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Abstract

Lattice-based cryptography is a promising candidate to build cryptographic primitives that are secure even against quan-
tum algorithms. The Learning with Errors problem is one of the most important hardness assumptions, lattice-based
construction base their security on. Recently, Albrecht et al. (Journal of Mathematical Cryptology 2015) presented the
Sage module "LWE-Estimator" to estimate the hardness of LWE instances, making the choice of parameters for lattice-
based primitives easier and better comparable. The effectiveness of algorithms to solve LWE is often depending on the
number of LWE instances, called LWE-samples, given. Therefore, the optimal number of LWE-samples is assumed to
estimate the hardness. In cryptographic applications the optimal number of samples is often not given, but only a small
number of samples. This leads to a more conservative choice of parameters than necessary in applications.

This work aims to improve the parameter choice with respect to described problem. The contribution presented in this
work is twofold. First, we analyze the hardness of LWE instances given a fixed number of samples. For this, we describe
algorithms proposed in literature to solve LWE shortly and estimate their computational cost while taking a limitation
of the available number of samples into account. We consider instances of generic LWE as well as instances with small
secret. Secondly, we use these results to extend the Sage module "LWE-Estimator", so that the resulting implementation
can be used to estimate LWE instances with fixed numbers of samples. Furthermore, we present examples of using
the implementation and show estimation results using example parameters. These indicate a significant impact on the
hardness of LWE if the number of samples is strongly limited. Also, we show a comparison of the considered algorithms,
focusing on the behavior when limiting the number of available samples.



Contents

1 Introduction 6
1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Notations and Definitions 9
2.1 Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Learning with Errors Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Learning with Errors Problem with Small Secret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Short Integer Solutions Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Bounded Distance Decoding Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Description of Lattice Reduction Algorithms 12

4 Description of Algorithms to solve the Learning with Errors Problem 14
4.1 Exhaustive Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.1 General Variant of Exhaustive Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1.2 Small Secret Variant of Exhaustive Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Blum-Kalai-Wasserman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.1 General Variant of Blum-Kalai-Wasserman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.2 Small Secret Variant of Blum-Kalai-Wasserman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Using Lattice Reduction to Distinguish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.1 General Variant of Using Lattice Reduction to Distinguish . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.2 Small Secret Variant of Using Lattice Reduction to Distinguish . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Decoding Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4.1 General Variant of Decoding Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4.2 Small Secret Variant of Decoding Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.5 Standard Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5.1 General Variant of Standard Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5.2 Small Secret Variant of Standard Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.6 Dual Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6.1 General Variant of Dual Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6.2 Small Secret Variant of Dual Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.7 Bai and Galbraith’s Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Implementation 32
5.1 Explanation of Usage and Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Explanation of Structure of Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Comparison of Implementations and Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3.1 Comparison of Implementations for the General Variant . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.2 Comparison of Algorithms for the General Variant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.3 Comparison of Implementations for the Small Secret Variant . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.4 Comparison of Algorithms for the Small Secret Variant . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3.5 Conclusion of Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Summary 46

3



List of Tables

1 Definition of the Landau notation as used in this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Complexities of the methods used to find shortest vectors in lattices of dimension k; tBKZ is the runtime of

BKZ depending on the Hermite factor δ0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Logarithmic runtimes of the using lattice reduction to distinguish algorithm for different models introduced

in Section 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4 Logarithmic runtimes of the small secret variant of the using lattice reduction to distinguish algorithm for

different models introduced in Section 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5 Logarithmic runtimes of standard embedding for different models introduced in Section 3 . . . . . . . . . . . 27
6 Logarithmic runtimes of the small secret variant of standard embedding for different models introduced in

Section 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7 Logarithmic runtimes of dual embedding for different models introduced in Section 3 . . . . . . . . . . . . . . 29
8 Logarithmic runtimes of the small secret variant of dual embedding for different models introduced in

Section 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9 Logarithmic runtimes of the Bai-Galbraith-Embedding attack for different models introduced in Section 3 . 31
10 Meanings of the abbreviations and values in the output of the function estimate_lwe . . . . . . . . . . . . . . . . 34
11 Logarithmic hardness of the algorithms exhaustive search (mitm), Coded-BKW (bkw), using lattice re-

duction to distinguish (sis), decoding (dec), standard-embedding (kannan) and dual-embedding (dual)
depending on the given number of samples for the LWE instance n= 128, α= 1p

2πn log2 n
and q ≈ n2 . . . . . 37

12 Logarithmic hardness with optimal number of samples computed by the previous LWE-Estimator and the
optimal number of samples recalculated according to the model used in this work for the LWE instance
n= 128, α= 1p

2πn log2 n
and q ≈ n2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

13 Logarithmic hardness of the small secret variants of the algorithms exhaustive search (mitm), Coded-BKW
(bkw), using lattice reduction to distinguish (sis), decoding (dec), standard-embedding (kannan), dual-
embedding (dual) and Bai and Galbraith’s embedding (baigal) depending on the given number of samples
for the LWE instance n= 128, α= 1p

2πn log2 n
, q ≈ n2 and [a, b] = [−1,1] . . . . . . . . . . . . . . . . . . . . . . 39

14 Logarithmic hardness in the small secret case with optimal number of samples computed by the previous
LWE-Estimator and the optimal number of samples recalculated according to the model used in this work
for the LWE instance n= 128, α= 1p

2πn log2 n
, q ≈ n2 and [a, b] = [−1,1] . . . . . . . . . . . . . . . . . . . . . . 39

4



List of Figures

1 Overview of existing algorithms to solve LWE categorized by different strategies described in Sections 2.3
and 2.4; algorithms using lattice reduction methodes are dashed-framed; the following abbreviations are
used: LWE – learning with errors problem, BDD – bounded distance decoding problem, SIS – short integer
solution problem, uSVP– unique shortest vector problem and BKW– Blum-Kalai-Wassermann algorithm . . . 6

2 High-level structure of the implementation in the general case showing the connections of wrapping func-
tions, subroutines and the functions estimating the costs of algorithms; estimate_lwe and bkw are the entry
points for the general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 High-level structure of the implementation in the small secret case showing the connections of wrapping
functions, subroutines and the functions estimating the costs of algorithms; estimate_lwe with set parameter
secret_bounds and bkw_small_secret are the entry points for the small secret case . . . . . . . . . . . . . . . . . . . 36

4 Flowcharts of the basic structure of estimating the computational cost of algorithms using lattice reduction
and the specific structure of estimating the cost of dual-embedding . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Logarithmic hardness of the algorithms Meet-in-the-middle, Coded-BKW, using lattice reduction to distin-
guish, decoding, standard embedding and dual embedding for the LWE instance n = 128, α = 1p

2πn log2 n

and q ≈ n2; hardness estimations for each algorithm shown for both depending on a given number of
samples and using the optimal number of samples marked by a dashed line . . . . . . . . . . . . . . . . . . . . 42

6 Logarithmic hardness of dual-embedding without falling back to optimal case for numbers of samples
larger than the optimal number of samples for the LWE instance n= 128, α= 1p

2πn log2 n
and q ≈ n2 . . . . . 43

7 Comparison of the logarithmic hardness of the LWE instance n = 128, α = 1p
2πn log2 n

and q ≈ n2 of
the algorithms Meet-in-the-middle (mitm), using lattice reduction to distinguish (sis), decoding (dec),
standard embedding (kannan) and dual embedding (dual), when limiting the number of samples . . . . . . 43

8 Logarithmic hardness of the algorithms Meet-in-the-middle, Bai-Galbraith-embedding, using lattice reduc-
tion to distinguish, decoding, standard embedding and dual embedding for the small secret LWE instance
n = 128, α = 1p

2πn log2 n
, q ≈ n2 and [a, b] = [−1,1]; hardness estimations for each algorithm shown for

both depending on a given number of samples and using the optimal number of samples marked by a
dashed line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

9 Comparison of the logarithmic hardness of the LWE instance n = 128, α = 1p
2πn log2 n

, q ≈ n2 and [a, b] =
[−1, 1] of the small secret variants of the algorithms Meet-in-the-middle (mitm), Coded-BKW (bkw), using
lattice reduction to distinguish (sis), decoding (dec), standard embedding (kannan), dual embedding
(dual) and Bai and Galbraith’s embedding (baigal) when limiting the number of samples . . . . . . . . . . . . 45

5



1 Introduction

The Learning with Errors (LWE) problem is used in the construction of many cryptographic primitives [22, 37, 38]. It
became popular due to its flexibility for instantiating cryptographic solutions and comes with the advantage that it can be
instantiated such that it is provably as hard as worst-case lattice problems [38]. Moreover, LWE presumably remains hard
even when quantum algorithms are considered. In general, an instance of LWE is characterized by parameters n ∈ Z,
α ∈ (0,1) and q ∈ Z. To solve the LWE problem, an algorithm has to be able to recover the secret vector s ∈ Zn

q , given
access to LWE-samples (ai , ci = ai · s+ ei mod q) ∈ Zn

q ×Zq chosen according to a probability distribution characterized
by α.

To estimate the hardness of concrete instances of LWE, the Sage module "LWE-Estimator" by Albrecht et al. [5, 6]
can be used. In particular, this is useful for choosing and comparing parameters for lattice based primitives. Since the
algorithms solving LWE often depend on the number of LWE-samples, for the "LWE-Estimator" the optimal number of
samples is assumed to estimate the hardness. In contrary to this, the optimal number of samples is often not given in
cryptographic applications. In such cases using the "LWE-Estimator" leads to overly conservative estimations when using
the "LWE-Estimator" for cryptographic applications with limited numbers of samples. Therefore, the parameters chosen
to make the system secure may be too conservative when relying on the estimations of the optimal samples case. These
results can be improved by taking a possible limitation of the number of samples into account. This leads to a more
precise estimation for LWE-based cryptographic systems with limited numbers of samples and hence less conservative
parameter choices.

Albrecht et al. [6] give a survey of the concrete hardness of LWE based on existing algorithms solving LWE. This
means, given particular values (n,α, q) for an instance of LWE, the computational cost of solving LWE using currently
known algorithms is presented. These algorithms can be categorized by the strategy they employ to solve LWE into three
families. One approach reduces LWE to finding a short vector in the dual lattice formed by the given samples, also known
as Short Integer Solution (SIS) problem. Another strategy solves LWE by considering it as a Bounded Distance Decoding
(BDD) problem, for which a lattice point in the lattice built by the samples is considered, where the error of the samples
form a noise vector bounded in distance from this lattice point. The third family consists of combinatorial algorithms like
the Blum-Kalai-Wasserman (BKW) algorithm. The algorithm proposed by Arora and Ge [8] is somewhat different to the
others, since it solves LWE using a system of noise-free non-linear polynomials with the root being the secret of the LWE
instance. Due to its high costs and consequential insignificant practical use, this algorithm is not considered throughout
this work.

The following algorithms are considered to estimate the concrete hardness of LWE: exhaustive search, BKW, using
lattice reduction to distinguish, decoding, standard embedding and dual embedding. Figure 1 shows the categorization
by strategies used to solve LWE and by employment of lattice reduction. BKW is classified as solving via SIS strategy,
since it can be seen as an oracle producing short vectors in the dual lattice constructed by the samples ai . The "direct"
strategy implies, that the algorithms using this method solve for the secret directly.

LWE

direct

Arora-Ge and
Gröbner Bases

Exhaustive
Search

BDD

uSVP

Dual
Embedding

Standard
Embedding

Decoding
Approach

SIS

Using Lattice Reduction
To Distinguish

BKW

Lattice Reduction

Figure 1: Overview of existing algorithms to solve LWE categorized by different strategies described in Sections 2.3
and 2.4; algorithms using lattice reduction methodes are dashed-framed; the following abbreviations are used:
LWE – learning with errors problem, BDD – bounded distance decoding problem, SIS – short integer solution
problem, uSVP– unique shortest vector problem and BKW– Blum-Kalai-Wassermann algorithm
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1.1 Related Work

The paper presented by Albrecht et al. [6] gives a survey of estimations of the hardness of concrete LWE instances and is
a key paper for this work. These estimations are based on state-of-the-art algorithms both in standard and small secret
variants and assume that the optimal number of samples is available. Additionally, the authors describe their Sage module
called "LWE-Estimator", which calculates hardness estimations for concrete instances of LWE, and provide examples of
usages. A general description of lattice-based cryptography, its relevant problems and main cryptographic primitives
is given by Micciancio and Regev in [35]. As part of this, also lattice reduction is broached, while a more detailed
discussion is shown by Gama and Nguyen in [20]. They assess the practical hardness of the main lattice problems
based on experiments using the NTL library. Linder and Peikert [31] introduce a new scheme being a generalization
of prior LWE-based cryptographic systems, which achieves smaller keys and ciphertexts. Along with that, they present
a new decoding approach for attacking LWE based on Babai’s Nearest Plain attack introduced in [9]. Furthermore,
Lindner and Peikert introduce a new model of estimating BKZ runtimes based on extrapolating from experiments using
small parameters. Blum, Kalai and Wasserman [12] present the BKW algorithm with estimations of the hardness being
discussed in detail by Albrecht et al. in [2]. This is further improved by Duc et al. [19] using Fourier transform. Also,
they apply the same technique to the Learning with Rounding (LWR) problem, which is not in the scope of this work.
Another improvement of BKW, called Coded-BKW, is introduced by Guo, Johansson and Stankovski in [24], where the
authors utilize a lattice code to map subvectors to codewords. This leads to increased noise, but produces better overall
results. Additionally, they analyze the complexity of Coded-BKW in the small secret case. One of the the small secret
variants of BKW employs lazy modulus switching as described by Albrecht et al. [3]. Albrecht, Fitzpatrick and Göpfert
[4] analyze the concrete hardness of instances of LWE under an attack known as Kannan’s attack or standard embedding,
which reduces the Bounded Distance Decoding (BDD) problem to the unique-Shortest-Vector-Problem (uSVP) and then
solves this via embedding. To solve small secret instances in this manner, Bai and Galbraith [11] present their embedding
approach for these instances, which is somewhat similar to standard embedding, but utilizes a dual lattice. Another
embedding approach is the dual-embedding attack, which is introduced by Bai and Galbraith [10]. Dagdelen et al. [17]
give an improvement of the estimations regarding this attack.

1.2 Contribution

Estimations of the "LWE-Estimator" by Albrecht et al. [6] on the hardness of LWE assume that the optimal number
of samples is accessible. Often, this property is not given in cryptographic applications, allowing for less restricting
parameter sets than proposed by the "LWE-Estimator". We aim to solve this problem. As first part, we analyze the
hardness of LWE instances while taking a fixed number of samples into account. Our analysis is based on several
currently known algorithms. Except for Arora and Ge’s algorithm, these are the algorithms mentioned in Figure 1. We
describe each of them shortly and then analyze them regarding their computational costs when solving LWE while taking
a fixed number of samples into account. Additionally, we analyze the small secret variants of these algorithms, where the
components of the secret vector are chosen from a pre-defined set of small numbers.

As discussed by Albrecht et al. [6], there are mostly no sufficiently precise closed formulas for calculating the runtimes
only depending on parameters of a given LWE instance (n,α, q), since there is no function of δ0 to calculate the runtime
of lattice reduction. To compensate this, they introduce the "LWE-Estimator" as a Sage implementation, which provides
estimations of the computational costs given concrete instances of LWE. In the second part of this work, we provide an
implementation of the results of the analyses of the first part based on the "LWE-Estimator". We always use the existing
estimations, assuming the optimal number of samples is available, if the given, fixed number of samples exceeds the
optimal number. If not enough samples are given, we calculate the computational costs using the estimations presented
in this work. The implementation will be publicly available at https://www.cdc.informatik.tu-darmstadt.de/cdc/
personen/nina-bindel/ and is expected to be integrated into the existing LWE-Estimator at https://bitbucket.org/
malb/lwe-estimator in due time.

Also, we present examples of the usage and the output of the implementation, which give an exemplary evaluation
of the results. These show, that the hardness of most of the considered algorithms are influenced significantly by the
limitation of the available number of samples. Furthermore, we describe the structure of the code and highlight some
implementation details. At the end, we show a comparison of the behavior of the hardness of the considered algorithms
with focus on the limitation of samples.

1.3 Structure

In Section 2 we introduce notations along with some definitions of important hardness assumptions like the LWE problem
and structures required to understand the subsequent sections. We describe lattice reduction and its runtime estimations
in Section 3. The Section 4 shows our analyses of the considered algorithms. For each of them, we present a description
of the attack itself at first and then analyze the standard instances of LWE with parameters (n,α, q) and the corresponding
small secret variants while taking a limitation of the numbers of samples into account. In Section 4.7 we show the small

7



secret variant by Bai and Galbraith using an embedding approach in the same manner. In Section 5 we give an example
of using the implementation together with an explanation of the possible outputs, a description of the structure of the
code and a comparison of the hardness of the considered algorithms in terms of behavior when limiting the number of
available samples. Additionally, we demonstrate the results of the presented estimates using example parameters and
finish with a summary in Section 6.
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2 Notations and Definitions

The notations in this work are inspired by Albrecht et al. [6]. That is, logarithms are base 2 except indicated otherwise.
Column vectors are denoted as lowercase bold letters and matrices by uppercase bold letters. Let a be a vector, then a(i)
denotes the i-th component of a and ai denotes the i-th vector of a list of vectors. Furthermore, let a = (a1, . . . , an) ∈ Rn

and b = (b1, . . . , bn) ∈ Rn be two vectors. Then a||b = (a1, . . . , an, b1, . . . , bn) ∈ R2n is the standard concatenation of two
vectors and a · b =

∑n
i=1 ai bi is the usual dot product. We use ≈ to indicate that something is sufficiently close to equal

and therefore treated as equal for our estimates. We use the standard definition of the Landau notation as shown in
Table 1.

