
Password Policy Crawler
Master-Thesis von Mario Schlipf
Tag der Einreichung:

1. Gutachten: Prof. Dr. Johannes Buchmann
2. Gutachten: Moritz Horsch

Fachbereich Informatik
Kryptographie und Computeralgebra

Password Policy Crawler

Vorgelegte Master-Thesis von Mario Schlipf

1. Gutachten: Prof. Dr. Johannes Buchmann
2. Gutachten: Moritz Horsch

Tag der Einreichung:

Erklärung zur Master-Thesis

Hiermit versichere ich, die vorliegende Master-Thesis ohne Hilfe Dritter nur mit den an-

gegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen

entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder

ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den 15. Dezember 2015

(Mario Schlipf)

Abstract
User accounts at services on the Internet contain many privacy and security sensitive data such as emails,

pictures, health records, and bank account details. Despite several security and usability drawbacks,

passwords remain the most widely used authentication scheme to protect user accounts against unau-

thorized access. Usually, users tend to select passwords that they can easily remember. However, these

passwords are highly predictable and prone to brute-force and dictionary attacks. Therefore, security ex-

perts recommend to use a password generator in order to create a random and cryptographically secure

password for a user acccount.

Using existing password generators, users are faced with the issue that the generated password might

not be accepted by the service because it does not fulfill the serivce’s password requirements. For in-

stance, the password is too short or does not contain a required special character. One possible solution

to cope with this problem is to adjust the password until it fulfills the requirements and gets accepted by

the service. Another possible solution is to configure the generator with regard to the respective require-

ments of the particular service. However, this is not possible in all cases because password generators

do not provide means for all kinds of requirements. For instance, a service requires the first character

of the password to be alphanumeric. Both approaches are highly inconvenient and time-consuming for

users so that they avoid using password generators and keep choosing weak passwords. Hence, a novel

mechanism is required that allows password generators to easily create secure passwords in accordance

with a service’s password requirements.

To enable password generators to consider the password requirements, a standardized way for express-

ing password requirements is necessary. The Password Policy Markup Language (PPML) [1] provides a

standardized description for password requirements. However, these password policies have to be cre-

ated manually. This requires a tremendous effort to do this for the huge amount of services present on

the Internet. Consequently, a solution to automatically create such password policies is needed.

This thesis introduces the Password Policy Crawler (PPC). The PPC browses a service’s website, extracts

its password requirements, and creates a corresponding password policy automatically. It uses modern

Natural Language Processing technologies to precisely identify and extract the requirements from a ser-

vice’s website. The accuracy of the PPC was evaluated on 200 services. It is shown that the PPC finds

the password requirements of 74.5% of all services and successfully extracts them in 91.5%. The PPC

is a highly scalable application which is demonstrated in a conducted large-scale creation of password

policies for 72,125 services. Additionally, the first password generator is presented that automatically

generates secure passwords in accordance with the password requirements of the services. Users only

need to provide the URL of a service which eliminates the burden of manually looking up the require-

ments and configuring the generator. This simplifies the usage of password generators and makes it

easier for users to create secure passwords.

I

Zusammenfassung
Heutzutage speichern Nutzer eine Vielzahl von vertraulichen Daten wie E-Mails, Bilder, Gesundheitsak-

ten und Finanzdaten bei Diensten im Internet. Zum Schutz der Daten vor unberechtigtem Zugriff werden

vorwiegend Passwörter eingesetzt. Bei der Wahl von Passwörtern neigen Nutzer dazu, einfache, leicht

zu merkende Passwörter zu verwenden. Dies führt jedoch dazu, dass die Passwörter leicht zu erraten

sind. Sicherheitsexperten empfehlen daher den Einsatz eines Passwort-Generators, um zufällige und

kryptographisch sichere Passwörter für Nutzerkonten zu generieren.

Bei der Verwendung heutiger Passwort-Generatoren existiert jedoch das Problem, dass ein generiertes

Passwort unter Umständen nicht von einem Dienst akzeptiert wird. Das Passwort ist beispielsweise

zu kurz oder enthält ein nicht erlaubtes Sonderzeichen. Nutzer können dieses Problem auf unter-

schiedliche Weise lösen. Zum einen kann das generierte Passwort vom Nutzer angepasst werden, bis

es den Anforderungen des Dienstes entspricht. Zum anderen kann der Generator für den Dienst konfig-

uriert werden, sodass dieser Passwörter gemäß den Anforderungen generiert. Dies ist aber nicht immer

möglich. Beispielsweise unterstützen existierende Passwort-Generatoren Anforderungen wie etwa, dass

das erste Zeichen eines Passworts alphanumerisch sein muss, nicht. Beide Lösungsansätze sind um-

ständlich und zeitaufwändig, wodurch Nutzer Passwort-Generatoren meiden und stattdessen weiterhin

schwache Passwörter einsetzen. Es bedarf daher einer Lösung, die es Passwort-Generatoren erlaubt, auf

einfache Weise Passwörter zu generieren, die den Anforderungen der jeweiligen Dienste genügen.

Für die Entwicklung von Passwort-Generatoren, die automatisch gültige Passwörter generieren, bedarf es

einer standardisierten Beschreibungssprache für Passwort-Anforderungen. Die Password Policy Markup

Language (PPML) [1] stellt eine solche Beschreibungssprache bereit, erfordert aber die manuelle Erstel-

lung der Password Policies. Jedoch erweist sich die manuelle Erstellung für die Vielzahl an Diensten im

Internet als nicht durchführbar.

Diese Thesis präsentiert den Password Policy Crawler (PPC). Der PPC besucht die Webseite eines Dien-

stes, extrahiert dessen Passwort-Anforderungen und erzeugt automatisch eine entsprechende Password

Policy. Durch den Einsatz der Technologie des Natural Language Processing ist der PPC in der Lage, die

Passwort-Anforderungen einer Website präzise zu erkennen und zu extrahieren. Die Genauigkeit des PPC

wird anhand von 200 Diensten evaluiert. Es wird gezeigt, dass der PPC die Passwort-Anforderungen für

74,5% der Dienste findet und in 91,5% der Fälle erfolgreich extrahiert. Der praktische Einsatz des PPC

wird durch das Erstellen von Password Policies für 72.125 Dienste gezeigt. Des Weiteren wird der erste

Passwort-Generator vorgestellt, der das automatische Erzeugen von Passwörtern unter Berücksichtigung

der Dienst-spezifischen Passwort-Anforderungen erlaubt. Ein Nutzer muss hierfür lediglich die URL des

Dienstes angeben, wodurch das manuelle Konfigurieren des Passwort-Generators bzw. die nachträgliche

Anpassung des Passworts entfällt. Für Nutzer stellt dies eine wesentliche Vereinfachung in der Benutzung

von Passwort-Generatoren dar.

