack, the adversary combines the timing measurements of many encryption runs with different
plaintexts m to recover the full key.

The second family of timing side-channels that emphasizes that timing channels can be very hard
to detect and mitigate are branch prediction attacks. All modern CPU are pipelining the execution of
instructions, i.e., working on multiple instruction at once to achieve better performance. While this
works very well for independent instructions, it leads to problems when instructions depend on each
other. For example, if a branch instruction is faced, the processor does not know if the branch will be
taken or not until the instruction reaches the end of the pipeline. Since waiting for the result will cause a

9

Cryptographic

Device

m

𝜎

V

clock

Adversary

sk

Figure 2.4: Fault attack setup using the chosen-message model

high delay, the processors tries to guess if a branch will be taken or not and continues to fetch instructions
correspondingly. This is called branch prediction. Once the actual branch condition is evaluated, it is
clear if the branch predictor guessed correctly or not. In case of a wrong guess, the pipeline needs to
be stalled and the processor starts fetching the instructions from the correct code location. Since this
stalling has a huge performance impact, this can be used for a timing attack.

If an adversary knows or can guess the method used for the branch prediction and can execute own
code before executing the cryptographic primitive, he can manipulate the state of the branch prediction
unit such that he controls whether it will predict a branch or no branch during the execution of the
cryptographic scheme. If the branch is dependent on secret data, this can leak valuable information.
Although this attack see it also works if both branches would take the same time. Mitigating this is, thus,
far more difficult.

2.3 Fault Attacks

A fault, which can be either natural or malicious, is a misbehavior of a device that causes the computation
to deviate from its specification. For example, this can be the flipping of a bit in a certain memory cell.

In a fault attack, an adversary actively injects malicious faults into a cryptographic device, such that
it outputs faulty data. This invalid output, which is potentially combined with several other faulty and
valid outputs, is then used to reconstruct parts of the secret key or any other secret value. Since this is
an active attack, we do not consider this as a side-channel attack, although related work does.

Research during the last two decades found that many widely used schemes can be broken by fault
attacks [BDL01, BMM00, BOS06] with the successful first attack dating back to 1997 [BDL97]. To illus-
trate the idea of fault attacks, the original attack by Boneh et al. [BDL97] on the RSA signature scheme
is sketched: To sign a message m, the signer needs to compute s = md mod n. Suppose this modular ex-
ponentiation is done using the Chinese remainder theorem for performance optimization. The signature
can then be generated by computing s = as1 + bs2 mod n with s1 = md mod p and s2 = md mod q and
the precomputed values for a and b, such that a ≡ 1 mod p, a ≡ 0 mod q, b ≡ 0 mod p, b ≡ 1 mod q.

An adversary creates two signatures of the same message m and injects a fault in the computation of s1
for the second signature. Thus, he obtains one correct signatures s and one faulty signature ŝ for message
m. Since the fault only affects ŝ1, the adversary knows that s2 = ŝ2 and s1 6= ŝ1. Thus, s − ŝ = a(s1 − ŝ1).
Since a ≡ 1 mod p and a ≡ 0 mod q, the adversary knows that gcd(a(s1 − ŝ1), n) = q, because a must

10

be divisible by q and cannot equal 0. This allows to efficiently factor n and, thus, compute the private
key d. If the fault occurs during the computation of s2, the formula can be easily adapted. This attack,
although very simple, shows that an unprotected straightforward implementation of a mathematically
secure scheme can be easily broken by an adversary capable of injecting faults.

These attacks are primarily relevant for cryptographic devices like smart cards or cryptographic co-
processors, because an adversary can determine precisely when the computation is happening either
because he possesses the specification (e.g., code or netlist) or by reverse engineering it. If attacking
more complex devices like PCs, the injection of faults will most likely result in unpredictable behavior or
the crash of the operating system.

Faults can be induced in various ways, but the most prominent ones are exposing the device with
high voltage or manipulating the clock frequency, such that they are outside of the tolerance of the
cryptographic devices. This is illustrated in Figure 2.4. Since smart cards require an external power
supply and clock signal, they present an optimal target for such an attack and mounting it is relatively
straightforward. Other techniques to induce faults are cosmic, α−, β− and X-rays, heat, light, electric
fields and focused ion beams [Ott04]. Some of which are either very hard to tune finely or just too
expensive.

When analyzing the fault vulnerability of an implementation, it is important to take into account how
precisely the adversary can control the injected faults in terms of fault location, timing, number of bits
affected, fault type, success probability, and duration. The more precisely the fault injection can be
tuned, the more powerful attacks are possible.

Otto describes 4 different fault types [Ott04], each of which is defined on an arbitrary set of bits stored
in memory:

• Stuck-at fault: The bits are fixed to either 0 or 1. If the implementation tries to overwrite them
later, they stay unchanged.

• Bit flip fault: The affected bits are flipped.

• Random fault: All bits are set to a random value. This is the most realistic fault type.

• Bit set or reset fault: The adversary chooses which bits are set and which are reset. They can be
changed later by the implementation.

To mitigate fault attacks, there are two typical categories of countermeasures: There are hardware
countermeasures, that change the hardware to prevent or detect the injection of faults and there are
software countermeasures, i.e., the development of new algorithms and schemes that are immune
against fault attacks by either introducing fault detection or completely preventing the vulnerability.
Due to the wide variety of ways to inject faults, it is difficult to protect an implementation from each and
every attack vector available.

11

3 Hash-Based Signature Schemes

One of the most promising classes of cryptographic schemes that are believed to be quantum-resistant
are hash-based signatures. A cryptographic hash function is a function of the form h : {0, 1}∗→ {0,1}n,
i.e., it maps data of arbitrary length to a hash digest of fixed length. Usually it is required to have the
following properties [Buc02]:

• Preimage resistance: Given a hash digest d it is infeasible to find x ∈ {0,1}∗, such that d = h(x).

• Second-preimage resistance: Given a x ∈ {0,1}∗, it is infeasible to find a x ′ ∈ {0,1}∗, x ′ 6= x that has
the same hash as x , i.e., h(x) = h(x ′).

• Collision resistance: It is infeasible to find x , x ′ ∈ {0, 1}∗, x 6= x ′, such that they have the same hash
digest, i.e., h(x) = h(x ′). Collision resistance implies second-preimage resistance, but is not required
for all applications of cryptographic hash functions.

If not stated differently, the hash functions in this thesis are assumed to have all three properties.
This chapter provides an overview of current state-of-the-art hash-based cryptography. Section 3.1

introduces one-time signature (OTS) that form the basis of today’s hash-based signatures. The introduc-
tion of the original Lamport-Diffie one-time signature (LD-OTS) [Lam79] is followed by the improved
scheme called W-OTS which is also a part of the Internet Draft of Hülsing et al. [HBGM17].
Section 3.2 continues with the explanation of the MSS [Mer79, Mer90] and its improved version XMSS
[BDH11] which uses OTS to construct many-time signatures. The idea of using multiple layers of XMSS-
trees, which is named XMSS^MT (multi-tree) is also introduced.
Section 3.3 emphasizes the differences of the considered Internet Draft by Hülsing et al. [HBGM17] to
related work. Firstly, we compare it to another Internet Draft by McGrew at al. [MCF17] Secondly, we
compare it to SPHINCS [BHH+15] - an extension of XMSS which removes the statefulness using few-time
signatures instead of OTS.

3.1 One-Time Signature Schemes

OTS form the central building block for all current hash-based signature schemes. As the name suggests,
each secret key must only be used once. If a key is used more than once, the security of the scheme
may be compromised. OTS date back to 1979, when Lamport and Diffie published a report on how
to construct a signature scheme using one-way functions [Lam79]. However, Lamport-Diffie one-time
signature (LD-OTS) never became practical due to their huge key and signature sizes. In 2005 Dods et
al. [DSS05] extended the idea of Lamport and Diffie and introduced W-OTS, which uses much smaller
keys and signatures than LD-OTS, while still providing a similar security level. This scheme was further
elaborated by Buchmann et al. in 2009 [BDS09]. A further extended version of W-OTS, which is called
W-OTS+, was introduced by Hülsing in 2013 [Hül13] and is included in the current version of the
Internet Draft [HBGM17]. LD-OTS, W-OTS and W-OTS+ are introduced in chronological order.

3.1.1 Lamport-Diffie One-Time Signatures (LD-OTS)

LD-OTS were first introduced in 1979 [Lam79] and form the basis of the hash-based signature schemes
available today [Buc16]. To explain the more modern schemes, it is reasonable to look at the original
scheme first and understand why the security of the scheme solely relies on the one-wayness of the
used function and why it is essential that each key is only used once. To define a signature scheme,
it is sufficient to define the three algorithms for key generation, signature generation and signature
verification.

12

𝑥(0,0) Secret Key𝑥(0,1) 𝑥(1,0) 𝑥(1,1) 𝑥(2,0) 𝑥(2,1)

𝑦(0,0) 𝑦(0,1) 𝑦(1,0) 𝑦(1,1) 𝑦(2,0) 𝑦(2,1) Public Key

𝑓 𝑓 𝑓 𝑓 𝑓 𝑓

Figure 3.1: Illustration of the LD-OTS secret key, public key, and signature for n = 3. The signature
σ(m) = x(0,1)||x(1,0)||x(2, 1) for m= 101 is highlighted in blue.

Key Generation

Given a security parameter n (message digest length and hash output length) and a cryptographic hash
function f : {0, 1}n → {0,1}n, an LD-OTS key pair is generated as follows: The private key X is chosen
uniformly at random:

X=
�

x(0,0), x(0, 1), x(1, 0), x(1, 1), ..., x(n− 1,0), x(n− 1,1)
�

∈R ({0, 1}n)2×n

Where ∈R denotes chosen uniformly at random. Therefore, there is one random n-bit string for each
possible value (0,1) for each bit in the message string, i.e., x(i, j) ∈R {0, 1}n, 0≤ i < n; j ∈ {0, 1}.

The public key can be computed from the private key by applying the hash function to the secret key
parts:

Y=
�

y(0, 0), y(0, 1), y(1,0), y(1,1), ..., y(n− 1,0), y(n− 1, 1)
�

∈ ({0,1}n)2×n

y(i, j) = f (x(i, j)), 0≤ i < n; j ∈ {0, 1}

Thus, the public key has the same size as the private key. The public key computation is illustrated in
Figure 3.1.

Signature Generation

Given the private key X and the digest d ∈ {0,1}n, which is a fixed-length representation of the message
m ∈ {0, 1}∗ computed using a cryptographic hash function h : {0,1}∗ → {0,1}n, a LD-OTS for m is
generated by picking the parts of the private key that correspond to the bits in d:

σ(m) =
�

x
�

0, d(0)
�

, x
�

1, d(1)
�

, ..., x
�

n− 1, d(n− 1)
�

�

Thus, if a bit d(i) in the digest is 0, x(i, 0) is used and if d(i) = 1, x(i, 1) is used. The signature, thus,
has half the size of the public or private key, i.e., σ(m) ∈ {0, 1}n×n.

Figure 3.1 illustrates in blue which parts of X are used for the signature. It can be seen that a single
signature reveals half of the private key. This emphasizes the one-time nature of this signature scheme.
If a key is used more than once, more and more of the private key is revealed. For example, if one first
signs d1 = 0n and then d2 = 1n using the same LD-OTS key pair, the two signatures can be combined to
form the entire private key, which entirely breaks the security of the scheme. However, recent research
[BH16] found that the impact is not as drastic as the example above suggests, since d cannot be chosen
arbitrarily by an adversary, but is a digest of a chosen message, which should be computed using a
collision resistant one-way function. Therefore, the security of the scheme does not vanish after two
messages, but “degrades gracefully” [BH16]. Nevertheless, the keys of LD-OTS should never be used
more than once, since the security degradation is not intended and often not considered when choosing
the security parameter n.

13

Signature Verification

Given a digest d ∈ {0,1}n, the signature σ(m) and the public key Y, the signature can be verified by
applying f to each part of σ(m) which yields part of the public key. If these parts are equal to the actual
public key, the signature is accepted, otherwise it is rejected.

f (σ(m)i)
?
= y(i, d(i)), 0≤ i < n

Discussion

The LD-OTS is a signature scheme that solely relies on the one-wayness of the function f . It is believed
that there will still be functions that fulfil this requirement if quantum computers exist. Even if efficient
quantum attacks are found against the currently standardized hash function families (SHA2 [Nat15a]
and SHA3 [Nat15b]), they can be easily replaced by new resistant ones.

However, if quantum computers are available there is an efficient generic attack based on Grover’s
algorithm that halves the bit security of all cryptographic hash functions [HRS16b]. Therefore, it will be
required to use twice the private key size n to achieve the same level of security in the quantum setting.

Although LD-OTS provides very strong security on minimal assumptions, it has some major downsides
which prevented its wide adoption. Firstly, it is one-time, which is not suitable for the majority of use
cases of digital signatures. A solution to this problems, i.e., the construction of a many-time signature
scheme using a one-time signature scheme, is the MSS and will be explained in Section 3.2.

Secondly, the keys and the signatures are extremely large. A practical parameter choice would be
n = 256 to provide a (non-quantum) security of around 128 bits, which would lead to a private and
public key size of 2× n× n = 131072bi ts = 16 kibibyte (KiB). The signatures would then have half of
this size, i.e., 8 KiB. When comparing this to RSA, where a signature has 384 bytes for a modulus of
3082, which according to NIST provides a similar security of 128 bits [Nat16a], LD-OTS are around 43×
larger than RSA signatures which is not acceptable in many settings. This major disadvantage of LD-OTS
is addressed by W-OTS which is introduced next.

3.1.2 Winternitz One-Time Signatures (W-OTS)

As concluded in the previous section, LD-OTS provides strong security, but never became practical be-
cause of the size of keys and signatures. W-OTS tries to mitigate this disadvantage while still providing
similar security. It was first proposed in Merkle’s thesis in 1979 [Mer79] and was described in detail by
Dods et al. in 2005 [DSS05] and Buchmann et al. in 2009 [BDS09]. The idea of W-OTS is to trade-off the
space and time, i.e., to reduce the space that is required for keys and signatures while increasing the time
that is required for key generation, signature generation and signature verification. The required space
is reduced by building hash chains that are then used to sign multiple bits per secret key block of length
n. A hash chain is the repeated application of a hash function f to a value, e.g., f (f (f (x))) = f 3(x) is
a hash chain of length 3. W-OTS is parameterized by the Winternitz parameter w= 2t which determines
how many bits are signed by each hash chain and, in consequence, how long the hash chains are. Thus,
it is space-time trade-off parameter. Note that Dods et al. [DSS05] call w= 2t the Winternitz parameter,
while in Buchmann et al. [BDS09] t is called the Winternitz parameter and named w. In this thesis, the
original notation of Dods et al. is used.

W-OTS as LD-OTS requires a collision resistant one way function f : {0,1}n → {0, 1}n. Given w, the
three lengths are computed:

`1 =
ln

t

m

`2 =
¡blog2`1c+ 1+ t

t

¤

`= `1 + `2

14

𝑥0 𝑥1 𝑥2 𝑥3

𝑓1(𝑥0)

𝑓2(𝑥0)

𝑓3(𝑥0)

𝑓1(𝑥1)

𝑓2(𝑥1)

𝑓3(𝑥1)

𝑓1(𝑥2)

𝑓2(𝑥2)

𝑓3(𝑥2)

𝑓1(𝑥3)

𝑓2(𝑥3)

𝑓3(𝑥3)

Secret Key

Public Key

𝑓 𝑓 𝑓 𝑓

𝑓 𝑓 𝑓 𝑓

𝑓 𝑓 𝑓 𝑓

Figure 3.2: Illustration of the W-OTS secret key, public key, and signature for t = 2, n = 4, i.e., `1 = 2,
`2 = 2, ` = 4. The signature σ(m) = f 2(x3)|| f 1(x2)|| f 1(x1)|| f 2(x0) for the message d =
10||01 and the corresponding checksum C = 01||01 is illustrated in blue.

Since every chain is used to sign t bits, `1 represents the number of chains required to sign a message
digest of length n. Additionally, a checksum, which will be introduced later, is used which requires `2
chains. ` is the sum of these two lengths and is the total number of required chains and, thus, key blocks
of length n. Therefore, ` · n is the size of the secret key, public key, and signature respectively. W-OTS is
again fully specified by defining the algorithms for key generation, signature generation, and signature
verification.

Key Generation

Given the security parameter n and length `, the W-OTS private key X is chosen at random and the public
key Y is computed from X by applying f w− 1 times:

X= (x0, ..., x`−1) ∈R {0,1}n×` Y= (y0, ..., y`−1) ∈ {0,1}n×` yi = f w−1(x i), 0≤ i < `

Thus, the computations are very similar to LD-OTS, but the keys are smaller and the function f is
evaluated multiple times. The public key computation is illustrated by Figure 3.2 using n= 4 and t = 2,
i.e., w= 4.

Signature Generation

Given the private key X and the digest d ∈ {0, 1}n of a message m, the digest d is divided into `1 blocks of
t bits each: d = b`−1||...||b`−`1 . In case the length n is not divisible by t, zeros are appended. Afterwards

the checksum for this message digest C =
∑`−1

i=`−`1
(w− bi) is computed, which is again divided into t-bit

blocks C = b`2−1||...||b0. This checksum is crucial for the security of W-OTS and we will elaborate upon
this in the discussion section. The blocks b`−1, ..., b0 are now used to calculate the signature:

σ(m) =
�

f b`−1(x`−1), ..., f b1(x1), f b0(x0)
�

Thus, the blocks bi determine how often the one way function f is applied to the secret key blocks
x i. It is applied between zero and w-1 times. The computation is also illustrated in Figure 3.2 in blue.
Hence, the intermediate values of the hash chains are included in the signature, which can also include
some secret key parts x i (if bi = 0) and public key parts y j (if b j = w− 1).

15

Signature Verification

The signature verification algorithm takes as input a digest d ∈ {0,1}n of a message m, the signature
σ(m) and the public key Y. First the checksum and the blocks b`−1, ..., b0 are computed as above. The
signature is accepted if

yi
?
= f w−1−bi (σi), 0≤ i < `

If this equality does not hold for at least one block, the signature is rejected. Hence, the hash function
is applied w− 1− bi times to the signature parts σi. The result is then expected to equal the public key
block yi, because f w−1−bi (σi) = f w−1−bi (f bi (x i)) = f w−1(x i) = yi.

Discussion

The W-OTS is very similar to the original LD-OTS. However, it implements a space-time trade-off which
is controlled by the Winternitz parameter w. If w is large, the keys and signatures are small, but the
time required for key generation, signature generation and signature verification is larger, since f is
applied more often. Space might be much more constrained than time especially on embedded devices.
Additionally, the hash functions are usually very efficient and might even be implemented in hardware
components. Dods et al. recommend to use t = 4 (i.e., w = 16), because it provides short signatures,
yet is still fast enough [DSS05].

As already mentioned, the checksum is crucial for the security of W-OTS. Assume that the checksum
would not be included and the digest d = 0n is signed. This would result in all bi = 0 and, thus, the
entire private key would be published as a signature, which in consequence breaks the security. The
checksum ensures that for any digest for at least a few blocks it holds that bi > 0. It is important to note
that W-OTS as LD-OTS is one-time. If a W-OTS key is used more than once, the security of the scheme
degrades or vanishes. Bruinderink and Hülsing found that the security of W-OTS degrades much faster
than that of LD-OTS when more than one message is signed using a single key [BH16].

16

𝑥0 𝑥1 𝑥2 𝑥3

𝑐𝑘
1(𝑥0, 𝒓)

𝑐𝑘
2(𝑥0, 𝒓)

𝑐𝑘
3(𝑥0, 𝒓)

𝑐𝑘
1(𝑥1, 𝒓)

𝑐𝑘
2(𝑥1, 𝒓)

𝑐𝑘
3(𝑥1, 𝒓)

𝑐𝑘
1(𝑥2, 𝒓)

𝑐𝑘
2(𝑥2, 𝒓)

𝑐𝑘
3(𝑥2, 𝒓)

𝑐𝑘
1(𝑥3, 𝒓) = 𝑓𝑘(𝑥3 ⊕ 𝑟1)

𝑐𝑘
2(𝑥3, 𝒓) = 𝑓𝑘(𝑐𝑘

1 𝑥3, 𝒓 ⊕ 𝑟2)

𝑐𝑘
3(𝑥3, 𝒓) = 𝑓𝑘(𝑐𝑘

2 𝑥3, 𝒓 ⊕ 𝑟3)

Secret Key

Public Key

𝑓k 𝑓𝑘 𝑓𝑘 𝑓𝑘

𝑓k 𝑓𝑘 𝑓𝑘 𝑓𝑘

𝑓k 𝑓𝑘 𝑓𝑘 𝑓𝑘

Figure 3.3: Illustration of the W-OTS+ secret key, public key, and signature. The signature σ(m) =
c2

k(x3, r)||c1
k(x2, r)||c0

k(x1, r)||c3
k(x0, r) for the message d = 10||01 and the corresponding

checksum C = 00||11 is highlighted in blue.