Notation Definition

f ∈ o(g) f asymptotically negligible compared to g
f ∈ O (g) g asymptotic upper bound for f
f ∈ Ω(g) g asymptotic lower bound for f
f ∈ω(g) f asymptotically dominant compared to g (g ∈ o( f ))

Table 1: Definition of the Landau notation as used in this work

2.1 Lattice

A lattice L is defined as a discrete additive subgroup of Rm containing all integer linear combinations of n linearly
independent vectors b1, . . . ,bn ∈ Rm, which together form a non-unique basis B = {b1, . . . ,bn} of L. Consider B as a
matrix, where the columns are formed by the basis vectors. Then the lattice can be expressed as L(B) = {Bu | u ∈ Zn

q}.
The rank of L is the rank of the basis matrix B and L is called full rank, if rank(L) = m. The determinant of the lattice
L is defined as the absolute value of the determinant of the basis matrix det(L(B)) = |det(B)|. The determinant is
independent of the actual choice of the basis. Using this, the volume vol(L) of a full-rank lattice L can be defined as the
absolute value of the determinant. A q-ary lattice is a lattice L, that satisfies qZm ⊆ L ⊆ Zm. In the following, we consider
only full-rank, q-ary lattices.

The scaled (by q) dual lattice L⊥ of the lattice L, generated by A ∈ Zm×n
q , contains all vectors orthogonal to the columns

of A. In the following we define lattices.

Definition 1 (Lattice). Let b1, . . . ,bn ∈ Rm be n linearly independent vectors forming a basis and let A ∈ Zm×n
q be a

matrix containing the basis vectors as columns. Then, the q-ary lattice L(A) and the corresponding dual lattice L⊥(A) are
defined by

L(A) ={y ∈ Zm | ∃s ∈ Zn : y= As mod q} , (1)

L⊥(A) ={y ∈ Zm | yT A= 0 mod q} . (2)

In this work, the distance between a lattice L and a vector v ∈ Rm is defined as the distance between v and the closest
lattice point x ∈ L to v. Written formally, it is dist(v, L) =min{‖v− x‖ | x ∈ L}.

Some definitions about lattices will be needed later and are given in the following. The i-th successive minimum λi(L)
of the lattice L is defined as the smallest radius r, such that there are i linearly independent vectors of norm r in the
lattice. Usually, the norm is the euclidean norm and therefore, it can be seen as the radius of the smallest ball around the
origin, which contains i linearly independent lattice vectors. Based on this definition it is possible to state the Gaussian
heuristic λi(L)≈

Æ

m
2πe vol(L)

1
m .

Lattice reduction is a method to find a new basis of a given lattice, such that the basis vectors are short and nearly
orthogonal to each other. Since lattice reduction is used by many of the algorithms described below, it is necessary to
introduce the Hermite factor δm

0 , which is defined by δm
0 =

‖v‖

vol(L)
1
m

, where v is the shortest non-zero vector in the basis

returned by the lattice reduction algorithm. The Hermite factor describes the quality of a basis, which, for example, may
be the output of a lattice reduction algorithm. Even though, strictly speaking δ0 is called root-Hermite factor and logδ0
the log root-Hermite factor, "Hermite-factor" also often refers to δ0.

There exist several problems related to lattices, some of which we describe in the following.

Definition 2 (SVP). Given a lattice L(A), the Shortest Vector Problem (SVP) is the problem to find the shortest non-zero
vector in L(A).

Variants of the SVP are the γ-unique Shortest Vector Problem (γ-uSVP) and the κ-Hermite Shortest Vector Problem
(κ-HSVP), which we define in the following:

9



Definition 3 (γ-uSVP). Let L(A) be a lattice such that λ2(L(A)) > γλ1(L(A)), the γ-unique SVP is the problem to find
the shortest non-zero vector v ∈ L(A).

Definition 4 (κ-HSVP). Let L(A) be a lattice, the κ-Hermite SVP is the problem of finding a vector v ∈ L such that
0< ‖v‖ ≤ κ · det(L)

1
n

Furthermore, we define the Closest Vector Problem (CVP):

Definition 5 (CVP). Given a lattice L(A) and a target vector t ∈ Rm, which is not necessarily in the lattice, finding the
lattice vector v ∈ L(A) closest to t solves the CVP.

2.2 Learning with Errors Problem

The Learning with Errors problem (LWE) is a generalization of the parity learning problem [12], introduced by Regev
[38]. We first recall the definition of the Gap Shortest Vector Problem (GapSVP).

Definition 6 (GapSVP [13]). For an approximation ratio γ≥ 1, the GapSVPγ is the problem of deciding, given a basis B of
an n-dimensional lattice L(B) and a number d, between the case where λ1(L(B))≤ d and the case where λ1(L(B))> γd.

Regev [38], Peikert [37] and Brakerski et al. [13] show reductions from the worst-case hardness of the GapSVP
problem to LWE. In the following we recall the definition of LWE.

Definition 7 (LWE [6]). Let n and q be positive integers. Additionally, let χ be a probability distribution over Z and let
s ∈ Zn

q . Then, Ls,χ denotes the probability distribution on Zn
q × Zq obtained by choosing a ∈ Zn

q uniformly at random,
choosing e ∈ Z according to χ (and considering it in Zq), and returning (a, c = a · s+ e mod q) ∈ Zn

q ×Zq.
Decision-LWE is the problem of deciding whether pairs (a, c) ∈ Zn

q × Zq are sampled according to Ls,χ or the uniform
distribution on Zn

q ×Zq.
Search-LWE is the problem of recovering s from (a, c = a · s+ e mod q) ∈ Zn

q ×Zq sampled according to Ls,χ .

Considering Ls,χ as oracle outputting samples at will is usually suitable for having arbitrarily many samples available.
If the maximum number of samples to use is fixed, this can be seen as a fixed set of m> 0 ∈ Z samples {(a1, c1 = a1 ·s+e1
mod q), . . . , (am, cm = am ·s+em mod q)}, often written as matrix (A,c) ∈ Zm×n

q ×Zm
q . This matrix is called "sample matrix"

in our work. It can be shown, that Decision-LWE and Search-LWE are equivalent (see Lemma 3 in [6]).
Adopting the choice in [6], we choose χ as a discrete Gaussian distribution DZ,αq on Z with mean zero and width

parameter αq, which samples elements with probability proportional to exp
�

−π x2

(αq)2

�

. For the cases considered in

this work it can be assumed that the standard deviation of a continuous Gaussian distribution σ = αqp
2π

with width
parameter αq is roughly the same as the standard deviation of the used discrete Gaussian distribution. Other than in [6],
only two characterizations of LWE are considered in this work: the generic characterization by n,α, q and the small secret
case, where the components of s are small, i.e. chosen according to a distribution ψ such that s(i) ∈ I with I being a
set containing small numbers, e.g. I = {0,1}. The third characterization shown by Albrecht et al. [6] with q ≈ nc and
αq =

p
n for a small constant c is left out, since considering the most generic characterization n,α, q is sufficient.

Let U be the uniform distribution over Zq and 2 ≤ ω < 3 a constant such that there is an algorithm which multiplies
matrices in O (nω) operations for sufficiently large n. At loss of n samples, an LWE instance can be constructed, where
the secret vector s follows the same distribution as the error:

Lemma 1 ([6, Lemma 1],[7]). Let DZn,αq be an n-dimensional extension of DZ,αq to Zn in the obvious way, i.e.
each component is sampled according to DZ,αq. Then, given access an oracle Ls,χ returning samples of the form
(a, c) = (a,a · s+ e mod q) ∈ Zn

q ×Zq with a ←$ U(Zn
q), e ←$ DZ,αq and s ∈ Zn

q , we can construct samples of the
form (a, c) = (a,a · e + e) ∈ Zn

q × Zq with a ←$ U(Zn
q), e ←$ DZ,αq and e ←$ DZn,αq in 2n2 operations in Zq per

sample, at loss of n samples overall and with O (nω) operations for precomputation.

The two main problems leading to the basic strategies of solving LWE are Short Integer Solutions (SIS) and Bounded
Distance Decoding (BDD). We describe these problems and strategies in the Sections 2.3 and 2.4 below.

2.2.1 Learning with Errors Problem with Small Secret

For the small secret variants of the described algorithms, the components of s are not chosen uniformly random from
Zq, but instead s is chosen from a new distribution, where all components are small. In the following, let [a, b] be the
interval the components of s are sampled from. In general, this is easier to solve than the standard variant. Considering
an LWE instance with dimension n, the corresponding variant using a binary secret [a, b] = [0, 1] theoretically has to
have dimension n log q to be as hard as the LWE instance with non-small secret [34].

10



Modulus Switching for Lattice Reduction
To solve LWE instances with small secret, some algorithms use modulus switching. Let (a, c = a · s+ e mod q) be a

sample of an n,α, q LWE instance. If s is small enough, this sample can be transformed into a sample (ã, c̃) of an n,α′, p

LWE instance, where p satisfies p < q and









�

p
q · a−

�

p
q · a

£�

· s







 ≈ p
q · ‖e‖. The transformed samples can be constructed

such that (ã, c̃) =
��

p
q · a

£

,
�

p
q · c

£�

∈ Zn
p ×Zp, where

p ≈

√

√2πn
12
·
σs

α
(3)

with σs being the standard deviation of the elements of the secret vector s [6, Lemma 2]. With the components of s

being uniformly distributed, the variance of the elements of the secret vector s is determined by σ2
s =

(b−a+1)2−1
12 . It is

assumed, that the distribution of the secret vector s has mean zero. The result is an LWE instance with errors having

standard deviation
p

2αpp
2π
+O (1) and therefore α′ =

p
2α. Even though, the distribution of the error is not exactly Gaussian

anymore, it can be considered to be solved by algorithms solving LWE.
So, for lattice reduction with a small secret, applying modulus switching results in an LWE instance characterized

by n,
p

2α and p. The required δ0 is larger in this case than in non-small secret instances without modulus switching
and therefore, the lattice reduction becomes easier. Every algorithm solving with this strategy can be combined with
exhaustive search guessing g components of the secret at first. Then, the algorithm runs with dimension n− g. Therefore,
all of these algorithms can be adapted to have at most the cost of exhaustive search and potentially have an optimal g
somewhere in between zero and n.

2.3 Short Integer Solutions Problem

The Short Integer Solutions (SIS) problem is defined as follows:

Definition 8 (SIS). Given a matrix A ∈ Zm×n
q consisting of n vectors ai ∈ Zm

q chosen uniformly at random, find a vector
v 6= 0 ∈ Zm, such that ‖v‖ ≤ β with β < q ∈ Z and vT A= 0 mod q.

Solving the SIS problem solves Decision-LWE. Given m samples written as (A,c), which either satisfy c= As+e mod q
or c is chosen uniformly at random, the two cases can be distinguished by finding a vector v in the scaled (by q) dual
lattice L⊥(A) = {w ∈ Zm

q | wT A = 0 mod q}, such that v satisfies the conditions of SIS. Then, v · c either results in
v · e, if c = As+ e mod q, or is uniformly random over Zq. In the first case, v · c = v · e follows a Gaussian distribution
over Z, inherited from the distribution of e, and is usually small. Therefore, as long as the Gaussian distribution can be
distinguished from uniformly random, Decision-LWE can be solved by this procedure. To ensure this, v has to be short
enough, since otherwise, the Gaussian distribution becomes stretched and may be too flat to distinguish from random.

Furthermore, we define the related Inhomogeneous Short Integer Solutions (ISIS) problem:

Definition 9 (ISIS). Given a matrix A ∈ Zm×n
q , a vector b ∈ Zn

q and a real β , find an integer vector v ∈ Zm
q such that

vT A= b mod q and ‖v‖ ≤ β .

2.4 Bounded Distance Decoding Problem

The Bounded Distance Decoding (BDD) problem is defined as follows:

Definition 10 (µ-BDD). Given a lattice L(A) with basis A ∈ Zm×n, a target vector c ∈ Zm and a bound on the distance
from the target vector to the lattice dist(c, L)< µλ1(L) with µ≤ 1

2 , find a lattice vector x ∈ L closest to c.

The LWE problem given m samples written as (A,c = As + e mod q) can be seen as an instance of BDD. Let the
columns of A form a basis of a lattice L(A). Then the point w = As is contained by the lattice. Since e follows the
Gaussian distribution, over 99.7% of all encountered errors are within three standard deviations of the mean (which is
zero). Therefore, w is the closest lattice point to c with a very high probability. Hence, finding w eliminates e. The
assumption that A is always invertible results in a lower bound for the hardness and is therefore acceptable. Hence, the
secret s can be calculated by inverting A.
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3 Description of Lattice Reduction Algorithms

Lattice reduction is applied to a lattice L to find a basis {b0, . . . ,bn−1} of L, such that the basis vectors bi are short and
nearly orthogonal to each other. Following the convention of Albrecht et al. [6], the first non-zero vector b0 of the basis
of the reduced lattice is the shortest vector in the basis. How and why lattice reduction algorithms work is out of scope
of this thesis. In the following, we describe the process of lattice reduction only shortly and instead focus on the runtime
estimations of lattice reduction, because the latter is the interesting part for the analysis of the considered attacks on
LWE. For a deeper contemplation, see [27, 31, 40].

The Lenstra-Lenstra-Lovász (LLL) lattice reduction algorithm is a generalization from a 2-dimensional algorithm by
Lagrange. Given a basis B = {b0, . . . ,bn−1} for a lattice L, the Gram-Schmidt basis B∗ = {b∗0, ...,b∗n−1} and the Gram-

Schmidt coefficients µi, j =
bi ·b∗j
b∗j ·b

∗
j

(for 1 ≤ j < i < n) are defined. The process basically reduces basis vectors pairwise and

checks for the size reduction and Lovász conditions after each reduction [30]. The size reduction condition is defined as
|µi, j | ≤ 0.5 for 1 ≤ j < i < n, while the Lovász condition is given by δ





b∗k−1







2 ≤




b∗k






2
+ µ2

k,k−1 ‖bk−1‖
2 for 1 ≤ k < n,

where δ ∈ ( 1
4 , 1) is a parameter determining the quality of the reduced basis usually set to δ = 3

4 . The runtime of the LLL
algorithm is determined by O (n5+ε log2+ε B) with B > ‖bi‖ for 0≤ i ≤ n−1. Additionally, an improved variant, called L2,
exists, whose runtime is estimated to be O (n5+ε log B+n4+ε log2 B) [36], and there is a heuristically version with runtime

O (n3 log2 B) [15]. The first vector of the output basis is guaranteed to satisfy ‖b0‖ ≤
�

4
3 + ε

�
n−1

2 ·λ1(L) with ε > 0.
The Blockwise Korkine-Zolotarev (BKZ) algorithm employs an algorithm for solving SVP, which is seen as SVP-oracle

here. This can be done by computing the Voronoi cell of the lattice, sieving or enumeration [25]. Given an LLL-reduced
basis B = {b0, . . . ,bn−1} and a block size k, the first block of basis vectors is {b0, . . . ,bk−1}. The SVP oracle is then used
to find a small vector in the space spanned by these vectors. Finally, a new LLL-reduced basis is produced for the given
lattice by calling LLL iteratively on blocks created by vectors from the SVP oracle and the basis of a projected lattice. This
is called a BKZ-round. The new basis is the output of this step. The algorithm terminates at the first step, where the input
basis remains unchanged by the process.

There are some improvements for BKZ, namely extreme pruning [21], early termination, limiting the enumeration
radius to the Gaussian Heuristic and local block pre-processing [15]. The combination of these is called BKZ2.0.

The quality of the output basis is determined by k. Choosing a larger block size k entails a better quality of the output
basis but at cost of an increased runtime. While k = 2 only produces an LLL-reduced basis, k = n results in a Hermite-
Korkine-Zolotarev(HKZ)-reduced output basis. The latter is in some sense an optimally reduced basis at cost of at least
exponential runtime.

Definition 11 (Geometric Series Assumption (GSA) [41]). Let B = {b1, . . . ,bn} be a basis and B∗ = {b∗1, ...,b∗n} be the

corresponding Gram-Schmidt basis, then
‖b∗i ‖

2

‖b1‖2
= r i−1 for i = 1, . . . , n with quotient r ∈

�

3
4 , 1

�

.

A limiting value of the root-Hermite factor δ0 for BKZ can be given, assuming Gaussian heuristic and Geometric

Series Assumption (GSA) hold: lim
n→∞

δ0 =
�

v
−1
k

k

�
1

2(k−1)
≈
�

k
2πe (πk)

1
k

�
1

2(k−1) , where vk is the volume of the unit ball in

dimension k. As examples show, this estimation may also be applied when n is finite [6]. As a function of k, the ’lattice
rule of thumb’ approximates δ0 = k

1
2k , which is often simplified to δ0 = 2

1
k . Albrecht et al. [6] show that the simplified

lattice rule of thumb is a lower bound to the expected behavior on the interval [40, 250] of usual values for k. The
simplified lattice rule of thumb is indeed closer to the expected behavior than the lattice rule of thumb, but it implies an
subexponential algorithm for solving LWE.

In the following, we need the Hermite constant and therefore show its definition here:

Definition 12 (Hermite Constant). Let δn be the maximum lattice packing density for hypersphere packing and Vn be

the content of the n-hypersphere. The Hermite constant is then defined as γn = 4
�

δn
Vn

�
2
n
.