II

Contents

List of Figures V

List of Tables VI

List of Abbreviations VII

1. Introduction 2

2. Related Work 4

3. Background 6
3.1. Password Policy Markup Language . 6

3.1.1. Functionality . 6
3.1.2. Meta Data . 7
3.1.3. Password Requirements . 7
3.1.4. Password Management . 7
3.1.5. Implementation . 8

3.2. Unstructured Information Management Architecture . 9
3.2.1. Unstructured Information . 9
3.2.2. High-Level Architecture . 10

4. Password Policy Crawler 12

5. Content Crawler 14
5.1. Implementation . 14

5.1.1. Search Engine . 15
5.1.2. Signup Page Detection . 15
5.1.3. Link Extraction . 16
5.1.4. Content Extraction . 17
5.1.5. Limitations . 18

5.2. Evaluation . 20
5.2.1. Findings . 20
5.2.2. Search Results . 21
5.2.3. Link Extraction . 22
5.2.4. Final Results . 23
5.2.5. Summary and Conclusion . 25

6. Password Policy Extractor 26
6.1. Implementation . 26

6.1.1. HTML Preprocessing . 27
6.1.2. Text Segmentation . 29
6.1.3. Natural Language Parsing . 30
6.1.4. Keyword Annotator . 31
6.1.5. Dependency Parsing . 31

III

6.1.6. Information Interpreter . 32
6.1.7. HTML Meta Information Extraction . 33
6.1.8. Requirement Storage . 33
6.1.9. Limitations . 34

6.2. Evaluation . 35
6.2.1. Evaluation Set . 35
6.2.2. Assumptions . 36
6.2.3. Correctness Criteria . 36
6.2.4. Results . 37

7. Large-Scale Password Policy Generation 40

8. Automated Password Generation 41
8.1. KeePass . 41
8.2. Password Generation using Password Policies . 43

9. Conclusion 45

10.Glossary 47

Bibliography 49

A. Password Policy Crawler Manual 54

B. PPML XML Schema Definition 57

C. Example Password Policy 61

D. PPC Evaluation 62

IV

List of Figures
3.1. Structure of a password policy . 6
3.2. High-level architectural overview of UIMA . 10

4.1. High-level overview of the Password Policy Crawler. 12

5.1. Architectural overview of the Content Crawler . 14
5.2. Sample StartPage search as used by the CC . 15
5.3. Robots meta tag as present on wikipedia.org . 16
5.4. iStockPhoto images page found by the search engine . 17
5.5. Password requirements as outlined on walmart.com . 18
5.6. Tooltip text inserted from JavaScript array . 18
5.7. Error after submitting an invalid password to Facebook . 20
5.8. Asynchronous loading of the signup form on cnbc.com . 23

6.1. Architectural overview of the Password Policy Extractor . 26
6.2. Password requirements contained in the data attribute on ancestry.com 28
6.3. Password requirements used on go.com . 28
6.4. Password requirements HTML markup on register.go.com . 29
6.5. Graphical dependency tree representation of a sample sentence 30
6.6. Password input with specified maximum length . 33

8.1. KeePass graphical user interface . 41
8.2. Add Entry dialog in KeePass with opened password generator configuration dialog 42
8.3. Password generator using password policies integrated in the KeePass context menu 43
8.4. Reduced version of the Add Entry dialog using password policies 44

V

List of Tables
4.1. Filtering for domains with public signup pages among the Alexa Top 500 US list 13

5.1. Evaluation of the average first signup page position . 22
5.2. Evaluation of the average first signup page position in combination with link extraction . . 22
5.3. Reasons that signup pages are not found by the Link Extractor 23
5.4. Classification results of the CC . 24

6.1. Password requirements present on the evaluation set . 35
6.2. Evaluation results of the PPE . 38
6.3. Reasons for imprecise password policies . 38

7.1. Overview of filtered domains during the large-scale crawling 40

D.1. Domains used for evaluating the PPC modules . 62
D.2. Detailed evaluation results of the CC . 66

VI

List of Abbreviations
AE Annotation Engine

AJAX Asynchronous JavaScript and XML

CAPTCHA Completely Automated Public Turing test to tell Computers and Humans Apart

CAS Common Analysis Structure

CC Content Crawler

DOM Document Object Model

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IE Information Extraction

ISO International Organization for Standardization

NLP Natural Language Processing

PDF Portable Document Format

PPC Password Policy Crawler

PPE Password Policy Extractor

PPML Password Policy Markup Language

SBD Sentence boundary disambiguation

SSO Single Sign-On

TAE Text Annotation Engine

TLD Top Level Domain

UIM Unstructured Information Management

UIMA Unstructured Information Management Architecture

URL Unified Resource Locator

WWW World Wide Web

XML eXtensible Markup Language

XSD XML Schema Definition

VII

Acknowledgement
Above all, I would like to thank my supervisor, Moritz Horsch, and Prof. Dr. Johannes Buchmann for

giving me the opportunity of writing my thesis on this very interesting and challenging topic. In partic-

ular, I want to thank Moritz Horsch. I am deeply grateful for his continuous support. His guidance and

commitment helped me in all the time of research and writing my thesis. It was a great pleasure to have

him as supervisor and work with him in all these months. Furthermore, I want to thank Martin Riedl for

his helpfulness and giving constructive input in certain topics of Natural Language Processing.

Finally, I want to thank my family and friends for their support not only during this thesis, but throughout

all the years of my studies.

1

1 Introduction

Internet usage and online applications are experiencing spectacular growth. Online applications and

services store user accounts containing a broad spectrum of sensitive data, ranging from personal com-

munication to health records and financial information. In order to protect this data, a secure authen-

tication is necessary to grant access only to authorized users. While there exist multiple approaches for

user authentication, passwords remain the most widely used authentication scheme [2], despite several

security and usability drawbacks.