3.1.3 W-OTS+

While W-OTS solves most of the disadvantages of LD-OTS is has been further refined by Hülsing et al.
in 2013 to W-OTS+ [Hül13]. This extension is also directly used in the Internet Draft [HBGM17]. The
main goal of the extension is to produce even smaller signatures without lowering the bit security of
the scheme. The paper comes with extensive security proofs which underpin the security of the scheme.
Additionally, W-OTS+ has weaker security assumptions about the used one-way function. It is only
required to be second-preimage resistant for W-OTS+, while W-OTS requires a collision resistant one.

Since W-OTS+ only differs slightly from W-OTS which was explained in the last section, this section
only emphasizes the major differences. Firstly, W-OTS+ does not apply f as a plain hash function to the
secret values, but uses a keyed-hash function fk : {0,1}n → {0,1}n, k ∈ {0, 1}n. The n-bit key k used for
this function is chosen at random at key generation time and is the same for all hash calls. Additionally,
W-OTS chooses w − 1 random n-bit bitmasks r which are used to mask the values passed to the hash
function as illustrated later. Note that the Internet Draft [HBGM17] slightly deviates from the literature
in the way the keys and bitmasks are generated since it is important for interoperability. It defines how
they are generated from a random seed using a specific pseudorandom function (PRF).

The hash function used for computing the public key from the private key is replaced by the chaining
function ck:

c0
k(x , r) = x , c i

k(x , r) = fk(c
i−1
k (x , r)⊕ ri), r= (r1, ..., r j), j > i

The public key can, thus, be computed by yi = cw−1
k (x i, r), 0 ≤ i < `. Consequently, the function is

also replaced in the signing algorithm (i.e., σi = cbi
k (x i, r)) and the verification algorithm:

yi
?
= cw−1−bi

k (σ1, rbi+1,w−1), 1≤ i ≤ `

rbi+1,w−1 here denotes (rbi+1, rbi+2, ..., rw−1).
It is important to note that both the key used for the hash function and the randomization bitmasks are

part of the public key and, therefore, known to everybody. The public key computation and the signature
generation are illustrated in Figure 3.3.

This simple modification greatly improves the security of the scheme, since finding a collision in f is
no longer sufficient to forge a signature. This is proven by Hülsing in [Hül13] and he also proves that
the bit security of W-OTS+ is b ≥ n− log2(w2`+w).

17

One additional minor difference between W-OTS and W-OTS+ is that W-OTS uses C =
`−1
∑

i=`−`1
(w− bi)

for the checksum calculation while W-OTS+ uses C =
`−1
∑

i=`−`1
(w− 1− bi).

3.2 Construction of Many-Time Signature Schemes

In the majority of use cases of digital signatures (e.g., signing of software, web pages, e-mails) an OTS is
not suitable, because many (maybe hundreds or even thousands) different messages need to be signed
and verified. Using a different key pair for each message introduces an extreme overhead especially
because each public key needs to be distributed in an authenticated way.

Therefore, schemes have been proposed to construct many-time signatures using OTS (e.g., LD-OTS
or W-OTS) as a building block. One of these schemes is XMSS which forms the basis of the Internet
Draft of Hülsing et al. [HBGM17]. XMSS is an extended version of MSS which was introduced by Merkle
in 1979 [Mer79]. The original MSS is introduced first in Section 3.2.1, followed by the extensions for
XMSS in Section 3.2.2. Additionally, the Internet Draft describes a multi layer version of XMSS called
XMSSMT which will be outlined in Section 3.2.3

3.2.1 Merkle Signature Scheme (MSS)

The MSS is a stateful digital signature scheme built upon a one-time signature scheme like LD-OTS. A
stateful signature scheme is a digital signature scheme which requires that after each signature genera-
tion the secret key is updated. If this update is not carried out properly, the security of the cryptographic
scheme degrades or vanishes.

MSS was first mentioned in an report by Merkle in 1979 [Mer79] and described in more detail in
1990 [Mer90]. The following description is mainly based on the work by Buchmann et al. [BDS09].

Given the security parameter n, MSS requires a cryptographic hash function g : {0,1}∗ → {0,1}n. In
order to be able to sign 2H messages, it uses 2H OTS key pairs. The OTS public keys are then combined
to a single n-bit MSS public key using a binary tree of height H. MSS is again fully defined by the three
algorithms for key generation, signature generation and signature verification.

Key Generation

Given the tree height H, the key generation algorithm first generates 2H OTS key pairs which yields
(skOTS,i, pkOTS,i), where 0 ≤ i < 2H . The actual OTS scheme is not defined by MSS. Let skOTS denote
all OTS secret keys and pkOTS all OTS public keys. This generation might be done using a PRNG and
on-the-fly during the public key computation, such that not the entire key needs to fit in memory (see
optimizations section).

MSS then constructs a binary hash tree to compute a single MSS public key from the 2H OTS public
keys. The leaves of this tree are computed using the hash function g : v0[i] = g(pkOTS,i) for 0 ≤ i < 2H .
The inner nodes of the tree are computed by applying the hash function to the child nodes:

vh[j] = g(vh−1[2 j]||vh−1[2 j + 1]), 1≤ h≤ H, 0≤ j < 2H−h

The construction of the hash tree is illustrated in Figure 3.4. The root node is the MSS public key and
denoted by pkMSS = vH[0]. The MSS private key skMSS consists of all OTS private keys skOTS and the
index s of the next OTS key to use (initially s = 0), i.e., skMSS = (skOTS, s). Instead of saving all skOTS, it
is also possible to save an n-bit seed of a PRNG that was used to create the keys.

18

OTS Private Key

𝑠𝑘𝑂𝑇𝑆,0

OTS Private Key

𝑠𝑘𝑂𝑇𝑆,1

OTS Private Key

𝑠𝑘𝑂𝑇𝑆,2

OTS Private Key

𝑠𝑘𝑂𝑇𝑆,3

OTS Public Key

𝑝𝑘𝑂𝑇𝑆,0

OTS Public Key

𝑝𝑘𝑂𝑇𝑆,1

OTS Public Key

𝑝𝑘𝑂𝑇𝑆,2

OTS Public Key

𝑝𝑘𝑂𝑇𝑆,3

𝑣0[3]

𝑣1[0] 𝑣1[1]

𝑣2[0]

𝑣0[2]𝑣0[1]𝑣0[0]

MSS Private Key

MSS Public Key

Authentication Path of 𝑝𝑘𝑂𝑇𝑆,0

Figure 3.4: Construction of a Merkle tree using an OTS for H = 2. The authentication path of the first
OTS key pair is highlighted in blue.

Signature Generation

Given a digest d ∈ {0, 1}n of a message m and the MSS secret key skMSS = (skOTS, s), first OTS is created
using the s-th OTS secret key skOTS,s; the corresponding public key is pkOTS,s. This yields σOTS. It is
imperative to increment s in skMSS to ensure that this one-time key pair is not used again in the future.
In addition to pkOTS,s the verifier requires several nodes of the Merkle tree to reconstruct the root of the
hash tree. This is achieved by appending the authentication path As = (a0, ..., aH−1) to the signature,
which contains one node in each layer of the hash tree. The ah are either left or right neighbors of the
nodes in the path from v0[s] to vH[0] and chosen using this formula:

ah =

¨

vh[s/2h − 1], if bs/2hc ≡ 1 mod 2

vh[s/2h + 1], if bs/2hc ≡ 0 mod 2

The authentication path is illustrated in blue in Figure 3.4. The MSS signature is, thus, σ =
(s,σOTS, pkOTS,s, As). It is required to include the index s because the verifier needs to know which
node in the authentication path As is a left and which is a right neighbor.

Signature Verification

Given the digest d ∈ {0, 1}n of message m, a signature σ = (s,σOTS, pkOTS,s, As) and the MSS public key
pkMSS, the algorithm first verifies σOTS using pkOTS,s. If the signature is valid, the leaf corresponding to
pkOTS,s is calculated, i.e., v0[s] = h(pkOTS,s). Then the path from this leaf to the root is calculated using
the authentication path As given in σ, i.e., (p0, ..., pH) with p0 = v0[s]. The subsequent nodes can be
calculated as follows:

ph =

¨

g(ah−1||ph−1), if bs/2h−1c ≡ 1 mod 2

g(ph−1||ah−1), if bs/2h−1c ≡ 0 mod 2

If the computed root pH is equal to the given MSS public key pkMSS, the signature is accepted. Other-
wise it is rejected.

19

Optimizations and Discussion

A number of optimizations exist to further improve the practicability and efficiency of MSS. Firstly, as
already mentioned, PRNG can be used to generate the OTS keys, such that it is sufficient to store only
the seed of the PRNG and not all OTS secret keys. Secondly, Buchmann, Dahmen and Szydlo propose
an algorithm, which is referred to as BDS-algorithm in the literature, for efficient authentication path
computation which trades off space and time and reuses nodes of the authentication path of the previous
signature [BDS09]. Finally, multiple layers of MSS trees can be used to form a hypertree. The leaves of
the trees in the upper layers are used to sign the roots of the trees in the lower layers. This concept will
be introduced in 3.2.3. For more details on optimizations, we refer to [BDS09], since they are out of
scope of this thesis.

The presented scheme solves the problem that each OTS key pair can only be used once, by construct-
ing a (small) single value from a large number of OTS key pairs. Although this results in additional
computation overhead, it is still feasible when using appropriate optimizations.

3.2.2 The eXtended Merkle Signature Scheme (XMSS)

XMSS, which is directly used in the Internet Draft [HBGM17], improves MSS and was introduced by
Buchmann and Hülsing in 2011 [BDH11]. It has minimal security requirements, since it only requires a
second-preimage resistant hash function. Additionally, Buchmann and Hülsing prove that it is forward se-
cure, efficient and provides existential unforgeability under adaptive chosen message attack (EU-CMA).
It uses W-OTS (or its optimized version W-OTS+) as a building block. It is reasonable to use W-OTS+
with it because it has similar minimal security requirements. Since XMSS is very similar to MSS, only
the main differences are emphasized here. For an extensive description of XMSS we refer to [BDS09]
or [HBGM17]. XMSS mainly differs in two points from MSS:

Firstly, the tree construction is slightly modified. XMSS introduces randomization bitmasks that are
generated randomly at key generation time. For each tree layer, two n-bit values bl,h, br,h (left bitmask,
right bitmask) are generated. The left (right) bitmask is used to mask the left (right) child node before
passing it to the hash function. The tree construction is thus changed to:

vh[j] = h
�

(vh−1[2 j]⊕ bl,h)||(vh−1[2 j + 1]⊕ br,h)
�

This is a similar idea as in W-OTS+ and lowers the security requirements to the hash function h, since
finding a collision is no longer sufficient to attack the scheme. The bitmasks are generated using a
PRNG, i.e., a seed is chosen at random and the bitmasks are generated on-the-fly. This minimizes storage
requirements. It is important to note, that the bitmasks (or the seed) are part of the public key and, thus,
available to the verifier and a potential adversary.

Secondly, the calculation of the leaves of the Merkle tree is modified. While MSS simply applies the
hash h to OTS public keys, which makes it vulnerable to collision attacks, XMSS uses a more sophisticated
construction called L-trees. An L-tree, which is very similar to the Merkle tree, is a binary tree where
the leaves are the n-bit parts of the W-OTS(+) public keys. It uses a similar tree construction rule with
randomization bitmasks to construct a single n-bit root from the leaves. Since ` (i.e., the number of
W-OTS public key blocks) is not a power of 2 in general, it is not always possible to construct a full
binary tree. Therefore, the leaves that have no right neighbor are lifted in the tree, until they are a right
neighbor of a different node.

There is also a difference between the original XMSS paper [BDH11] and the XMSS Internet Draft
[HBGM17]: The paper describes the use of a PRNG to generate W-OTS secret keys, while the Internet
Draft leaves this decision to the implementer. However, the bitmasks and keys which are used within
W-OTS and XMSS have to be generated using fixed PRF, because they are required for verification as
well. Thus, to enable interoperability, they must be generated in the same way.

20

Additionally, while the original paper [BDH11] is general, the XMSS Internet Draft [HBGM17] specifies
allowed parameter sets for n, w, and h: w is always fixed to 16, n may be 256 bits or 512 bits, and h can
be either 10, 16 or 20.

3.2.3 Multi-Tree XMSS (XMSSMT)

While an XMSS implementation which uses the optimized BDS algorithm provides sufficient performance
during signature generation, it is still relatively slow in generating a new key pair, because this requires
the construction of the entire hash tree. If this is not acceptable for some reason, the performance
of both MSS and XMSS can be further improved by using multiple layers of trees. This method was
initially named tree chaining [BDS09] and is referred to as XMSSMT in the Internet Draft of Hülsing et
al. [HBGM17]. Hülsing et al. also describe the method in [HRB13].

The idea is to use a hyper tree in which the upper layers are used to sign the roots of the layers below
and only the lowest layer is used to actually sign messages. Thus, an XMSSMT hyper trees consists of
T ≥ 2 layers of XMSS trees with heights h0, ..., hT−1, where h0 is the height of the trees at the lowest
level. The Internet Draft further restricts the parameters to h0 = h1 = ...= hT−1, i.e., all trees have equal
height. The OTS key pairs corresponding to the leaves of layer i are used to sign the roots of the trees
on layer i−1. The root of layer T −1 is the XMSSMT public key. Obviously, this is most sensible if a large
number of messages is to be signed. In that case the use of a PRNG is highly recommended. Otherwise
the required storage and the long time for random number generation outweigh the performance gain
of XMSSMT.

XMSSMT has multiple effects on space and time. The impact can be illustrated by thinking of an
example where T = 4 and h0 = h1 = h2 = h3 = 20. This parameter choice allows to sign a total of 280

messages which is referred to in the literature as a “virtually unlimited” number of messages.

• Key Generation: To create the public key it is sufficient to calculate the only XMSS tree on the top
layer (T − 1) of height 20 and thus requiring 220 node computations in the XMSS tree (plus the
leaf computation using L-trees). A single XMSS tree, which can be used to sign the same number
of messages, i.e., having a height h = 80 would would require 280 node computations, which is
infeasible.

• Signature Generation: To enable a verifier to validate a signature, it is necessary to include one
XMSS signature per tree layer which consists of the W-OTS+ signature, the W-OTS+ public key, the
index of the used leaf and the authentication path. If the last leaf on a layer is used, the next tree
needs to be generated which is signed by the next unused leaf of the active tree in the layer above.
In the worst case this means that T − 1 trees (all except the top layer) need to be computed to
generate a single signature. This means that in the example a signature generation would require
at most 3 · 220 node computations which is still significantly smaller than 280.

• Signature Size: To be able to verify an XMSSMT signature, one XMSS signature per layer needs
to be included, which increases the signature size. However, the authentication paths are shorter
compared to a huge tree with h= 80. Therefore, the parameter T together with the heights hi can
be seen as space/time trade-off parameters similar to w within W-OTS.

• Signature Verification: Verifying an XMSSMT signature requires the verification of d W-OTS+ sig-
natures, the computation of d L-trees and the reconstruction of d XMSS tree roots, which requires a
total of h hash computations. Thus, the verification of an XMSSMT signature is significantly slower
than an XMSS signature verification, which would only require to verify one W-OTS+ signature,
compute one L-tree, and h hash function evaluation.

Thus, XMSSMT can be used to balance the time required to generate a key pair and signature and space
occupied by a signature. It is especially useful if a large number of messages have to be signed. It can

21

and should be used in conjunction with other optimizations like the BDS algorithm and a PRNG. The
caching of the authentication paths is essential for the performance of XMSSMT.

3.3 Related Work

Although this thesis is mainly focused on the XMSS standard, important related work needs to be dis-
cussed too. This section briefly describes and compares selected work to XMSS. The intention is to give
enough detail about the schemes to allow a proper discussion of its side-channel vulnerability in the
following chapters without going beyond the scope of this thesis. Firstly, another active IETF Internet
Draft for hash-based signatures by McGrew et al. [MCF17] is introduced. Secondly, SPHINCS [BHH+15]
is described, which extends XMSS and removes the statefulness, which allows a drop-in replacement of
current signature schemes.

3.3.1 McGrew Internet Draft and Leighton-Micali Signatures (LMS)

The IETF has another active Internet Draft for hash-based signatures by McGrew et al. [MCF17]. The
authors also state that their scheme “naturally resists side-channel attacks”. Similar to XMSS, it is based
on the work by Lamport, Diffie, Winternitz and Merkle. However, McGrew et al. call their OTS Leighton
Micali one-time signature (LM-OTS) and the many-time signature scheme LMS. Leighton and Micali
filed a patent on hash-based signature schemes which was granted in 1995 [LM95] and is now expired.
However, their scheme is very similar to XMSS, at least from a side-channel perspective.

Similar to XMSS, they construct LMS using many LM-OTS. We briefly describe both with a focus on
the main differences to XMSS.

Leighton-Micali One-Time Signatures (LM-OTS)

LM-OTS is an OTS based on W-OTS+, i.e., requires a second-preimage resistant hash function H. The
private key is chosen randomly (X ∈R {0,1}`×n), where n is the security parameter in bits and ` is the
number of n-bit strings in the signature (computed similarly as in W-OTS).

Given a security string S ∈ {0,1}2·n+32 (the same for all y[i]), the public key can be calculated by
applying the chaining function w− 1 times:

y[i] = cw−1(S, x[i], i), 0≤ i < `

The chaining function is given by

c0(S, x , i) = x c j(S, x , i) = H(S||c j−1(S, x , i)||u16str(i)||u8str(j − 1)||0x00)

where

• u16str(i) is the unsigned 16-bit representation of i

• u8str(j-1) is the unsigned 8-bit representation of j-1

The LM-OTS private key consists of the randomly chosen x[i]. The public key includes the computed
y[i] and the security string S. The rest of the scheme is very similar to XMSS, besides a slightly different
checksum calculation. For more details consider [MCF17]

22

Leighton-Micali Signatures (LMS)

Similar to XMSS, LMS can be used to sign up to 2H messages. This is achieved by using 2H LM-OTS keys
that are combined to a single public key using a Merkle tree. The nodes of the tree are addressed using
the index r, where r = 0 is the root of the tree and r = 2H+1 − 1 is the rightmost leaf, i.e., the leaves of
the tree have indices r with 2H ≤ r ≤ 2H+1 − 1.

The leaves of the tree are computed from the LM-OTS public keys using the hash function H:

T[r] = H(I ||y[r − 2H]||u32str(r)||0x03), 2H ≤ r ≤ 2H+1 − 1

where

• || denotes concatenation

• I ∈R {0, 1}2× is a random security string (uniformly random, but the same for all leaves)

• u32str(r) is the unsigned 32-bit representation of r

The inner nodes of the tree are constructed by hashing the two child nodes:

T[r] = H(I ||T[2 ∗ r]||T[2 ∗ r + 1]||u32str(r)||0x04), 0≤ r < 2H

As in XMSS the LMS private key consists of all LM-OTS private keys, which are possibly created using
a PRNG, and the index q of the next unused key. The public key consists of the security string I and the
root node T[0].

The signature generation and verification are now straightforward and the same as in XMSS. There-
fore, we skip their description and again refer to [MCF17]. Additional to the single tree variant, they
also provide a multi-tree variant which is very similar to XMSSMT.

Comparison

Despite the different naming, LMS is very similar to XMSS. McGrew et al. provide a direct comparison
to XMSS [MCF17]:

• XMSS has slightly smaller signatures for the same bit-security level and maximum number of mes-
sages.

• LM-OTS is about four times faster than W-OTS+ when using a Merkle-Damgård-based hash func-
tion like SHA2, because W-OTS+ requires four calls to the compression function (two are required
to determine k and r using a PRF, two are required for the keyed hash function), while LM-OTS
only requires one call.

Additionally, a difference is that the Internet Draft of McGrew et al. is limited to SHA-256, while Hülsing
et al. allow SHA-256, SHA-512, SHAKE128 and SHAKE256.

3.3.2 SPHINCS

The major downside of both XMSS and LMS is that they are stateful signature schemes, i.e., the signer
needs to keep track of the last used OTS key pair to make sure that none is used twice. To solve this
problem Bernstein et al. propose an extended scheme called SPHINCS [BHH+15] which is the first and
only stateless hash-based signature scheme. Similar to XMSSMT it uses a hyper tree of height h. The

23

upper layers use XMSS together with W-OTS+ to sign the roots of the child trees, while the lowest layer
uses a Merkle tree with HORST for signing messages. HORST is a tree-based version of HORS which was
introduced by Reyzin et al. in 2002 [RR02]. HORST and HORS, unlike W-OTS, are few-time signatures,
i.e., can be used to sign a few instead of only one message. The more signatures that are generated using
one HORST key pair, the more the security of the scheme degrades. We refer to [BHH+15] and [HRS16a]
for a more detailed evaluation of the meaning of “few”.

To illustrate the idea of SPHINCS, the few-time signature scheme HORST is introduced, but the con-
struction of the Merkle tree which is similar to XMSS is skipped. The overall goal is to eliminate the
state, i.e., there is no index s in the secret key.