Given an n-dimensional lattice, the runtime in clock cycles is estimated to be

ρ · n · tk , (4)

where ρ is the number of BKZ rounds and tk is the time needed to find short enough vectors in lattices of dimension k.
Even though, ρ is exponential upper bounded by (nk)n at best, in practice the results after ρ = n2

k2 log n rounds provide

a basis whose first vector satisfies ‖b0‖ ≤ 2ν
n−1

2(k−1)+
3
2

k · det(L)
1
n , where νk ≤ k is the maximum of Hermite constants in

dimensions ≤ k, and therefore are close to the final output. [26]
Table 2 shows the theoretical complexities of the three main methods of finding shortest vectors. The second value for

sieving describes the heuristic variant. The two different values for enumeration are achieved by running enumeration on
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Implementations of
SVP-Oracle

Number of Operations
[cycles] Memory log tBKZ

Voronoi Cell 22k+o(k) 2k+o(k)

Ω
�

− log logδ0
logδ0

�

Sieving
standard 2k+o(k) 2k+o(k)

heuristic 20.2972k+o(k) 20.2972k+o(k)

Enumeration
LLL-reduced 2O (k

2) pol y(k) Ω
�

log2 logδ0
log2 δ0

�

quasi-HKZ-reduced kO (k) pol y(k) Ω

�

− log
�− log logδ0

logδ0
log logδ0

�

logδ0

�

Table 2: Complexities of the methods used to find shortest vectors in lattices of dimension k; tBKZ is the runtime of BKZ
depending on the Hermite factor δ0

an LLL-reduced lattice or a stronger reduced quasi-HKZ basis, which requires heavier preprocessing on the input lattice.
Additionally, the logarithm of the runtime complexity of BKZ depending on δ0 is shown in the last column.

There exist several practical estimations of the runtime of BKZ in literature. Some of these results are listed in the
following. Lindner and Peikert’s [31] estimation is given by log tBKZ(δ0) =

1.8
logδ0

− 78.9 clock cycles. This result should
be used carefully, since applying this estimation implies the existence of a subexponential algorithm for solving LWE [6].
The estimation shown by Albrecht et al. [2] log tBKZ(δ0) =

0.009
log2 δ0

− 4.1, called delta-squared model, is non-linear in
logδ0 and it is claimed, that this is more suitable for current implementations. The logarithmic runtime using the model
of lattice rule of thumb can be given as O (k). "fplll" is a project implementing several lattice algorithms including LLL,
BKZ and BKZ2.0 improvements [14]. Albrecht et al. [6] use curve fitting based on BKZ runtime data given by fplll [14]
( f pl l l), Chen and Nguyen [15] (enum), Laarhoven [28] (siev e) and Laarhoven et al. [29] (q− siev e) to find functions
for tk. These functions for f pl l l, enum, siev e and q− siev e are determined to be

tk, f pl l l = 0.0135k2 − 0.2825k+ 21.02 , (5)

tk,enum = 0.270189k log k− 1.0192k+ 16.10 , (6)

tk,siev e = 0.3366k+ 12.31 , (7)

tk,q−siev e = 0.265k . (8)

Using ρ = n2

k2 log n and the functions for tk, the overall runtime of BKZ can be estimated by Equation (4).
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4 Description of Algorithms to solve the Learning with Errors Problem

In this section we describe the algorithms used to estimate the hardness of LWE and analyze them regarding their
computational cost. Each section is divided into general and small secret instances, except for Bai and Galbraith’s
algorithm, which itself is a small secret variant of the embedding attacks.

4.1 Exhaustive Search

The exhaustive search algorithm aims to find the secret s in order to solve LWE. In that process no reduction to underlying
problems or employing of lattice reduction is necessary. Instead, all possible guesses g for s are enumerated and tested
by evaluating ‖Ag− c‖. If the guess is the correct secret g= s, the result is ‖As− c‖= ‖e‖ and therefore small.

4.1.1 General Variant of Exhaustive Search

We need Lemma 4 from [6] to specify an interval every component of e falls into with overwhelming probability.

Lemma 2 ([6, Lemma 4]). Let χ denote the Gaussian distribution with standard deviation σ and mean zero. Then, for
all C > 0, it holds that:

Pr[e←$ χ : |e|> C ·σ]≤
2

C
p

(2π)
exp

�

−
C2

2

�

. (9)

We write gi for possible guesses of the secret vector s. From Lemma 2 it is known, that every component of e falls
into [−tαq, . . . , tαq] with t =ω

�p

log n
�

with overwhelming probability. By Lemma 1 the distribution of e and s can be
made the same by sacrificing n samples. Therefore, there are 2tαq + 1 possibilities for each of the n components of gi
when guessing the secret vector s. The cost of the computation of an inner product can be estimated to be 2n operations
in Zq, since it requires n multiplications and n − 1 additions. Each guessed vector has to be tested for all samples m
by computing an inner product. Therefore, the runtime of exhausting all guesses gi is given by the number of possible
guesses (2tαq+1)n and the cost of testing each of them for all samples by computing an inner product each time 2n ·m:

(2tαq+ 1)n · 2n ·m . (10)

In the process, the currently enumerated guess has to be stored and so, the memory complexity is n. To ensure, that
vectors gi , which are not the correct secret, are rejected with a probability ≥ ε, m has to satisfy m ≥ log(1−ε)−n log(2tαq+1)

log(2tα) ,
where ε is the success probability [6]. Therefore, when given m, one can determine the success probability by simply
rearranging:

ε= 1− (2tα)m · (2tαq+ 1)n . (11)

The number of samples is given by the sum of the required samples n to match the distribution of e and s and the number
of samples m needed to provide a given target success probability.

MITM:
Furthermore, a Meet-in-the-Middle (MITM) variant of this algorithm exists [11]. It is more efficient in terms of

time complexity but requires more memory. The main ideas from above still apply, but each of the m samples

(ak, ck = ak · s+ ek mod q) is split in half at first: ak = ak
l ||ak

r with ak
l ,ak

r ∈ Z
n
2
q being the first ("left") and second

("right") half. Likewise, the guesses gi of the secret vector s are considered as halved: gi = gi
l ||gi

r . Then, a table T is
constructed, which maps ugi l to gi

l , where ugi l =
�

a0
l · gi

l , . . . ,am−1
l · gi

l
�

. As above, the size of each component of s is at
most tαq. Therefore, the cost of generating said table T in number of operations is just the same as performing standard
exhaustive search on half the dimension n

2 , because only the first half of s is considered:

(2tαq+ 1)
n
2 · 2

n
2
·m . (12)

Sorting the table into lexicographical ordering costs [6, Page 16]

O
�

m(2tαq+ 1)
n
2 ·

n
2
· log(m(2tαq+ 1))

�

. (13)

With the other half g j
r of g j , the vector vg j r = (c0 − a0

r · g j
r , . . . , cm−1 − am−1

r · g j
r , ) is built. This vector vg j r is sorted

into the lexicographical ordered table T . This can be done by binary search in n
2 log(m(2tαq+1)) operations. Therefore,

sorting each of the (2tαq+1)
n
2 possible vectors vg j r into the table costs (2tαq+1)

n
2 · n

2 · log(m(2αq+1)) operations [6].
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Each time, a vector vg j r is sorted into the table, the two vectors ugi l it has fallen between are considered. If the distance of

the vectors vg j r and ugi l satisfies the requirement specified in the following, then gi
l ||g j

r is accepted as the correct secret.

The correct secret s= gi′
l ||gi′

r produces







vgi′
r − ugi′

l








= ‖e mod q‖ ≤
p

mtαq. So, in order to accept the pair gi
l ||g j

r as

the correct secret, the distance between vg j r and ugi l has to be lower than
p

mtαq. Otherwise, the pair is rejected.
This algorithm fails if vg j r − ugi l = e mod q produces a wrap around mod q on any component. This happens with

probability 1
C for some constant C > 1, if m satisfies [6]

2tαm<
1
C

. (14)

The chance of accepting a wrong pair (false positive), i.e. a pair gi
l ,g j

r which does not form the correct secret s,
is determined by the probability of vg j r being near to ugi l . More specifically, this is the probability, that the distance
between vg j r and ugi l is

p
mtαq at most. In other words, it is the probability, that the difference of each of the m

components is at most ±tαq. The difference in each component is smaller than tαq for 2tαq + 1 of the q elements of

Zq. Therefore, the chance of a false positive can be estimated to be
�

2tαq+1
q

�m
≈ (2tα)m [6]. Since there are (2tαq+1)

n
2

wrong choices for gi
l , (2tα)m · (2tαq+ 1)

n
2 candidates per g j

r are expected to be tested and therefore, it is required that
the following holds:

(2tα)m · (2tαq+ 1)
n
2 = pol y(n) . (15)

There are two constraints. First, Equation (14) must not be satisfied and second, the requirement from Equation (15)
has to be fulfilled. Assuming that the two constraints hold, the overall runtime of the MITM-variant of exhaustive search
is

O
�

m(2tαq+ 1)
n
2 ·
�

2n+
�n

2
+ pol y(n)

�

· log(m(2tαq+ 1))
��

, (16)

with a success probability of nearly 1. The memory complexity is determined by the size of the table T . For each of
the m samples, T holds one entry for every possible guess of the first half of the secret. The number of possibilities of
the latter is given by (2tαq + 1)

n
2 and therefore, the overall memory complexity is given by m(2tαq + 1)

n
2 . The overall

number of samples n+m needed consists of the number of samples n sacrificed to equalize the distributions of s and e
and the number of samples m required for testing the guesses. If the two constraints related to Equations (14) and (15)
as described above cannot be satisfied, this algorithm is not applicable.

4.1.2 Small Secret Variant of Exhaustive Search

For the small secret variant, the components of s are chosen from a given interval [a, b], which consists of small numbers,
e.g. [0, 1]. Recall the complexity of standard exhaustive search given in Equation (10), where 2tαq+ 1 is the suspected
number of possible values of each component of s. Choosing the components of s from the given interval [a, b] auto-
matically determines the number of possible values to be b − a + 1. Using this and for the same reasons as in standard
exhaustive search, the runtime of the small secret variant of exhaustive search is given by

(b− a+ 1)n · 2n ·m . (17)

Similarly, the success probability ε is derived as before except that the number of possible values for each component of
s is given by b− a+ 1. Substituting b− a+ 1 for 2tαq+ 1 in Equation (11) gives:

ε= 1− (2tα)m · (b− a+ 1)n . (18)

The memory requirement is independent of the number of possible values. Therefore, it remains the same and hence, it
is n. The same applies to the number of required samples n+m.

MITM:
Substituting b − a + 1 for 2tαq + 1 in the derivation of the runtime and memory requirement of the MITM variant of

exhaustive search gives the runtime and memory requirement of the small secret variant of MITM. The constraint from
Equation (15) has to be adapted as well, resulting in

(2tα)m · (b− a+ 1)
n
2 = pol y(n) . (19)

So, assuming Equation (14) does not hold and Equation (19) is satisfied, the runtime of the small secret variant of MITM
is

O
�

m(b− a+ 1)
n
2 ·
�

2n+
�n

2
+ pol y(n)

�

· log(m(b− a+ 1))
��

, (20)

while the memory requirement is m(b−a+1)
n
2 . As in the small secret variant of standard exhaustive search, the number

of samples needed is independent of the number of possible values for one component of s and therefore remains n+m.
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4.2 Blum-Kalai-Wasserman

The Blum-Kalai-Wasserman (BKW) algorithm [12] originally solves Learning Parity with Noise (LPN), but can be adapted
to solve LWE. If the sample matrix were noise free, Gaussian elimination could be used to solve for s. Although there
actually is noise, the BKW algorithm solves LWE similar to Gaussian elimination using more rows at once but eliminating
many variables with single additions of rows rather than just one. So, the main idea is to produce what we call "final
samples" in the following. In contrast, we refer to unaltered samples from Ls,χ as "original samples". Final samples have
their first components reduced to zeros by adding or subtracting partly reduced and original LWE-samples in multiple
stages. In the style of Gaussian elimination, the reduction is also called addition of equations, since the sample matrix
can be seen as system of equations. In the final step of BKW, the produced final samples are used to solve LWE.

Elimination Tables: The considered variants of BKW share the need of "elimination tables". Elimination tables are
created as first step of all variants of BKW to ease sample reduction. For this, parameters b and a =

�

n
b

�

are chosen to
split the n components of a sample a into a blocks of size b each. The processing of each block is one stage (iteration)
of the algorithm. For each stage i, there is one elimination Table Ti . The input for stage i is the output of stage i − 1
or the original sample a in case of i = 1. The output of stage i is produced by reducing the i-th block of the input
to zero by adding or subtracting elements of Ti to it. This procedure is called sample reduction. Elimination tables are
created consecutively, beginning with the first elimination table T1. To create an elimination table Ti , original samples are
requested, reduced using the tables T j(1≤ j < i) according to the algorithm above and put in the i-th elimination table,
until this table is complete. Then, the elimination table Ti+1 is built, until all a elimination tables exist. An elimination
table Ti is considered complete, if it contains all possible combinations of components on the i-th block. Therefore, the
vectors considered in the process of filling table Ti are required to be distinct in the i-th block, that is the combination
of the components (i − 1) · b to i · b has to be different to those of all other vectors stored in Ti . Since elimination
tables Ti (1 < i ≤ a) are populated by obtaining samples from Ls,χ and eliminating the first (i − 1) · b components of
these by addition and subtraction of elements of the elimination tables T j (1 ≤ j < i), the first (i − 1) · b components of
all elements of Ti are guaranteed to be zero. Taking advantage of the symmetry of both Zq and the noise distribution

and the fact, that a table does not need to store entries with only zeros on a block, each Ti contains t = qb−1
2 distinct (in

the i-th block) vectors. So, for example, the first elimination table T1 consists of all t possible vectors obtained by calling
the sample-oracle Ls,χ , which are distinct in the first b components. After a stages, there are a elimination tables, where
the last one Ta contains only vectors with the first (a − 1) · b components being 0. The remaining n′ = n − (a − 1) · b
components, which is n′ = n mod b, if b does not divide n, and n′ = b otherwise, form vectors in Zn′

q distinct from each
other.

4.2.1 General Variant of Blum-Kalai-Wasserman

We consider three variants of BKW, namely the search and decision variants and Coded-BKW. BKW can be seen as a
variant of the Gaussian elimination method, where a system of noise-free linear systems of equations is transformed into
triangular shape, a possible solution for the resulting univariate equation is found and then this partial solution is back
substituted in the original LWE sample. Since the given system of equations is not noise-free, building the triangular
shape increases the standard deviation of the noise by

p
2 for each stage of adding pairs of equations [24].

Decision-BKW
Decision-BKW solves LWE similar to the strategy of solving SIS described in Section 2.3. This consists of two steps:

first, elimination tables are created to use in the sample reduction algorithm like described above and then, these are
used to construct final samples, which are used to solve Decision-LWE. In the following, we describe the second step. To
solve Decision-LWE, m final samples are constructed using the elimination tables. Similar to deciding whether a noise-
free linear system of equations has a common solution, it has to be tested if these final samples can be reduced to zero
by sample reduction using a triangular shaped basis, represented by the elimination tables.

Let n≥ 1 be the dimension of the LWE secret vector, q be a positive integer and define a =
�

n
b

�

. As stated in the proof of
Lemma 2 presented by Albrecht et al. [2] the number of operations needed to create an elimination table Ti is determined
by the following: To create one of the t elements of Ti one sample reduction has to be executed on the i-th stage. One
sample reduction on stage i requires i−1 additions of n+1 components (n components of a sample a and 1 because of c).
Since on stage j < i the first j · b components are guaranteed to be zero, these can be ignored, resulting in a decrease of
additions. So, the number of operations to create the i-th elimination table Ti is given by t ·

�

(i − 1) · (n+ 1)−
∑i−1

j=1 j · b
�

.
Summing over all Ti gives the number of operations in Zq needed to create all a elimination tables:

qb − 1
2

�

a(a− 1)
2

· (n+ 1)−
ba(a− 1)

4
−

b
6

�

(a− 1)3 +
3
2
(a− 1)2 +

1
2
(a− 1)

��

. (21)
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The number of elements of Zq needed to be stored in memory for the elimination tables is
∑a

i=1 t · (n+1− (i−1)b), since
each table Ti has to store t entries each of which holds n+ 1− (i − 1)b elements of Zq [2, Lemma 3]. Rearranging gives

qb

2
· a ·

�

n+ 1− b
a− 1

2

�

. (22)

To produce one final sample, i.e. a sample reduced by a stages,
∑a

i=1(n+1− i b) operations in Zq are needed. Rearranging
this and multiplying with m, the number of operations needed to produce m final samples is given by

m ·
�a

2
· (n+ 2)

�

. (23)

The total number of required operations in Zq is the sum of Equations (21) and (23). The total number of original samples

(calls to Ls,χ) required is composed of the number of samples used to construct the elimination tables mtables = a ·
l

qb

2

m

(see [2, Lemma 2]) and the number of samples m needed to distinguish, i.e.

a ·
�

qb

2

�

+m . (24)

Next we determine the number of samples m. To get one final sample, 2a original samples (calls to Ls,χ) are necessary,
which are added or subtracted to achieve the final sample. This can be expressed as a multiplication of a 2a-dimensional
vector v and the matrix A consisting of all original samples, where the components of v are in {−1, 0,1} (corresponding
to: −1: subtraction; 0: not part of the 2a samples; 1: addition). This can be seen as an SIS-Problem with small vector v of
length

p
2a. Being an instance of the SIS problem, the success probability ε of distinguishing Ls,χ from uniform random

is given by [6]

ε=
�

e−π(‖v‖·α)
2
�2

. (25)

Using ‖v‖=
p

2a, the number of samples required to produce a distinguishing advantage of ε is [31]:

m=
ε

exp(−2πα22a)
. (26)

The functions for costs and required samples can be narrowed down to functions of a or b. In the following, we
determine the parameter a and thus b = n

a is known as well. Balancing the runtimes of the two steps "creation of
elimination tables" and "constructing final samples" yields the optimal runtime at aruntime [6]. On the other hand,
balancing the number of samples required by each of the two steps yields the fewest samples requirement at asamples. The
latter can be seen by examining the terms mtables and m, which describe the number of samples depending on a. First,

mtables = a ·
l

qb

2

m

is basically of the form a · (qn)
1
a with q� 1. So, one can see, that on the interval (0, n] the term (qn)

1
a

dominates, which means, that when a increases, mtables decreases and eventually approaches n · q
2 at a = n. Second,

m= ε ·exp(2πα22a) is essentially equivalent to ε ·exp(C)2
a

with 0< ε < 1 and exp(C)> 1. Therefore, when a increases,
m increases rapidly. So, the fewest samples required (mtables +m) are given at the value asamples, for which both steps
approximately require the same number of samples. Given fewer samples than this, the algorithm is not applicable. On
the other hand, given more samples than needed to achieve the best runtime, allows to use the results of the unlimited
samples variant of this algorithm. Therefore, if the given number of samples does not satisfy any of the two cases, the
values a between asamples and aruntime have to be searched through for the best runtime, for which enough samples are
provided. Given a is found, b = n

a is determined, too.