To prevent brute force and dictionary attacks, passwords must be strong. Weak passwords undermine

the security and put user data at risk [3]. Furthermore, passwords should not be reused [4] and have

to be memorized for later use. The reuse of passwords creates another security risk, as an attacker who

is able to compromise one service can compromise other services protected by the same password. The

increasing number of accounts [5] users have to deal with makes it nearly impossible to rememeber a

unique password for each service. To overcome this problem, users can use password managers that

allow the secure storage of passwords. Consequently, users are able to choose unique passwords for each

service without the need to memorize them. Moreover, password generators [6, 7, 8, 9, 10] assist users

in the creation of random and secure passwords. However, because different service providers apply

different requirements such as the allowed characters or the length of the password, the generated pass-

words might not be accepted by the service. To cope with this problem, users choose unnecessary weak

passwords only matching the minimum requirements. For services with more complex requirements,

users use simple tricks as workaround, for example adding the number 1 to the end of their default pass-

word to fulfill the requirements. In order to generate secure and valid passwords, users must manually

find out a service’s requirements and configure the password generator, which is time consuming and

error-prone. Unusual password requirements might not even be configurable. The generation of secure

passwords that comply with a service’s requirements is therefore still an open issue.

To address the issue of different password requirements, the Password Policy Markup Language

(PPML) [1] provides a standardized description of a service’s password requirements. Based on such

well-defined descriptions, so-called password policies, password requirements can be expressed in a

machine-readable format. Password generators can use this information to automatically generate se-

cure passwords for a service in accordance with its requirements. This allows an easy-to-use solution for

generating secure and unique passwords for each used service. Yet PPML only provides the description

of password requirements, the policies still need to be created. Currently, these policies do not exist

and it is unlikely that a large fraction of internet services will provide them on their own initiative. A

community-based approach can allow users to create such policies and submit them to a central entity

for use by others. While this might work for popular services, it will not scale for the huge amount of

services present on the internet.

2

This thesis introduces the Password Policy Crawler (PPC), a solution to create password policies auto-

matically. The PPC is a software application that extracts the password requirements from a service’s

website and generates the corresponding password policy automatically. Because the password require-

ments are presented to the user while creating an account for the service, they can generally be found on

the signup page. Therefore, the PPC first finds the signup page of the service. Second, the content of the

signup page is analyzed. The PPC extracts requirements from texts present on the signup page (e.g. “Use

at least one uppercase letter”) as well as from the password input field that may contain information

about the minimum and maximum password length. The extracted requirements are finally stored in

the PPML file format.

Outline

This thesis is organized as follows. After a short presentation of related work in Section 2, the necessary

background information for this thesis is provided in Section 3. It comprises a brief description of the

Password Policy Markup Language (PPML), a structured representation of password requirements, and

the Unstructured Information Management Architecture (UIMA), a framework for information extrac-

tion. These sections are followed by the main contribution of this thesis:

Section 4 provides a high-level overview of the architecture of the PPC and briefly describes the applica-

tion flow. The PPC consists of two separate modules, namely the Content Crawler (CC) and the Password

Policy Extractor (PPE). The CC is responsible for searching the signup page of a service’s website and is

described in Section 5. Section 6 describes the PPE that processes the signup page in order to extract

requirements and create a password policy.

Section 7 describes a conducted large-scale crawling of password policies. A list of one million websites

were crawled and password policies for 72,125 domains were created. Section 8 introduces a password

generator that can use the created password policies in order to generate random passwords that comply

with a service’s requirements.

Finally, Section 9 concludes the thesis and provides future work.

3

2 Related Work

Password generators can help users selecting secure random passwords. Password generators are an in-

tegral part of nearly all password managers and also exist as web (e.g. random.org [9]) and stand-alone

applications (e.g. PWGen [10]). In general, they allow setting basic requirements such as the password

length or the allowed characters. Furthermore, some password generators provide more advanced set-

tings such as the password being pronounceable (e.g. Wesmid86) or that the generated password should

not contain ambiguous characters (e.g. uppercase i and lowercase L). However, none of the current pass-

word generators allow the generation of passwords for a specific service. This means that users need to

find out the requirements and configure the generator manually.

Shay et al. [11] present a formal language for password policies based on the generic authentication

policy language AuthSL [12]. A simulation model that can be expressed based on the language can test

the impact of a policy regarding its security before it is deployed in practice. However, the language

cannot be used to express password requirements of real services because it does not provide crucial

information such as the allowed character sets. Shay et al. [13] extended their simulation model by

technical and human factors essential to the creation of password policies, but it still focuses on the

simulation model to test the impact on security for existing services.

The service at passrequirements.com [14] lists the password requirements of web services in a list that

can be searched by typing in a domain name. The requirements are provided as text that is copied from

the service’s website. Apart from the very limited list of currently only 64 services, the requirements are

not published in a standardized format and not available through a standardized interface. To look up

the requirements of a service, users need to visit a second website. Furthermore, because the service lacks

an API, applications can neither retrieve nor process the password requirements automatically.

Egelman et al. [15] performed a laboratory experiment to see whether password meters influenced

the user’s behavior in their selection of weak or strong passwords. Users were forced to change their

password in a real application not knowing that they were subject of a study. Egelman et al. conclude

that password meters can lead users to select stronger passwords for “important” accounts. For low-risk

accounts, users tend to reuse the same weak passwords. Password meters can therefore support the

selection of stronger passwords, but users still reuse these passwords for a multitude of accounts.

Other services such as craigslist.com [16] try to overcome the problem of users selecting weak passwords

that get reused for multiple services by removing the password selection completely. When registering

for the service, users must only provide their email address and get a unique random generated password

sent by email. This helps to enforce strong and unique passwords, but has further security implications.

Because users tend to keep the email containing the password in their inbox, an attacker with access

to the inbox could gain access to these accounts. In contrast to services where the passwords are not

4

contained in such emails, the attacker would not need to use the reset password functionality. Therefore,

the attacker has a higher chance to remain unnoticed by the user.

Single sign-on (SSO) mechanisms such as OpenID [17] and Facebook Connect [18] are designed to

provide secure authentication among connected services without being prompted for different usernames

and passwords. Urueña et al. [19] analyze the privacy of these SSO systems and state that both systems

have privacy issues that make SSO mechanisms not a fully adequate replacement for multiple passwords.

Furthermore, Wang et al. [20] discovered serious logic flaws that allow attackers to sign in as the victim

user. They conclude that the overall security quality of SSO systems seems worrisome.

5

3 Background

The following chapter provides necessary background information for this thesis. First, the Password

Policy Markup Language (PPML) is described in Section 3.1. PPML allows the specification of password

requirements in a standardized format. Second, the Unstructured Information Management Architecture

(UIMA) is described in Section 3.2. UIMA provides a framework for information extraction and is used

as basis for the development of the PPC.