HORST requires two cryptographic hash functions:

F : {0, 1}n→ {0, 1}n H : {0, 1}2n→ {0,1}n

Additionally, HORST uses the parameters k,τ ∈ N. The message digest length is m= k ·τ. For example
SPHINCS-256 uses τ= 16 and k = 32, i.e., m= 512.

In the following the key generation, signature generation and signature verification algorithms are
described:

HORST Key Generation

Let t = 2τ. t random n-bit strings are generated which form the secret key:

sk= (sk1, ..., skt) ∈R {0,1}n×t

Then, a binary hash tree is constructed whose leaves are Li = F(ski). The inner nodes are computed
using the hash function H and additional randomization bitmasks Q (for similar reasons as in W-OTS+
and XMSS). The root of the tree is the HORST public key pk ∈ {0, 1}n. For SPHINCS-256 this means that
the private key has a size of 216 · 256 bits = 16,777, 216 bits= 2 mebibyte (MiB) and the public key is
256 bits= 32 bytes plus the seed required for generating the randomization bitmasks. A total of 216 calls
to F and 216−1 calls to H are required to compute the public key.

HORST Signature Generation

Given a message digest d ∈ {0,1}m and a HORST secret key sk = (sk1, ..., skt), the message is split up
into k parts, i.e., d = d0||...||dk−1, such that each di has a length of τ bits. The signature for this message
then consists of k + 1 parts σ = (σ0, ...,σk). The first k parts are computed as σi = (skdi

, Authdi
),

where Authα is the partial authentication path in the HORST tree for leaf α up to a layer τ− x − 1. σk
then consists of all nodes of layer τ− x . This use of partial authentication paths instead of full ones is
decreasing the signature size. The value of x is chosen, such that k(τ− x+1)+2x is minimal. [BHH+15]

HORST Signature Verification

Given a message digest d ∈ {0, 1}m, a signature σ and a HORST public key pk, first the di ’s are computed
as above. For each skdi

the verifier computes F(skdi
) and uses Authdi

to compute the corresponding node
on layer τ− x − 1. It must be equal to the corresponding node in σk. Additionally, the nodes in σk are
used to compute the root of the HORST tree, which must be equal to pk. If this equivalence holds for all
Mi, the signature is accepted, otherwise it is rejected.

24

SPHINCS

HORST enables the signer to use one key pair more than one time. However, the security vanishes if it
is used too often. Therefore, an additional mechanism is required that ensures that each key pair is only
used a few times. SPHINCS achieves this by using many HORST key pairs and selecting a “random” one
for each signature generation. This random selection is achieved by computing a randomized message
digest of the message that is to be signed and then using a part of that hash as an index for the HORST
key pair.

For example, SPHINCS-256 uses 260 HORST key pairs. From these key pairs a virtual hypertree with
five ayers of Merkle trees is constructed. Each layer has a height of 12. The upper four layers signs the
roots of their ancestors, while the lowest layer signs the roots of the corresponding HORST keys.

It is important to note that this huge structure is never fully computed. It is essential to generate all
the HORST and W-OTS+ private keys with a PRNG. Thus, for key generation it is sufficient to pick seeds
for the PRNG and compute the one tree in the top layer. For signature generation one tree in each layer
needs to be computed. By using these optimizations, the computations remain feasible.

Comparison

The goal of SPHINCS was to eliminate the statefulness from XMSS. This is achieved using the few-time
signature scheme HORST and random key pair selection using the hash of the message. However, this
comes at some additional cost. Firstly, the signature generation is more expensive, since optimizations
like the BDS algorithm are no longer suitable, because the key pairs are not used successively but in
random order. Secondly, HORST signatures are much larger than W-OTS+ signatures.

25

4 Side-Channel Analysis of XMSS

This chapter analyzes the side-channel vulnerability of XMSS [HBGM17], which was introduced in Chap-
ter 3. Timing and power side-channel attacks are considered, which were introduced in Chapter 2.
Section 4.1 presents an overview of the existing literature about side-channel analysis of hash-based
signatures and other post-quantum schemes.

Since we want to keep the analysis as general as possible and are not in possession of a cryptographic
device implementing XMSS, we start with a set of assumptions about the implementation in Section 4.2.
These assumptions allow us to show that there is no exploitable side-channel under these assumptions
and consequently, allows us to reduce the side-channel resistance of an implementation to the gratifi-
cation of the assumptions. However, to reasonably evaluate the security of an actual implementation
against side-channel attacks, it is necessary to analyze if these assumptions hold. A general discussion of
the practicability of the assumptions is provided in Section 4.6.

Section 4.3 covers timing-related side-channels and Section 4.4 covers power-related side-channels.
For both, we will first discuss the resistance of W-OTS+ and then evaluate if this can be used directly
as an implication of the resistance of XMSS. It is shown that this holds under our assumptions, but
where more practical ones are used, the resistance of XMSS is much weaker than W-OTS+. The analysis
concludes with a discussion as to how our results can be generalized to the other schemes presented in
Chapter 3.

4.1 Related Work

Both existing hash-based signature Internet Drafts state that the specified scheme “naturally resists side-
channel attacks” without referencing related work [HBGM17, MCF17]. However, to the best of the
author’s knowledge, only two publications explicitly cover the side-channel leakage of hash-based sig-
nature schemes [EvMY14,TE15]. Both papers conclude that the side-channel leakage is low and mainly
relies upon the side-channel leakage of the used hash function and PRNG. While Taha et al. [TE15] only
survey other papers, Eisenbarth et al. [EvMY14] perform experiments on the leakage using a hash func-
tion built with the block cipher AES. However, both papers provide only a brief side-channel analysis.
Furthermore, they do not directly analyze XMSS and, thus, additional consideration is required.

Numerous papers analyze side-channels in implementations of other schemes that are believed to
provide quantum-resistance. Silverman and Whyte [SW06] as well as Vizev [Viz07] describe a timing
channel in the lattice-based encryption scheme NTRUEncrypt. The side-channel is due to a variable
number of hash function calls in the decryption algorithm that depends upon the secret key as well as
the message. Additionally, Lee et al. [LSCH10] and Zheng et al. [ZWW13] describe a power side-channel
vulnerability in NTRUEncrypt.

The McEliece scheme, which is a code-based scheme, is also attacked by various papers using both
timing and power side-channels. The timing side-channels are due to the variable execution time of
the extended Euclidean algorithm [STM+08,Str10,SSMS09,AHPT11,Str13], the execution time of large
matrix multiplications [AHPT11, vMG14] and variable cache access time to LUT used during matrix
multiplication [STM+08, AHPT11]. A SPA attack can be used to recover the execution path which leaks
information about the secret key [HMP10, MSSS11, vMG14], i.e., McEliece has conditional branches
depending on secret data. Additionally, a sophisticated DPA attack targeting the syndrome computation
is possible [CEvMS15].

26

4.2 Assumptions

To provide a sound analysis of side-channel resistance that is relatively independent of the actual imple-
mentation, we make two assumptions about the implementation of XMSS and W-OTS+, which allow for
a sound proof of the side-channel resistance. Section 4.6 discusses the practicability of these assumptions
for real-world implementations.

Assumption 1: It is assumed that the implementation under attack uses a PRNG to create the W-OTS+
signature keys on-the-fly when creating a signature and calculating the authentication path. The Internet
Draft states that an implementation of XMSS may do this, but is not required to [HBGM17]. However,
when thinking of practical implementations that will be required to sign a lot of messages, not using a
PRNG will result in extremely large keys which will be impractical for most implementations, especially
on embedded systems. Thus, assuming usage of a PRNG is legitimate.

Assumption 2: Both the implementation of the PRNG and the one-way function are assumed to have
no side-channel leakage at all. This assumption allows to reduce the side-channel resistance of XMSS to
the side-channel resistance of these two cryptographic primitives.

Having defined these assumptions, we can now start analyzing the schemes in the next sections.

4.3 Timing Side-Channels

Various timing side-channels have been described in Chapter 2, which can all be put down to a variation
in the execution time depending on secret data. There are some reasons for timing variation like condi-
tional branches that are easy to detect and others that require a more sophisticated analysis like cache
access time.

The assumptions defined in the previous section imply that at least the PRNG and the one-way function
do not contain a timing side-channel, which means that they do not leak information about their input.
To determine if secret information might be leaked through a timing-side channel in W-OTS+ and XMSS,
we need to look at all parts of the algorithms that process secret data.

4.3.1 W-OTS+

As illustrated in Section 3.1.3, the only secret data that is processed inside W-OTS+ are the secret key
parts x i. The used randomization elements r and the keys k are public values and, thus, are of no interest
for a potential attacker. Figure 4.1 shows the secret parts of the W-OTS+ public key computation and
signature generation. It is important to note, that not all intermediate values of the hash chains are
secret values, since some of them are part of the generated signature (cbi

k (x i, r)) or can be computed
from them (cαk (x i, r),α > bi). Thus, all intermediate values cαk (x i, r) for α < bi are secret. Since the bi ’s
are not known before the actual message is signed, all intermediate values have to be considered secret.

The x i are only used as input to the chaining function ck. The chaining function applies the hash
function fk multiple times to the secret key parts x i. During key generation, the number of hash calls is
fixed (w− 1) and during signature generation, the number of hash calls solely depends on the message
blocks (bi). The blocks bi only depend upon the message digest which is again of no interest to a
potential attacker. According to assumption 1, the hash function itself does not contain a timing side-
channel, therefore, evaluating ck(x i, r) cannot leak anything about x i with respect to timing.

Additionally, the output of the chaining function is directly part of the signature and is, therefore,
considered to be known to the adversary. If bi = 0 this means that the adversary knows part of the
secret key. However, this does not undermine the security of W-OTS+ due to its one-time nature and the
checksum, i.e., partial leakage is an intrinsic characteristic of hash-based signature schemes. Even if the
entire message digest that is being signed would equal 0, the checksum would still ensure that some bi ’s
are greater than zero.

27

𝑥0 𝑥1 𝑥ℓ−1

𝑐𝑘
1(𝑥0, 𝑟)

𝑐𝑘
𝑤−2(𝑥0, 𝑟)

𝑐𝑘
1(𝑥1, 𝑟)

𝑐𝑘
𝑤−2(𝑥1, 𝑟)

𝑐𝑘
1(𝑥ℓ−1, 𝑟)

𝑐𝑘
𝑤−2(𝑥ℓ−1, 𝑟)

𝑓k 𝑓𝑘

𝑓𝑘 𝑓𝑘

𝑓𝑘

𝑓𝑘 𝑓𝑘𝑓𝑘

𝑓𝑘 𝑓𝑘𝑓𝑘

𝑐𝑘
𝑤−1(𝑥0, 𝑟) 𝑐𝑘

𝑤−1(𝑥1, 𝑟) 𝑐𝑘
𝑤−1(𝑥ℓ−1, 𝑟)

… … …

…

…

𝑓𝑘

se
cr

et
p

ar
ti

al
ly

 s
ec

re
t

…

p
u

b
li

c

…

…

Figure 4.1: Parts of W-OTS relevant for side-channel analysis

4.3.2 XMSS

The last section concluded that W-OTS+ does not leak any information about the secret key parts via
timing side-channels. Since XMSS is built using many W-OTS+ keys, intuitively XMSS provides this
resistance as well.

Figure 4.2 summarizes the parts of XMSS which are relevant for side-channel analysis. The entire
XMSS tree is public and, thus, leakage agnostic, i.e., even if it is leaked entirely, the adversary does not
learn anything secret. This includes the W-OTS+ public keys and the intermediate values in the L-trees,
which are used to compute the XMSS tree leaves. The relevant parts are shown in the lower part of the
figure and include the seed used for the pseudorandom W-OTS+ secret key generation and the W-OTS+
secret key itself. As already mentioned, the intermediate values in the W-OTS+ hash chains need to be
considered secret if they are below the parts contained in the W-OTS+ signature. If W-OTS+ has not yet
been used to sign a message, all intermediate values need to be considered secret. Thus, the secret key in
XMSS either consists of many W-OTS+ private keys or a random seed used to create them. When using
the first option, the timing resistance of XMSS directly follows from the resistance of W-OTS+. When
using the latter option, we also need to make the assumption that the PRNG does not leak anything
about the random seed. This ensures that at least the W-OTS+ part of the XMSS signature generation
and public key computation does not have an exploitable timing side-channel.

4.3.3 Discussion

We have shown that timing side-channels in W-OTS+ can only be used to extract information about
the bi ’s, which the adversary either already knows (known message attack) or chooses himself (chosen-
message attack). The additional computation in XMSS may leak some information about the internal
state s, but this value is already contained in a valid signature and cannot be used to mount an at-
tack. Therefore, we conclude that XMSS does not have a timing side-channel, if the assumptions from
Section 4.2 hold.

28

XMSS

Tree

L

Tree

W-OTS+

Public key

W-OTS+

Secret Key

Seed PRNG

public ⇒ leakage agnostic

secret

… …

Figure 4.2: Parts of XMSS relevant for side-channel analysis

4.4 Power-related Side-Channels

For mounting a power analysis attack, it is required to find a function that is evaluated somewhere in the
cryptographic implementation and depends on a part of the secret key and some known variable input
data. It is important that this function can be calculated for all possible values of the key, i.e., using a
function on the entire key is not feasible. Usually, this is done for small blocks of the key (e.g., 8 bits).

To analyze XMSS with respect to such power side-channels, we need to look for potential target func-
tions that could be used. To keep the analysis sound and simple, we use the same set of assumptions
as for the timing attacks, i.e., the hash function and PRNG are not vulnerable. This is a very unrealistic
assumption, since every function has some leakage through power side-channels, even if it is very small.

4.4.1 W-OTS+

The interesting function within W-OTS+ is the chaining function

c0
k(x , r) = x , c i

k(x , r) = fk(c
i−1
k (x , r)⊕ ri), r = (r1, ..., r j), j > i.

At first sight this seems to be a perfect fit for a power analysis attack, because for i = 1 the signer
calculates x ⊕ r, where x is some secret key block and ri is a randomization bitmask which is known to
the verifier and attacker. However, this function is only called twice: once during key generation and
once during signature generation. Additionally, the ri is the same for both evaluations. This prevents
differential attacks like DPA, which rely upon different inputs to the attacked primitive. Additionally, SPA
attacks can, in the best case scenario, recover the HW of the processed values. If it is assumed that the

29

Table 4.1: Guessing entropy for HW-leakage per byte
HW # values left entropy (bits) leakage (bits)
0 1 0 8
1 8 3 5
2 28 4.81 3.19
3 56 5.81 2.19
4 70 6.13 1.87
5 56 5.81 2.19
6 28 4.81 3.19
7 8 3 5
8 1 0 8

⊕ is computed per byte, the approximate number of bits leaked can be if there is no noise at all can be
computed:

If the adversary knows HW (x i) = 0, this directly implies that x i = 0 and he knows all the bits of
this sub-key. If HW (x i) = 1, the possible values for x i are {1, 2,4, 8,16, 32,64, 128}, which leads to an
entropy of log2(8) = 3 bits, i.e., the adversary successfully recovered 5 of 8 bits of information. This
calculation is shown in Table 4.1 for all other Hamming weights as well. Since every key byte value
should have equal probability, we can derive a formula for the average leakage:

leakav g =
8
∑

i=0

1
256

�

8
i

��

8− log2

�

8
i

��

= 2.5 bits

Assuming a 256 bit key, this would leak approximately 80 bits. Since then still around 176 bits of
guessing entropy are left, this is not enough for a successful attack. Furthermore, if only the HW of
32-bit words is leaked, which is more likely, the leakage reduces to approximately 3.5 bits per word, i.e.,
28 bits per 256 bit key.

This shows that the first iteration of the chaining function does not provide sufficient leakage to recover
the key or restrict the remaining search space enough to find the key by guessing. In the next step, the
hash function is called upon the intermediate result, which according to our assumption, does not leak
additional information.

The following iterations of the chaining function behave exactly the same. Each time a few bits of the
intermediate value c i−1

k (x , r)⊕ ri are leaked during the ⊕ computation.
Note on leakage resilience: When analyzing the leakage resilience of cryptographic schemes, it is usu-

ally assumed that the leakage function is chosen by an attacker and only bounded by the amount of
bits leaked (referred to as λ). Standaert et al. introduce a “future computation attack” that uses this
assumption to attack an iterative PRNG [SPY+10], where the leakage of each iteration is combined to
reveal some result of future computation (a pseudorandom value). The idea is that, if in every iteration
λ bits are leaked, and the cryptographic device executes the function often enough, the adversary even-
tually knows the final value. This trivially breaks an iterative PRNG. However, Standaert et al. find that
it is very impractical, since (1) an attacker is usually not able to choose the leakage function and (2)
an iteration cannot leak anything about computations in the future. While we could modify this attack
to break W-OTS+ as well by assuming that each chaining function iteration leaks λ bits from x i, this is
not reasonable. When a cryptographic hash function is used to construct the chaining function, it should
behave like a random oracle, i.e., the output of the hash function is entirely random for a previously
unseen input. This implies that if an adversary knows λ bits of x i and λ bits of h(x i) is not equivalent to
knowing 2 ·λ bits of x i.

30

4.4.2 XMSS

One might think that if W-OTS+ is resistant to side-channels, this would directly imply the resistance
of XMSS as well. However, one major difference that makes XMSS more vulnerable than W-OTS+, is
that the W-OTS+ key generation is called much more often during authentication path computation.
To calculate the authentication path of the leftmost W-OTS+ public key, all other keys are required as
well. If it is assumed that the keys are always computed on-the-fly and nothing is cached in between
signatures, the W-OTS+ public key computation and the PRNG need to be executed for each single
signature for all keys. This was found by Eisenbarth et al. [EvMY14] for MSS, but it directly applies to
XMSS as well. It was found in the previous section that the leakage resistance of W-OTS+ can mainly be
guaranteed because both the key generation and the signature generation are only executed once and
this alone prevents power analysis attacks. However, if the key generation is executed more often, a
more elaborate analysis is required.

Let the XMSS tree have height H, i.e., having 2H leaves. For a signature using the W-OTS+ private
key at index s, the signer needs to first compute the W-OTS+ signature using skOTS,s and then the
authentication path for v0[s]. The signature is not a real problem, but the authentication path calculation
requires that all other v0[i] are computed as well. While some nodes of the authentication path can be
reused, some need to be recomputed. If it is assumed that the signer does not reuse nodes at all, we
know that at the time of the signature generation for index s, the skOTS,s already leaked a few times
before. To be more specific, it leaked once during initial key generation and once for each signature that
was created before, which means that including the current leakage, it leaked s + 2 times and will also
leak for all signature generations in the future (2H + 1 times if all keys are used).

At first sight it might seem useless to recover a W-OTS+ key that was already used, since it is forbidden
to use it again. However, an attacker will not care that a key was already used. He can just create an
arbitrary number of valid signatures using this one key and the same authentication path used in the
legitimate signature.

When again assuming the most powerful side-channel adversary [SPY+10] who can choose the leakage
function arbitrarily and adaptively change it for each signature generation, this leads to a leakage of 2H+1·
λ bits, where λ is a bound for the bits leaked per W-OTS+ key generation and signature generation. Even
a small bound λ trivially breaks the security of XMSS for any reasonable choice of H and n. However,
in practice such an adversary does not exist. When considering a real-world leakage model, the attack
becomes infeasible: During each signature generation the W-OTS+ chaining function is called with
the exact same inputs to produce the same W-OTS+ public keys. While this is useful for filtering out
noise which is inevitable in every power analysis attack, the leaked information is still very limited. An
adversary cannot hope to recover more than the HW of each intermediate result. We already found for
timing attacks, that the actual computations in the Merkle tree are not interesting for a potential attacker
and, thus, their power side-channel vulnerability analysis is skipped here. When combining this finding
with our assumptions and the result of the last section, we find that XMSS has the same leakage as
W-OTS+, but the adversary can use the multiple computations to reduce the noise, which is useful.

This can be easily generalized to the hyper tree variant XMSSMT, since an XMSSMT signature generated
using a hypertree with T layers can be viewed as T independent XMSS signatures from a side-channel
perspective. One major difference is that the W-OTS+ signature generations on the upper layers are
executed more than once (if no caching is implemented). Intuitively this seems to provide more leakage
than the single tree variant of XMSS. However, as we have seen, in the straightforward XMSS the public
key computation is executed many times, which provides the same or even more leakage than a signature
generation. Actually, W-OTS+ key generation and signature generation are equivalent, since for the
signature generation the signer also needs to calculate the W-OTS+ public key cw−1

k (x i, r) because it is

31

not cached. The only difference is that during signature generation, the signer additionally outputs the
intermediate results cbi

k (x i, r). Since the computations are the same, the leakage cannot be any different.
Chapter 6 shows, that while this equivalent resistance of XMSS and XMSSMT applies for passive side-

channel attacks, it is very different when considering more active attackers that are able to insert faults
into the computations.