Search-BKW
Search-BKW solves LWE by iteratively recovering parts of the secret s. The main idea is, to reduce m samples until

the a− 1-th stage, other than in Decision-LWE, where the samples are fully reduced to zero using a stages. The result is
a single block of components of s of size n′ = n− (a − 1) · b 1, which can be recovered by exhaustive search. Albrecht
et al. [2] present a generalization of the original method, which was later improved in [19] using discrete Fourier
transform (DFT). In the following, we focus our analysis on the more recent version using DFT [19]. It consists of three
phases: sample reduction, hypothesis testing and back substitution. The sample reduction phase employs a creation of
elimination tables as shown above. The method described in [2] introduces an additional step at the end to split the last
block, such that the new last block has size 0 < d ≤ n′. Therefore, this algorithm needs a instead of a − 1 steps and
recovers d components of s at once by exhaustive search over qd possibilities. The improvement in [19], on the other

1 Recall: the last block is of size n− (a− 1) · b, which is b, if b divides n, and n mod b if not.
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hand, uses a discrete Fourier transform to recover n′ components of s in one step. The reduction phase when using DFT
requires a − 1 steps, which is one step less than the analysis given by Albrecht et al. [2]. Substituting a − 1 for a in the
results of [2] gives the number of operations in Zq needed to create a− 1 elimination tables [19]:

qb − 1
2

�

(a− 1)(a− 2)
2

· (n+ 1)−
ba(a− 1)(a− 2)

6

�

. (27)

Hypothesis testing is the second phase of Search-BKW. In this phase, parts of s are recovered block-wise. While Albrecht
et al. [2] use maximum likelihood to find parts of s with high probability, in [19] DFT is used. After the sample reduction
phase, m samples exist with all but n′ components equal to zero. Let A ∈ Zm×n′

q and c ∈ Zm
q represent these samples.

Let f (x) be a function of x ∈ Zn′
q defined as f (x) =

∑m
j=1π( j,x) · θ

c( j)
q , where A( j) is the j-th row, θq = exp

�

2πi
q

�

and

π( j,x) =

¨

1, if A( j) = x

0, otherwise
. Then, the discrete Fourier transform of f (x) is given by [19]

f̂ (α) =
m
∑

j=1

θ−(A( j)·α−c( j)) . (28)

The block of s is recovered by finding the maximum of the real part of the discrete Fourier transform of f (x) [19]. The
number of samples needed to recover the j-th block with a success probability of ε is [19]:

m j,ε = 8 · b · log
�q
ε

�

·
�

1−
2π2σ2

q2

�−2a− j

. (29)

Let ε′ = 1−ε
a . The number of operations in Zq required to create m samples of the a−1-th stage (fully reduced except for

the last block) is upper bounded by m · a−1
2 · (n+2) as in Equation (23). After solving the j-th block, the elimination table

T j is not used anymore and can be dropped. Therefore, the number of operations in Zq required to create the samples
needed to recover all blocks of s with probability ε is

a−1
∑

j=0

m j,ε′ ·
a− 1− j

2
· (n+ 2) , (30)

while the number of operations in C needed for the computation of the DFTs amounts to

2
a−1
∑

j=0

m j,ε′ + CF F T · n · qb · log q , (31)

where CF F T is a small constant related to fast Fourier transform.
The result from hypothesis testing consists of some components of s and is used in the back substitution phase.

Back substituting is the third and last phase of Search-BKW used to eliminate just as much components in each sample
as there are components of s. Since a complete block of s is recovered, back substituting would completely zero-out
the corresponding table. So, the table can be dropped as soon as elimination makes it obsolete and therefore, fewer
operations are needed in the subsequent reduction steps. Each substitution is basically an inner product of vectors of

dimension b and therefore costs about 2b operations. There are qb−1
2 vectors in each of the a− 1 tables, but, since after

the first block is recovered, Ta−1 can be dropped, only a− 2 tables have to undergo back substitution. So, the number of
operations in Zq required to perform back substitution is

(a− 1) · (a− 2) · b ·
qb − 1

2
. (32)

The total number of operations in Zq and C, respectively, is given by the sum of Equations (27), (30), (31) and (32).
Since samples for hypothesis testing and back substitution can be reused for each block and m0,ε > m j,ε for j > 0, it is

sufficient to create m0,ε samples once. The memory needed to store all tables Ti follows from Equation (22) with a − 1
instead of a stages. Additionally, qb elements of C for the complex function to apply DFT on and m0,ε samples have to be
stored. So, the total memory complexity adds up to

qb − 1
2
· (a− 1) ·

�

n+ 1− b
a− 2

2

�

+m0,ε in Zq and qb in C . (33)
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The total number of samples required is composed of the number of samples needed to fill the tables mtables =

(a− 1) · qb−1
2 and m0,ε samples to apply hypothesis testing and back substitution, added up:

(a− 1) ·
qb − 1

2
+m0,ε . (34)

In case of unlimited number of samples, the best runtime can be found by choosing a and b such that the runtimes of
the creation of elimination tables and recovering elements of s are balanced, since a small a produces reduced samples
with low noise, so that it is easier to recover components of s, but for the cost of a larger b, which induces a higher
complexity of finding collisions of samples. The determination of a and b in case of a fixed number of samples is similar
to Decision-BKW, since again the total number of samples consists of two parts. First, mtables can be approximated with

the same term as in Decision-BKW as follows: mtables = (a−1) · qb−1
2 ≈ a ·(qn)

1
a with q� 1. Second, even though m(0,ε)

has a minimum at some amin, the fewest samples are required at the value asamples, for which the number of samples
of the two steps are roughly equal, since m(0,ε) at a < amin is negligible compared to mtables and increases rapidly for
a > amin. Therefore, just like in Decision-BKW, there are three cases when given a fixed number of samples. If there are
fewer samples than needed to reach asamples, the algorithm fails. Given more samples than required to achieve the best
runtime, given by balancing the runtimes of the two steps, the unlimited samples variant of this algorithm can be used. If
the given number of samples is in between those two limits, values a in between have to be checked for the best runtime,
at which enough samples are present. As soon as a is found, b = n

a is determined, too.

Coded-BKW
Like the other variants of BKW presented above, Coded-BKW as described by Guo et al. [24] requires sample reduction

and therefore elimination tables. It is a variant of Search-BKW with a modified sample reduction phase. Recall the sample
reduction phase of Search-BKW: a large number of samples ak is used to find block-wise collisions and then, these are
used to reduce the dimension of s. In Coded-BKW on the i-th iteration, a q-ary linear lattice code Ci with parameters
(Ni , b) is introduced at first, so that the i-th block (ak)i of ak can be expressed by the codeword (Ck)i ∈ Ci and the
corresponding error (Ek)i ∈ ZNi

q , where the euclidean norm of (Ek)i is minimal:

(ak)i = (Ck)i + (Ek)i . (35)

Given samples ak on the i-th step, the corresponding block is split into codeword and error by a decoding procedure.
Samples are then reduced by subtracting vectors mapped to the same codeword. Let (s)i be the corresponding block of
s and consider (s)i · (ak)i = (s)i · (Ck)i + (s)i · (Ek)i . Then, the subtraction of two vectors mapped to the same codeword
removes (s)i · (Ck)i , so that only the coding error is left. In the i-th step, Ni components are removed. Therefore,
after t modified BKW steps

∑t
i=1 Ni components are removed. Since Ni ≥ b, more components are removed per step

than in Search-BKW but at cost of an additional noise term. This noise is increased exponentially in the subsequent
iteration steps. So, a mixture of standard BKW steps and Coded-BKW steps should be used with standard BKW steps at
the beginning. In the following, let t1 be the number of standard BKW steps performed at the beginning and t2 be the
number of Coded-BKW steps after.

The analysis of the algorithm given by Guo et al. in [24] splits the algorithm into five steps. Let n be split up into
n = ntop + ncod + ntest + nstandard . First, the distribution of the secret vector s has to be transformed into the distribution
of the error, which can be estimated (in number of operation in Zq) to be [24]

C0 = (m− n′) · (n+ 1) ·
¡

n′

b− 1

¤

, (36)

where n′ = n− t1 b.
Second, the t1 standard BKW reductions are applied, like described in Search-BKW. The result is a new set of LWE

samples with dimension n− nstandard , since nstandard = t1 · b components are reduced to zero. The number of operations
in Zq to do this is estimated to be

C1 =
t1
∑

i=1

(n+ 1− i b)

�

m−
i(qb − 1)

2

�

. (37)

Third, the t2 coded BKW reductions are applied, where each step uses a (Ni , b) code. The value Ni is given by

Ni =
�

b
1− 1

2 logq(12σset
2i )

�

, where σset is determined to be q2(1− l
ntest ))

12 , because of the error of the (ntest , l) code used in the
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fifth phase (see below). The number of components reduced to zero by coded BKW steps are given by ncod =
∑t2

i=1 Ni .
The decoding cost are upper bounded by

C ′2 =
t2
∑

i=1

4

�

M +
i(qb − 1)

2

�

Ni , (38)

where M is the number of required samples for testing, i.e. the result after the last coded BKW step. The total cost for
the coded BKW steps is estimated to be

C2 = C ′2 +
t2
∑

i=1

(ntop + ntest +
i
∑

j=1

N j)

�

M +
(i − 1)(qb − 1)

2

�

. (39)

In the fourth step, ntop components of s are guessed by exhaustively searching the (2d + 1)ntop possibilities, where d
is the suspected number of possibilities of each component of s. Setting d = 3 · σ gives a high probability, that every
component of s is between −d and d. The estimation of the cost of this step is determined as in Equation (10) presented
in the Section Exhaustive Search (Section 4.1). Here, the dimension is ntop instead of n and each component may be one
of 2d + 1 possibilities instead of 2tαq+ 1:

C3 = M · ntop · (2d + 1)ntop . (40)

Fifth, for each such guess, subspace hypothesis testing is performed using a (ntest , l) linear code with l = b − 1 and
FFT. The reduced samples from the previous phases are grouped according to their nearest codeword in the (ntest , l)
systematic linear code. This is used to build ql polynomials, which have to be evaluated q times, and these values are
stored. Then another polynomial is evaluated using q FFTs, which records occurrences of Gaussian distributed errors.
The resulting candidates are tested using a Neyman-Pearson test, which assigns belief levels to the candidates. The final
result is then the one with the highest rank. The decoding cost are upper bounded by

C ′4 = 4Mntest . (41)

The total number of operations in Zq needed is estimated to be

C4 = C ′4 + (2d + 1)ntop
�

CF F T · ql+1(l + 1) log q+ ql+1
�

, (42)

where CF F T is a small constant related to fast Fourier transform.
Let P(d) be the probability, that, when guessing one component of s, the interval [−d, d] is sufficient. P(d) can

be lower bounded by erf
�

dp
2σ

�

< P(d). The testing phase may fail with probability Ptest =
�

γe
1−γ2

2

�ncod+ntest

due to

the information subvector to be tested being larger than γ
p

ncod + ntestσ and therefore being to large to distinguish.
Guo et al. [24] set γ= 1.2 and claim a probability in most of the applications larger than 97.5%.

The total number of operations in Zq is given by

C =
C0 + C1 + C2 + C3 + C4

P(d)ntop · Ptest
. (43)

The memory requirement is determined by the storage of elimination tables, which is given by

(t1+ t2) · qb . (44)

The total number of samples required is given by the number of samples M needed for testing and the number of samples

used for reduction (t1+t2)(qb−1)
2 . M has to be large enough to distinguish between uniform and Gaussian distribution,

where σ2
f inal = 2t1+t2σ2 + γ2σ2σ2

set(ncod + ntest). The results from Equation (26) in Decision-BKW can be reused to
estimate

M =
ε

�

exp
�

−π
�

σ f inal
q

�2��2 . (45)

So, the total number of samples required add up to

m=
(t1+ t2)(qb − 1)

2
+M . (46)

The parameter t1 can be determined by observing, that any Ni ≤ b gives no advantage over Search-BKW and therefore,
t1 is the number of times Ni is lower or equal b. So, for a given LWE instance (n,α, q) and a given total number of
available samples mav ailable, parameters t2 and b have to be found, such that the total number of operations C in Zq
(see Equation (43)) is minimal and the number of samples m required does not exceed mav ailable. This can be done by
evaluating this process at varying t2 and b according to a evaluating order similar to binary search.

20



4.2.2 Small Secret Variant of Blum-Kalai-Wasserman

To prevent confusion of secret bounds [a, b] and block width b with number of blocks a, the parameters determining the
interval, from which elements of the secret vector s are sampled, are named [smin, smax] in this section.

Decision-BKW
The algorithm proposed by Albrecht et al. [3] solves Decision-LWE with small secret. Like with non-small secret, this

consists of two steps: sample reduction and hypothesis testing. For this, only the sample reduction phase is modified using
lazy modulus switching. Basically, this means to only switch modulus from q to p with p < q when necessary. Therefore,
while searching for collisions, only the first log p bits are considered instead of all log q bits. If there is a collision on the p
most significant bits of the corresponding block of the two vectors, the elimination is applied in Zq as before. Considering

p = 2κ, the elimination tables store only κ bits for each entry and only pb−1
2 vectors per table are required. Let a(b·l,b·l+b)

be the block on stage l, then these vectors in the elimination tables are of the form
�

p
q · a(b·l,b·l+b)

£

. Since the elimination
of a block takes place in Zq, but the collision affected only the p most significant bits, there is a new noise term in the
fully reduced samples (ãi , c̃i = ãis+ ẽi mod q) of |ãi ·s|. This is called "rounding error" by Albrecht et al. [3] and it should
be of the same size as the noise ẽi , such that neither dominates, i.e.

|ãi · s| ≈
p

2aαq . (47)

Albrecht et al. [3] propose a technique, where additional samples are reduced at first to produce "good" tables. As
described, the sample reduction procedure finds collisions with entries of the elimination tables. For this, the entries of
the tables are always retained. For the proposed technique, each time a collision is found, either the existing entry is kept
in the table or the sample, with which a collision was found, replaces it. To do this, a chosen number of m∗ additional
samples have to be reduced using existing elimination tables and potentially inserted into them, replacing the old entries.
Since lazy modulus switching is used, the reduced components are not necessarily zero. So, the decision, whether to
keep the table entry or replace it, is based on the size of the previously "eliminated" elements of the two vectors. This is
beneficial, because the sizes of these elements are carried on through all subsequent stages. The final samples used to
solve Decision-LWE are sampled as before.

For the analysis of Decision-BKW with small secret using lazy modulus switching, Albrecht et al. [3] use two assump-
tions:

Assumption 1 ([3, Assumption 1]). The samples after every reduction step are assumed to be independent.

Assumption 2 ([3, Assumption 2]). Let the vectors x0, . . . ,xn−1 ∈ Zτq be sampled from some distribution D such that
σ2 = Var(xi,( j)) where D is any distribution on (sub-)vectors occurring in this attack. Let x∗ =minabs(x0, . . . ,xn−1) where

minabs picks that vector x∗ with
∑b·l−1

j=0 |x
∗
( j)| minimal. The stddev σn =

q

Var(x∗(0)) = · · · =
q

Var(x∗(τ−1)) of components
in x∗ satisfies

σ

σn
≥ cτn

1
τ + (1− cτ) (48)

with cτ = 0.20151418166952917
p
τ+ 0.32362108131969386≈ 1

5

p
τ+ 1

3 for τ > 10.

To estimate the standard deviation of the total noise, a matrix M is constructed, where the entry M(i, j) represents the
variance of entries (b · j, . . . , b · j+ b−1) in the table Ti . Albrecht et al. [3] propose an algorithm calculating this variance
matrix M using Assumption 2. Let σr be the standard deviation of uniformly random elements in Zbq/pe and let (ãi , c̃i)
be samples after a stages of elimination, then v is defined as a vector, where v(k) is the variance of the components bk
through bk + b− 1 of ãi . Albrecht et al. [3] show that this can be expressed like in the following lemma.