3.1 Password Policy Markup Language

The Password Policy Markup Language (PPML) is a XML-based data format used to specify password

requirements for a service in a machine-readable format. One of the objectives of a so-called password

policy1 is to provide all information that is necessary in order to automatically generate secure and

accepted passwords for a service. PPML focuses on the perspective of users and applications regarding

the use of passwords. It does not provide information about a service’s security measures for storing

passwords and protecting user data.

In the following, details about the information that can be stored with the usage of a password policy

are provided. Furthermore, a detailed description of the implementation of PPML is given. The PPML

schema as used in this thesis can be found in the appendix Section B.

3.1.1 Functionality

A password policy can be divided into three parts (see Figure 3.1) which are described in the following.

First, meta data contain information about the scope and currentness of a policy. Second, information

about password requirements are stored in the policy such as the minimum and maximum length of the

password. Third, PPML allows the description of routines used for password management. Routines can

be used to automate management functionalities such as the changing of a user’s password.

Password Policy

Password
Requirements

Meta Data
Password

Management

Figure 3.1.: Structure of a password policy.

1 In this thesis, the terms password policy and policy are used interchangeably.

6

3.1.2 Meta Data

The meta data section contains additional information about the password policy.

• Scope: Defines the location for which the policy is applied. A policy can either be valid for a com-

plete domain (e.g. http://example.com) or only a part of it (e.g. http://example.com/service1/).

The possibility to define fine-grained scopes can be used to have password policies for different

services residing on the same domain.

• Name: The name of the service the policy is applied to (e.g. Google). It is used to display a

user-friendly identifier for the service to the user.

• Version: The version number of the policy. It allows applications to differentiate between multiple

versions and to decide which policy to use in the case of multiple existing policies.

• Timestamp: The timestamp when the policy was created. It can be used to decide whether the

using application should check for a new version.

3.1.3 Password Requirements

The password requirements section contains information that can be used in order to automatically

generate passwords in accordance to a service’s requirements. PPML allows the specification of the

following requirements:

• Minimum and maximum password length (e.g. the password must have more than six characters)

• Character sets (e.g. the password can contain letters, numbers, and special characters)

• Character restrictions

– Minimum and maximum occurrences (e.g. the password must contain at least one uppercase

letter)

– Position restrictions (e.g. the first character of the password must be alphanumeric)

– Consecutive characters (e.g. password must not contain two identical consecutive characters)

There are very few services that have requirements which cannot be expressed using PPML. For instance,

a service might use a blacklist to restrict the use of common passwords or passwords that contain parts

of the username or email address. The password policies are intended to be used for the creation of

random passwords and will therefore most likely not generate such invalid passwords. As described in

Section 2 it is also well-known that blacklists are error-prone because they usually contain passwords for

a single language only [21] and accept slightly changed common passwords such as password!.

3.1.4 Password Management

Besides information used for generating random passwords, a password policy can contain management

routines that can be used in order to automate password-related operations. The management routines

can describe three operations:

7

• Login

• Password Change

• Password Reset

A management routine contains a set of instructions that is sequentially executed. An exemplary login

routine first loads a service’s login page (e.g. https://example.com/login/). Afterwards, the username

and password is filled in the corresponding input fields and the login form is submitted. Each instruction

can include a set of assertions to ensure that the login was performed successfully. For instance, an

assertion can check whether the website has set a certain cookie that allows the distinction between a

successful and failed login.

3.1.5 Implementation

PPML is implemented as a XML Schema Definition (XSD) which allows the specification of password

policies in the XML format. XML is a widespread format that allows the description and exchange of

data on the web [22].

The XSD defines the structure of a password policy. Elements for the minimum and maximum password

length can be represented as integer value or omitted if the service has no restrictions. Character sets

are defined prior to the settings for requirements on minimum and maximum occurrences. A character

set can either be defined by using a list of characters or by referencing one or more previously defined

character sets. For each character set, a minimum and maximum amount of occurrences in the password

can be defined (e.g. your password must contain at least one number). Restrictions on certain character

positions in the password enable the setting of allowed characters depending on the character position

(e.g. the first character must be alphanumerical). Each position restriction defines a set of positions

to which the restriction is applied. This can be a single position as well as a comma separated list of

multiple positions. Because the password policy may not specify an exact password length, negative

positions define the character position starting from the end of the password. For instance, a character

position of -1 refers to the last character of the generated password. Furthermore, the grouping of

requirements regarding character sets allows the definition of rule sets. This allows even more complex

password requirements that can be encountered on some services (e.g. use at least three of the following

four rules).

The scope of a password policy is specified as an URL. It is also possible to refer to another URL in order

to reuse an existing password policy. This allows the definition of a single password policy that can be

applied for different scopes (e.g. example.com, example.org). Precisely, this means that the password

policy for example.com can contain the complete description of password requirements. The password

policy for example.org only specifies its scope and the redirect attribute linking to the existing policy.

The reuse of existing password policies can therefore simplify maintenance because only one password

policy has to be maintained.

8

The name and the version number can be any string and must not follow predefined conventions. The

timestamp must be specified in the XSD datetime format [23] containing a combination of date and time

as specified in ISO 8601 [24].

The XSD allows the definition of four different routine types that differ in their required technology.

First, the HTTP routine type is able to send and receive plain HTTP requests (i.e. POST and GET).

Second, the HTML routine type can additionally fill out forms that are received by the HTTP requests.

This allows the submission of necessary hidden input fields where plain POST and GET requests are

not sufficient. Third, the JavaScript routine type has enabled JavaScript support, e.g. for forms that are

submitted using JavaScript. Finally, the Extended JavaScript type contains pure JavaScript code that is

executed and therefore allows a broad interaction with the website. For management operations that

require additional user input, such as CAPTCHAs or security questions, the routines allow the definition

of placeholders that are requested from the user during the execution of a routine.

3.2 Unstructured Information Management Architecture

This section gives an introduction into the Unstructured Information Management Architecture (UIMA).

After a short introduction into the term unstructured information and the difficulties associated with

the extraction of information, a high-level architectural overview of UIMA is provided. UIMA is the

underlying framework that has been used in the process of developing the PPC.

3.2.1 Unstructured Information

This section gives a brief introduction in the topic of unstructured information and the techniques that

are currently used in order to process this kind of information. The term unstructured information (or

unstructured data) refers to content that is not organized in a pre-defined data model. Unstructured

information typically includes text or multimedia content such as emails, presentations, and webpages.

In contrast to structured information, such content cannot be fitted into a relational database that can be

used to directly access information. For example, a database might store the sender and recipient of an

email in a database. Although the content of the email could also be stored, it cannot be used to access

certain information contained in the text. This means that the database cannot be queried to answer

questions regarding the content of the email (e.g. where is the meeting taking place?).