4.4.3 Discussion

Both W-OTS+ and XMSS provide strong side-channel resistance under our assumptions. We showed that
W-OTS+ is resistant to the majority of attacks due to its one-time nature alone, which limits the number
of traces that can be obtained. This robustness is somehow weakened by the on-the-fly key generation
within XMSS.

Thus, we come to the conclusion, that XMSS cannot be attacked by power analysis attacks, if the used
hash function and the PRNG are leakage resistant. This is a similar result as related work found for other
hash-based signature schemes [EvMY14,TE15].

Although this result is very promising, it is crucial to ensure that the assumptions hold in an actual
implementation.

4.5 Generalization to Other Hash-Based Schemes

The above analysis was limited to XMSS which is also the main focus of this thesis. However, the other
schemes are so similar that everything found in this analysis is directly applicable to them as well. Yet,
for some key differences additional analysis is required. This section provides a very brief comparison
from a side-channel perspective starting from the predecessors of W-OTS+ and XMSS (Section 4.5.1),
the McGrew Internet Draft (Section 4.5.2) and SPHINCS (Section 4.5.3). The same set of assumptions
is used without explicitly mentioning them.

4.5.1 LD-OTS, W-OTS and MSS

The side-channel attack vectors of LD-OTS, W-OTS and MSS seem even smaller than the ones of W-OTS+
and XMSS:

Timing Attacks: The public key computations of both LD-OTS and W-OTS have a constant number
of hash function evaluations. Therefore, a timing side-channel does not exist. The signature generation
for LD-OTS has a fixed number of hash calls (half of the public key computation) which also means that
no timing attack can be mounted. The runtime of a W-OTS signature generation only depends on the
message to be signed and therefore does not leak any valuable information to an attacker. For MSS, the
same reasoning as for XMSS can be used.

Power Analysis Attacks: Both LD-OTS and W-OTS do nothing but apply the hash function to the
private key parts. The bitmasks in W-OTS+ which introduced a minor power side-channel are not present
in the previous schemes. Thus, a side-channel resistant hash function is sufficient for guaranteeing the
side-channel resistance of LD-OTS and W-OTS. MSS performs no computations on secret data other
than the underlying OTS. The on-the-fly key generation might be useful for an attacker to reduce noise,
however, an attack seems equally unlikely as for XMSS. Obviously, if a PRNG is used, it must be side-
channel resistant.

Thus, we conclude that they also naturally resist the considered side-channel attacks under our as-
sumptions.

32

4.5.2 LMS

Since LM-OTS it is based on W-OTS the differences are very small. The side-channel vulnerability seems
equal as well:

Timing Attacks: Looking at the chaining function c j(S, x , i), we see that it only applies the hash
function H. Obviously, the timing of this chaining function does not leak any valuable information since
it only depends on j which is not secret. The construction of LMS is similar to XMSS with only small
variations in the use of constants and randomization elements. Since they are all public, no additional
timing side-channels can occur.

Power Analysis Attacks: The included S (constant randomization string), i (index of the hash chain),
j (index in the hash chain) and D_I T ER (constant 0x00) seem to provide some additional power side-
channel at first sight when LM-OTS public keys are computed on-the-fly and multiple times. However,
the values are fixed and are therefore not suitable for a power analysis attack. Additionally, they are
only passed as input to the hash function which is assumed to be leakage resistant in our analysis. The
same reasoning applies to LMS: All intermediate values inside the Merkle trees are public and, thus,
side-channel agnostic.

Thus, we conclude that LMS is inherently secure against timing and power side-channel attacks if the
PRNG and hash function implementations are side-channel resistant.

4.5.3 SPHINCS

Unlike the other three schemes, SPHINCS is using HORST to sign messages. However, we conclude
SPHINCS is equally side-channel resistant as XMSS under our assumptions.

Timing Attacks: The number of hash function evaluations for both HORST key generation and HORST
signature generation is independent of the secret key. Thus, if the hash function does not contain a
timing side-channel, we are safe to conclude that HORST is timing side-channel resistant. The rest of the
SPHINCS construction is only using W-OTS+ and XMSS and can thus not contain a timing side-channel.

Power Analysis Attacks: The leaves of the HORST tree are constructed from the randomly generated
secret key parts ski by applying the hash function F . Therefore, HORST is side-channel resistant if F is
side-channel resistant, since everything else can be considered public. Combining this resistance with
the reasoning of W-OTS+ and XMSS, we are confident that SPHINCS has only negligible side-channel
leakage if the used hash functions and the PRNG are secure.

Thus, we conclude that both HORST and SPHINCS can be considered side-channel resistant if the
building blocks (hash function F and PRNG G) are properly protected.

4.6 Pseudorandom Number Generator (PRNG) and Hash Function Side-Channel Resistance

The previous subsections concluded that W-OTS+, XMSS, and XMSSMT provide strong side-channel
resistance under the assumption that the used hash function and the PRNG are side-channel resistant.
Although the actual fulfillment of this requirement is implementation specific, this section presents a
discussion of general side-channel resistance of the used building blocks.

4.6.1 Hash Function Side-Channel Resistance

The hash function evaluation within the chaining function of W-OTS+ is the only computation that
is performed on the W-OTS+ secret key and, therefore, presents the only target for a side-channel
adversary. However, a hash function per se cannot be vulnerable or resistant to side-channel attacks,
since it can be used in numerous ways which do not necessarily involve a secret key. Thus, it depends on

33

how the hash function is used and it is only sensible to analyze the side-channel resistance for an actual
scheme using the hash function in a certain way.

For the reader’s convenience the definition of the W-OTS+ chaining function is repeated:

c0
k(x , r) = x , c i

k(x , r) = fk(c
i−1
k (x , r)⊕ ri), r = (r1, ..., r j), j > i

The keyed hash function fk is implemented using either a hash function of the SHA2 or SHA3 function
family using the following construction [HBGM17]:

fk(x) = SHA-256(toByte(0,32)||k||x)

fk(x) = SHA-512(toByte(0,64)||k||x)

fk(x) = SHAKE-128(toByte(0, 32)||k||x , 256)

fk(x) = SHAKE-256(toByte(0, 64)||k||x , 512)

where toByte(a, b) is the big-endian b-byte encoding of a. SHA-256 and SHA-512 are in the SHA2
function family [Nat15a], whereas SHAKE-128 and SHAKE-256 are the variable output length SHA3
functions [Nat15b]. The second argument of SHAKE-128 and SHAKE-256 corresponds to the hash digest
length. Note that the key k, which is used within fk is a public randomization element, is computed from
the public seed and, thus, known to the adversary and fixed for a certain hash chain.

Several side-channel attacks, which are all DPA attacks, have been proposed on both SHA2 and
SHA3 hash function in the context of Hash-based message authentication code (HMAC) [ZKSH12,
TS13, BBD+13, MTMM07]. When computing an HMAC, both the key and the message are passed to
the hash function. Since the key is fixed and the message is variable for successive computations of
HMAC, an adversary can attack the key by creating multiple HMAC for different messages and analyze
the differences in the computations.

However, this is not applicable for the W-OTS+ chaining function, since it does not process variable
data for the same key. Thus, we conclude that it is not vulnerable to timing and power analysis attacks:

Timing Attacks: Both SHA2 and SHA3 create digests for inputs of arbitrary length by splitting them
up into several blocks and processing them iteratively. Since the input, which is passed to the hash
function, has a fixed length in the W-OTS+ chaining function, the number of iterations used to process
it is constant and, thus, cannot present a timing side-channel. For SHA2, which is based on the Merkle-
Damgård construction, the message blocks are combined to a digest by iteratively calling a compression
function [Nat15a]. The number of compression function calls is fixed for a fixed input size. For SHA3,
which is a Sponge construction, these function calls are called the “absorb” phase and are followed by
the “squeeze” phase which produces the digest [Nat15b]. The number of “absorb” and “squeeze” steps
is constant for a fixed input size. Thus, a timing side-channel can only be located within the SHA2
compression function and the SHA3 “absorb” and “squeze” procedure. None of these functions contains
conditional branches depending on the input passed to the function. Additionally, all computation within
these functions is based on simple arithmetic which has a constant execution time. The compression
function of SHA2 only consists of bitwise AND, bitwise OR, XOR, addition modulo 232, negation, cyclic
shift, and non-cyclic shift operations. The SHA3 “absorb” and “squeeze” steps only require bitwise AND,
XOR, rotation, and negation operations. Thus, we conclude that both SHA2 and SHA3 run in fixed time
for a fixed input size, which prevents all categories of timing attacks for W-OTS+ and consequently for
XMSS and XMSSMT.

Power Analysis Attacks: We already concluded that DPA attacks are not applicable to the hash func-
tion within W-OTS+, since the input to the hash function is always the same for a certain key. Addi-
tionally, SPA cannot be used to successfully attack W-OTS+ because there are no conditional branches
depending upon the input passed to the hash function. Thus, we conclude that the hash function as it is
used within W-OTS+ is resistant to power analysis attacks.

34

4.6.2 PRNG Side-Channel Resistance

There are both, leakage resilient PRNG [SPY+10,TRS16,YSPY10] and side-channel resistant implemen-
tations of PRNG [CDK+10, BSVS16]. However, all the schemes proposed and implemented in these
publications are fundamentally different from the PRNG which is recommended for XMSS. Thus, addi-
tional consideration is required. The XMSS Internet Draft recommends the use of one of the following
constructions to produce a pseudorandom value from a random seed and index i:

SHA-256 (toByte(3,32)||SEED||toByte(i, 32))

SHA-512 (toByte(3,64)||SEED||toByte(i, 32))

SHAKE-128 (toByte(3, 32)||SEED||toByte(i, 32), 256)

SHAKE-256 (toByte(3, 64)||SEED||toByte(i, 32), 512)

The security of the PRNG must match the security of the used hash function used within W-OTS+ and
XMSS, i.e., if the implementer decides to use n= 256 and the SHA2 function family, the first PRNG must
be used. Their side-channel resistance is analyzed next, building upon the conclusions already drawn for
hash functions:

Timing Attacks: The length of the input passed to the hash function is fixed, thus, the constant
execution time of the hash function implies timing side-channel resistance of both the SHA2 and SHA3
PRNG.

Power Analysis Attacks: The non-existence of conditional-branches depending upon the input of the
hash function implies that no SPA can be mounted upon any of the recommended PRNG. However, all
four constructions present a good candidate for a DPA attack, since the hash functions are evaluated for
the same seed with different indices. The full Chapter 5 is devoted to the DPA attack vulnerability of the
PRNG and, therefore, skip it for now.

Discussion

We have shown that the hash functions (SHA2 and SHA3), which are used within the W-OTS+ chaining
function, and the recommended PRNG, which can be used to generate the W-OTS+ secret keys, are not
vulnerable to timing side-channel attacks. Additionally, the hash functions within the W-OTS+ chaining
function cannot be attacked by either SPA or DPA attacks. The recommended PRNG cannot be attacked
by SPA, but is vulnerable to a DPA, which will be covered in Chapter 5.

It is very important to note that the hash functions used may be replaced in future versions of XMSS,
e.g., if SHA2 and SHA3 become insecure due to the discovery of new attacks or computational advances.
It is imperative that the replacement is chosen such that it provides similar side-channel resistance.

Additionally, note that XMSS Internet Draft [HBGM17] does not standardize which PRNG must be
used, but does only recommend one. Thus, an implementation may choose a different one which then
requires additional side-channel resistance consideration.

35

5 Power Analysis Attack on the PRNG in XMSS

In the previous chapter we reached the conclusion that an implementation of XMSS can provide strong
side-channel resistance only of the underlying hash function and PRNG are side-channel resistant. How-
ever, to the best of the author’s knowledge there are no power analysis attacks on hash functions alone,
but only on HMAC. This chapter extends one of these attacks to hash-based PRNG.

Section 5.1 describes a DPA attack on SHA2 HMAC upon which our proposed attack is based. Sec-
tion 5.2 introduces a vulnerable SHA2 PRNG and describes the necessary steps to adopt the attack,
including the assumptions being made about the adversary. Our implementation consisting of a power
consumption simulator and the actual DPA is described in Section 5.3. Section 5.4 presents the experi-
mental results of our attack simulations. Section 5.5 discusses how the results found by our experiments
apply to practical PRNG, e.g., the one described in the XMSS Internet Draft. [HBGM17]

The source code that can be used to simulate this attack can be found at https://github.com/
mkannwischer/xmss-prng-dpa and is published under a 2-clause BSD license.

5.1 A DPA Attack on SHA2 HMAC

Since the PRNG, which is suggested by the Internet Draft [HBGM17] to create the W-OTS+ secret
keys within XMSS, is based on the hash function families SHA2 and SHA3, it is sensible to look at
several publications that analyze their side-channel resistance. To the best of our knowledge, there
are only publications that cover hash function side-channel resistance in the context of HMAC. McEvoy
et al. propose a DPA attack on a SHA2 HMAC [MTMM07] which is further elaborated by Belaïd et
al. [BBD+13]. Additionally, similar DPA attacks on SHA3 HMAC are proposed by Zohner et al. [ZKSH12]
and Taha et al. [TS13]. This chapter focuses on SHA2 but the attacks can be adapted for SHA3 as well.

We briefly summarize the attack on SHA2 HMAC upon which our attack is based following the de-
scription of Belaïd et al. [BBD+13]. An HMAC for the hash function H, which is used to authenticate a
message m, can be computed using the key k, by applying the hash function twice [KBC97]:

HMAC(m, k) = H ((k⊕ opad)||H ((k⊕ ipad)||m))

The bitmasks opad and ipad denote to constant values 0x5c5c...5c and 0x3636...36. When using a
Merkle-Damgård-based hash function, the key is padded to the block length of the hash function (e.g.,

𝐼𝑉0 = 0x6a09…

𝑘 ⊕ 𝑖𝑝𝑎𝑑

512

256 256

𝑚0

512

256

𝑚1

512

𝐼𝑉1

…

Attacked Secret

Attacked Computation

𝐼𝑉2

256

𝐼𝑉3

Figure 5.1: DPA on SHA-256 HMAC (simplified from [BBD+13])

36

https://github.com/mkannwischer/xmss-prng-dpa
https://github.com/mkannwischer/xmss-prng-dpa

512 bits for SHA-256), such that each evaluation of H results in at least 2 evaluations of the compression
function f . The message block passed to the first evaluation consists of the masked key only, while the
second evaluation processes the first part of the message itself. The process of the HMAC calculation
is illustrated in Figure 5.1. First, the compression function f is called with the masked key (k ⊕ ipad)
and the fixed initialization vector (IV). Then for each block in the message m, an additional call to f ,
iteratively combines the resulting IV from the previous iteration with 512 bits of the IV. The construction
is similar for other SHA2 hash lengths, but uses different block sizes.

The goal of an adversary is to be able to create a valid message authentication code (MAC) for an
arbitrary message m. It is assumed that an adversary is able to query a cryptographic device with usually
several thousand messages m′ 6= m (either chosen or known), while recording the power consumption
of the device. Additionally, an HW leakage model is assumed.

Since the first evaluation only processes the key, but no variable data, it is not possible to mount a
DPA attack on the computations inside. Instead, Belaïd et al. target the second evaluation of f , which
processes the first block of m and the result of first evaluation of f , which we let denote to IV1. The
computations inside f can be used to entirely recover IV1 which is enough to forge the inner part of the
HMAC.

Algorithm 5.1 SHA-256 compression function f [Nat15a]
1: Input: IV (256 bit), mi (512 bit)
2: Wt ← m(t)i 0≤ t ≤ 15
3: Wt ← σ1(Wt−2) +Wt−7 +σ0(Wt−16) +Wt−15 16≤ t ≤ 63
4: A← IV0; B← IV1; C ← IV2; D← IV3; E← IV4; F ← IV5; G← IV6; H ← IV7;
5: for t = 0; t < 64; t ++ do
6: T1← H +Σ1(E) + Ch(E, F, G) + Kt +Wt
7: T2← Σ0(A) +Ma j(A, B, C)
8: H ← G; G← F ; F ← E;
9: E← D+ T1

10: D← C; C ← B; B← A
11: A← T1+ T2
12: end for
13: return [IV0 + A, IV1 + B, IV2 + C , IV3 + D, IV4 + E, IV5 + F, IV6 + G, IV7 +H]

Ch(x , y, z) := (x ∧ y)⊕ (¬x ∧ z) Ma j(x , y, z) := (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z)

Σ0(x) := ROTR2(x)⊕ ROTR13(x)⊕ ROTR22(x) Σ1(x) := ROTR6(x)⊕ ROTR11(x)⊕ ROTR25(x)

σ0(x) := ROTR7(x)⊕ ROTR18(x)⊕ SHR3(x) σ1(x) := ROTR17(x)⊕ ROTR19(x)⊕ SHR10(x)

The actual attack is based upon intermediate values inside the SHA2 compression function shown in
Algorithm 5.1. The entire function uses arithmetic on unsigned 32-bit words including bitwise-and (∧),
xor (⊕), negation (¬), addition modulo 232 (+), circular-shift (ROTR) and non-circular-shift (SHR). In
lines 2 and 3 the message block m, consisting of 16 512-bit words, is expanded to 64 words Wt. Then
the algorithm iterates 64 times combining the input vector IV with one word Wt per iteration. It is
important to note, that the adversary wants to recover IV , i.e., the values of A, ..., H before line 5, while
he knows the message blocks and, thus, the words Wt.

Notation: Let D(i) denote to the value of D before iteration t = i, thus D(0) = IV0. Similarly T1(i) is the
value of T1 that was computed during iteration t = i − 1. Additionally, let values that are different for
each HMAC generation denote to bold letters (e.g., Wt), while values that are the same for all generations
are in standard letters (e.g., T1)

37

Using this information, the adversary now mounts several DPA attacks building upon each other to
recover A(0), ..., H(0). The first value the adversary recovers is the initial value of D. This is done by first
recovering δ(1) := H(0) + Σ1(E(0)) + Ch(E(0), F (0), G(0)) + K0 using the computation T1(1) ← δ(1) +W0
from line 6. Since Wt is known and variable and δ(1) is fixed and secret, a DPA can be used to recover
δ(1). Once the adversary knows δ(1), he can compute T1(1) for each known word W0. The second DPA
attack then recovers D(0) from E(1)← D(0) + T1(1) using known values for T1(1).

Building upon the recovered values of T1(1), another 6 DPAs in the first and second iteration can be
used to recover the values of E(0), F (0), A(0), B(0) and G(0):

• DPA 3: T2(1) is recovered from A(1)← T1(1) + T2(1) (line 11) in iteration t = 0

• DPA 4: E(0)
�

= F (1)
�

is recovered from E(1) ∧ F (1) in Ch (line 6, t = 1)

• DPA 5: F (0)
�

= G(1)
�

is recovered from ¬E(1) ∧ G(1) in Ch (line 6, t = 1)

• DPA 6: A(0)
�

= B(1)
�

is recovered from A(1) ∧ B(1) in Ma j (line 7, t = 1)

• DPA 7: B(0)
�

= C (1)
�

is recovered from A(1) ∧ C (1) in Ma j (line 7, t = 1)

• DPA 8: G(0)
�

= H(1)
�

is recovered from T1(2)← H(1)+Σ1(E(1))+Ch(E(1), F (1), G(1))+Kt +Wt (line
6, t = 1)

Finally, the adversary only misses C (0) and H(0). H(0) can be computed easily from line 6 (t=0), since
everything except H(0) is known. Belaïd et al. state that C (0) can be computed from line 7 (t=0), since
A(0), B(0) and T2(1) are known. However, since Ma j consists of two bitwise AND operations, this will
not work for all values of A(0) and B(0). Therefore, we instead propose to attack line 9 in iteration t=1,
where C (0)

�

= D(1)
�

is combined with a known and variable T1(1). Thus, the full attack requires 9 DPA,
which depend on each other.

5.2 Attack Design and Adversary Model

To the best of the author’s knowledge there is currently no attack available on hash-based PRNG. How-
ever, the HMAC construction above looks very similar to the PRNG suggested by the XMSS Internet
Draft [HBGM17] for the generation of W-OTS+ secret keys: To generate 2H W-OTS+ secret keys, which
each consists of ` · n bits from a secret n bit seed, we use two layers of PRNG. First, we generate a n-bit
intermediate secret value for each leaf of the XMSS tree:

SEEDW−OTS+, j = PRNGX MSS(SEED, j) 0≤ j < 2h

These intermediate values are then used to calculate the actual W-OTS+ secret key parts:

skW−OTS+,i = PRNGX MSS(SEEDW−OTS+, j, i) 0≤ i < `

For the SHA2 function family and n = 256,the Internet Draft recommends the following construction
for PRNGX MSS:

PRNGX MSS(SEED, i) = SHA-256 (toByte(3, 32)||SEED||toByte(i, 32))

where toByte(x , y) corresponds to the big-endian encoding of x to y bytes. It is similarly defined
for n = 512 and the SHA3 hash function family. As in the SHA2 HMAC construction the first 512-bit
message block consists of the seed and a padding (toByte(3, 32)||SEED). The second message block
solely consists of the index i and the padding and length of the message (as defined in [Nat15a]). Trying

38

to apply the attack of Belaïd et al. [BBD+13], we notice that the message words W0 and W1, which
were used to mount the DPA attack, are always zero for any reasonable parameter choice. Due to the
big-endian encoding, these 32-bit words would only change if more than 2448 keys would be generated,
which will never happen. If the known values are fixed, a DPA attack does not work.