Lemma 3 ([3, Lemma 2]). Let n ≥ 1, q be a modulus, b ∈ Z with 1 ≤ b ≤ n and σr be the standard deviation of the
uniform distribution over Zbq/pe. Define a =

�

n
b

�

and pick some p < q and let M be the output of the algorithm proposed
by Albrecht et al. under these parameters. Let (ãi , c̃i) be samples after a reduction steps modulus p. Finally, define v
as the a-vector of variances of the components of ã where v(k) holds the variance of the components ã(b·k) to ã(b·k+b−1).
Under Assumption 2, the components of v satisfy:

v(i) = σ
2
r +

a
∑

j=i+1

M( j,i) . (49)

Let σs be the standard deviation of the secret s. The distribution of c̃i can then be approximated as Gaussian distribu-
tion with standard deviation σtotal .
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Lemma 4 ([3, Lemma 3]). Let n ≥ 1 be the dimension of the LWE secret vector, q be a modulus, b ∈ Z with 1 ≤ b ≤ n.
Define a =

�

n
b

�

and pick some p < q and let v be as in Lemma 3. Let (ãi , c̃i) be samples after a reduction steps. We assume
that Assumptions 1 and 2 hold. Then as a increases the distribution of c̃i approaches a discrete Gaussian distribution
modulo q with standard deviation

σtotal =

√

√

√

2aσ+ bσ2
rσ

2
s

a−1
∑

i=0

v(i) ≤
q

2aσ+ (2a − 1) · b ·σ2
rσ

2
s . (50)

Using Lemma 4, the number of samples needed to distinguish LWE samples from samples chosen uniformly at random
can be calculated. Similar to other algorithms solving Decision-LWE, the advantage of distinguishing LWE from uniformly

random is estimated as exp
�

−π
�

σtotal ·
p

2π
q

�2
�

.

Let p and m∗ be chosen, such that the requirement in Equation (47) is satisfied, i.e. bσ2
rσ

2
s

∑a−1
i=0 v(i) ≤ 2aσ. Recall

the required number of operations needed for Decision-BKW with non-small secret. It is composed of the number of
operations needed to create the elimination tables (see Equation (21)) and the number of operations required to produce
m final (reduced) samples for the final distinguishing (see Equation (23)). The same applies to Decision-BKW with lazy
modulus switching on small secret instances of LWE, but additionally, m∗ samples have to be reduced. So, the number
of operations needed to create the elimination tables remains as before, but instead of only reducing m samples, m+m∗

samples are reduced. Therefore, the cost in number of operations in Zq can be estimated by

pb

2
·
�

a(a− 1)
2

· (n+ 1)−
ba(a− 1)

4
−

b
6

�

(a− 1)3 +
3
2
(a− 1)2 +

1
2
(a− 1)

��

+ (m+m∗) ·
�a

2
· (n+ 2)

�

<
pb

2
·
�

a(a− 1)
2

· (n+ 1)
�

+ (m+m∗)na .

(51)

The memory requirement is the same as in Decision-BKW, given by pb

2 · a ·
�

n+ 1− b · a−1
2

�

<
pb

2 · a · (n+1). The required

number of samples consists of the number of samples needed to fill the elimination tables a · pb

2 and the number of

reduced samples m+m∗. In total, a · pb

2 +m+m∗ initial samples are required.

Coded-BKW
To adapt Coded-BKW to work on LWE instances with small secret, only slight changes have to be made to its procedure.

First, the suspected number d of possibilities of each component of s does not have to be estimated like in the fourth
step of Coded-BKW with non-small secret. Instead it is determined by the bounds [smin, smax] of the secret vector s. To be
precise, it is given by d = smax − smin + 1.

Second, σ f inal has to calculated slightly different. Let σs =
(smax−smin+1)2−1

12 be the variance for uniform distribu-
tion given bounds [smin, smax]. Then, the second term of σ2

f inal , being the "coding variance", has to be changed to
σsσ

2
set(ncod + ntest). So, in total, the new σ f inal is determined as follows: σ2

f inal = 2t1+t2σ2 +σsσ
2
set(ncod + ntest).

Since, starting from Coded-BKW on LWE instances with non-small secret, these are the only changes to be made for
solving instances with small secret, the steps of the algorithm and the estimations remain the same, but with the new
values d and σ f inal discussed above.

4.3 Using Lattice Reduction to Distinguish

The using lattice reduction to distinguish algorithm or "distinguishing attack" solves Decision-LWE via the SIS strategy by
only employing lattice reduction. For this, the dual lattice defined by the sample matrix is considered. Lattice reduction
is applied to this lattice to find a short vector in the lattice. The result is used as short vector v in the SIS problem to
distinguish the Gaussian distribution from uniformly random. By doing so, the Decision-LWE problem is solved.

To find a short vector v in the context of solving LWE using the SIS strategy, lattice reduction on the scaled dual lattice
L⊥(A) = {w ∈ Zm

q |w
T A = 0 mod q} can be used. To construct the basis of this dual lattice given A ∈ Zm×n

q , one extends
the matrix A by qI ∈ Zm×m and reduces this using LLL. After deleting all columns only consisting of zeros, the result is the
basis of L. The dimension of the dual lattice L⊥ is m, with high probability the rank is m and the volume vol(L) = qn [35].

Recall the two conditions of SIS, the non-zero vector v has to satisfy as described in Section 2.3: First, the length of v
has to be short enough (‖v‖ ≤ β with β < q ∈ Z) and second vT A = 0 mod q. Applying lattice reduction to L sets the
shortest non-zero vector b0 found as the first vector of the reduced basis. So, b0 satisfies bT

0 A = 0 mod q. Therefore, b0
fulfills the second requirement for the vector v. If b0 is also short enough to satisfy the first requirement of SIS, then it
can be used as the wanted, short vector v. If b0 is not short enough, a better lattice reduction has to be applied to L⊥.
Usually, instead of b0, every vector of the reduced basis can be used, since they mostly do not vary in length considerably.

22



4.3.1 General Variant of Using Lattice Reduction to Distinguish

The vector v is found like described above by simply applying lattice reduction to L⊥. Therefore, it is set to v = b0.
As described in Section 2.3, v · c is considered. By deciding, whether this product is Gaussian distributed or uniformly
random, Decision-LWE is solved.

The success probability ε is the advantage of distinguishing v · e from uniformly random and can be approximated by
standard estimates [6]

ε= e−π(‖v‖·α)
2

. (52)

The length of ‖v‖ = 1
α results in an advantage of about ε = 1

23 . But to achieve a fixed success probability ε, a vector v of

length ‖v‖ = 1
α

q

ln
�

1
ε

�

/π is needed, as one can see by Equation (52). To shorten equations, let f (ε) =
q

ln
�

1
ε

�

/π. As
one can see by rearranging Equation (52), the length of v for a fixed success probability ε is

‖v‖=
1
α

f (ε) . (53)

Recall the definitions of the volume of a lattice vol(L) = qn and the Hermite factor δm
0 =

‖v‖
vol(L)1/m

. Substituting these

into Equation (53) gives the log root-Hermite factor δ0 required to achieve a success probability of ε to distinguish v · e
from uniformly random:

logδ0 =
1
m

log
�

1
α

f (ε)
�

−
n

m2
log q , (54)

where m is the total number of samples used in the process. The determination of δ0 is sufficient to specify the runtime
of this attack, since it solely depends on lattice reduction. In Table 3 the runtimes for the cases from Section 3 are shown.

Model Runtime

rule of thumb O (k), for k determined by k
log k =

1
2 ·

m2

m log
�

1
α f (ε)

�

−n log q

simpl. rule of thumb O
�

m2

m log
�

1
α f (ε)

�

−n log q

�

Lindner & Peikert 1.8·m2

m log
�

1
α f (ε)

�

−n log q
− 78.9

delta-squared 0.009·m4
�

m log
�

1
α f (ε)

�

−n log q
�2 + 4.1

Table 3: Logarithmic runtimes of the using lattice reduction to distinguish algorithm for different models introduced in
Section 3

However, the algorithm is significantly faster when working with a less restricted (in terms of length), hence longer,
vector. On the other hand, using a longer vector reduces the success probability. To achieve an overall success probability
of about 1 the algorithm has to be run multiple times. The number of repetitions is determined to be 1

ε2 by Chernoff
bound [16]. So, let T (ε, m) be the runtime of a single execution of the algorithm shown in Table 3. Then, the best overall
runtime is the minimum of 1

ε′2 ·T (ε
′, m). Though, it has to mentioned, that, when reusing the fixed number of samples m

in every run instead of having available an unlimited number of samples, the runtime of a single run is not independent
of each other anymore, since the same error vector e is used in every run. It is not clear, what the influence of this is.
Since it is not known exactly, it has to be considered conservatively in order to present a lower bound to the runtime.

4.3.2 Small Secret Variant of Using Lattice Reduction to Distinguish

The using lattice reduction to distinguish algorithm for small secrets works the same as in the non-small secret case,
but it exploits the smallness of the secret s by applying modulus switching at first. Recall the derivation of logδ0 in
Equation (54). In the small secret case with interval [a, b], applying modulus switching technique results in an LWE
instance characterized by n,

p
2α,p. Using the same reasoning as in the standard case, the required logδ0 for said LWE

instance is given by

logδ0 =
1
m

log
�

1
p

2α
f (ε)

�

−
n

m2
log p , (55)
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Model Runtime

rule of thumb O (k), for k determined by k
log k =

1
2 ·

m2

m log
�

1p
2α

f (ε)
�

−n log p

simpl. rule of thumb O
�

m2

m log
�

1p
2α

f (ε)
�

−n log p

�

Lindner & Peikert 1.8·m2

m log
�

1p
2α

f (ε)
�

−n log p
− 78.9

delta-squared 0.009·m4
�

m log
�

1p
2α

f (ε)
�

−n log p
�2 + 4.1

Table 4: Logarithmic runtimes of the small secret variant of the using lattice reduction to distinguish algorithm for differ-
ent models introduced in Section 3

where p can be estimated by Equation (3). The rest of the algorithm remains the same as in the standard case. Therefore,
the overall runtime is still determined by the runtime of the lattice reduction, but with the logδ0 from Equation (55).
This is shown in Table 4. Also, the variation of success probabilities like in the standard case should be considered.
Combining this algorithm with exhaustive search like described in Section 2.2.1 may improve the runtime.

4.4 Decoding Approach

The decoding approach solves LWE via the BDD strategy described in Section 2.4. The procedure considers the lattice
L = L(A) formed by the sample matrix A and consists of two steps: the reduction step and the decoding step. In the
reduction step, lattice reduction on L is employed to get "good" Gram-Schmidt vectors. Then, these are used in the
decoding phase to find the close lattice vector w = As used in the BDD strategy to eliminate the error vector e. In
the following let the "target success probability" be the overall success probability of the attack, chosen by the attacker
(usually close to 1). In contrast, the success probability refers to the success probability of a single run of the algorithm.
The target success probability is achieved by running the algorithm potentially multiple times with a certain success
probability for each single run.

Also, in the following the fundamental parallelepiped is defined as follows:

Definition 13 (Fundamental Parallelepiped). Let X be a set of n vectors xi and αi ∈
�

− 1
2 , 1

2

�

. Then P1/2
(X) =

∑n−1
i=0 αixi

is the fundamental parallelepiped of X.

4.4.1 General Variant of Decoding Approach

To solve BDD, and therefore LWE, the most basic algorithm is Babai’s Nearest Plane algorithm [9]. Given a BDD instance
(A,c = As+ e mod q) from m samples, it consists of two steps. First, lattice reduction on the lattice L = L(A) is used,
which results in a new basis B = {b0, ...,bn−1} for L with root-Hermite factor δ0, and then the decoding step is applied.
In the decoding step, the sublattice L′ with basis B′ = {b0, ...,bn−2} and the Gram-Schmidt basis B∗ = {b∗0, ...,b∗n−1} are
considered. These are used to recursively find the closest vector y ∈ L′ to a new target vector c′, which is formed by
orthogonally projecting c onto the affine subspace U + v , where U is the linear subspace spanned by b0, ...,bn−2 and
v ∈ L, such that the distance between U + v and c is minimal. For the orthogonal projection, c is considered as linear
combination of B∗, for which then the last coefficient is rounded to its nearest integer.

The result of the algorithm is the lattice point w ∈ L, such that c ∈w+ P1/2
(B∗). Therefore, the algorithm is only able

to recover s correctly from c= As+e mod q if and only if e lies in P1/2
(B∗). The success probability of the Nearest Plane

algorithm is the probability of e falling into P1/2
(B∗):

Pr
�

e ∈ P1/2
(B∗)

�

=
m−1
∏

i=0

Pr

�

|e · b∗i |<
b∗i · b

∗
i

2

�

=
m−1
∏

i=0

erf

�




b∗i






p
π

2αq

�

, (56)

For this, it is assumed that sampling from the discrete Gaussian is approximately the same as from a continuous Gaussian,
which is a valid assumption as long as the discrete Gaussian is sufficiently wide. So, for Babai’s Nearest Plane algorithm,
an attacker can only adjust his overall runtime according to the trade-off between the quality of the lattice reduction and
the success probability.

Lindner and Peikert [31] present a modification of the Nearest Plane algorithm named Nearest Planes. They declare,
that the Gram-Schmidt vectors B∗ of a reduced basis B often vary in length. More specifically, the first vectors tend to be
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rather long, while the last ones usually are very short. This results in a "long and skinny" parallelepiped P1/2
(B∗), which

does not match the structure of the Gaussian distributed error e. This means, that the error vector e is unlikely to fall into
the parallelepiped and therefore, the success probability of the Nearest Plane algorithm is rather low. To compensate this
problem, the Nearest Planes algorithm of Lindner and Peikert adds an additional parameter di ≥ 1 to the decoding step,
which describes how many nearest planes the algorithm takes into account on the i-th level of recursion. The effect of
the values di is essentially, that the parallelepiped P1/2

(B∗) is stretched in the direction of b∗i with factor di . This means,
that instead of only finding the one, nearest plane, di nearest planes are considered. Then, the recursion of the next level
is started with each of the di possibilities. This leads to not only one, but

∏n−1
i=0 di distinct possible lattice points, which

has to be searched through exhaustively for the correct result.
The success probability of the Nearest Planes algorithm is again the probability of e falling into the parallelepiped.

For the Nearest Planes algorithm, the parallelepiped to be considered is stretched with factors d = {d0, . . . , dn−1}. For-
mally written, the fundamental parallelepiped to be considered is P1/2

(B∗ · diag(d)). Therefore, the success probability
considering the stretching factors di is given as follows:

Pr
�

e ∈ P1/2
(B∗ · diag(d))

�

=
m−1
∏

i=0

Pr

�

|e · b∗i |< di ·
b∗i · b

∗
i

2

�

=
m−1
∏

i=0

erf

�

di





b∗i






p
π

2αq

�

. (57)

Although, there is no method known to determine the optimal di , Lindner and Peikert’s way of choosing di is intuitive:
To cover the Gaussian distribution of e best possible, the shortest Gram-Schmidt vectors





b∗i




 should be stretched most
and so, they suggest to maximize min(di





b∗i




). As long as the values di are powers of 2, this can be shown to be
optimal [6]. For a fixed success probability, the optimal values di can be found iteratively. In each iteration, the value di ,
for which di





b∗i




 is currently minimal, is increased by one step size (usually step size= 1). Then, the success probability
given by Equation (57) is calculated again. If the result is better or equal than the chosen, fixed success probability, the
iteration stops. [31]

An attacker can choose the parameters δ0 and di , which determine the success probability ε of the algorithm. He will
presumably try to minimize his overall runtime

T =
TBKZ + TN P

ε
, (58)

where TBKZ is the runtime of the lattice reduction with chosen target quality δ0, TN P is the runtime of the decoding
step with chosen di multiple recursions and ε is the success probability achieved by δ0 and di . The runtime of a single
execution of Nearest Planes is only the numerator TBKZ+TN P . For a fixed success probability, a more reduced basis means
it is sufficient to choose smaller values di , which results in a smaller TN P . However, to achieve a more reduced basis, the
lattice reduction algorithm takes significantly more time. The other way round, with a less reduced basis much larger
values di are required to satisfy the fixed success probability due to the low quality of the resulting basis. Although this
means that the lattice reduction algorithm needs less time, the time spent by the decoding step is significantly higher.
This means, that TBKZ and TN P are monotonously in δ0. Using this, it can be shown, that the overall runtime T is less
or equal than two times the best runtime. Therefore, to estimate the overall runtime it is reasonable to assume that the
lattice reduction and the decoding step are balanced. To give a more precise and conservative estimation, one bit has to
be subtracted from the number of operations, since the estimation is up to a factor of 2 worse than the optimal runtime.

The runtime of the lattice reduction is determined by δ0 as described in Section 3. The values di cannot be expressed
by a formula and therefore, there is also no closed form of δ0. As a consequence, the runtime of the lattice reduction step
cannot be explicitly given here. It has to be found by iteratively varying values for δ0 until the runtimes of the two steps
are balanced as described above.

The runtime of the decoding step for Babai’s Nearest Plane algorithm is determined by the complexity of the Gram-
Schmidt orthogonalization, which is about 2mn2 floating point operations or O (mn2) in asymptotic notation [23]. For
Lindner and Peikert’s Nearest Planes algorithm, this is still a factor, but it gets dominated by the number of points
considered, when analyzing the runtime of the algorithm. So, the runtime of the decoding step of the Nearest Planes
algorithm is determined by the number of points

∏m−1
i=0 di that have te be exhausted and the time tnode it takes to process

one point:

TN P = tnode ·
m−1
∏

i=0

di . (59)

Since no closed formula is known to calculate the values di , they are computed by step-wise increasing like described
above until the success probability calculated by Equation (57) reaches the fixed success probability. Albrecht et al. [6],
using an estimation of Lindner and Peikert [31], determine tnode, which is equivalent to the runtime of a single execution
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of Babai’s Nearest Plane algorithm, to be tnode ≈ 1015.1 clock cycles. So, the runtime TBKZ depends on δ0, whereas TN P
depends on di , which is equivalent to depending on δ0

2 and the fixed success probability.
The runtime of the lattice reduction is determined by the desired quality δ0 of the lattice, where higher quality entails

longer runtime. For the decoding step, the runtime is also influenced by δ0, where higher quality means less runtime,
since lower values di can be used. So, it is possible to find a δ0 for which these two steps are somewhat balanced.