Further examples of unstructured information are:

• Text files (e.g. PDF files, webpages, or written documents such as books and letters)

• Audio (e.g. recordings for digital assistants such as Siri or Cortana)

• Video (e.g. news recordings)

• Images (e.g. scientific illustrations)

• Presentations (e.g. PowerPoint files)

The World Wide Web contains a seemingly unlimited amount of information, the majority of it repre-

sented as unstructured information. The active research in the field of Artificial Intelligence (AI) and

9

Natural Language Processing (NLP) focuses on the task of Information Extraction (IE) [25, 26]. Infor-

mation Extraction is the task of automatic extraction of information from unstructured text such as types

of events, entities, or relationships from textual data [27].

The PPC introduced in this thesis (cf. Section 4) uses IE techniques in order to extract password require-

ments from unstructured information. The unstructured information is the content that is presented to

the user, which is present as natural language. Password requirements that are present as unstructured

information are extracted using the UIMA framework which explained in the following section.

3.2.2 High-Level Architecture

In the following, the high-level architecture of UIMA is presented. After a short introduction in Un-

structured Information Management (UIM) applications, the key components of an application using the

UIMA framework are explained.

UIM applications are software systems that serve the purpose of analyzing large amounts of unstructured

information to discover, organize, and extract relevant knowledge [28]. For knowledge extraction, UIM

applications use a wide range of technologies, such as Natural Language Processing [29] (NLP), Infor-

mation Retrieval [30] (IR), Machine Learning [31], and Automated Reasoning [32]. In particular, the

unstructured data must be analyzed to interpret and detect information of interest that are not explicitly

tagged for automatic processing, such as named entities [33], organizations, or locations. For example,

an UIM application could detect persons involved in a text book. More sophisticated applications might

find opinions in user product reviews to support business intelligence.

UIMA is a software framework that supports the development of such UIM applications. The architecture

of UIMA provides components and data representations essential for UIM applications. Figure 3.2 shows

the architectural high-level view of the document-level analysis using the UIMA framework.

Unstructured Information
Crawler

Acquisition Service

(Text) Analysis Engines

Engine 1 Engine 2 Engine N

Unstructured Information Analysis

Structured
Information

Figure 3.2.: High-level architectural overview of UIMA.

10

An acquisition service produces a document collection that will be analyzed by the application. For

example, this may be a web crawler that has crawled a set of websites of interest. The variety of

applications that may provide collections to UIMA is not limited by the architecture. So-called Collection

Readers must provide the interface to access a collection’s elements.

The documents are then accessed by the Analysis Engines (AEs) or respectively for text by the specialized

Text Analysis Engines (TAEs). A TAE is a recursive analysis structure that can itself contain multiple TAEs.

Each TAE represents a certain analysis step that focuses on the discovery of specific concepts such as

the recognition of named entities. The analysis that is produced as well as the original document are

stored in the Common Analysis Structure (CAS). Information that is added to the CAS is represented as

annotations. An annotation is a metadata structure that associates information with a span of text in the

document [28]. The CAS is more and more enriched with information as it is passed along the stages of

analysis.

The architecture of UIMA allows developers to focus on the development of algorithms that will be

encapsulated in an analysis engine. The analysis engine can expect the presence of certain information

in the CAS (referred as CAS in) and produce a certain output (referred as CAS out). This supports the

reuse of components across multiple applications.

11

4 Password Policy Crawler

In this section, a solution to generate password policies automatically is presented. The Password Policy

Crawler (PPC) is a software application that extracts the password requirements from a service’s website

and creates the corresponding password policy automatically. First, a brief overview of the functioning

of the PPC is provided. Second, a high-level overview of the architecture and components of the PPC

is given. Third, details about the evaluation set used for evaluating the key modules of the PPC are

presented. The key modules are later described in detail in Section 5 and 6.

The PPC creates a password policy for a given service in the following four steps:

1. Given a service’s domain (e.g. example.com), the PPC finds the signup page and stores its HTML

source code.

2. The source code of the signup page is processed and information about the minimum and maximum

length of the password is extracted from the password input field.

3. Requirements that do not refer to the password (e.g. username requirements) are removed. The

remaining text is parsed and password requirements are extracted from texts such as “Use six or

more characters”.

4. Finally, a password policy is created specifying the found password requirements.

The architecture of the PPC is illustrated in Figure 4.1. The creation of a password policy for a given

domain is divided in two key modules. The Content Crawler (cf. Section 5) is responsible for finding the

signup page of the given domain. The HTML source code of the signup page is stored in a local database

that is accessed by the Password Policy Extractor (cf. Section 6). In the extractor, two approaches are

used for extracting password requirements. First, the password requirements that are present as natu-

ral language (e.g. “Use at least one lowercase character”) are extracted. Second, attributes present in

the HTML password input field can be used to extract information about the minimum and maximum

password length.

Content Crawler Password Policy ExtractorDomain Signup Page
Password

Policy
Store Policy

Figure 4.1.: High-level overview of the Password Policy Crawler.

12

Evaluation Set

The following section describes an evaluation set that was used to evaluate the PPC. The evaluations

performed on the two key modules of the PPC in Sections 5.2 and 6.2 use a list of domains with English-

speaking websites which all have a publicly available signup page. The set of domains used for evaluation

was derived from the Alexa Top 500 US list [34] in a multi-step process. The list represents the top most

visited websites from the United States.

First, all non-English websites were filtered out. Second, websites containing illegal and/or adult content

were identified and removed from the list. Third, the remaining websites were analyzed manually

whether they contain a signup page. Besides websites that do not offer any possibility for users to create

an account, there are websites that offer registration only with an existing offline account (e.g. media

companies [35] or online banking) as well as websites that require the input of payment information

prior to registering. Table 4.1 shows the amount of websites removed per filtering process. In total,

this results in 200 websites respectively domains that were used for the evaluation. The complete list of

domains can be found in the appendix Section D.

Filter Removed Websites Remaining Websites

Non-English 7 493

Adult/Illegal content 13 480

No public signup 280 200

Table 4.1.: Filtering for domains with public signup pages among the Alexa Top 500 US list.

13

5 Content Crawler
In the following, the Content Crawler (CC) is described, which finds the signup page of a service. After a

short description about the functionality of the crawler, detailed information about the implementation

is provided. Furthermore, an evaluation of the crawler is presented. It will be shown that the crawler

is able to achieve an overall good precision of over 94% in finding the signup page for a given domain.