Since the XMSS Internet Draft does not specify which PRNG must be used because it does not affect
interoperability, an implementation might as well use a different method of pseudo secret key generation.
We propose the following vulnerable PRNG:

skW−OTS+,i = PRNGv uln(SEED, i) = SHA-256(toByte(3, 32)||SEED||SHA-256(i))

This PRNG does provide similar cryptographic security in the standard model, but can be attacked if
physical attacks are considered. Due to the hashing of the index i, the message words W0 and W1 in the
second evaluation of the compression function are uniformly distributed which allows an adversary to
mount the DPA attack proposed by Belaïd et al. [BBD+13].

We first implement the attack on PRNGv uln in Section 5.3 and then analyze how the attack can be
adapted to attack the original PRNGX MSS under some (unrealistic) assumptions in Section 5.5.

The goal of the adversary is to recover IV1, which is the result of the first evaluation of the compression
function f . Having recovered IV1 the adversary can compute skW−OTS+,i for any choice of i, which
enables him to forge signatures for arbitrary messages (i.e., universal forgery), thus, it entirely breaks
the security of XMSS.

The attack on PRNGv uln uses the following adversary model and assumptions: We assume that the
scheme is implemented on a cryptographic device which leaks the HW of the processed values. The
adversary is able to collect D power traces for different indices i, which most likely means that he must
be in possession of the cryptographic device at least for a short period of time. The number of required
traces is to be found by the experiments conducted in this thesis. It is important to note, that XMSS
uses the PRNG extensively, i.e., a single signature generation leaks traces for many executions of PRNG.
If the implementation does not use optimized authentication path computation (e.g., using the BDS
algorithm), each signature generation calls the PRNG 2H times, although it might be difficult to locate
the single executions in the trace recorded during an entire signature generation. Additionally, note
that the values used for attacking the IV1 do not depend upon the message signed by XMSS. Thus, the
adversary is not required to choose or know the signed messages and they are not required to be variable.

39

Power Simulation

simulate.c

SEED

D

leaky_sha256.c

leak.c

SHA256 PRNG DPA

analyze.py

dpa.py

sha256_helper.py

power traces

leakage.bin

𝐼𝑉1

Figure 5.2: Simulation of a DPA attack on a SHA2-based PRNG

5.3 Implementation

To validate that our attack indeed can be used to recover IV1 and in consequence generate all W-OTS+
secret keys, we created a proof-of-concept implementation of the attack. The source code of our imple-
mentation is available at https://github.com/mkannwischer/xmss-prng-dpa. It includes scripts that
can be used to reproduce the results presented in this thesis.

Figure 5.2 illustrates the general architecture of our implementation. Since an actual hardware imple-
mentation was not available and is beyond the scope of this thesis, we implemented a power simulator
which is capable of creating power traces in the hamming weight leakage model. It was written in
the C programming language and consists of a leakage library (leak.c) and a custom implementation
of SHA-256 (leaky_sha.c), which leaks intermediate values using the leakage library. The details of the
power simulator are described in Section 5.3.1. The SHA-256 implementation was cross-checked with
the OpenSSL implementation [Ope] to ensure it works correctly.

The resulting power traces are then passed to the analysis code (analyze.py) written in Python.
It contains a more general DPA library (dpa.py) and some supportive functions specific to SHA-256
(sha256_helper.py).

All modules, including the libraries, are created as a part of this thesis and are meant to be reused in
future work.

5.3.1 Power Simulation

The first part of the proof-of-concept implementation is a power simulator used to create the traces and
shown as the left part of Figure 5.2. It mainly consists of three modules which are explained briefly:

leak.c: We created a general library which is responsible for leaking to a file. It implements dif-
ferent leakage modes: HW, HW_BYTE, HD_R, HD_R. In the HW-mode the HW of the unsigned 32-bit in-
teger result of each computation is leaked. The HW_BYTE mode works similarly, but leaks the HW of
each of the four bytes in each word. The HD_L/HD_R-mode leaks the HD of the left/right operand
and the result (both 32-bit unsigned ints). Since the maximum HW or HD for all modes is 32 we
use a single byte representation and leak them to a binary file. The module provides four proce-
dures, which are self-explanatory: leak_start(enum leakage_type type, const char *filename),
leak_end(), leak_pause(), leak_resume(). Additionally, for each arithmetic operation (and, plus,
left shift, right shift, xor), a separate function is provided which does the calculation and leaks the values
corresponding to the leakage mode. The function returns the result, such that the computation only
needs to be done once. For example, a bitwise-and computation would be performed by calling

result = leak_uint_and(a, b);

40

https://github.com/mkannwischer/xmss-prng-dpa

0 1000 2000 3000 4000 5000 6000 7000 8000
index of sample

0

5

10

15

20

25

ha
m

m
in

g
we

ig
ht

4300 4350 4400 4450 4500 4550 4600
index of sample

0

5

10

15

20

ha
m

m
in

g
we

ig
ht

Figure 5.3: Simulated power trace for PRNGv uln in the HW model for 32-bit words. The upper plot shows
the full trace, while the lower plot shows a zoomed view on the beginning of the second
compression function evaluation

leaky_sha256.c: We created a straightforward implementation of SHA-256 following the NIST specifi-
cation [Nat15a] using 32-bit unsigned integers. Next, we replaced each arithmetic operation with a call
to one of our leaking functions.

simulate.c: The entry point of the simulation is the main-procedure in simulate.c. As input it requires
the number D of different inputs for which power traces should be generated. Additionally, a secret seed
can be provided as a hexadecimal string. If it is not provided, a random one is generated. The module
initializes the leakage library and calls the PRNGv uln for indices 0 ≤ i < D. To keep the traces short,
leakage is only activated during the outer hash computation.

Figure 5.3 shows a plot of a power trace simulated by our power simulator using the 32-bit HW
leakage mode. The full trace, which is shown in the upper plot, has a length of around 8000 samples.
The beginning of each of the both calls to the compression function f can be clearly identified at sample
0 and around sample 4000, because there is a long period of low power consumption (HW is 0). This is
caused by the message schedule computation (compare Algorithm 5.1 line 3), where a lot of values of
Wi are zero due to the padding in both blocks. The lower plot shows a zoomed view on the same trace
starting at the beginning of the second compression function execution, which will be used to recover
the secret IV1.

Naturally, the simulation introduces several huge simplifications for this attack:

• All our traces are perfectly aligned, i.e., the same sample of two traces corresponds to the same
computation. The alignment is required for a DPA to properly find the correlations and can be
tedious to achieve if they are measured physically. [MOP07]

• Our leakage is noise free. In an actual attack there will be noise both introduced by the measurement
setup and the physical properties of the cryptographic device. Noise can usually be mitigated by
using more traces. [MOP07]

• We know the implementation. Since we created the SHA-256 implementation and possess the
source-code, we know how the algorithm is implemented. We also know which sample in a trace
corresponds to which computation, which helps for debugging.

41

5.3.2 DPA

The traces generated by the power simulator are fed into a Python script that implements the DPA
proposed by Belaïd et al. [BBD+13] following the strategy described in 2.1.2. We decided to use Python
for the DPA, since NumPy1 allows the efficient and easy-to-read implementation of the required matrix
operations. Since a DPA requires the computation of hypothetical power consumption values for each
possible key hypothesis, our implementation recovers each byte of IV1 separately. At first we assume that
we have a byte-wise leakage of the HW (i.e., using the HW_BYTE mode in the simulator), which allows
the recovery of the key with very few traces. However, since this is not realistic, we extend this later to
work with the leakage of the HW per 32-bit word using partial DPA.

We separated three different modules:

• dpa.py: Implementing the general DPA attack on addition and bitwise-and.

• sha256_helper.py: Providing SHA256 specific helper functions, e.g., the computation of
Ma j, Ch,Σ0,Σ1,σ0, and σ1.

• analyze.py: Entry point of the DPA and containing the part of the attack that is specific for this
attack, i.e., it implements the 9 DPA.

1 # analyze.py
2 # Given d: Dx4, T: DxT
3 carry = np.zeros([len(T)])
4 delta_0 = dpa.dpa_addition(T, d[:, 0], carry)
5

6 carry = (delta_0, d[:, 0]) // 256
7 delta_1 = dpa.dpa_addition(T, d[:, 1], carry)
8

9 # dpa.py
10 # T: DxT, d: Dx1, carry: Dx1
11 def dpa_addition(T, d, carry):
12 # H: Dx256
13 H = np.zeros([len(T), 256])
14 for hyp in range(0,256):
15 H[:, hyp] = hw(d + hyp + carry)
16 # R: Tx256
17 R = correlate(T, H)
18 return R.max(0).argmax()

Listing 5.1: DPA attack on modular addition

Listing 5.1 briefly sketches the implementation of the very first DPA used to recover δ(1) in T1(1) ←
δ(1)+W0. We assume in line 1, that we have a matrix T (D× T) containing all D simulated power traces
of length T and the already computed known data block W0 for each index i (0 ≤ i < D) and stored
each byte in d (D× 4), where d[:, 0] corresponds to the least significant bytes. Since we are attacking
addition, we need to take care of the carry bit between the attacked bytes. For the least significant byte
there is no carry. Therefore, it is initialized to zeros (line 3). Line 4 then calls the DPA library using
the entire matrix T, the least significant bytes of d and the zero-carries. The actual DPA is implemented
by the dpa_addition() function, for each data point d and each hypothetical key (0 ≤ hyp < 256),
it computes the hypothetical power consumption value using the hamming weight of the sum of d,
hyp and the carry bit, resulting in a matrix H of dimension D × 256. Matrices H and T are then used to
compute the correlation coefficient R (T×256) in line 17. The actual correlation coefficient computation
is not shown here, but was implemented efficiently using matrix operations and the equation for R in
Section 2.1.2. Once R is computed, we simply find the index of the maximum value within R which

1 http://www.numpy.org/

42

http://www.numpy.org/

corresponds to the key candidate with the highest probability. After the least significant byte of δ(1) is
recovered, the adversary computes the carry bits by adding the recovered value to each known value d
and applying integer division by 256. Having recovered the carry, the recovery of the more significant
byte is straightforward. Similarly, the other bytes of δ are recovered. The implementation of the DPA for
a bitwise AND is even more straightforward, since no carries are needed.

One problem that occurs when attacking addition or AND, is that some keys cannot be recovered easily.
For example, when attacking an AND operation, the secret value 0 cannot be recovered, since this will
always result in a zero HW. However, constant values in the trace cannot be used to find correlations.
Yet, an adversary might still detect that there is no high correlation for any key candidate and, thus,
deduce that the key must be zero.

Partial DPAs

Up to this point, we assumed that the implementation leaks the HW of each byte separately, such that we
can mount independent DPA upon them. However, since SHA2 only involves unsigned 32-bit arithmetic,
a byte-wise implementation is highly unrealistic. Most implementations will use 32-bit words and, thus,
only leak the HW of the entire words. Luckily, the strategy can be adapted and still be used to recover
each byte separately, although requiring a much higher number of traces. The adapted technique is
called partial DPA and also evaluated by Belaïd et al. [BBD+13]

For the least significant byte, we use the exact same code as illustrated in Listing 5.1. This works
because the HW of the 32-bit words still correlates with the hypothetical power consumption values
calculated on a per byte basis. Although the correlation is much lower, it is still possible to recover the
byte if enough traces are available. For the second-least significant byte, we can use the knowledge about
the HW of the result of the least significant byte, which leads to higher correlation values and a higher
success probability. Similarly, the correlation values increase for the more significant bytes. Usually, we
have a maximum correlation value of 0.4 for the least significant byte and 0.5, 0.7 and 1.0 for the more
significant bytes. This is due to the much more precise prediction of the HW if we already know the
HW of other bytes of the same word. For the most significant byte, we can perfectly predict the HW
of the result for each possible key candidate. Since the simulated trace is noise free, we have a perfect
correlation and, thus, a correlation coefficient of 1.0.

Belaïd et al. [BBD+13] extensively studied partial DPA and concluded that they are practical. We
managed to reproduce their experimental results without any problems.

5.4 Results

We validated that our proposed attack works by performing experiments using the implemented power
simulator. We evaluated the success probabilities for both, the 8-bit HW leakage model and the 32-bit
HW leakage model. The results are summarized next.

5.4.1 8-Bit Hamming Weight Leakage Model

We started evaluating our proposed attack in the 8-bit HW leakage model which allows the attack of
each byte operation separately. Figure 5.4 illustrates two columns of the correlation matrix H for a DPA
attack on a single 8-bit addition operation which, in this case, is the computation of the least significant
byte of T1(1). The upper plot shows the correlation values over time for the correct key hypothesis (34),
while the lower plot illustrates those of an arbitrary wrong key hypothesis (66). Note that the correlation
for all key candidates is very low for most of the time, but contains several peaks at the beginning of
the first round of the second compression function evaluation (around sample 21000). The first peak
denotes the operation we are actually targeting and the following smaller peaks are computations on the

43

0.0

0.2

0.4

0.6

0.8

1.0
correct hypothesis (34)

18000 20000 22000 24000 26000 28000 30000 32000
0.0

0.2

0.4

0.6

0.8

1.0
wrong hypothesis (66)

index of sample

P
e
a
rs

o
n
 c

o
rr

e
la

ti
o
n
 c

o
e
ff

ic
ie

n
t

Figure 5.4: Correlation values of correct and wrong key hypothesis with simulated power traces over time
in the 8-bit HW leakage model.

0 50 100 150 200 250
key hypothesis

0.0

0.2

0.4

0.6

0.8

1.0

P
e
a
ro

n
 c

o
rr

e
la

ti
o
n
 c

o
e
ff

ic
ie

n
t

Figure 5.5: Maximum correlation of all possible key hypotheses in the 8-bit HW leakage model. The cor-
rect sub-key (34) can be detected easily

result of our targeted computations which, consequently, also lead to smaller correlations. The correct
hypothesis results in much higher correlation values than the other key candidate. Since our simulated
traces contain no noise at all, the correlation of the correct key hypothesis is exactly 1.0.

Figure 5.5 illustrates the maximum correlation values of each possible key hypothesis for the same
computation. The correct hypothesis results in a correlation of 1.0, which is significantly higher than
any other correlation, which allows the recovery of the least significant byte of δ(1). Note that the
correlation values when using physically measured traces will be smaller than 1.0 due to noise, such
that the detection of the correct sub-key will be harder and in consequence may require more traces.
Figure 5.5 also shows that the correlation values are small (< 0.4) for most of the key candidates and
only higher for 16 key candidates in this experiment. Thus, even if the noise is too high to successfully
require the correct sub-key, it still allows a drastic reduction in the search space which can then be easily
iterated to find the correct key.

The previous experiment showed that the DPA is able to recover a single key byte. Next, we wanted to
evaluate the success probability of the entire attack, which includes 9 DPA on 32-bit operation, i.e., 36
DPA when using the 8-bit HW leakage model. The success rates of the single DPA are not independent of
each other due to two reasons: Firstly, when attacking addition, the higher significant bytes can only be

44

recovered reliably if the lower significant byte key guesses are correct, since only then can we correctly
calculate the carry bits. Secondly, the attacked operations depend on each other, e.g., DPA 2 requires
that DPA 1 successfully recovered δ(1). Thus, it is certain that the success rate of the entire attack is
significantly smaller than for each individual DPA.

T success rate
8 0.000

10 0.599
16 0.882
32 0.906
64 0.909

128 0.908
256 0.924
512 0.933

0 100 200 300 400 500
number of traces

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s p

ro
ba

bi
lit

y

Figure 5.6: Success rate of the full DPA key recovery attack on the vulnerable PRNG in the 8-bit HW leak-
age model

Figure 5.6 shows the results of the full key recovery attack using different numbers of traces. To
produce reliable results, we repeated the experiment for each number of traces 3000 times. When using
only T = 8 traces per experiment, the recovery failed for 100% of our trials, whereas using T = 10
already resulted in a success probability of almost 60%. This further increased to 93.3% for T = 512.
However, as already mentioned, the DPA on AND operations always failed to recover the key if the sub-
key is equal to zero. Thus, for all experiments in which one of the attacked bytes in DPA 4, 5, 6, and
7 equals zero, the attack fails. Since the attacked values are approximately uniformly distributed, the
probability for this is 4·4

256 = 6.25%. Thus, we conjecture that the best achievable success rate in this
setup is 93.75%, no matter how many traces are used. Note that this problem can be mitigated by an
adversary, as discussed earlier. However, in our experiments we did not implement that optimization.

Note that the actual numbers found in these experiments can only provide a lower bound, since our
traces contain no noise at all. In real-world measurements, the required number of traces is significantly
larger depending on the amount of noise.

5.4.2 32-Bit Hamming Weight Leakage Model

Since an 8-bit leakage is not very likely for actual implementations of SHA2, we additionally performed
experiments which are using the more realistic 32-bit HW leakage model and partial DPA as introduced
by Belaïd et al. [BBD+13].

Since partial DPA require more traces than normal DPA and the run-time of our analysis drastically
increases with the number of traces, we evaluated the recovery of single 32-bit words, instead of the
full 256-bit IV. Figure 5.7 illustrates how the number of traces affects the maximum Pearson correlation
coefficient found for each key hypothesis, when the least significant byte of δ(1) is attacked without any
knowledge about the three more significant bytes. For a relatively small number of traces (<100), the
correlation values appear random and do not allow inference of the correct key hypothesis. If 200 or
more traces are used, the correlation value of the correct key hypothesis is slightly below 0.5, which is

45

0 200 400 600 800 1000 1200 1400 1600
number of traces

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
ax

im
um

 P
ea

rs
on

 c
or

re
la

tio
n

co
ef

fic
ie

nt

Figure 5.7: Maximum partial correlation values of correct hypothesis (red) and wrong hypotheses (blue)
when attacking modular addition in the 32-bit HW leakage model

significantly larger than for any other key hypothesis. Note that there is a small number of hypotheses
that also have moderate correlations in the range of 0.3 and 0.4. However, the majority of key hypothesis
result in low correlations (<0.3) and can, thus, be be ruled out. At some point, further increasing the
number of traces results in very little change in the correlation values. Note that in this experiment
we attacked the least significant byte only, which is the hardest one. Then, when attacking the more
significant ones, we can utilize the knowledge of the correct hamming weight of the less significant ones,
which improves the prediction of the hamming weight. This leads to much higher correlation values
and, thus, a significantly higher success rate of recovering the key bytes.

We performed another two experiments to evaluate how these correlation values translate into actual
success rates of our DPA. Figure 5.8 shows the results for the success rate of recovering δ(1), i.e., 4 partial
DPA on modular 32-bit addition to recover each byte separately. For small values of T ∈ {16,32, 64}, the
success rate was 0%, i.e., not a single trial successfully recovered all four bytes of δ(1). When increasing
the number of traces, the success rate increases up to 100% for T = 2048. Thus, for a 32-bit addition
operation a reliable recovery is possible if enough traces are available. However, the results again just
provide an optimistic lower bound, i.e., the actual number of required traces in a physical setup will be
higher depending on the amount of noise.

The results of the same experiment for a 32-bit bitwise AND operation are plotted in Figure 5.9. It
evaluates the success rate of the first DPA on bitwise AND, which is DPA 4 under the assumption that
DPA 1 and DPA 2 were successful. This assumption is required, because DPA 4 only works if we know
E(1), which is computed from D(0) (recovered in DPA 2) and T1(1) (computable from W0 and δ(1), which
was recovered in DPA 1). To simulate this, we included the values for δ(1) and D(0) in the simulation
results, such that the analysis script can use them. The differences compared to the addition operation
are twofold: Firstly, the success rate stays at around 0% for T ≤ 128 and then increases a lot slower, i.e.,
more traces are required for a successful DPA. Secondly, the success rate does not increase to 100% for
reasons already discussed.

Our experiments showed that the proposed attack does allow recovery of the IV to the second com-
pression function, which can then be used to recover the pseudorandom values for an arbitrary index i.
If these pseudorandom values are used as W-OTS+ secret keys, this entirely compromises the security
of the signature scheme. However, it is still unclear if this attack can be adapted to attack the PRNG
recommended in the XMSS Internet Draft [HBGM17], which is discussed in the next section.