Since this contemplation only considers a fixed success probability, the best trade-off between success probability and
the runtime of a single execution described above must be found by repeating the process above with varying values of
the fixed success probability.

In difference to having as many samples as needed, being restricted to a limited number of samples m, in general,
does not yield the optimal number of samples moptimal for a specific δ0. Nevertheless, if given m < moptimal samples, as
much samples as possible should be used in the procedure described above. Otherwise, moptimal samples should be used.

4.4.2 Small Secret Variant of Decoding Approach

The decoding approach for small secrets works the same as in the non-small secret case, but it exploits the smallness
of the secret s by applying modulus switching at first. Switching from the usual n,α, q instance to n,

p
2α, p allows

for larger δ0 and thus the lattice reduction becomes easier. Therefore, a better lattice reduction can be applied. As in
the standard case, the two steps reduction and decoding have to be balanced. Also, the runtime of the decoding step
decreases when applying better lattice reduction in the reduction step. Therefore after balancing the runtimes of the two
steps, the runtimes of both steps are lower for the small secret case than in the general variant. Combining this algorithm
with exhaustive search like described in Section 2.2.1 may improve the runtime.

4.5 Standard Embedding

Standard Embedding, also called "Kannan attack" or "reducing BDD to uSVP", is an algorithm to solve Search-LWE using
embedding and lattice reduction. For that, the usual lattice formed by the sample matrix is embedded into a lattice of
higher dimension. By applying lattice reduction on the embedding lattice, uSVP can be solved in the higher-dimensional
lattice. Since the BDD problem can be reduced to the uSVP problem, solving uSVP in the embedding lattice solves
Search-LWE.

4.5.1 General Variant of Standard Embedding

The ( 1
2γ )-BDD problem can be reduced to the γ-uSVP by embedding the usual lattice of the given BDD instance into a

higher-dimensional lattice. That is, given a sample matrix (A,c= As+ e mod q) and a lattice L(A) from a BDD instance,
the matrix of the higher-dimensional lattice L(A′) is defined as

A′ =
�

A c
0T t

�

, (60)

where t is the embedding factor defined as the distance from c to L(A), i.e. t = dist(c, L(A)) = ‖c− x‖ where x ∈ L(A),
such that ‖c− x‖ is minimized. If t < λ1(L(A))

2γ , the higher-dimensional lattice L(A′) has a γ-unique shortest vector

c′ =
�

−e
t

�

∈ Zm+1
q [33] with length ‖c′‖ ≈

p
mαq [17], since c′ =

�

−e
t

�

= A′
�

−s
1

�

. Therefore, e can be extracted from

c′ and thus, As is known, which can be solved for s as stated in Section 2.4.
Theoretically, the γ-uSVP can be solved by solving the corresponding κ2-HSVP with γ = κ2. This would lead to a

gap of λ2(L) > κ2λ1(L), while Gama and Nguyen [20] show that uSVP instances can be solved with some probability
depending on τ by applying a lattice reduction algorithm, if

λ2(L)> τδ
m
0 λ1(L) . (61)

Here, τ is a constant, experimentally determined depending on the class of the lattice, the lattice reduction algorithm
and the target success probability.

For determining the success probability and analyzing the runtime, τ has to be found, which depends on the embedding
factor t. There are two cases to be considered: t = ‖e‖ and t < ‖e‖ (especially including t = 1).

2 Remember: the Gram-Schmidt basis B∗ needed in Equation (57) depends on the quality δ0 of the reduced basis.
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Case t = ‖e‖:
For the analysis, the following lemma is needed:

Lemma 5 ([4, Lemma 2]). Let A ∈ Zm×n
q , let αq > 0 and let ε′ > 1. Let e ∈ Zm

q such that each component is drawn from
χ and considered mod q. Under the assumption that the Gaussian heuristic holds for L(A) and that the rows of A are
linearly-independent over Zq, we can create an embedding lattice with λ2/λ1-gap greater than

λ2

λ1
≥

min
�

q, q1− n
m
Æ

m
2πe

�

ε′αq
p

m 1p
π

(62)

with probability greater than 1−
�

ε′ · exp
�

1−ε′2
2

��2
.

The dimension of the embedding lattice is dim(L(A′)) = m+ 1, but for simplicity and to use Lemma 5 unchanged, we
assume dim(L(A′)) = m. This is reasonable, since m is large.

Using Lemma 5 and assuming q1− n
m
Æ

m
2πe < q gives the gap-requirement λ2

λ1
≤

q1− n
m
Ç

1
2e

ε′αq . Substituting this into the

relation from Equation (61) gives the following equation, which δ0 has to satisfy: q1− n
m
q

1
2e ≥ τδ

m
0 ε
′αq. By simple

rearrangement, the requirement for δ0 is given as follows:

δ0 ≤

 

q1− n
m
q

1
2e

τε′αq

!

1
m

, (63)

where m is the total number of samples used in the process. Here, τ is experimentally determined to be τ ≤ 0.4 for a
success probability of ετ = 0.1 [4]. The probability ε to successfully solve LWE follows from the multiplication of ετ and
the probability, that the requirement for λ2

λ1
from above is fulfilled:

ε= ετ ·
�

1−
�

ε′ · exp

�

1− ε′2

2

��m�

. (64)

From there, δ0 can be computed and thus all necessary parameters are known to calculate the runtime estimations of the
underlying lattice reduction algorithm. In Table 5 the runtimes for the cases from Section 3 are shown.

Model Runtime

rule of thumb O (k), for k determined by k
log k =

1
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m

log
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m
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−log(τε′αq)

simpl. rule of thumb O
�

m
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1
2e
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−log(τε′αq)
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Lindner & Peikert 1.8·m
log
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2e
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−log(τε′αq)
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delta-squared 0.009·m2
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�
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m
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1
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�

−log(τε′αq)
�2 + 4.1

Table 5: Logarithmic runtimes of standard embedding for different models introduced in Section 3

As discussed above, the success probability ε of a single run depends on τ and thus does not necessarily yield the
desired target success probability εtar get . For example, τ = 0.3 (as in the case t < ‖e‖ below) in a usual lattice leads
to a success probability of ε ≈ 0.1, while one usually wants to have a target success probability close to 1. Therefore, if
the success probability is lower than the target success probability, the algorithm has to be repeated ρ times, until the
desired target success probability is reached. To be more precise, the following equation has to be fulfilled:

εtar get = 1− (1− ε)ρ (65)

Consequently, for estimating the hardness, it has to be considered, that ρ executions of this algorithm have to be done.
Most important, the runtime has to multiplied by ρ. The samples, on the other hand, may be reused in each run, so
that - as conservative lower bound - the number of samples needed to execute this algorithm does not have to be changed.
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Case t < ‖e‖:
Albrecht, Fitzpatrick and Göpfert [4] observe, that choosing t < ‖e‖ leads to a more efficient attack, especially when

choosing t = 1, since the gap λ2/λ1 usually increases. However, choosing t = 1 implies, that L(A′) contains a vector
shorter than c′ with a non-zero probability and, as a consequence, the method sometimes fails to extract the error
vector e.

Since there is no method known to determine the gap λ2/λ1 in an efficient way, Albrecht, Fitzpatrick and Göpfert [4]
assume the gap to be the same as in the case of choosing t = ‖e‖. To fix this, the value τ is modified to τ′ ≈ 0.3.

4.5.2 Small Secret Variant of Standard Embedding

There are two approaches to solve a small secret LWE instance based on embedding. First, modulus switching can
be applied to exploit the smallness of the secret vector s. The standard embedding attack on LWE with small secret
using modulus switching works the same as standard embedding in the non-small secret case, except that it operates on
instances characterized by n,

p
2α,p instead of n,α,q with p < q. This allows for larger δ0 and therefore for an easier

lattice reduction. To be more precise, the requirement for δ0 from Equation (63) changes as follows. The reasoning for
the derivation of δ0 remains the same as in the general variant, but the transformed parameters have to be used. Thus,
δ0 has to satisfy

δ0 ≤

 

p1− n
m
q

1
2e

τε′
p

2αp

!

1
m

, (66)

where p can be estimated by Equation (3). As stated in the description of the standard case, the overall runtime of
the algorithm is determined by the runtime of the lattice reduction, which can be calculated as soon as δ0 is known.
In Table 6 the runtimes for the models described in Section 3 are shown. The success probability remains the same.
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Table 6: Logarithmic runtimes of the small secret variant of standard embedding for different models introduced in Sec-
tion 3

Combining this algorithm with exhaustive search like described in Section 2.2.1 may improve the runtime.
Second, Bai and Galbraith’s embedding [11] can be used. Even though this is based on dual lattices, it is somewhat

similar to standard embedding and therefore can be seen as a variant solving LWE with small secret. The description can
be found in Section 4.7.

4.6 Dual Embedding

Dual embedding [10] is very similar to standard embedding shown in Section 4.5. Here, LWE is also solved by reducing
BDD to uSVP, but with a different lattice. Again, the embedding technique together with lattice reduction is used.
The usual lattice formed by the sample matrix is embedded into a higher-dimensional dual lattice. By applying lattice
reduction on the embedding lattice, uSVP can be solved in the higher-dimensional lattice. Since the BDD problem can
be reduced to the uSVP problem, solving uSVP in the embedding lattice solves Search-LWE. Compared to the standard
embedding attack, the dual embedding algorithm runs in dimension n + m + 1 instead of m + 1, while the number of
required samples remains m. Therefore, it is more suitable for instances, which are restricted to a fixed number of
samples [17].

4.6.1 General Variant of Dual Embedding

Let L(A) be a lattice and c = As + e mod q be a vector from a given BDD instance. Furthermore, let the matrix
Ao ∈ Zm×(n+m+1)

q be defined as

Ao =
�

A Im c
�

, (67)

28



where Im ∈ Zm×m is the identity matrix. Then, L⊥(Ao) = {v ∈ Zn+m+1 | Aov = 0 mod q} is the lattice, in which the uSVP
operates. Considering v = (s,e,−1)T leads to Aov = As+ e− c = 0 mod q and therefore v ∈ L⊥(Ao). The length of v is
small and can be estimated to be ‖v‖ ≈

p
n+mσ [17].

Since this attack is similar to standard embedding, its basic estimations of the success probability and the runtime can
be applied for this attack as well. Taking into account the change in dimension and using the same simplification as in
standard embedding, the root-Hermite delta has to be

δ0 =

 

q
m

m+n
q

1
2e

τε′αq

!

1
n+m

, (68)

while the number of samples used in the process is m.
The success probability is determined by the same characteristics as in standard embedding. That is, the probability ε

to successfully solve LWE is given by the multiplication of ετ, which is the probability that the process determined by τ is
successful, and the probability, that the requirement for the gap λ2

λ1
is fulfilled. The result can be seen in Equation (64).

Similar to standard embedding, the runtime of this attack is determined by the runtime of the lattice reduction achiev-
ing the root-Hermite-factor δ0 described in Equation (68). In Table 7 the runtimes for the cases from Section 3 are
shown.
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Table 7: Logarithmic runtimes of dual embedding for different models introduced in Section 3

Since this algorithm is not mentioned by Albrecht et al. [6] and therefore the analysis in the case of unlimited number
of samples is not done, this analysis is shown here. The case, where the number of samples is not limited and thus,
the optimal number of samples can be used, is a special case of the discussion above. To be more precise, it is the
case, where m = moptimal with moptimal being the number of samples for which the runtime is minimal. For this, the
parameter m, for which δ0 determined by Equation (68) is maximal, has to be found. This yields the lowest runtime
using dual-embedding. The success probability is determined just like in the general case discussed above.

Similar to standard embedding, the success probability of a single run may be - depending on τ - rather low in
both the general and the optimal case. To compensate this, the algorithm has to be repeated several times, so that the
desired target success probability is reached. For details, see the discussion for Equation (65) in standard embedding
(Section 4.5).

4.6.2 Small Secret Variant of Dual Embedding

Just like for the small secret variant of standard embedding shown in Section 4.5.2, there are two approaches to solve a
small secret LWE instance based on embedding. First, modulus switching can be applied to exploit the smallness of the
secret vector s. The dual embedding attack on LWE with small secret using modulus switching works the same as dual
embedding in the non-small secret case, except that it operates on instances characterized by n,

p
2α,p instead of n,α,q

with p < q. This allows for larger δ0 and therefore for an easier lattice reduction. This means, that Equation (68) has
to be adapted taking the transformed parameters into account. This can be done by simply substituting the respective
parameters, because the derivation of the equation remains the same. This results in the following equation for δ0:

δ0 =

 

p
m

m+n
q
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p

2αp

!

1
n+m

, (69)

where p can be estimated by Equation (3). Since the runtime of the algorithm is determined by the runtime of the lattice
reduction, it can be calculated when knowing δ0. The runtimes of the different models of lattice reduction discussed
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Table 8: Logarithmic runtimes of the small secret variant of dual embedding for different models introduced in Section 3

in Section 3 are adapted for the small secret variant of dual embedding in Table 8. The success probability remains the
same. Combining this algorithm with exhaustive search like described in Section 2.2.1 may improve the runtime.

The other approach is Bai and Galbraith’s embedding algorithm [11]. This is very similar to dual embedding due to
the usage of a dual lattice. The major difference lies in the exploitation of the smallness of s and the resulting changes to
the volume of the lattice used in the estimation of δ0. The description can be found in Section 4.7.

4.7 Bai and Galbraith’s Embedding

The algorithm of Bai and Galbraith [11] solves Search-LWE with a small secret vector s by embedding. The main idea is to
reduce an ISIS instance to CVP in a lattice and solve this by solving uSVP with the embedding technique. Similar to dual
embedding described in Section 4.6, a dual lattice embedding the usual lattice formed by the sample matrix is defined. Let
A ∈ Zm×n

q and c ∈ Zm
q be the given samples. Furthermore, let Im be the m-dimensional identity matrix and let m′ = n+m.

Then, the dual lattice is defined as L⊥(A′) = {v ∈ Zm′ | A′v = 0 mod q}, where A′ =
�

A Im

�

∈ Zm×m′
q . Consider the ISIS

instance c= A′y mod q with target vector y=
�

s
e

�

. Let then w ∈ Zn+m be w=
�

0
c

�

so that A′w= c mod q and let v ∈ L

be close to w, found by solving the corresponding closest vector problem (CVP). Then, the target vector y is given by the
subtraction of w and v, i.e.

y=
�

s
e

�

=w− v . (70)

The vector y is a short vector, which satisfies A′y = A′(w − v) = c. Since ‖s‖ � ‖e‖, the CVP algorithm has to find
an unbalanced solution. To tackle this, the lattice should be scaled so that it is more balanced. This can be done by
multiplying the first n rows of the basis of L by some factor depending on σ [11]. This results in an increase of the
volume of the lattice without significantly increasing the norm the error vector. Additionally, it can be further balanced
by rearranging the interval around 0. By using these balancing techniques the volume of the lattice is increased by a
factor of (ξσ)n, where ξ = 2

b−a with [a, b] being the interval the secret vector s is sampled from. This increases the δ0
needed to successfully execute this algorithm.

The required δ0 can be determined similar to the steps used for standard embedding in Section 4.5. The requirement
for the gap λ2

λ1
is not exactly like in Lemma 5, since there are differences in the dimension and the volume of the

lattice. Taking these into account, the gap is given by: λ2
λ1
>
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1
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q
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2πe
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[11]. Also, consider the assumption

(qm · (ξσ)n)
1
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q
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2πe ≤ q and the relation λ2(L)> τδm′

0 λ1(L) from Equation (61). Assuming equality for simplification
and putting all three equations together results in the following requirement for δ0:

logδ0 =
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− log(2τ
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+ n logξ− n log
� q
σ

�

m′2
. (71)

Just like for dual embedding, m samples are used in the process. The runtime is determined like for the other embedding
attacks, which only depend on lattice reduction. In Table 9 the runtimes for the cases from Section 3 are shown.

The contemplation of τ in standard embedding in Section 4.5 applies here, too. So, for the cases t = ‖e‖ and t = 1,
τ and τ′ are used, respectively. Likewise, the success probability is determined by the probability ετ corresponding to the
chosen τ and the probability, that the gap λ2

λ1
is as described above (see Equation (64)). Therefore, the success probability

of a single run may be - depending on τ - rather low. To compensate this, the algorithm has to be repeated several times,
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Table 9: Logarithmic runtimes of the Bai-Galbraith-Embedding attack for different models introduced in Section 3

so that the desired target success probability is reached (see standard embedding, Equation (65)). Combining this
algorithm with exhaustive search like described in Section 2.2.1 may improve the runtime.