Additionally, findings during the evaluation are outlined and discussed.

As input, the CC receives the domain of a service, e.g. example.com. It queries a search engine to

find possible signup pages. It accesses the first three results retrieved by the search engine and checks,

whether one of the pages is a signup page. If no signup page is found on all candidates, a further analysis

of links contained on the visited pages and matching certain patterns is performed. Analogous to pages

retrieved from the search engine, the links are visited and a search for signup pages is performed. Found

signup pages are stored in a local database for later access and further processing by the Password Policy

Extractor (cf. Section 6).

5.1 Implementation

For a given domain, the CC first queries a search engine to retrieve URLs to a possible signup page. These

URLs will be visited and searched by the Signup Page Detection component which analyzes the HTML

structure in order to decide whether a page is a signup page. If no signup page is detected, the Link

Extraction component extracts anchor links that match certain keywords, such as “Join” and “Sign up”.

Only if no signup page can be found using the URLs retrieved from the search engine, the extracted links

will be checked. As a last step, the Content Extraction component visits a found signup page using a

common browser in order to extract a processed HTML Document Object Model (DOM) structure. The

structure of the crawling module is illustrated in Figure 5.1.

Search Engine

Signup Page Detection

Domain Link QueueSearch Results

Signup PageContent ExtractionLink Extractor

Figure 5.1.: Architectural overview of the Content Crawler.

14

5.1.1 Search Engine

The Search Engine component uses a search engine web service in order to find URLs to possible signup

pages. To retrieve relevant results, a simple query containing the domain name of the service as well as

the phrase “sign up”. For example, for the domain example.com the component would build the query

“example.com sign up”.

This component uses the StartPage web service [36] as search engine which retrieves its results directly

by the Google search engine. In contrast to Google, StartPage has a more liberal restriction regarding the

maximum allowed queries per day. However, the use of other search engines would likewise be possible.

Figure 5.2 shows a typical query and its results using the StartPage web service.

Figure 5.2.: Sample StartPage search as used by the CC [37].

5.1.2 Signup Page Detection

In this section, the solution how to detect a signup page is presented. The Signup Page Detection

component decides, whether a URL points to a signup page or not. In order to do so, the URL is being

accessed and scanned for the HTML form elements (<form>) [38]. The component checks if the page

contains a form that can be used to create an account (i.e. a signup form). In general, a form element

defines where and how the user input is submitted that is provided by filling contained input elements.

However, not every form represents a signup form. Forms may serve different purposes such as:

• Login

• Signup

• Newsletter subscription

• User settings

Therefore, the form is processed and analyzed to fulfill certain requirements to be considered as signup

form. In a first step, all input and select elements are extracted and analyzed. The set of input fields

is then filtered by their type to remove elements of non-text type such as checkboxes, images or buttons.

The remaining set of form elements must finally fulfill the following requirements to be considered as a

signup form:

• At least one input of type password is present.

• The set is at least of size 3.

15

The CC expects the set to have at least three input fields to distinguish between a login and signup form.

While a login form usually only asks for a username and password, a signup form requires the input of

more information such as the user’s email address, its name, and/or birthdate.

For accessing URLs, this component uses the Selenium framework [39] in order to send a HTTP request

to the corresponding web server and analyze the parsed result for forms of interest. Selenium is a

testing framework that provides functionality for automating browser interaction. It uses browsers such

as Firefox or Google Chrome in order to interact natively with websites. In contrast to using plain HTTP

requests and directly analyzing the DOM structure from the server response, it is possible to retrieve the

DOM structure after it has been processed by the browser. This is especially beneficial for websites that

use JavaScript and AJAX [40] because these technologies might significantly modify the source code due

to delayed content presentation or asynchronous downloading of additional resources. As a result, the

DOM structure that is received through the HTTP server response might not contain all the information

that would finally be presented to the user.

5.1.3 Link Extraction

In some cases, the retrieved search results from the search engine are not directly referring to a signup

page. To address this issue, the Link Extraction component parses all links present on the pages that

were retrieved from the search engine. The relative anchor links and link texts are then matched against

a small dictionary to find links of interest. Links of interest contain keywords such as Sign Up, Create

Account or Join Now. The found links are then added to the queue to be processed.

Overall, the pages that are processed build a prioritized order, where as soon as the signup page has

been found, all remaining pages in the queue will be discarded. Before any extracted link is processed,

all search results retrieved from the search engine are processed.

There are several reasons why the search results may be inaccurate for the intended goal. One of the

reasons is the HTML robots meta tag [41]. The robots meta tag allows webmasters to control the

behavior of search engines when crawling a website. Setting the content attribute tag to “noindex” tells

the visiting search engine not to index a certain URL and therefore not to present them in the search

results.

There are services that have this tag set on their website’s signup page. An example of a service with a

very large user basis is Wikipedia. Figure 5.3 shows the relevant section of the HTML structure that is

present in the signup page on wikipedia.org.

Figure 5.3.: Robots meta tag as present on wikipedia.org [42].

16

Analogous to the robots meta tag, there exists the robots.txt [43] that webmasters can provide from a

well-known location [44] of their web server. Both approaches are considered by all major commercial

search engines [45] and can therefore lead to inaccurate search results.

Another reason may be a bad overall search engine optimization on the used query and the keywords

found on the signup page of a website. A service’s website might contain multiple pages that all contain

the queried keywords (sign up), but not all of them are actually signup pages. An example for this case

is the iStockPhoto service. In addition to the signup page, istockphoto.com has a large amount of pages

that are showing commercial pictures that are tagged with the keywords sign up (see Figure 5.4). The

fact that users commonly use keywords to find photos on iStockPhoto leads to a high ranking of one of

these keyword pages in the search results.

Figure 5.4.: iStockPhoto images page found by the search engine [46].

Using the Link Extraction component, the processing order of links for iStockPhoto then looks as fol-

lows:

• http://www.istockphoto.com/sell-stock-photos.php

• http://www.istockphoto.com/photos/sign+up

• http://www.istockphoto.com/

• https://secure.istockphoto.com/join/aHR0[...]

The last link represents an extracted link from the first search result. After content is passed to the

Signup Page Detection as described in Section 5.1.2, it is recognized as signup page and stored in the

local database to be parsed for password requirements. All remaining links in the queue will be discarded

and the processing is stopped.

5.1.4 Content Extraction

The final operation of the CC is the storage of found information. After the signup page has been loaded

by the browser, the password input field is focused and the processed HTML source code is stored.