46

T success rate
16 0.000
32 0.000
64 0.000
96 0.692

128 0.821
256 0.888
512 0.959

1024 0.995
2048 1.000

0 250 500 750 1000 1250 1500 1750 2000
number of traces

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s p

ro
ba

bi
lit

y

Figure 5.8: Success rate of recovering a single 32-bit value using a DPA on modular addition in the 32-bit
HW leakage model

T success rate
16 0.000
96 0.000

128 0.034
256 0.459
512 0.791

1024 0.867
2048 0.885
4048 0.903
8096 0.920

0 1000 2000 3000 4000 5000 6000 7000 8000
number of traces

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s p

ro
ba

bi
lit

y

Figure 5.9: Success rate of recovering a single 32-bit value using a DPA on bitwise AND in the 32-bit HW
leakage model

47

5.5 Applicability to Practical PRNGs

We have shown that under certain conditions SHA2 PRNG are vulnerable to DPA attacks. We pro-
posed a new PRNG, which is cryptographically secure, but is relatively easy to attack using power-based
side-channel attacks. We then evaluated in our experiments how likely the attack is to succeed. This
proved that if a weak PRNG is chosen, an implementation can be broken. Since the XMSS Internet
Draft [HBGM17] leaves the choice of the PRNG to the implementer, we want to emphasize that this is
the key point when creating implementations of XMSS which need to resist side-channel attacks. The
Internet Draft suggests that the use of a PRNG does not affect the scheme security as long as the PRNG
provides similar cryptographic security. However, we emphasize that while this might be the case when
analyzing XMSS as a black box, it is not true when side-channel attacks are considered.

Thus, it is imperative to look at less artificial PRNG and evaluate whether our attack can be adapted to
break them as well. Both Hülsing et al. [HBGM17] and Buchmann et al. [BDH11] provide the same sug-
gestion on how to implement the PRNG for W-OTS+, XMSS and XMSSMT. Although already introduced,
we repeat them here for convenience. The PRNG suggested for the SHA2 function family and n= 256 is

PRNGX MSS(SEED, i) = SHA-256 (toByte(3,32)||SEED||toByte(i, 32))

and toByte(i, 32) is the big-endian 32-byte (256 bit) encoding of i. We already found that the attack
is applicable if the values of i were random and distributed over the full range of possible values, i.e.,
0<= i < 2256. Thus, it is essential to evaluate for which values it is called in practice.

W-OTS+ uses the PRNG to generate ` · n bits from a n-bit seed with s

skW−OTS+,i = PRNGX MSS(SEEDW−OTS+, j, i) 0≤ i < `

` can only have the values `= 67 for n= 256 and `= 131 for n= 512.
When using W-OTS+ inside of XMSS the SEEDW−OTS+, j are generated with

SEEDW−OTS+, j = PRNGX MSS(SEEDX MSS, j) 0≤ j < 2h

Thus, the range of the indices i is determined by the parameter h. In the current version of the Internet
Draft [HBGM17], the maximum value of h is 20, i.e., 0≤ i < 220.

Consequently, since i is encoded big-endian byte order, the message block passed to the second evalu-
ation of the compression function, which is toByte(i, 32), only changes in bytes 29, 30, and 31, which
are all part of W7. Bytes 0, ..., 28 are always zero. Bytes 32, ..., 63 only contain padding and the length
of the full message, which is always constant. Therefore, the DPA on the first iteration of the compres-
sion function aiming to recover A(0), ..., H(0) is not possible due to the fixed words W0 = 0 and W1 = 0.
However, since they are fixed for all evaluations, it is possible to attack later iterations. For example, if
Wt = 0 for all t < α, we can still attack A(α), ..., H(α) since they are the same for all i.

Note that our attack used exactly two 32-bit words, W0 and W1. Thus, if α ≤ 14 and the words Wα

and Wα+1 contain enough entropy, the attack does work. For XMSS it holds that Wα = 0 for all α < 15
and only W7 is variable. W8 contains the fixed padding pattern 0x80000000. Consequently, this implies
that our attack does not work since W7 is variable and W8 is fixed. Later iterations cannot be used to
mount a DPA attack since the values of A, ..., H then depend on the index i.

Thus, we conclude that the PRNG recommended by the XMSS Internet Draft [HBGM17] is vulnerable
to the attack presented in general, but the parameters of XMSS prevent a successful attack. If h were to
be much larger (≥ 64), the attack would work. However, this is not a practical parameter choice, since
the public key computation is then infeasible.

Nonetheless, the attack could still apply to the hypertree variant XMSSMT, since the overall structure
is much larger. However, the XMSSMT uses an additional layer of PRNG in which the SEEDX MSS is
computed for the x-th tree at layer y by evaluating

48

seedX MSS,x ,y = PRNGX MSS(PRNGX MSS(SEED,toByte(y, 32)),toByte(x , 32)) 0≤ y < d, 0≤ x < 2h/d

Since the values of x and y are very small, this method of producing seeds is also not vulnerable,
which makes XMSSMT resistant to our attack.

49

6 Fault Attack on XMSSMT

The second physical attack on XMSS, which is proposed and implemented as a part of this thesis, is
a fault attack. It attacks the hypertree variant of XMSS and exploits the one-time nature of the W-
OTS+ signatures used to sign the roots of the lower XMSS trees. Our attack is based on a very
recent thesis by Genet on fault attacks against hash-based signature schemes and was orginally pro-
posed and implemented for SPHINCS [Gen17]. Section 6.1 introduces the work upon which the attack
is based. Section 6.2 describes the modifications and improvements we implemented to apply the attack
to XMSSMT. Our implementation and simulation of the attack are described in Section 6.3. We present
the experimental results in Section 6.4 and propose several countermeasures in Section 6.5 that can be
used to prevent the attack entirely. The source code that can be used to simulate this attack can be
found at https://github.com/mkannwischer/xmss-fault-attack and is published under a 2-clause
BSD license.

6.1 Fault Attack on SPHINCS

As introduced in Section 3.3.2 SPHINCS uses a hypertree with the few-time signature scheme HORST to
sign the messages and W-OTS+ to sign the roots of the lower Merkle trees. The hash of the message to
be signed is used to “randomly” select a HORST key pair in the giant hypertree structure. A SPHINCS
signature consists of the HORST signature, d W-OTS+ signatures and their corresponding authentication
paths in the Merkle trees. Since for each different message, a different HORST key pair will be used, all
W-OTS+ signatures and the authentication paths need to be recomputed every time. This is feasible due
to the hypertree structure, but presents a severe vulnerability when faults attacks are considered.

In Section 3.1.2 it was already described that if an adversary manages to force different messages to
be signed with the same W-OTS+ secret key, the security degrades and eventually vanishes [BH16]. This
can be turned into an attack exploiting that SPHINCS creates multiple W-OTS+ signatures using the
same secret key. In normal operation the signatures are generated for the same messages (roots of the
Merkle trees) every time, but if natural or malicious faults occur, this is no longer guaranteed.

Given a security parameter n (hash length), the total hypertree height h, the number of layers d and the
Winternitz parameter w, the attack of Genet [Gen17] works as follows: Suppose we use SPHINCS to sign
the same message q times, but during each signature generation a fault occurs while the computation
of the subtree at layer i (0 ≤ i < d − 1, i.e., not the top layer). This leads to a different root of
the corresponding Merkle tree, and, thus a different W-OTS+ signature σi+1. By combining the chain
values contained in each σi+1 the adversary is able to recover chain values for different bi ’s. Eventually,
the adversary recovered enough values to be able to create an existential W-OTS+ forgery. Then, the
adversary can replace all trees below by trees computed from secret W-OTS+ and HORST keys chosen
by himself. This enables the adversary to create universal forgeries.

Genet practically implements this attack for SPHINCS-256 on an Arduino Due board and uses voltage
glitching to inject faults during the Merkle tree computations. He successfully creates a practical forgery
for SPHINCS using q = 20 faulty signatures. However, his results suggest that for a success rate of nearly
100% about 100 faulty signatures are required.

This attack does not directly apply to XMSS, because a main difference is that SPHINCS uses a pseu-
dorandom leaf selection, while XMSS uses the leaves in strict order. While signing the same message
multiple times with SPHINCS will result in the same leaf selection and the same authentication path,
this is not the case for XMSS. When using XMSS, the authentication path will change for every new
message and, thus, the attack is not directly applicable. However, just a slight modification would enable
an attack on XMSS also, as described in the next section.

50

https://github.com/mkannwischer/xmss-fault-attack

XMSS

Tree

XMSS

Tree

𝑠𝑘𝑊−𝑂𝑇𝑆+

XMSS

Tree

XMSS

Tree

XMSS

Tree

𝑝𝑘𝑋𝑀𝑆𝑆

𝑝𝑘𝑋𝑀𝑆𝑆𝑀𝑇

𝑠𝑘𝑊−𝑂𝑇𝑆+

message

𝜎

𝑝𝑘𝑋𝑀𝑆𝑆𝑀𝑇

𝑠𝑘

𝑝𝑘

𝜎

𝑠𝑘

𝑝𝑘

𝑠𝑘

𝑚

Fault Injection

Attacked Signature

Faults irrelevant

Faults irrelevant

Attacked Secret Key

𝜎 𝜎

𝜎Faults irrelevant

Figure 6.1: Proposed fault attack on XMSSMT for d = 2 (left) and d = 3 (right)

6.2 Attack Design and Adversary Model

Due to the similarity of SPHINCS and XMSSMT, the attack proposed by Genet [Gen17] can be adapted
to attack XMSSMT as well. Figure 6.1 shows the general attack scenario for two XMSSMT hypertrees
(d = 2 and d = 3). Straightforward implementations of XMSSMT will recompute each layer for each
signature and, thus, create d W-OTS+ signatures per signature generation. By injecting faults at layer
d−2, we can force the cryptographic device to sign different values with the W-OTS+ secret key at layer
d − 1. However, different from SPHINCS, for each consecutive signature generation a new W-OTS+
key pair at the bottom layer will be used, such that the authentication path to the XMSSMT public key
will be different for every signature. Since each key pair at layer d − 1 is used 2h−(h/d) times, we can
still attack it but 2h−(h/d) is the maximum number of faulty signatures than can be used to recover it.
Therefore, different from Genet’s attack, we do target the top W-OTS+ signature and not an arbitrary
one to increase the number of obtainable faulty signatures. Additionally, since XMSS uses the leaves on
the bottom layer in strict order, we do not require that each faulty signature is generated for the same
message as it is required for the attack on SPHINCS.

We extend the work of Genet by the following:

• We adapt the attack for the use of XMSS and provide an extensive description on how this attack
can be implemented.

• We improve the attack to require less faulty signatures by attempting the tree grafting p times,
which will be explained in more detail later

• We simulate the attack to experimentally determine the effect of the security parameter n and the
parameter p.

51

• We propose countermeasures specific to XMSS and show that it is easy to completely prevent this
attack in XMSS, while it is infeasible to apply the same countermeasure to SPHINCS.

Before describing our attack, we outline our adversary model:

• The goal of an adversary is to be able to create signatures for arbitrary messages (i.e., universal
forgeries) that can be verified with a given XMSSMT public key (consisting of the root and a public
seed used to generate the bit masks).

• The adversary is able to get a limited number of faulty and correct signatures.

• The adversary can control where and when the fault occurs. He can ensure that during the com-
putation of the XMSS tree at layer d − 2, a fault occurs in the registers holding the intermediate
values. Which computation inside the tree is faulty does not matter, since even small errors will
propagate through the hash tree resulting in a random root node due to the properties of the hash
function.

• The adversary can ensure that the computation of the W-OTS+ signature at layer d−1 is computed
correctly, i.e., no fault occurs. Faults during the other W-OTS+ computations may occur and are
irrelevant for this attack.

For the following explanation we assume that at the start of the attack a fresh XMSS tree at layer d−2
is used, i.e., s ≡ 0 (mod 2h−(h/d)). If this assumption does not hold in practice the adversary has two
options: He either creates signatures until the assumption holds or he tries to perform the attack anyway
which further limits the maximum number of faulty signatures he can generate before all leaves of this
tree are used up and XMSSMT switches to the next tree.

Algorithm 6.1 Proposed fault attack on XMSSMT

1: Input: pkX MSSM T , p
2: σv alid ← sign(m)
3: skpar t ial

W -OTS+← null
4: for i=0; i<2h−(h/d) − 1; i++ do
5: σ f aul t ← faulty_sign(m′)
6: skpar t ial

W -OTS+← extract_and_merge(σ f aul t , skpar t ial
W -OTS+, σv alid) . Algorithm 6.2

7: for j = 0; j < p; j ++ do . Algorithm 6.3
8: (isForgeable, σ f or ge, sk_seed)← forge_signature(skpar t ial

W -OTS+, σv alid , m′′, pkX MSSM T)
9: if isForgeable = True then

10: return (sk_seed, σ f or ge)
11: end if
12: end for
13: end for
14: return Fail

Algorithm 6.1 outlines our attack. Details (sub-routines) will be described in Section 6.3. Firstly,
a valid signature for an arbitrary message is created (line 2). The actual message does not matter,
thus, it is sufficient to eavesdrop a message-signature pair. This message is required to recover the W-
OTS+ public key at layer d − 2, which we denote pkd−2

W -OTS+. The adversary then repeatedly creates
faulty signatures until either enough information is recovered or the maximum number is reached, i.e.,
XMSSMT switches to next tree at layer d − 2. With each faulty signature (line 5), the adversary retrieves
additional information about the secret key which is merged to the partial W-OTS+ secret key (line 6).
The message used in each iteration does not matter. The adversary not even needs to know it. At some
point the adversary has enough information to forge a signature. He doesn’t need all secret key parts to

52

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

XMSS

Tree

XMSS

Tree

XMSS

Tree

𝑝𝑘𝑋𝑀𝑆𝑆𝑀𝑇

𝑠𝑘

𝑝𝑘

Forging Signature

P
ar

ts
 o

f
th

e
o

ri
g
in

al
 v

al
id

S
ig

n
at

u
re

P
ar

ts
 c

h
o

se
n

/c
o

m
p

u
te

d
 b

y
 t

h
e

A
d

v
er

sa
ry

𝑠𝑘

𝑝𝑘

𝑠𝑘

𝑚

XMSS

Tree

XMSS

Tree

XMSS

Tree

𝑝𝑘𝑋𝑀𝑆𝑆𝑀𝑇

𝑠𝑘

𝑝𝑘

𝑠𝑘

𝑝𝑘

𝑠𝑘

𝑚

Original Signature Forged Signature

Figure 6.2: Forging an XMSSMT signature by replacing the lower XMSS trees and signing the root with
the recovered (partial) secret W-OTS+ key

forge an W-OTS+ signature. As long as he has c j(x i, r) and j <= bi an W-OTS+ signature can be forged
(see Section 3.1.3). This results in much fewer required faulty signatures to create a forgery. Therefore,
the adversary tries to forge a signature after each signature generation to evaluate how many signatures
will be required. Additionally, given a set of recovered values skpar t ial

W -OTS+ it might be possible to sign some
messages, while it fails for others. To study this, the adversary attempts p forgeries for different seed
values in each iteration. The higher the parameter p is chosen, the less faulty signatures are required.

Note that since the forging is a relatively expensive operation, a real adversary will follow a different
strategy instead: He will collect as many faulty signatures as possible and then try to forge the signature
later. However, for our experiments we wanted to determine the number of required signatures.

Once the adversary has successfully forged one signature, he can use the exact same key to sign
arbitrary messages, i.e., an universal forgery is as hard to create as an existential forgery. Figure 6.2
shows how the forgery works for a hypertree with d = 3. The adversary entirely replaces the XMSS trees
at all layers below the top layer. The root of the XMSS tree at layer d−2, which the adversary computed
from the chosen secret keys, is signed using the recovered (partial) W-OTS+ secret key. Combining this
with the authentication path from the initial valid signature, a valid signature for an arbitrary message
can be forged without the possession of the actual entire secret key.

53

6.3 Implementation

We created a proof-of-concept simulation of our attack in C based on the reference implementation of
the Internet Draft [GB17]. The source code of our implementation is available at https://github.
com/mkannwischer/xmss-fault-attack. It includes scripts that can be used to reproduce the results
presented in this thesis.

Algorithm 6.2 Fault attack: extract_and_merge

1: Input: σ, skpar t ial
W -OTS+,σv alid

2: Extract W-OTS+ public key pkd−1
W -OTS+ at layer d − 1 from σv alid

3: if skpar t ial
W -OTS+ = null then . Initialize if initial call of this procedure

4: for i=0; i<`; i++ do
5: skpar t ial

W -OTS+[i]← [w, pkd−1
W -OTS+[i]]

6: end for
7: end if
8: Extract σd−1

W -OTS+ from σ
9: for i=0; i<`; i++ do

10: for j=0; j<w; j++ do
11: if j >= skpar t ial

W -OTS+[i][0] then
12: break . already have a better value for this chain
13: end if
14: if cw−1− j(σd−1

W -OTS+[i], r) = pkd−1
W -OTS+ then

15: skpar t ial
W -OTS+[i][0]← j . found better chain value

16: skpar t ial
W -OTS+[i][1]← σ

d−1
W -OTS+[i]

17: end if
18: end for
19: end for
20: return skpar t ial

W -OTS+

Algorithm 6.2 presents the extract_and_merge step of our attack which is used to merge partial
information about our target secret W-OTS+ key. It takes an XMSSMT signature σ (valid or faulty), the
already known values skpar t ial

W -OTS+ and a valid XMSSMT signature σv alid , which is the same for all iterations.
The adversary first extracts the W-OTS+ public key from the valid signature (line 1). If this is the first
call of the routine, skpar t ial

W -OTS+ is initialized (lines 3-7): For each chain, the adversary creates a 2-element
array where the first element represents the index k of the value in the chain (16: public key, 0: secret
key) and the second element is the chain value, i.e., (ck(x i, r)). Initially, this is set to the public key.

The routine then extracts the targeted W-OTS+ signature σd−1
W -OTS+ from σ. Since it is part of the

XMSSMT signature, this is only a copy operation. The adversary then checks for each chain i if the chain
value does provide some information which he does not already know. This is done by hashing the new
value w − 1 − j times and comparing it to the public key part. If they are equal, the adversary found
c j(x i, r). If j is smaller than the index of the already known value, the adversary recovered a new chain
value and replaces it in skpar t ial

W -OTS+.
Algorithm 6.3 describes the routine that is used to find out if forging an XMSSMT signature is possible

and provide a forgery if possible. The adversary first chooses a random seed (line 2) which is used to
create a temporary XMSSMT key pair (line 3). This key pair is used to sign the message for which the
adversary wants to forge a signature (line 5). It is important to note that this created signature as it is,
cannot be verified using the given public key, but replacing certain parts will result in a valid signature.

The adversary extracts the root of the XMSS tree at layer d − 2, which is done by running part of the
XMSSMT verification algorithm which reconstructs the authentication path. The adversary now needs

54

https://github.com/mkannwischer/xmss-fault-attack
https://github.com/mkannwischer/xmss-fault-attack

Algorithm 6.3 Fault attack: forge_signature

1: Input: skpar t ial
W -OTS+, σv alid , m, pkX MSSˆM T

2: Choose random seed sk_seed
3: Create a new XMSSMT key pair using sk_seed and the public seed from pkX MSSM T

4: → ÒskX MSSM T ,cpkX MSSM T . Note: cpkX MSSM T 6= pkX MSSM T

5: σ f or ge← si gnX MSSM T (m,ÒskX MSSM T) . Note: verify(m,σ f or ge, pkX MSSˆM T) = False
6: Extract pkd−2

X MSS from σ f or ge

7: Calculate b0, ..., b` from pkd−2
X MSS . try to sign the root with the recovered partial secret key

8: Initialize σW -OTS+
9: for i=0; i<`; i++ do

10: k← skpar t ial
W -OTS+[i][0] . index of our known chain value

11: x̂ ← skpar t ial
W -OTS+[i][1] . known chain value

12: if bi < k then
13: return (False, null, null) . forging failed
14: else
15: σW -OTS+[i]← cbi−k(x̂ , r)
16: end if
17: end for
18: Replace W-OTS+ signature at layer d-1 in σ f or ge with σW -OTS+
19: Copy authentication path for layer d-1 from σv alid to σ f or ge
20: return (True, σ f or ge, sk_seed)

to forge an W-OTS+ signature for this value using the recovered (partial) secret key. Therefore, he
calculates the W-OTS+ blocks bi including the checksum. If for each bi the adversary has a chain
value c j(x i, r) for which j <= bi, the forgery succeeds (line 12). The forgery is then straightforwardly
implemented by applying the chaining function bi − j times (line 15).

In the end the adversary needs to replace the W-OTS+ signature in σ f or ge with the forged W-OTS+
signature. Additionally, the authentication path for the corresponding W-OTS+ public key needs to be
copied from the initial valid XMSSMT signature σv alid . The returned signature σ f or ge is valid when
verified with the given public key pkX MSSM T . Additionally, the used seed together with a valid signature
(either the initial or the forged) can be used to create more signatures for arbitrary messages.

Our attack simulation can be executed as follows:

./attack n h d p [--silent]

The parameters are as follows

• n: security parameter / hash size in bytes, i.e., 32 or 64

• h: total height of the XMSSMT tree

• d: number of layers (h≡ 0 mod d is required)

• p: number of different seeds tried per iteration

• --silent: turns off logging, only outputs result

The simulation outputs if the attack was successful and how many signatures were required.