In contrast to the other algorithms using lattice reduction, Bai and Galbraith state, that applying modulus switching
to their algorithm does not result in an improvement. The reason for this is, that modulus switching reduces q by a
larger factor than it reduces the size of the error. Therefore, a smaller rescaling factor is used und thus, a smaller gap is
produced, which is a crucial property.
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5 Implementation

In this section, we describe our implementation of the results presented in Sections 4.1 to 4.7 as an extension of the LWE-
Estimator introduced by Albrecht et al. [5, 6]. Also, we give an explanation of the usage of our software on the basis
of examples and describe the structure of the code. Furthermore, we compare exemplary results of our implementation
to those of the existing LWE-Estimator and present a comparison of the considered algorithms, focusing on the behavior
when limiting the number of available samples.

The LWE-Estimator by Albrecht et al. is available at https://bitbucket.org/malb/lwe-estimator. We base our
extension on the version of the LWE-Estimator lastly updated at 22-October-2016 (commit-id: 9c95373). Our software is
written in Sage [18] and will be publicly available at https://www.cdc.informatik.tu-darmstadt.de/cdc/personen/
nina-bindel/. We adapt each algorithm the LWE-Estimator implements to take a fixed number of samples into account
instead of assuming unlimited many samples were available, except for Arora and Ge’s algorithm based on Gröbner
bases. Instead, our implementation includes dual-embedding (described in Section 4.6) in both the optimal number
of samples version and the version adapted to fixed numbers of samples. The reason for this decision is, that Arora
and Ge’s algorithm requires too many samples while dual-embedding is much more suitable for LWE instances with
limited number of samples. Therefore, in the implementation of our work there exist seven algorithms together with
their respective small secret variants. Following the notation of Albrecht et al. [6], we assign an abbreviation to each
algorithm to refer to when using the implementation:

• "mitm": Exhaustive Search, discussed in Section 4.1

• "bkw": Coded-BKW, discussed in Section 4.2 (Decision-BKW and Search-BKW are separated from this and are not
assigned an abbreviation)

• "sis": Using Lattice Reduction to Distinguish, discussed in Section 4.3

• "dec": Decoding, discussed in Section 4.4

• "kannan": Standard Embedding, discussed in Section 4.5

• "dual": Dual Embedding, discussed in Section 4.6

• "baigal": Bai and Galbraith’s Embedding, being a small secret variant of standard- and dual-embedding, discussed
in Section 4.7

• "arora-gb": Arora and Ge’s algorithm based and Gröbner bases, not discussed in this thesis and not adapted to
fixed numbers of samples in the implementation

The shorthand symbol "bkw" solely refers to Coded-BKW and its small secret variant. Decision-BKW and Search-BKW are
not assigned an abbreviation and are not used by the main method estimate_lwe, because Coded-BKW is the newest version
of these three. Nevertheless, the two excluded algorithms can be called separately via the function bkw, which is a con-
venience method for the functions bkw_search and bkw_decision, and its corresponding small secret variant bkw_small_secret.

5.1 Explanation of Usage and Example

In the following, we show an example, which explains how the software is used and what the output means. For this,
we choose the parameters like Regev [38] as implemented by Albrecht et al. [1]. This method depends solely on n and
results in a parameter set n,α = 1p

2πn log2 n
, q ≈ n2. In the following, n is set to n = 128. Given this parameter set and a

fixed number of samples m = 256, calling the estimator to calculate the costs for exhaustive search, Coded-BKW, using
lattice reduction to distinguish, decoding, standard embedding and dual embedding in the non-small secret case looks
like shown in Listing 1. The first two lines of Listing 1 define the parameters n,α, q and the number of samples. The third
line does the actual call to the program and stores the calculated estimations in the variable costs.

1 sage : n , alpha , q = unpack_lwe ( Regev (128) )
2 sage : m = 256
3 sage : c o s t s = est imate_lwe (n , alpha , q , samples=m, sk ip=" arora−gb " )

Listing 1: Basic example of calling the LWE-Estimator using the LWE instance n= 128, α= 1p
2πn log2 n

, q ≈ n2 and m= 256

To exclude more algorithms, the parameter skip has to be extended with "," being the delimiter. To calculate the costs of the
same algorithms like above in the small secret case, parameters small=True and secret_bounds=[lower,upper] have to be spec-
ified, with lower and upper being the lower and upper bound of the secret, respectively, for example secret_bounds=[−1,1].
As mentioned above, the functions bkw_search, bkw_decision and bkw_small_secret have to be called separately. In Listing 2
we present an example of calling these separate functions. For this, we choose m = 287.3 because the BKW algorithm in
any variant requires a huge amount of samples.
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1 sage : n , alpha , q = unpack_lwe ( Regev (128) )
2 sage : m = 2**87.3
3 sage : co s t = bkw_decision (n , alpha , q , samples=m)

Listing 2: Example of calling the estimation for Decision-BKW separately for the LWE instance n = 128, α = 1p
2πn log2 n

,
q ≈ n2 and m= 287.3

As one can see, both ways of calling functions of the estimator need the parameters of the LWE instance n, alpha, q and
(optional) the fixed number of samples samples. If instead of alpha only the Gaussian width parameter (sigma_is_stddev=False)
or the standard deviation (sigma_is_stddev=True) is known, alpha can be calculated by calling alphaf(sigma, q, sigma_is_stddev).
The function alphaf basically calculates sigma / q, but in case of sigma being the standard deviation the factor

p
2π is

considered.
The result of Listing 1 is a dictionary (in other programming languages named ’map’ or ’table’) with the abbreviations

associated to the algorithms as keys and a dictionary holding the results of the cost calculation of the respective algorithm
as value. So, for example, the cost of standard embedding can be printed by the statement cost_str (costs["kannan"]) and
looks like shown in Listing 3. In contrast, the calculation of the costs of Decision-BKW in Listing 2 returns the cost-
dictionary directly, so that the results can be printed by the statement cost_str (cost).

1 sage : print c o s t _ s t r ( c o s t s [ " kannan " ])
2
3 s i e v e : ≈2^77.1, o rac l e : 256 , de l ta_0 : 1.0071049 , bkz2 : ≈2^91.4, k : 164 , lp : ≈

2^102.8, m: 256

Listing 3: Example of outputting the cost of the standard embedding calculated by the call shown in the basic example
(Listing 1)

Depending on the algorithm, the minimum number of required operations may be given by bop, rop, sieve or bkz2. However,
the list in the output is always sorted such that the first value shows the minimum number of required operations. Instead
of bit-operations, rop measures the number of required operations in Zq. Usually, this is an acceptable lower bound, since
the number of bit-operations can be approximated by bop ≈ log q · rop. In Table 10 we show the meanings of all parts,
which may occur in the output. To show a full example with output and an example of a small secret variant, we present
the estimation of Bai and Galbraith’s embedding in Listing 4 with the same parameters as above. Again, as before, first
the parameters are defined, then the estimations of the costs are calculated and at the end these costs are printed.

1 sage : n , alpha , q = unpack_lwe ( Regev (128) )
2 sage : m = 256
3 sage : c o s t s = est imate_lwe (n , alpha , q , samples=m, smal l=True , secret_bounds =[−1,1] , sk ip=" mitm , bkw , s i s

, dec , kannan , dual , arora−gb " )
4 sage : print c o s t _ s t r ( c o s t s [ " ba i ga l " ] )
5
6 bkz2 : ≈2^40.2, o rac l e : 256 , de l ta_0 : 1.0111634 , k : 65 , lp : ≈2^38.9, s i e v e : ≈

2^59.1, repeat : 1

Listing 4: Example of Bai and Galbraith’s embedding algorithm solving the small secret LWE instance n = 128,
α= 1p

2πn log2 n
, q ≈ n2, m= 256 and [a, b] = [−1,1]

5.2 Explanation of Structure of Code

Our Figures 2 and 3 show the high-level structure of the implementation in the general and small secret cases, respec-
tively, and especially illustrate the connections of algorithms and subroutines. We show both entry points estimate_lwe

and bkw with its small secret variant bkw_small_secret. We illustrate, which functions are called if the corresponding ab-
breviation is specified using normal arrows, while dashed arrows represent the usage of a subroutine and double arrows
indicate, that one function is the wrapper function of another.

Ignoring the separate functions bkw and bkw_small_secret for the moment, everything starts with estimate_lwe. There the
decision is made, whether the general or small secret implementation has to be used, based on the input parameters.
Then, the methods for every algorithm except those listed in parameter skip are called. The order, in which they are
called, is only relevant for the order of the output, since at the end, an ordered dictionary containing the results for every
considered algorithm is returned.

First, we describe the general case as shown in Figure 2. The functions for exhaustive search and Coded-BKW can be
called directly, while the other functions belong to algorithms using lattice reduction. These are wrapped in the function
sieve_or_enum, which takes such a function as input and ensures, that for the BKZ lattice reduction the SVP-oracle yielding
the best runtime is chosen.
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Value Explanation

bop total number of bit-operations of an attack
rop total number of operations in Zq of an attack
delta_0 root-Hermite factor δ0 used by lattice reduction
k block size used by BKZ
bkz2 number of operations of running BKZ2.0 with enumeration as SVP-

oracle
sieve number of operations of running BKZ2.0 with sieving as SVP-oracle
fplll number of operations of running BKZ2.0 with fplll 4.0.4 as SVP-oracle
lp number of operations of running BKZ2.0 as estimated by Lindner and

Peikert
oracle number of samples required to run an attack
m/dim internal number of samples/dimension, e.g., the dimension the algo-

rithm is run on in a single execution without repeating
repeat number of times the algorithm has to be repeated, e.g., to achieve a

target success probability
mem storage requirements of elements in Zq
log(eps) negative logarithm of the success probability eps of a single run
enum number of decoding steps
enumop number of (real-field-)operations needed to execute enum decoding

steps
|v| length of the vector v, which is searched for in the SIS problem
b, t1, t2, l, d, γ, σ_set,
ncod, ntop, ntest,
σ_final, C0(gauss),
C1(bkw), C2(coded),
C3(guess), C4(test)

parameters and partial results of Coded-BKW, corresponding to the the-
oretical parameters mentioned in this work

Table 10: Meanings of the abbreviations and values in the output of the function estimate_lwe

The discussions of using lattice reduction to distinguish and the decoding approach both are based on a fixed success
probability. As already shown in the respective sections, this has to be compensated by wrapping the presented algorithm
in a function called rinse_and_repeat, which takes the function to wrap and the LWE instance parameters as input and finds
the best success probability, i.e. the success probability for which the lowest bit hardness is found. Since the found success
probability is usually smaller than the target success probability, it has to be amplified to the target success probability
by repetitively executing the algorithm. The number of repetitions is calculated by function amplify, which takes a success
probability of a single run and a target success probability as input and returns the number of trials needed to amplify
the success probability of a single run to the target success probability. The result can then be used to multiply the
computational costs accordingly. In contrast, the embedding algorithms kannan and dual use amplify directly, since for
them, a closed formula for the number of needed repetitions exists.

Naturally, the methods of the lattice-based algorithms all rely on bkz_runtime_delta, which takes the target δ0 and the
dimension of the lattice as input and calculates the runtime of BKZ. Also, except for dual-embedding, they calculate the

optimal dimension moptimal according to the formula given by Albrecht et al. [6] moptimal =
Ç

n log q
logδ0

, implemented in
lattice_reduction_opt_m(n,q,delta).

Decision-BKW and Coded-BKW employ distinguish_required_m, which takes the standard deviation, q and the success
probability as input, to calculate the required amount of samples to distinguish between sampling from the sample-
oracle and sampling from uniform random. The function binary_search basically takes a function f and an interval as input
and returns the minimum of f on the given interval if f is convex. This is used by Coded-BKW to vary several parameters
to get the best runtime.

Exhaustive search (mitm) on the other hand is completely independent of subroutines. Also, mitm and bkw_coded

are implemented to handle both the general and the small secret case and therefore, they appear in both Figure 2
and 3. The other algorithms handling the small secret case are wrapped in the function small_secret_guess, which, given
a the function to wrap and the LWE instance parameters, finds the best ratio between guessing components of s in
style of exhaustive search and executing the given algorithm with the then reduced dimension. The methods for the
other small secret algorithms except for Bai and Galbraith’s algorithm also use modulus switching and actually are
named after the pattern [algorithm]_embedding_small_secret_mod_switch_and_guess, which is shortened in Figure 3. Bai and
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estimate_lwe(n,α, q, samples)bkw(n,α, q, samples)

general small secret Fig. 3
bkw_decision() bkw_search()

rinse_and_repeat() sieve_or_enum()

kannan() dual()sis()decode()bkw_coded()mitm()

distinguish_required_m()

binary_search()

lattice_reduction_opt_m() bkz_runtime_delta() amplify()

internal diverge of paths
call (if specified)
wrap function
use subroutine

Figure 2: High-level structure of the implementation in the general case showing the connections of wrapping functions,
subroutines and the functions estimating the costs of algorithms; estimate_lwe and bkw are the entry points for
the general case

Galbraith’s algorithm however is implemented similar to the other embedding algorithms, except, that it is wrapped in
small_secret_guess as explained above.

The other entry point via the separate functions bkw and bkw_small_secret only employ distinguish_required_m like Coded-
BKW or do not depend on any subroutine.

Implementation Details
For most of the specific methods implementing the estimation of the considered algorithms, the changes needed to

adapt the previous implementation to take the number of samples into account are exact implementations of the results
presented in the theory part of this work. Because of the amount of code, we do not present the implementation as a
whole. However, there are some implementation details worth to mention.

In the method mitm, which corresponds to exhaustive search, the estimations of runtime and memory requirements
were too simplified to the point, where they were independent of m. Together with a missing log in one of the constraint
equations, this is fixed in the current version as suggested by us.

All implementations for the algorithms based on lattice reduction follow the same basic structure except for dual-
embedding. In Figure 4a we show this basic structure as a flowchart. First, δ0 and moptimal are calculated as before,
then it is tested, if enough samples are available to use the optimal case. If not, these values are replaced by the
results presented in Section 4 of this work. At the end, the computational cost for running this algorithm are calculated
by calling bkz_runtime_delta. Our implementation of dual-embedding is slightly different. In Figure 4b we present the
corresponding flowchart in contrast to the basic structure of the other algorithms. Since the previous implementation
does not consider this algorithm, we provide a complete implementation of dual-embedding including the case of having
the optimal number of samples available. For this, we use only the equation for δ0 presented in this work and determine
the maximum of δ0 numerically to compute the optimal case. This yields the minimum runtime. Then, the check for
enough samples and calculation of computational cost remains the same as in the other embedding attacks.

35



estimate_lwe(n,α, q, samples, secret_bounds) bkw_small_secret(n,α, q, samples, secret_bounds)

generalFig. 2 small secret

small_secret_guess()bkw_coded()mitm()

sis() decode() kannan() dual() bai_gal_small_secret()

distinguish_required_m()bkz_runtime_delta() amplify()

internal diverge of paths
call (if specified)
wrap function
use subroutine

Figure 3: High-level structure of the implementation in the small secret case showing the connections of wrapping
functions, subroutines and the functions estimating the costs of algorithms; estimate_lwe with set parameter
secret_bounds and bkw_small_secret are the entry points for the small secret case

Another problem arises for decode when very strictly limiting the number of samples. It uses enum_cost to calculate the
computational cost of the decoding step. For this, amongst other things, the stretching factors di of the parallelepiped
are computed iteratively by step-wise increasing as described in Section 4.4. In this process, the success probability is

used, which is calculated as a product of terms erf
�

di‖b∗i ‖
p
π

2αq

�

as described in Equation (57) of that section. Since the

precision, the program can work with, is limited, this may lead to a success probability of 0, if one of these terms is close
to 0. In this case, the loop never terminates. This problem can be avoided, but for reasonable step sizes doing so leads to
unacceptable long runtimes of the loop finding the factors di . Since it is only an extreme case, where very few samples
are available, we let the program throw an error, saying there are too few samples.

The function rinse_and_repeat is implemented by iteratively varying the success probability in a kind of numeric method,
where one walks, starting from highest value, in the current direction with a pre-defined step size, until the results
become worse; then one turns around with half step size. After the adaptation to a fixed number of samples, the problem
arises, that there might be not enough samples to apply the algorithm at all. In our implementation, these exceptional
cases, where an algorithm reports to not have enough samples available, are handled by estimating the costs for this set
of parameters to be positive infinite. This may fail to find a solution, if none of the tested success probabilities result
in a solvable parameter set. Like this, any algorithm shown will produce an exception when given too few samples, for
example due to the small number of samples leading to a δ0 < 1.

Also, limiting the number of samples requires values δ0 very near to 1 much more often than having available as many
samples as needed, especially when varying success probabilities. The previous implementation k_chen however finds the
value k for BKZ lattice reduction by iterating through possible values of k, starting at 40, until the resulting δ0 is lower
than the given target-δ0. As shown in Listing 5, this iteration uses steps of multiplying k by 2 at maximum. When given
a target-δ0 very near to 1, only a high value k can satisfy the equation, which needs a long time to find. Therefore, the
previous implementation of finding k for BKZ lattice reduction is not suitable for the case of limited numbers of samples.
Thus, we replace this function in our implementation by finding k using the secant-method as presented in Listing 6.
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1 f = lambda k : (k/(2* p i _ r * e_r ) * ( p i _ r *k) **(1/
k) ) **(1/(2*(k−1)) )

2 while f (2*k) > de l t a :
3 k *= 2
4 while f ( k+10) > de l t a :
5 k += 10
6 while True :
7 i f f ( k ) < de l t a :
8 break
9 k += 1

Listing 5: Iteration to find k in method k_chen of the
previous implementation used in the LWE-
Estimator

1 f = lambda k : RR(( k/(2* p i _ r * e_r ) * ( p i _ r *k)

**(1/k) ) **(1/(2*(k−1)) ) − de l t a )
2 k = newton( f , 100 , fprime=None , args =() , t o l

=1.48e−08, maxiter=500)
3 k = c e i l (k )

Listing 6: Implementation of method k_chen to find k
using the secant-method

Many algorithms in the small secret case can be improved by guessing g components of n at first and then applying the
respective algorithm on the smaller instance as described in Section 2.2.1. Similar to varying success probabilities, this is
done by iteratively searching through varying values g until the optimal runtime is found. The previous implementation
small_secret_guess evaluates the function calculating the costs for the respective algorithm at values i, such that this function
is called with dimension n− i. The value i for the next step is determined based on a comparison between the costs of
the current run and the best run until this point. This often leads to a wrong evaluation order and thus to not using the
best g. The correct implementation would require a comparison depending on the last run instead of the best, which
results in a form of binary search. It is preferable to consider this in future implementations of the LWE-Estimator.