After a signup page has been loaded, there are many other resources besides the retrieved HTML that

could be stored for later requirement extraction. Typically, a web page does not only consist of the

received HTML code from the request sent to the server. Inside the HTML code, other resources like

17

http://www.istockphoto.com/sell-stock-photos.php
http://www.istockphoto.com/photos/sign+up
http://www.istockphoto.com/
https://secure.istockphoto.com/join/aHR0[...]

images, JavaScript resources, and stylesheets are referenced. Disregarding this information might result

in a loss of information about the password requirements. Figure 5.5 shows a screenshot of the password

input field of the signup form from walmart.com. It can be seen that the password requirements are

shown as a tooltip. This tooltip appears as soon as the password input field is focused by the user.

Figure 5.5.: Password requirements as outlined on walmart.com [47].

Analyzing the received HTML source code from the server, these requirements are not represented in the

content. Instead, it is dynamically added via a JavaScript as seen in Figure 5.6. The example shows a case

where phrases are stored in a JavaScript array containing language variables. However, the additional

parsing of JavaScript would not be expedient for two reasons:

First, many websites use JavaScript where the language variables for form validation contain placeholder

variables that are dynamically filled. This would require complex analysis of the code in order to find

out what values will be filled into the language variables.

Second, it is not always clear whether a requirement is affiliated to a password or other required inputs

such as the username or email address. A string contained in JavaScript with the contents “Six or more

characters” cannot easily be associated to the object it is referencing. Without further knowledge, the

requirement may also be associated to the username that must be chosen.

Figure 5.6.: Tooltip text inserted from JavaScript array [48].

Therefore, the password field is set to be focused by Selenium in order to have these requirements

included in the resulting source code. This eliminates the need of storing additional resources such as

external JavaScript files.

5.1.5 Limitations

There are several website structures that currently cannot be processed successfully by the CC which are

described in the following.

Country Restrictions

First, there exist services that can only be accessed from certain countries, also known as geo-

blocking [49]. Service providers make use of this features for different reasons like licensing constraints,

18

legal issues (e.g. online casinos) or to block access to online shops that have complementary services in a

user’s country. For finding signup pages, the CC was completely operated from Germany with the aim to

crawl English websites. This led to some websites being unable to be crawled due to country restrictions,

for instance pandora.com:

“We are deeply, deeply sorry to say that due to licensing constraints, we can no longer allow

access to Pandora for listeners located outside of the U.S., Australia and New Zealand. We will

continue to work diligently to realize the vision of a truly global Pandora, but for the time

being we are required to restrict its use. We are very sad to have to do this, but there is no

other alternative.

We believe that you are in Germany (your IP address appears to be 87.167.3.153). If you

believe we have made a mistake, we apologize and ask that you please email us.” [50]

Nonetheless, operating the crawler from another country or making use of a VPN service can only be a

partial solution. Because also non-US sites make use of geo-blocking, the crawler would have to know

from where a site can be accessed prior to visiting the site.

JavaScript overlays

Second, the crawler does not interactively process websites using JavaScript and AJAX. As modern tech-

nologies such as HTML5 and AJAX get more and more widespread on the internet, there exist websites

that cannot be used without JavaScript support. Furthermore, there are also registration forms that are

only being loaded asynchronously as modal window shown on the current page when clicking on the

sign up link. Because the crawler treats every extracted link as a separate new page load, these websites

can in some cases not be recognized or accessed.

Endlessly loading websites

Third, there exist websites with content that cannot be extracted with the use of the Content Extraction

component and Selenium. These websites usually have a very high advertisement load. If not properly

implemented, the loading of advertisements prevents a site from finishing loading. This will prevent

JavaScript from triggering events such as showing tooltips when a password field is focused. Moreover,

internal JavaScript will also fail loading asynchronous content such as password requirements. Tests

showed that the majority of these sites are sites with adult content. Solutions such as using adblockers

can only provide little assistance because they can also cause sites to not load properly. However, as it

will be shown in the evaluation (see Section 5.2), these websites represent an overall minority.

Retrieval of password requirements

Another aspect is the retrieval of password requirements. The crawler focuses the password input before

storing the source code of the web page. However, there are websites where this procedure is insufficient

for retrieving all requirements. The most common limitation here are websites that do not show any

password requirement until a form has been submitted. The user choosing the password does not know

whether it is accepted until filling out and submitting the complete registration form.

19

Availability of signup pages

It is evident that the CC is also only able to crawl publicly available signup pages. There are different

services that do not provide such signup pages, most of them are in the banking sector. These sites allow

creating online accounts only with an existing offline account and can therefore not be crawled.

5.2 Evaluation

To be able to make a statement about the quality of the CC, the components were evaluated in a multi-

stage process. This evaluation is described in the following sections. First, Section 5.2.1 discusses

findings that were made during the evaluation. Second, Section 5.2.2 provides a detailed evaluation of

the search results retrieved from StartPage. Third, Section 5.2.3 shows the improvement that is achieved

by adding the link extraction. Furthermore, Section 5.2.4 discusses the final results and Section 5.2.5

concludes this chapter.

For all evaluations, the domains from the evaluation set as introduced in Section 4 were used. The set

contains a list of 200 domains derived from the Alexa Top 500 US sites. All 200 domains are English and

have a publicly available signup page. As stated in Section 1, the overall goal is to be able to generate

secure passwords for a given service. Services without any signup functionality, for which the CC falsely

found a signup page, should not be considered as an error because policies that would be created for

these services would never be requested. Therefore, these erroneous policies would have no impact on

the overall operation of the PPC.

5.2.1 Findings

This section provides findings that were made during the development and evaluation of the CC. One of

the first questions that had to be answered with regard to developing such a software is where to look

for the password requirements that will be mapped to a password policy. In general, it can be assumed

that the requirements for a password can be found on the signup page of a given web service. This is

due to the fact that a user, registering for the service, has to be informed about the requirements that the

chosen password has to fulfill in order to be accepted.

A manual evaluation of the Alexa Top 500 US sites showed that Facebook was the only service that

provided detailed password requirements only on a dedicated page. Facebook uses an algorithm which

identifies weak passwords that will be, eventually, rejected for use. When registering for the service,

the only password requirement that is shown is the minimum password length in case of submitting the

form with an invalid password as seen in Figure 5.7.

Figure 5.7.: Error after submitting an invalid password to Facebook [51].

20

Looking through the Help Center, a dedicated page for password requirements can be found with a more

detailed listing of password requirements:

“What is the minimum password strength and how can I make my password

strong?