55

6.4 Results

mean 17.5
max 36
min 5

median 17

5 10 15 20 25 30 35 40
number of required faulty signatures

0.00

0.02

0.04

0.06

0.08

0.10

re
la

tiv
e

fre
qu

en
cy

Figure 6.3: Experimental results for the fault attack simulation for n= 256 and p = 1

The objective of our experiments is threefold. Firstly, we want to create a proof-of-concept to show
that the attack actually works for XMSS. Secondly, we want to determine the number of required faulty
signatures for similar parameters as in [Gen17]. Thirdly, we simulate how the security parameter n and
the number of forgery trials p affects this number. n can be 256 or 512 for XMSS [HBGM17]. p, the
number of forgery trials, can be chosen by the adversary. The higher p, the more likely an attack is to
succeed. However, the runtime of the experiment linearly increases with the value of p.

Figure 6.3 shows the number of required faulty signatures for n = 256. We used h = 8 and d = 4,
such that the number of faulty signatures is limited to 26 − 1 = 63. This limit was never reached in our
experiments, i.e., in all experiments the forgery succeeded. To produce statistically representative results,
we repeated the experiment 10,000 times. The maximum number of faulty signatures required was 36
and the minimum was 5. However, more extreme values are possible in theory with lower probabilities.
The median number of required faulty signatures was 17, i.e., 17 faulty signatures are enough for the
attack to succeed in over 50% of cases.

Note that 17 is a lot lower than the results of Genet [Gen17], which finds that around 30 faulty
signatures are required for the same parameters and a 50% success probability. This is not due to
an improvement we implemented, but due to the experimental setup. Genet determined how many
signatures were required to forge a signature for an arbitrary message. However, we repeatedly try to
forge a signature for a different XMSS public key generated from a new seed in every iteration until the
forgery succeeds. Consequently, this leads to a bias towards lower numbers of required signatures, since
in each iteration there is a certain chance for the attack to succeed. This effect will be further studied
later by altering the parameter p.

Genet derives a formula which can be used to determine the success probability of the attack given
the Winternitz parameter w, the number of hash chains ` (calculated from n and w) and the number of
faulty signatures [Gen17]:

Pr[success] =
1
w`

�

w−1
∑

x=0

�

1−
�

w− (x + 1)
w

�q+1�
�`

56

mean 24.8
max 45
min 8

median 25

5 10 15 20 25 30 35 40 45
number of required faulty signatures

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
re

la
tiv

e
fre

qu
en

cy

Figure 6.4: Experimental results for the fault attack simulation for n= 512 and p = 1

This formula assumes that all bi ’s are uniformly distributed, which is the case for all message blocks,
but not for the checksum blocks. However, Genet showed that the approximation is pretty good in
practice.

We repeated the same experiment for n = 512 to see how the security parameter affects the number
of required signatures. Figure 6.4 shows that doubling n, does increase increase the mean number of
required faulty signatures to 24.832. This can be explained with the approximative formula derived by
Genet. With a higher n, W-OTS+ uses more hash-chains. For n= 256 and w= 16, W-OTS+ uses `= 67
chains while for n = 512 ` = 131 chains are used. When inserting the value of ` in the formula, we see
that for achieving a similar success probability, more faulty signatures are needed. Again our results are
slightly more optimistic than the formula suggests due to reasons already discussed.

Note that the parameters h and d have no effect on the number of required faulty signatures other
than limiting the number of signatures that can be obtained. Additionally, note that practical parameter
choices according to [HBGM17] are h ∈ {20, 40,60} and d ∈ {2,3, 4,6, 8,12} and, thus, in practice the
parameter choice that limits the number of obtainable faulty signatures the most is h= 20, d = 2, which
still allows 210 − 1 faulty signatures. Thus, we conclude that in practice this limitation is not relevant
and an attack is very likely to succeed.

Our biased results in the previous experiments suggested, that the adversary can drastically improve
the attack success probability by simply trying the forgery several times for different seeds. To investigate
how this affects the overall success probability, we introduced the parameter p, which is the number of
forgery trials and then repeated the experiment for p = {1, 2,4, 8,16, 24,32}. For p = 1 this is the same
experiment as before. Figure 6.5 shows the results of the experiments. We can see that, indeed, the
number of required signatures decreases with the parameter p. The mean required number is plotted as
a red line, while the boxes depict the first and third quartiles and the dashed lines show the minimum
and maximum values. For p ≥ 24 it suffices to collect 10 faulty signatures for an attack success rate of
50%. Note that again this result is slightly optimistic, since we do p forgery trials per iteration, i.e., if
we use p = 32 and require α faulty signatures, this means that we attempted a total of p · α forgeries.
However, our results prove that the adversary can drastically improve his chances by investing more
computational effort.

57

p mean
1 17.6
2 15.1
4 13.3
8 11.9

16 10.6
24 10.0
32 9.6

1 2 4 8 16 24 32
number of forgery trials p

0

5

10

15

20

25

30
nu

m
be

r o
f r

eq
ui

re
d

fa
ul

ty
 si

gn
at

ur
es

Figure 6.5: Experimental results for the fault attack simulation for n= 256 and p = {1, 2,4, 8,16, 24,32}

6.5 Countermeasures

Several countermeasures can be applied to prevent the attack presented. A straightforward countermea-
sure to detect faults is to do the computation multiple times as suggested, e.g., in [Ott04] and check if
the result differs. Since an adversary is not able to reproduce the same fault in practice, it can never
happen that the signatures are equal and at least one is faulty. Another trivial way of checking for faults
in the context of digital signatures is to validate the signature after it has been generated. Faulty XMSS
signatures will always be invalid and, thus, can be easily detected. If such a faulty signature is detected,
the device should output no signature, but an error instead.

However, both these countermeasures are impractical, since they result in a lot of computational
overhead. An easier way of completely preventing this attack on XMSSMT is to ensure that each W-OTS+
secret key is used only once. This is achieved by caching the signatures on the upper layers. Since the
leaves of the hypertree are used in strict order, caching one signature per layer is sufficient. Once XMSSMT

switches to a new leaf on an upper layer, the corresponding W-OTS+ signature is no longer needed and
can be deleted. Thus, this method is very practical and additionally improves the performance of the
signature generation, since it reduces the number of W-OTS+ signatures that need to be generated. The
XMSS Internet Draft [HBGM17] recommends this optimization for performance. However, we conclude
that it is also essential for physical attack security.

Note that this countermeasure is not feasible for SPHINCS since the leaves are not used in order there,
which subsequently would require storing all W-OTS+ signatures generated forever.

58

7 Discussion

This chapter concludes this thesis. Section 7.1 summarizes the contributions of this thesis, which are
the results of Chapter 4, Chapter 5, and Chapter 6. Section 7.2 discusses the conclusions that can be
drawn from our results and the relevance for the XMSS standard. Section 7.3 provides recommendations
for implementers of XMSS in a brief fashion with an emphasis on practical aspects rather than scientific
research. Section 7.4 presents potential future work which either arises from the results of this thesis or
related topics that have been excluded from this thesis but are essential for physical attack security

7.1 Summary

After Chapter 1, Chapter 2, and Chapter 3 introduced the motivation and required theoretical back-
ground on physical attacks and hash-based signature schemes, Chapter 4 presented the first contribution
of this thesis that is the extensive analysis of XMSS for side-channel vulnerabilities. To provide a precise
analysis, we started with the assumption that the used hash function and PRNG do not leak any informa-
tion about the secret data processed. This showed that XMSS is resistant under these assumptions, which
was done from the bottom up, i.e., starting with W-OTS+ and continuing with XMSS and XMSSMT.

The only part of W-OTS+ that is processing secret data is the chaining function. Since the chaining
function is only applying the hash function to the secret key parts, it is trivially side-channel resistant,
both against timing and power analysis attacks, under the assumption that the hash function is side-
channel resistant.

The same argumentation can be applied to XMSS: The only secret information processed within XMSS
is the secret seed which is used for pseudorandom number generation of W-OTS+ secret keys and the
secret keys itself. Thus, if the PRNG and W-OTS+ are side-channel resistant, so is XMSS. However, it
needs to be emphasized that while this equal resistance holds if there is no leakage at all, it does not hold
if there is very small leakage. XMSS re-computes the W-OTS+ public keys several times, because they
are required for the authentication path computation. Thus, if a minor leakage occurs during these com-
putations, it might be the case that though W-OTS+ is side-channel resistant, XMSS is not. Nonetheless,
we conclude that XMSS provides strong side-channel resistance under the used assumptions. Addition-
ally, we found that XMSSMT, which is the hypertree variant of XMSS, has equal side-channel resistance
as XMSS.

Chapter 4 concluded with the analysis of our assumptions, namely the side-channel resistance of
the hash function and PRNG. We have shown that the hash function specified by the XMSS Internet
Draft, as it is used within the W-OTS+ chaining function, is not susceptible to known timing and power
analysis attacks. However, we found that while the PRNG provides resistance against timing attacks,
it is vulnerable, in theory, to DPA attacks. This is mainly the case because the method of obtaining
pseudorandom W-OTS+ secret keys can be chosen by the implementer. Thus, if a vulnerable one is
chosen, the entire scheme is vulnerable.

The found vulnerability is further elaborated in Chapter 5. We proposed a SHA2 PRNG, which is cryp-
tographically secure but vulnerable to DPA attacks. We proposed and implemented the DPA attack using
power traces generated by our own power simulator. We started by creating an implementation that
leaked the HW of each byte of the intermediate values and showed that if there is no noise at all, only 32
traces are sufficient to recover an intermediate state with over 90% success probability. The recovered
state can be used to recover all W-OTS+ secret keys and, thus, create universal forgeries. However,
this result can only provide a lower bound of required traces, since physically measured traces will al-
ways contain noise, which is caused by both measurement errors and physical properties of the attacked
cryptographic device. Additionally, the 8-bit HW leakage model is highly unrealistic for SHA2 implemen-
tations, since all computations inside the SHA2 compression function perform 32-bit arithmetic, i.e., a

59

vast majority of implementations is using 32-bit integers. However, we implemented a partial DPA attack
which allows the recovery of the key from the leaked HW of 32-bit words. We found in our simulations
that a single modular addition operation can be attacked with a success probability of over 95% with
around 512 traces, whilst using 2048 traces yields a 100% probability of recovering a single 32-bit word.
For bitwise AND we found that to achieve a success rate of over 90%, around 4048 traces are required,
which is more than for modular addition. Additionally, we found that the success probability for the
bitwise AND operation never reaches 100%, which is caused by the fact that the key hypothesis zero
can never be recovered. This limitation is caused by our attack setup and can be mitigated by looking
at the Pearson correlation values found. If these values are lower than a certain thresholds, i.e., no key
hypothesis correlates with the given traces, it is likely that zero is the correct sub-key.

The second attack presented was a fault attack on XMSSMT, which is the hypertree version of XMSS.
We adapted a very recent fault attack on SPHINCS for use with XMSSMT. As simulation of the attack
was implemented to determine how many faulty signatures were required. A relatively small number
of around 10 faulty signatures is enough to recover a partial W-OTS+ key, which allows the creation
of an existential forgery for the root of an XMSS tree in more than 50% of cases. This consequently
allows the creation of universal XMSSMT forgeries by replacing the lower XMSS trees with forged ones.
We emphasized that the attack is possible with significantly fewer faulty signatures than previous work
suggested, if the adversary is capable of attempting the forgery several times for different seeds. Chap-
ter 6 concluded with the discussion of countermeasures against the presented fault attack. Caching all
W-OTS+ signatures generated presents a feasible countermeasure that entirely prevents the attack.

7.2 Conclusion

Secure implementations of XMSS are required to resist side-channel and fault attacks. Although the
XMSS Internet Draft [HBGM17] claims their natural side-channel resistance, until now there was no
extensive analysis available. This thesis provides this necessary analysis and we confirm the conjecture
that XMSS provides very strong resistance against passive timing and power analysis attacks. The only
component that might be attackable by DPA is the PRNG, since it can be chosen by the implementer and
processes secret data which enables universal forgeries when recovered. However, we conclude that the
method of generating pseudorandom numbers proposed by the XMSS Internet Draft is not susceptible
when used with the parameters of the current Internet Draft. Nonetheless, if the implementer chooses
to use a different PRNG, additional side-channel analysis will be required.

Additionally, we conclude that XMSS, while being resistant to passive attacks, is vulnerable to fault
attacks when used in a hypertree setup. Straightforward implementations, which do not cache generated
W-OTS+ signatures of XMSS tree roots, can be attacked by injecting faults into the tree computations
and consequently forcing the cryptographic device to sign different values with the same W-OTS+ secret
key. If an adversary manages to retrieve about 10 signatures for different faulty roots, he can achieve
at least a 50% success rate of universal forgeries. This attack can be fully prevented by caching all W-
OTS+ signatures generated. Thus, we conclude that a secure implementation is required to use this
optimization, which also improves performance.

We further conclude that if the PRNG is side-channel resistant and the implementation uses caching
of W-OTS+ signatures, there are currently no attacks vectors of which we are aware that can be used to
create XMSS forgeries - neither existential nor universal.

60

7.3 Recommendations for Implementers

To create implementations resistant to side-channel and fault attacks, implementers need to pay special
attention to the following three points:

• Caching of W-OTS+ signatures: The recomputation of W-OTS+ signatures for the XMSS roots
in the XMSSMT scheme presents a severe vulnerability to fault attacks. If an implementation re-
computes the W-OTS+ signatures for each XMSSMT signature generation, an adversary can inject
faults into the XMSS root computations which consequently allows him to recover a partial W-
OTS+ secret key, enabling him to create existential W-OTS+ forgeries. Replacing parts of the
XMSS hypertree enables enables adversaries to create universal XMSSMT forgeries. Caching the
W-OTS+ signatures entirely prevents this attack and, thus, we conclude that it is imperative for
physical attack security. Additionally, the caching significantly improves performance and should
be implemented anyway. Due to the strictly ordered use of leaves in XMSS, it is sufficient to cache
one signature per hypertree layer excluding the top layer, i.e., exactly d-1 signatures, which should
be feasible for every practical implementation.

• Side-channel resistant PRNG: We presented a DPA on a vulnerable PRNG, which allows recovery
of all W-OTS+ secret keys and, thus, to create universal XMSSMT forgeries. Since the choice of
the PRNG is left to the implementer, an implementation is insecure if a vulnerable one is chosen.
We conclude that the PRNG, which is recommended by the XMSS Internet Draft, is not vulnerable
to any known attack and recommend using it as it is. If a different method of pseudorandom key
generation is used, its resistance to side-channel and fault attacks needs to be extensively verified
since its security is central to the resistance of XMSS.

• Optimized authentication path computation: Optimized algorithms, like the BDS algorithm
[BDS09], minimize the number of W-OTS+ public key recomputations. While this is mainly a
performance optimization, it also limits the accesses to the secret keys and consequently also the
use of the PRNG. If they are accessed more seldom, less leakage can occur which mitigates the
overall susceptibility to side-channel attacks. Thus, even if new attack vectors (e.g., in the PRNG)
are discovered, an implementation may still retain security, because an adversary cannot obtain
enough traces for a successful attack.

If these recommendations are implemented, the overall side-channel and fault resistance of XMSS
is very strong and we conclude that, unless a totally new attack category is found, adversaries are
unlikely to succeed. However, it must be emphasized that this does not apply to stateless alternatives
like SPHINCS.

7.4 Future Work

We mainly see three interesting areas of research emerging from the results of this thesis:

• Side-channel analysis of other PRNG: Our results suggest that the side-channel resistance of
the PRNG is essential for overall side-channel resistance of XMSS. However, very little research
is available on side-channel resistance of different methods of obtaining pseudorandom numbers.
Analyzing their resistance in general will help to identify appropriate candidates for the use in
hash-based cryptography in the future. Additionally, discovering vulnerabilities may also enable
detection of weaknesses of other cryptographic schemes that use a PRNG. While there is some
work available on leakage resilient PRNG, the schemes proposed there are highly specialized and
seem to be used very rarely in practice. Thus, additional analysis of practical PRNG is required.

61

• Advanced side-channel analysis of SHA2 and SHA3: While we showed that existing attacks on
HMAC based upon SHA2 and SHA3 cannot be adapted to attack the hash function within W-OTS+,
there might be other powerful side-channel attacks that are applicable.

• Countermeasures for stateless hash-based signature schemes: We have shown that the pre-
sented fault attack can be easily prevented for XMSS, but the same countermeasures do not apply
to the stateless alternative SPHINCS. However, in general, stateless schemes are much more at-
tractive for practical deployment, because they allow a drop-in replacement of current signature
schemes like DSA and RSA. Therefore, finding an effective countermeasure against fault attacks
upon stateless hash-based signature schemes is imperative.

62

Bibliography

[AHPT11] R. Avanzi, S. Hoerder, D. Page, and M. Tunstall. Side-channel attacks on the McEliece and
Niederreiter public-key cryptosystems. J. Cryptographic Engineering, 1(4):271–281, 2011.

[BB03] D. Brumley and D. Boneh. Remote Timing Attacks Are Practical. In Proceedings of the 12th
USENIX Security Symposium, 2003. USENIX Association, 2003.

[BBD+13] S. Belaïd, L. Bettale, E. Dottax, L. Genelle, and F. Rondepierre. Differential power analysis of
HMAC SHA-2 in the Hamming weight model. In 2013 International Conference on Security
and Cryptography (SECRYPT), pages 1–12. 2013.

[BDH11] J. Buchmann, E. Dahmen, and A. Hülsing. XMSS - A Practical Forward Secure Signature
Scheme Based on Minimal Security Assumptions. In B.-Y. Yang, editor, Post-Quantum
Cryptography: 4th International Workshop, PQCrypto 2011. Proceedings, pages 117–129.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[BDL97] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the Importance of Checking Cryptographic
Protocols for Faults (Extended Abstract). In W. Fumy, editor, Advances in Cryptology -
EUROCRYPT ’97, International Conference on the Theory and Application of Cryptographic
Techniques. Proceeding, volume 1233 of Lecture Notes in Computer Science, pages 37–51.
Springer, 1997.

[BDL01] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the Importance of Eliminating Errors in
Cryptographic Computations. J. Cryptology, 14(2):101–119, 2001.

[BDS09] J. Buchmann, E. Dahmen, and M. Szydlo. Hash-based Digital Signature Schemes. In D. J.
Bernstein, J. Buchmann, and E. Dahmen, editors, Post-Quantum Cryptography, pages 35–93.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[Ber05] D. J. Bernstein. Cache-timing attacks on AES, 2005. https://cr.yp.to/antiforgery/
cachetiming-20050414.pdf.

[BH16] L. G. Bruinderink and A. Hülsing. "Oops, I did it again" – Security of One-Time Signatures
under Two-Message Attacks. Cryptology ePrint Archive, Report 2016/1042, 2016. http:
//eprint.iacr.org/2016/1042.

[BHH+15] D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen, L. Papachristodoulou,
M. Schneider, P. Schwabe, and Z. Wilcox-O’Hearn. SPHINCS: Practical Stateless Hash-Based
Signatures. In E. Oswald and M. Fischlin, editors, Advances in Cryptology – EUROCRYPT
2015: 34th Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Proceedings, Part I, pages 368–397. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2015.

[BHLV17] D. J. Bernstein, N. Heninger, P. Lou, and L. Valenta. Post-quantum RSA. In T. Lange and
T. Takagi, editors, Post-Quantum Cryptography - 8th International Workshop, PQCrypto 2017.
Proceedings, volume 10346 of Lecture Notes in Computer Science, pages 311–329. Springer,
2017.

[BIS+16] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding, Z. Jiang, J. M. Martinis,
and H. Neven. Characterizing quantum supremacy in near-term devices. arXiv preprint
arXiv:1608.00263, 2016.

63

https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://eprint.iacr.org/2016/1042
http://eprint.iacr.org/2016/1042

[BMM00] I. Biehl, B. Meyer, and V. Müller. Differential Fault Attacks on Elliptic Curve Cryptosystems.
In M. Bellare, editor, Advances in Cryptology - CRYPTO 2000, 20th Annual International
Cryptology Conference. Proceedings, volume 1880 of Lecture Notes in Computer Science, pages
131–146. Springer, 2000.

[BOS06] J. Blömer, M. Otto, and J. Seifert. Sign Change Fault Attacks on Elliptic Curve Cryptosys-
tems. In L. Breveglieri, I. Koren, D. Naccache, and J. Seifert, editors, Fault Diagnosis and
Tolerance in Cryptography, Third International Workshop, FDTC 2006. Proceedings, volume
4236 of Lecture Notes in Computer Science, pages 36–52. Springer, 2006.

[BSVS16] V. Bahadur, D. Selvakumar, Vijendran, and P. M. Sobha. Reconfigurable side channel attack
resistant true random number generator. In 2016 International Conference on VLSI Systems,
Architectures, Technology and Applications (VLSI-SATA), pages 1–6. 2016.

[BT11] B. B. Brumley and N. Tuveri. Remote Timing Attacks Are Still Practical. In V. Atluri and
C. Díaz, editors, Computer Security - ESORICS 2011 - 16th European Symposium on Research
in Computer Security. Proceedings, volume 6879 of Lecture Notes in Computer Science, pages
355–371. Springer, 2011.