5.3 Comparison of Implementations and Algorithms

In the following, we present results of all algorithms, evaluated using the example parameters from above. For compar-
ison, we show the estimations of the implementation without considering a limitation of the number of samples, too.
Furthermore, we compare the considered algorithms with focus on the behavior in case of a limitation of samples. This
is done separately for the general variant and the small secret variant.

5.3.1 Comparison of Implementations for the General Variant

In our Tables 11a and 11b the logarithm of the hardness estimated by the implementation of this work can be seen. While
exhaustive search, using lattice reduction to distinguish, decoding, standard-embedding and dual-embedding produce
results on similar intervals, Coded-BKW needs approximately as many samples as in the optimal case to produce results
and is therefore separated from the others. It can be seen, that the hardness decreases with increasing numbers of
samples and remains the same after reaching the optimal number of samples, which amongst other values is shown in
Table 12. If the estimator could not find a solution, mostly due to too few samples provided to apply the respective
algorithm, the cell is filled with NaN.

samples dual mitm sis dec kannan

0 NaN NaN NaN NaN NaN
50 NaN NaN NaN NaN NaN

100 103.24 NaN NaN NaN NaN
150 67.91 NaN NaN NaN NaN
200 60.32 395.89 163.59 132.63 282.94
250 58.54 395.89 97.34 75.01 80.62
300 58.54 395.89 79.54 61.8 64.53
350 58.54 395.89 75.13 58.08 59.57
400 58.54 395.89 74.74 58.07 59.14
450 58.54 395.89 74.74 58.07 59.14

(a)

samples bkw

1.18 · 1021 NaN
2.95 · 1021 NaN
4.72 · 1021 NaN
6.49 · 1021 NaN
8.26 · 1021 NaN

1 · 1022 NaN
1.18 · 1022 88.87
1.36 · 1022 88.87
1.53 · 1022 88.87
1.71 · 1022 88.87

(b)

Table 11: Logarithmic hardness of the algorithms exhaustive search (mitm), Coded-BKW (bkw), using lattice reduction to
distinguish (sis), decoding (dec), standard-embedding (kannan) and dual-embedding (dual) depending on the
given number of samples for the LWE instance n= 128, α= 1p

2πn log2 n
and q ≈ n2

In Table 12 we show the logarithmic hardness and the corresponding optimal number of samples estimated by the
previous implementation for unlimited numbers of samples. It should be noted that, some algorithms rely on multiple
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executions, for example to amplify the rather low success probability of a single run to a target success probability near
to 1. In such a case, the previous implementation for optimal number of samples multiplies not only the runtime but
also the number of oracle calls, while we assume for our adapted implementation for fixed numbers of samples, that
samples may be reused in repeated runs of the same algorithm. Therefore, some of the optimal number of samples
shown in column "optimal" in Table 12 are much bigger than estimated by the our implementation. To compensate this
and to provide comparability, we introduce the column "optimal-recalculated", for which we recalculate the values for
the optimal numbers of samples into the model of reusing samples, i.e. undo the amplification done in the first place.

Algorithm optimal optimal-recalculated hardness

dual 10780 245 58.54
mitm 181 181 395.90
sis 192795128 376 74.74
dec 53436 366 58.07
kannan 16412 373 59.14
bkw 1.011798789e22 1.011798789e22 88.87

Table 12: Logarithmic hardness with optimal number of samples computed by the previous LWE-Estimator and the opti-
mal number of samples recalculated according to the model used in this work for the LWE instance n = 128,
α= 1p

2πn log2 n
and q ≈ n2

We illustrate the shown results in the form of plots in Figures 5a to 5f. There is one algorithm per plot and the dotted
line marks the number of optimal samples for the respective algorithm as specified in column "optimal-recalculated" of
Table 12. Additionally, we show the hardness estimated by considering no limitation of the number of samples in each
plot by "[algorithm]-optimal". As one can see, for numbers of samples lower than the optimal number of samples, the
estimated hardness is either (much) bigger than the estimation using optimal number of samples or does not exist. In
contrast, for numbers of samples greater or equal than optimal (samples > optimal), the hardness is exactly the same
as in the optimal case, since the implementation falls back on the optimal number of samples when enough samples are
given. Without this the hardness would increase again for samples > optimal. We show this behavior exemplary for
dual-embedding in Figure 6.

5.3.2 Comparison of Algorithms for the General Variant

In Figure 7 we show the effect of limiting the available number of samples on the considered algorithms comparatively.
We do not include BKW in this plot, since the number of required samples is too high (about 1022) to show in the same
graph as the other algorithms (about 300 samples). Instead, we present the results for Coded-BKW in Figure 5b. The first
thing that strikes is, that the limitation of the number of samples leads to an exponentially increase of the logarithmic
hardness, except for exhaustive search and Coded-BKW, which are basically not applicable for limited number of samples.
Furthermore, while the algorithms labeled with mitm, sis, dec and kannan are applicable for roughly the same interval of
samples, the algorithms dual-embedding and Coded-BKW stand out. That is, Coded-BKW needs a lot of samples; in fact,
it is an other magnitude. Also, it does not allow a considerable limitation of the number of samples. Dual-embedding on
the other hand is applicable for stronger limitations than any of the other algorithms. Though, it has to mentioned, that
the optimal number of samples is also lower than that of the other algorithms. However, it is true, not only in absolute
numbers, but even when setting the minimum number of samples, for which the algorithm is applicable, into relation to
the optimal number. Also, the logarithmic hardness of dual-embedding is lower than for the other algorithms not only
in absolute values, but in relation to the hardness in the optimal case as well. In other words, the logarithmic hardness
of it increases slower than that of the other algorithms. This can be attributed to the usage of a lattice with dimension
n+m, while only requiring m samples. The graphs of the algorithms labeled with sis and dec are nearly parallel in the
sense of them having the same behavior in terms of increase of the hardness when limiting the number of samples. The
logarithmic hardness of standard embedding (kannan) increases much more rapidly.

5.3.3 Comparison of Implementations for the Small Secret Variant

In Tables 13a and 13b we demonstrate the results of the logarithmic hardness in small secret case. For the same reason
as above, Coded-BKW is shown in a separate table. Again, it can be seen, that with increasing numbers of samples
the hardness decreases until the optimal number of samples is reached. From there, the hardness remains the same,
since having more samples available than the optimal number allows to use the optimal runtime. Also, we present
the results of the previous implementation with optimal numbers of samples in Table 14. As before, NaN means, the
implementation returned no result and the column "optimal-recalculated" is introduced to compare the results of this
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samples baigal dual sis kannan mitm dec

0 ∞ NaN NaN NaN NaN NaN
50 67.15 120.85 NaN NaN NaN NaN

100 37.26 71.41 149.59 143.28 NaN NaN
150 34.57 55.79 118.92 106.97 117.33 NaN
200 34.57 52.27 100.75 85.76 117.33 NaN
250 34.57 52.31 79.05 63.97 117.33 59.89
300 34.57 52.31 69.8 53.82 117.33 53.13
350 34.57 52.31 68.47 53.01 117.33 53.05
400 34.57 52.31 68.47 53.01 117.33 53.05
450 34.57 52.31 68.47 53.01 117.33 53.05

(a)

samples bkw

4.4 · 1012 NaN
1.1 · 1013 NaN
1.76 · 1013 NaN
2.42 · 1013 NaN
3.08 · 1013 NaN
3.74 · 1013 61.76
4.4 · 1013 61.76
5.06 · 1013 61.76
5.72 · 1013 61.76
6.38 · 1013 61.76

(b)

Table 13: Logarithmic hardness of the small secret variants of the algorithms exhaustive search (mitm), Coded-BKW (bkw),
using lattice reduction to distinguish (sis), decoding (dec), standard-embedding (kannan), dual-embedding
(dual) and Bai and Galbraith’s embedding (baigal) depending on the given number of samples for the LWE
instance n= 128, α= 1p

2πn log2 n
, q ≈ n2 and [a, b] = [−1,1]

work and the estimations of the optimal case produced by the previous implementation, i.e. recalculated into the model,
where samples are reused in each run. Also, we choose the parameters Regev [38] as implemented by Albrecht et al. [1]
with n= 128 as above and we set the interval of the secret bounds as [−1,1].

Algorithm optimal optimal-recalculated hardness

baigal 6600 150 34.57
dual 9020 205 52.31
sis 172285008 336 68.47
kannan 14652 333 53.01
mitm 145 145 117.33
dec 23760 330 53.05
bkw 3.314881294e13 3.314881294e13 61.76

Table 14: Logarithmic hardness in the small secret case with optimal number of samples computed by the previous LWE-
Estimator and the optimal number of samples recalculated according to the model used in this work for the
LWE instance n= 128, α= 1p

2πn log2 n
, q ≈ n2 and [a, b] = [−1, 1]

To illustrate results, we show plots for the small secret variants of shown algorithms in a similar way as above for
the general case in Figure 8. The graph for Coded-BKW is omitted and instead, we present it in Figure 9b, since for
the comparison, it cannot be shown in the same plot as the other algorithms due to the huge difference in numbers
of samples. The graphs look similar to the ones presented in Figure 5. That is, exhaustive search (mitm) and Coded-
BKW only reflect the results of the optimal case; the other algorithms show an exponentially increase of the logarithmic
hardness, when limiting the number of samples, and a constant behavior, if more samples are available than the optimal
number of samples.

5.3.4 Comparison of Algorithms for the Small Secret Variant

In Figure 9 we show a comparison of the considered algorithms in the small secret case with a fixed number of available
samples. As one can see, Bai and Galbraith’s algorithm yields the best result for limited number of samples. However,
dual-embedding is very similar in terms of behavior of the increase of the hardness. Again, like in the general case, stan-
dard embedding (kannan) shows the biggest percentage increase. For a certain limitation of the samples, the hardness of
exhaustive search (mitm) becomes as good or even better than some of the algorithms, for example here, the hardness
of the algorithm labeled with sis at 150 samples is higher than the hardness of exhaustive search. This shows, that the
method of finding the best ratio between guessing components of s and actually applying the algorithm implemented
in small_secret_guess is wrong as described above. In theory, this procedure ensures, that the algorithms have at most the
costs of exhaustive search, but this example shows, that the actual implementation does not fulfill this requirement.
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5.3.5 Conclusion of Comparisons

Comparing the general and the small secret cases with respect to the hardness when limiting the number of samples
shows, that, in general, for the same parameters, a stronger limitation of the samples is possible for the small secret case
than for the general case while the algorithms still remain applicable. Also, while the logarithmic hardness in the small
secret case is lower than in the general case as expected, the increasing behavior roughly remains the same.

Also, it can be seen, that the implementation adapted to consider fixed number of samples is consistent in comparison
to the previous implementation, since calling the estimator, setting the optimal number of samples as fixed number of
samples, produces the same hardness as in case of not limiting the number of samples. Furthermore, the results show,
that the optimal number of samples indeed yield the minimal number of operations.
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Process parameters

calculate logδ0(n,α, q)

calculate moptimal(δ0)

samples > moptimal

set m= available samples

calculate logδ0(n,α, q, m)

bkz_runtime_delta(δ0, m)

Return

Yes

No

(a) Basic structure

Process parameters

define function δ0(n,α, q, m)

determine (moptimal ,δ0) by calculating max(δ0(n,α, q, m))

samples > moptimal

set m= available samples

calculate logδ0(n,α, q, m)

bkz_runtime_delta(δ0, m)

Return

Yes

No

(b) Specific structure of dual-embedding

Figure 4: Flowcharts of the basic structure of estimating the computational cost of algorithms using lattice reduction and
the specific structure of estimating the cost of dual-embedding
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(e) standard-embedding (kannan)
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Figure 5: Logarithmic hardness of the algorithms Meet-in-the-middle, Coded-BKW, using lattice reduction to distinguish,
decoding, standard embedding and dual embedding for the LWE instance n = 128, α = 1p

2πn log2 n
and q ≈ n2;

hardness estimations for each algorithm shown for both depending on a given number of samples and using
the optimal number of samples marked by a dashed line
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samples dual

0 NaN
50 NaN

100 103.24
150 67.91
200 60.32
250 58.57
300 60.38
350 64.17
400 66.99
450 70.37
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Figure 6: Logarithmic hardness of dual-embedding without falling back to optimal case for numbers of samples larger
than the optimal number of samples for the LWE instance n= 128, α= 1p

2πn log2 n
and q ≈ n2
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Figure 7: Comparison of the logarithmic hardness of the LWE instance n = 128, α = 1p
2πn log2 n

and q ≈ n2 of the algo-
rithms Meet-in-the-middle (mitm), using lattice reduction to distinguish (sis), decoding (dec), standard embed-
ding (kannan) and dual embedding (dual), when limiting the number of samples

43



150 200 250 300 350 400 450

100

110

120

130

140

number of samples

lo
g

ha
rd

ne
ss

mitm
mitm-optimal

(a) Meet-in-the-Middle (mitm)

100 200 300 400

40

50

60

70

number of samples

lo
g

ha
rd

ne
ss

baigal
baigal-optimal

(b) Bai and Galbraith’s algorithm (baigal)
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Figure 8: Logarithmic hardness of the algorithms Meet-in-the-middle, Bai-Galbraith-embedding, using lattice reduction to
distinguish, decoding, standard embedding and dual embedding for the small secret LWE instance n = 128,
α = 1p

2πn log2 n
, q ≈ n2 and [a, b] = [−1,1]; hardness estimations for each algorithm shown for both depending

on a given number of samples and using the optimal number of samples marked by a dashed line
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(b) Graph for Coded-BKW including the optimal case

Figure 9: Comparison of the logarithmic hardness of the LWE instance n = 128, α = 1p
2πn log2 n

, q ≈ n2 and [a, b] =
[−1,1] of the small secret variants of the algorithms Meet-in-the-middle (mitm), Coded-BKW (bkw), using lattice
reduction to distinguish (sis), decoding (dec), standard embedding (kannan), dual embedding (dual) and Bai
and Galbraith’s embedding (baigal) when limiting the number of samples
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6 Summary

In this work, we present an analysis of the hardness of LWE for the case of a fixed given number of samples. For this, we
describe the approaches exhaustive search, BKW, using lattice reduction to distinguish, decoding, standard embedding
and dual embedding shortly and analyze them with regard to limiting the number of samples. Also, we analyze the
short secret variants of the mentioned algorithms under the same restriction on samples. Furthermore, we present the
dual embedding algorithm in case of using as many samples as required to run in optimal time. We adapt the existing
"LWE-Estimator" software to take the results of these analyses into account. We show some of the necessary changes to
the existing code. This includes direct changes to the methods calculating the hardness of the actual algorithm as well
as slight adaptations to some helper functions. During this, we discovered some bugs in the previous software, namely a
missing log, an imprecise estimation and a wrong evaluation order, some of which are fixed already as suggested by us.
At the end, we present examples of using the software to show, how to use the estimator and what the several fields of the
output mean. Also, we compare the results of the previous implementation always using the optimal number of samples
and the implementation of this work, which takes a limitation of samples into account, based on example parameters.
While the lattice reduction based algorithms decoding, using lattice reduction to distinguish, standard embedding and
dual embedding show a similar behavior, the algorithms exhaustive search and BKW are somewhat different. The former
group shows a hardness approaching the hardness of the optimal case, coming from positive infinity at small numbers
of samples, as presented in the plots in Figures 5c to 5f. As mentioned, exhaustive search and BKW behave different
for given fixed numbers of samples. That is, there are no results for the interval from zero to the optimal number of
samples due to reasons discussed in the corresponding sections. So, the results show, that it is significantly harder or
even impossible to use the considered attacks when using few number of samples, while using roughly as many samples
as in the optimal case yields approximately the same hardness.

As mentioned above, the usage of a restricted set of samples has its limitations. If given too few samples, none of
the presented algorithms are applicable and in case of exhaustive search and BKW, this applies even for roughly any
limiting number of samples below the optimal number. Also, for very few samples, the runtime of the estimator may be
prolonged significantly or the accuracy of the results may become imprecise. On the other hand, it is possible to construct
an LWE instance without sample limit from an LWE instance with a given, fixed set of samples. For example, Duc, Tramér
and Vaudenay [19] use an idea introduced by Lyubashevsky [32] to generate additional samples, at cost of them having
higher noise, using an universal family of hash functions to combine samples. Other possibilities of accomplishing this are
given in [22] and [39]. Further work could implement this into the estimator and compare the results to the estimations
given by this work. This may lead to improvements of the estimation, especially for the algorithms exhaustive search and
BKW.

The results of this work show the necessity of taking the number of samples into account, considering the sometimes
huge impact on the hardness of the LWE-solving algorithms when limiting the number of available samples. The new
estimations implemented into the LWE-Estimator help to prevent overly conservative parameter choices when working
with cryptographic systems with limited numbers of samples.
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