[Buc02] J. A. Buchmann. Introduction to Cryptography. Springer, 2002. ISBN 0-387-95034-6.

[Buc16] J. Buchmann. Digitale Signaturen. In Einführung in die Kryptographie, pages 245–278.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

[CDK+10] S. Chari, V. V. Diluoffo, P. A. Karger, E. R. Palmer, T. Rabin, J. R. Rao, P. Rohatgi, H. Scherzer,
M. Steiner, and D. C. Toll. Designing a Side Channel Resistant Random Number Generator.
In D. Gollmann, J. Lanet, and J. Iguchi-Cartigny, editors, Smart Card Research and Advanced
Application, 9th IFIP WG 8.8/11.2 International Conference, CARDIS 2010. Proceedings, vol-
ume 6035 of Lecture Notes in Computer Science, pages 49–64. Springer, 2010.

[CEvMS15] C. Chen, T. Eisenbarth, I. von Maurich, and R. Steinwandt. Differential Power Analysis of
a McEliece Cryptosystem. In T. Malkin, V. Kolesnikov, A. B. Lewko, and M. Polychronakis,
editors, Applied Cryptography and Network Security - 13th International Conference, ACNS
2015. Revised Selected Papers, volume 9092 of Lecture Notes in Computer Science, pages
538–556. Springer, 2015.

[CSW17] E. Carmon, J. Seifert, and A. Wool. Photonic side channel attacks against RSA. In 2017
IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2017, pages
74–78. IEEE Computer Society, 2017.

[DSS05] C. Dods, N. P. Smart, and M. Stam. Hash Based Digital Signature Schemes. In N. P. Smart, ed-
itor, Cryptography and Coding, 10th IMA International Conference, 2005. Proceedings, volume
3796 of Lecture Notes in Computer Science, pages 96–115. Springer, 2005.

[EvMY14] T. Eisenbarth, I. von Maurich, and X. Ye. Faster Hash-Based Signatures with Bounded Leak-
age. In T. Lange, K. Lauter, and P. Lisoněk, editors, Selected Areas in Cryptography – SAC
2013: 20th International Conference. Revised Selected Papers, pages 223–243. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2014.

[FLRV09] P. Fouque, G. Leurent, D. Réal, and F. Valette. Practical Electromagnetic Template Attack on
HMAC. In C. Clavier and K. Gaj, editors, Cryptographic Hardware and Embedded Systems
- CHES 2009, 11th International Workshop. Proceedings, volume 5747 of Lecture Notes in
Computer Science, pages 66–80. Springer, 2009.

64

[GB17] S.-L. Gazdag and D. Butin. A very basic reference implementation for the Internet-Draft
"XMSS: Extended Hash-Based Signatures" (Version 9), 2017. http://www.square-up.org/
downloads/xmss_2016-07-26.tar.gz (Accessed on 08/28/2017).

[Gen17] A. Genet. Hardware Attacks against Hash-based Cryptographic Algorithms, 2017. Master
Thesis, École polytechnique fédérale de Lausanne, School of Computer and Communication
Sciences, Lausanne, Switzerland.

[GGH97] O. Goldreich, S. Goldwasser, and S. Halevi. Public-Key Cryptosystems from Lattice Reduc-
tion Problems. In B. S. K. Jr., editor, Advances in Cryptology - CRYPTO ’97, 17th Annual
International Cryptology Conference. Proceedings, volume 1294 of Lecture Notes in Computer
Science, pages 112–131. Springer, 1997.

[GMO01] K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic Analysis: Concrete Results. In
Ç. K. Koç, D. Naccache, and C. Paar, editors, Cryptographic Hardware and Embedded Systems
- CHES 2001, Third International Workshop. Proceedings, volume 2162 of Lecture Notes in
Computer Science, pages 251–261. Springer, 2001.

[GST14] D. Genkin, A. Shamir, and E. Tromer. RSA Key Extraction via Low-Bandwidth Acoustic
Cryptanalysis. In J. A. Garay and R. Gennaro, editors, Advances in Cryptology - CRYPTO
2014 - 34th Annual Cryptology Conference. Proceedings, Part I, volume 8616 of Lecture Notes
in Computer Science, pages 444–461. Springer, 2014.

[HBGM17] A. Hülsing, D. Butin, S.-L. Gazdag, and A. Mohaisen. XMSS: Extended Hash-based Signa-
tures, July 2017. Work in Progress - https://datatracker.ietf.org/doc/draft-irtf-cfrg-xmss-
hash-based-signatures/.

[HMP10] S. Heyse, A. Moradi, and C. Paar. Practical Power Analysis Attacks on Software Implemen-
tations of McEliece. In N. Sendrier, editor, Post-Quantum Cryptography, Third International
Workshop, PQCrypto 2010. Proceedings, volume 6061 of Lecture Notes in Computer Science,
pages 108–125. Springer, 2010.

[HPS98] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A Ring-Based Public Key Cryptosys-
tem. In J. Buhler, editor, Algorithmic Number Theory, Third International Symposium, ANTS-
III, 1998. Proceedings, volume 1423 of Lecture Notes in Computer Science, pages 267–288.
Springer, 1998.

[HRB13] A. Hülsing, L. Rausch, and J. Buchmann. Optimal Parameters for XMSS MT. In A. Cuz-
zocrea, C. Kittl, D. E. Simos, E. Weippl, and L. Xu, editors, Security Engineering and Intel-
ligence Informatics: CD-ARES 2013 Workshops: MoCrySEn and SeCIHD. Proceedings, pages
194–208. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[HRS16a] A. Hülsing, J. Rijneveld, and P. Schwabe. ARMed SPHINCS. In C.-M. Cheng, K.-M. Chung,
G. Persiano, and B.-Y. Yang, editors, Public-Key Cryptography – PKC 2016: 19th IACR Inter-
national Conference on Practice and Theory in Public-Key Cryptography. Proceedings, Part I,
pages 446–470. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

[HRS16b] A. Hülsing, J. Rijneveld, and F. Song. Mitigating Multi-target Attacks in Hash-Based Sig-
natures. In C.-M. Cheng, K.-M. Chung, G. Persiano, and B.-Y. Yang, editors, Public-Key
Cryptography – PKC 2016: 19th IACR International Conference on Practice and Theory in
Public-Key Cryptography. Proceedings, Part I, pages 387–416. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2016.

65

http://www.square-up.org/downloads/xmss_2016-07-26.tar.gz
http://www.square-up.org/downloads/xmss_2016-07-26.tar.gz

[Hül13] A. Hülsing. W-OTS+ – Shorter Signatures for Hash-Based Signature Schemes. In A. Youssef,
A. Nitaj, and A. E. Hassanien, editors, Progress in Cryptology – AFRICACRYPT 2013: 6th Inter-
national Conference on Cryptology. Proceedings, pages 173–188. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

[IBM17] IBM. IBM Builds Its Most Powerful Universal Quantum Computing Processors. https:
//www-03.ibm.com/press/us/en/pressrelease/52403.wss, May 2017. (Accessed on
08/28/2017).

[JF11] D. Jao and L. D. Feo. Towards Quantum-Resistant Cryptosystems from Supersingular El-
liptic Curve Isogenies. In B. Yang, editor, Post-Quantum Cryptography - 4th International
Workshop, PQCrypto 2011. Proceedings, volume 7071 of Lecture Notes in Computer Science,
pages 19–34. Springer, 2011.

[KBC97] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Authentica-
tion. RFC 2104 (Informational), 1997.

[KJJ99] P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. J. Wiener, editor,
Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference. Pro-
ceedings, volume 1666 of Lecture Notes in Computer Science, pages 388–397. Springer, 1999.

[KJJR11] P. C. Kocher, J. Jaffe, B. Jun, and P. Rohatgi. Introduction to differential power analysis. J.
Cryptographic Engineering, 1(1):5–27, 2011.

[KNSS13] J. Krämer, D. Nedospasov, A. Schlösser, and J. Seifert. Differential Photonic Emission Anal-
ysis. In E. Prouff, editor, Constructive Side-Channel Analysis and Secure Design - 4th Inter-
national Workshop, COSADE 2013. Revised Selected Papers, volume 7864 of Lecture Notes in
Computer Science, pages 1–16. Springer, 2013.

[Koc96] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other
Systems. In N. Koblitz, editor, Advances in Cryptology - CRYPTO ’96, 16th Annual Interna-
tional Cryptology Conference. Proceedings, volume 1109 of Lecture Notes in Computer Science,
pages 104–113. Springer, 1996.

[KPG99] A. Kipnis, J. Patarin, and L. Goubin. Unbalanced Oil and Vinegar Signature Schemes. In
J. Stern, editor, Advances in Cryptology - EUROCRYPT ’99, International Conference on the
Theory and Application of Cryptographic Techniques. Proceeding, volume 1592 of Lecture
Notes in Computer Science, pages 206–222. Springer, 1999.

[Krä15] J. Krämer. Why cryptography should not rely on physical attack complexity. Ph.D. thesis,
Berlin Institute of Technology, 2015.

[Lam79] L. Lamport. Constructing digital signatures from a one-way function. Technical report,
Technical Report CSL-98, SRI International Palo Alto, 1979.

[LM95] F. Leighton and S. Micali. Large provably fast and secure digital signature schemes based
on secure hash functions, 1995. US Patent 5,432,852.

[LSCH10] M.-K. Lee, J. E. Song, D. Choi, and D.-G. Han. Countermeasures against Power Analysis
Attacks for the NTRU Public Key Cryptosystem. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, E93.A(1):153–163, 2010.

[McE78] R. McEliece. A Public-Key Cryptosystem Based On Algebraic Coding Theory. Deep Space
Network Progress Report, 44:114–116, 1978.

66

https://www-03.ibm.com/press/us/en/pressrelease/52403.wss
https://www-03.ibm.com/press/us/en/pressrelease/52403.wss

[MCF17] D. McGrew, M. Curcio, and S. Fluhrer. Hash-Based Signatures, June 2017. Work in Progress
- https://datatracker.ietf.org/doc/draft-mcgrew-hash-sigs/.

[Mer79] R. C. Merkle. Secrecy, authentication, and public key systems. Ph.D. thesis, Stanford Univer-
sity, 1979.

[Mer90] R. C. Merkle. A Certified Digital Signature. In G. Brassard, editor, Advances in Cryptology —
CRYPTO’ 89 Proceedings, pages 218–238. Springer New York, New York, NY, 1990.

[MI88] T. Matsumoto and H. Imai. Public Quadratic Polynominal-Tuples for Efficient Signature-
Verification and Message-Encryption. In C. G. Günther, editor, Advances in Cryptology -
EUROCRYPT ’88, Workshop on the Theory and Application of of Cryptographic Techniques.
Proceedings, volume 330 of Lecture Notes in Computer Science, pages 419–453. Springer,
1988.

[MMN04] S. Moriai, M. Matsui, and J. Nakajima. A Description of the Camellia Encryption Algorithm.
RFC 3713, April 2004.

[MOP07] S. Mangard, E. Oswald, and T. Popp. Power analysis attacks - revealing the secrets of smart
cards. Springer, 2007.

[MSSS11] H. G. Molter, M. Stöttinger, A. Shoufan, and F. Strenzke. A simple power analysis attack on
a McEliece cryptoprocessor. Journal of Cryptographic Engineering, 1(1):29–36, 2011. ISSN
2190-8516.

[MTMM07] R. P. McEvoy, M. Tunstall, C. C. Murphy, and W. P. Marnane. Differential Power Analysis of
HMAC Based on SHA-2, and Countermeasures. In S. Kim, M. Yung, and H. Lee, editors,
Information Security Applications, 8th International Workshop, WISA 2007. Revised Selected
Papers, volume 4867 of Lecture Notes in Computer Science, pages 317–332. Springer, 2007.

[Nat99] National Institute of Standards and Technology. FIPS PUB 46-3 - Data Encryption Standard
(DES), October 1999. http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.
pdf.

[Nat01] National Institute of Standards and Technology. FIPS PUB 197 - Advanced Encryption Stan-
dard (AES), November 2001. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.
197.pdf.

[Nat15a] National Institute of Standards and Technology. FIPS PUB 180-4: Secure Hash Standard,
August 2015. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf.

[Nat15b] National Institute of Standards and Technology. FIPS PUB 202: SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions, August 2015. http://

nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf.

[Nat16a] National Institute of Standards and Technology. NIST Special Publication 800-57: Recom-
mendation for Key Management Part 1 Revision 4, January 2016. http://nvlpubs.nist.
gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf.

[Nat16b] National Institute of Standards and Technology. POST-QUANTUM CRYPTO
STANDARDIZATION. http://csrc.nist.gov/groups/ST/post-quantum-crypto/

cfp-announce-dec2016.html, December 2016. (Accessed on 08/28/2017).

[Ope] OpenSSL Implementation of SHA256. https://github.com/openssl/openssl/blob/

master/crypto/sha/sha256.c (Accessed on 08/28/2017).

67

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/cfp-announce-dec2016.html
http://csrc.nist.gov/groups/ST/post-quantum-crypto/cfp-announce-dec2016.html
https://github.com/openssl/openssl/blob/master/crypto/sha/sha256.c
https://github.com/openssl/openssl/blob/master/crypto/sha/sha256.c

[Ott04] M. Otto. Fault attacks and countermeasures. Ph.D. thesis, Paderborn University, 2004.

[QS01] J. Quisquater and D. Samyde. ElectroMagnetic Analysis (EMA): Measures and Counter-
Measures for Smart Cards. In I. Attali and T. P. Jensen, editors, Smart Card Programming
and Security, International Conference on Research in Smart Cards, E-smart 2001. Proceedings,
volume 2140 of Lecture Notes in Computer Science, pages 200–210. Springer, 2001.

[Rey17] M. Reynolds. Quantum simulator with 51 qubits is
largest ever. https://www.newscientist.com/article/

2141105-quantum-simulator-with-51-qubits-is-largest-ever/, July 2017. (Ac-
cessed on 08/28/2017).

[RMB15] C. Rebeiro, D. Mukhopadhyay, and S. Bhattacharya. Timing channels in cryptography : a
micro-architectural perspective. Springer International Publishing, Cham, 2015.

[RR02] L. Reyzin and N. Reyzin. Better than BiBa: Short One-Time Signatures with Fast Signing
and Verifying. In L. Batten and J. Seberry, editors, Information Security and Privacy: 7th Aus-
tralasian Conference, ACISP 2002. Proceedings, pages 144–153. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2002.

[Sho97] P. W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on
a Quantum Computer. SIAM J. Comput., 26(5):1484–1509, 1997.

[SPY+10] F. Standaert, O. Pereira, Y. Yu, J. Quisquater, M. Yung, and E. Oswald. Leakage Resilient
Cryptography in Practice. In A. Sadeghi and D. Naccache, editors, Towards Hardware-
Intrinsic Security - Foundations and Practice, Information Security and Cryptography, pages
99–134. Springer, 2010.

[SSMS09] A. Shoufan, F. Strenzke, H. G. Molter, and M. Stöttinger. A Timing Attack against Patterson
Algorithm in the McEliece PKC. In D. H. Lee and S. Hong, editors, Information, Security
and Cryptology - ICISC 2009, 12th International Conference. Revised Selected Papers, volume
5984 of Lecture Notes in Computer Science, pages 161–175. Springer, 2009.

[STM+08] F. Strenzke, E. Tews, H. G. Molter, R. Overbeck, and A. Shoufan. Side Channels in the
McEliece PKC. In J. Buchmann and J. Ding, editors, Post-Quantum Cryptography: Sec-
ond International Workshop, PQCrypto 2008. Proceedings, pages 216–229. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

[Str10] F. Strenzke. A Timing Attack against the Secret Permutation in the McEliece PKC. In
N. Sendrier, editor, Post-Quantum Cryptography: Third International Workshop, PQCrypto
2010. Proceedings, pages 95–107. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[Str13] F. Strenzke. Timing Attacks against the Syndrome Inversion in Code-Based Cryptosystems.
In P. Gaborit, editor, Post-Quantum Cryptography: 5th International Workshop, PQCrypto
2013. Proceedings, pages 217–230. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[SW06] J. H. Silverman and W. Whyte. Timing Attacks on NTRUEncrypt Via Variation in the Number
of Hash Calls. In M. Abe, editor, Topics in Cryptology – CT-RSA 2007: The Cryptographers’
Track at the RSA Conference 2007. Proceedings, pages 208–224. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2006.

[TE15] M. Taha and T. Eisenbarth. Implementation Attacks on Post-Quantum Cryptographic
Schemes. Cryptology ePrint Archive, Report 2015/1083, 2015. http://eprint.iacr.
org/2015/1083.

68

https://www.newscientist.com/article/2141105-quantum-simulator-with-51-qubits-is-largest-ever/
https://www.newscientist.com/article/2141105-quantum-simulator-with-51-qubits-is-largest-ever/
http://eprint.iacr.org/2015/1083
http://eprint.iacr.org/2015/1083

[TRS16] M. M. I. Taha, A. Reyhani-Masoleh, and P. Schaumont. Keymill: Side-Channel Resilient Key
Generator. IACR Cryptology ePrint Archive, 2016:710, 2016.

[TS13] M. M. I. Taha and P. Schaumont. Differential Power Analysis of MAC-Keccak at Any Key-
Length. In K. Sakiyama and M. Terada, editors, Advances in Information and Computer
Security - 8th International Workshop on Security, IWSEC 2013. Proceedings, volume 8231 of
Lecture Notes in Computer Science, pages 68–82. Springer, 2013.

[Viz07] N. V. Vizev. Side Channel Attacks on NTRUEncrypt, 2007. Bachelor’s thesis, Techni-
cal University of Darmstadt, Germany, 2007. Available on http://www.cdc.informatik.tu-
darmstadt.de/reports/reports/Nikolay_Vizev.bachelor.pdf.

[vMG14] I. von Maurich and T. Güneysu. Towards Side-Channel Resistant Implementations of QC-
MDPC McEliece Encryption on Constrained Devices. In M. Mosca, editor, Post-Quantum
Cryptography: 6th International Workshop, PQCrypto 2014. Proceedings, pages 266–282.
Springer International Publishing, Cham, 2014.

[YSPY10] Y. Yu, F. Standaert, O. Pereira, and M. Yung. Practical leakage-resilient pseudorandom
generators. In E. Al-Shaer, A. D. Keromytis, and V. Shmatikov, editors, Proceedings of the
17th ACM Conference on Computer and Communications Security, CCS 2010, pages 141–
151. ACM, 2010.

[ZKSH12] M. Zohner, M. Kasper, M. Stöttinger, and S. A. Huss. Side channel analysis of the SHA-3
finalists. In W. Rosenstiel and L. Thiele, editors, 2012 Design, Automation & Test in Europe
Conference & Exhibition, DATE 2012, pages 1012–1017. IEEE, 2012.

[ZWW13] X. Zheng, A. Wang, and W. Wei. First-order collision attack on protected NTRU cryptosys-
tem. Microprocessors and Microsystems - Embedded Hardware Design, 37(6-7):601–609,
2013.

69

	Introduction
	Problem Statement
	Contributions and Thesis Structure

	Physical Attacks on Cryptographic Schemes
	Power Analysis Attacks
	Simple Power Analysis (SPA)
	Differential Power Analysis (DPA)

	Timing Attacks
	Fault Attacks

	Hash-Based Signature Schemes
	One-Time Signature Schemes
	Lamport-Diffie One-Time Signatures (LD-OTS)
	Winternitz One-Time Signatures (W-OTS)
	W-OTS+

	Construction of Many-Time Signature Schemes
	Merkle Signature Scheme (MSS)
	The eXtended Merkle Signature Scheme (XMSS)
	Multi-Tree XMSS (XMSSMT)

	Related Work
	McGrew Internet Draft and Leighton-Micali Signatures (LMS)
	SPHINCS

	Side-Channel Analysis of XMSS
	Related Work
	Assumptions
	Timing Side-Channels
	W-OTS+
	XMSS
	Discussion

	Power-related Side-Channels
	W-OTS+
	XMSS
	Discussion

	Generalization to Other Hash-Based Schemes
	LD-OTS, W-OTS and MSS
	LMS
	SPHINCS

	Pseudorandom Number Generator (PRNG) and Hash Function Side-Channel Resistance
	Hash Function Side-Channel Resistance
	PRNG Side-Channel Resistance

	Power Analysis Attack on the PRNG in XMSS
	A DPA Attack on SHA2 HMAC
	Attack Design and Adversary Model
	Implementation
	Power Simulation
	DPA

	Results
	8-Bit Hamming Weight Leakage Model
	32-Bit Hamming Weight Leakage Model

	Applicability to Practical PRNGs

	Fault Attack on XMSSMT
	Fault Attack on SPHINCS
	Attack Design and Adversary Model
	Implementation
	Results
	Countermeasures

	Discussion
	Summary
	Conclusion
	Recommendations for Implementers
	Future Work