When you create a new password, make sure that it’s at least 6 characters long. Try to use a

complex combination of numbers, letters and punctuation marks.

If you see a message letting you know the password you entered isn’t strong enough, try mixing

together uppercase and lowercase letters or making the password longer.” [52]

To reduce the complexity of the PPC, only the signup pages are analyzed for password requirements.

This approach is sufficient in order to provide correct password policies for the majority of evaluated

services including Facebook and Google. However, the CC could easily be adapted to search for different

topics than the signup page.

5.2.2 Search Results

The CC only retrieves the first three search results of a query that is being sent to StartPage. This is as

well for speeding up the process of finding signup pages as due to the assumption that the used search

engine returns the most relevant pages for the query in the top ranks.

Therefore, this evaluation serves two purposes. On the one hand, it is necessary to prove that the

used search engine is able to deliver accurate results and can be effectively used to retrieve URLs to

signup pages. On the other hand, it must be shown that the limitation to three results per query does

not significantly lower the quality of search results. This limitation speeds up the process of finding

signup pages, which is especially important for large-scale crawling. If a large amount of signup pages is

located after the third search result, the crawler would need to be reconfigured to retrieve more results.

Furthermore, if signup pages cannot be found for a large amount of pages through a search engine at

all, this approach would have to be reconsidered.

In this evaluation, the query as described in Section 5.1.1 was submitted to the search engine and the

first thirty results obtained were reviewed manually. Table 5.1 shows the distribution of the average

rank of the correct URL to the signup page for the evaluated websites. For the evaluated websites, 136

signup pages, which equals a percentage of 68, were retrieved with the first search result. The second

search result provided the URL to a signup page for 22 of the remaining 64 websites, which equals 11%.

A small amount of 4 signup pages (2%) were found through the third search result. This adds up to a

total of 81% of signup pages that could be found using only the first three search results. Furthermore, it

can be seen that very few signup pages can be found using more than the first three search results. The

use of up to eight search results would lead to a theoretical improvement of 1%, while an improvement

of 1.5% may be possible by the use of all thirty evaluated search results. It must be noted that the

statistic includes only the best found rank for each website, even though correct URLs may be returned

for multiple ranks.

21

Search Rank Websites Percentage Percentage aggregated

Rank 1 136 68% 68%

Rank 2 22 11% 79%

Rank 3 4 2% 81%

Rank 4-8 2 1% 82%

Rank 9+ 1 0,5% 82,5%

Not found by the search engine 35 17.5% 100.0%

Total Signup Pages 200 100%

Table 5.1.: Evaluation of the average first signup page position.

These results strengthen the thesis that there exists only a small tradeoff between returning only the

first three results and the speedup of the overall process. It also shows that the majority of sites can

be found with querying a search engine at all. The use of up to thirty search results would only lead

to a theoretical improvement of 1.5%, while this would on the other hand have a large impact on the

operating speed of the crawler. As stated in Section 5.1.3, reasons for search engines for not finding a

signup page can be the noindex meta tag or a bad overall search engine optimization.

5.2.3 Link Extraction

For evaluation of the link extraction component, the same 200 domains as for the search engine eval-

uation were used. It is measured, in how far the extraction of matched links can be used to increase

the accuracy of finding a signup page. Table 5.2 shows the improvement from the StartPage search in

combination with link extraction.

Search Rank Websites Percentage Percentage aggregated Improvement

Rank 1 155 77.5% 77.5% 11.5%

Rank 2 23 11.5% 89% 0.5%

Rank 3 4 2% 91%

Rank 4-8 2 1% 92%

Rank 9+ 1 0.5% 92.5%

Total Signup Pages 200 100%

Table 5.2.: Evaluation of the average first signup page position in combination with link extraction.

It is noticeable that the vast majority of found signup pages through link extraction is found using the

first search result. For search rank 1, the improvement sums up to 155 (77.5%) found signup pages.

Furthermore, 23 (11.5%) pages could be found through the second search result. For all other search

results, no further improvement could be achieved.

Overall, there are only 18 (9%) of the evaluated services left for which no signup page could be found

using the presented method. There are different reasons why the combination of the two discussed

components are not sufficient to find a signup page (see Table 5.3).

22

Reason Websites Percentage

Country Redirect 2 1%

Missing Keywords 3 1.5%

AJAX/JavaScript 9 4.5%

Other 2 1%

Table 5.3.: Reasons that signup pages are not found by the Link Extractor.

The country redirect, as discussed in Section 5.1.5 cannot easily be solved. Missing keywords mostly

occur on websites that use a graphical button for signup links or a very special captioning of these links

(e.g. “Create an Adobe ID” [53]). The main reason however is the missing interaction with the websites.

Around 5% of websites use sign forms that are asynchronously loaded and shown as a modal window to

the user after a click on a signup link, for instance on cnbc.com (see Figure 5.8).

Figure 5.8.: Asynchronous loading of the signup form on cnbc.com [54].

As described in Section 5.1.5, the CC does not interact with the website in a way that these websites

can be crawled. This topic will be discussed in the future work Section 9. Other reasons might be very

unique constructions of a signup functionality, such as a preceding required form submission [55] to be

redirected to the corresponding signup page.

5.2.4 Final Results

Being able to effectively retrieve the URL of a signup page is the second last step in detecting a signup

page. Recognizing a page as such is evaluated in this section. This evaluation combines the results

presented in the previously discussed sections and presents important key figures used for measuring the

overall quality of the CC.

There are several characteristics that can be measured. In general, the CC can be considered as a

classifier. Given a domain, it must decide whether there exist a signup page (true) on its website or not

(false). If it decides that a signup page exists, the page must be returned. In this classification process,

23

there are four possible outcomes. For a website that contains a signup page, the crawler can either return

the correct page (in the following referred as true positive or tp) or a wrong/no page (false negative or

fn). Respectively for websites that contain no signup page, the crawler can either return that there exists

no page (true negative or tn) or a wrong page (false positive or fp). In the performed evaluation, no true

negatives can occur because the evaluation was performed on the evaluation set (see Section 5.2) which

contains only domains with an available signup page.

Out of these measures, important key figures can be derived. The precision p defines the percentage of

documents retrieved that are actually relevant [56, 57]. It is defined as follows:

p=
|{relevant documents}| ∩ {retrieved documents}|

|{retrieved documents}|
=

tp
tp+ fp

Recall r [56] is the fraction of relevant documents among all retrieved documents and defined as:

r=
|{relevant documents}| ∩ {retrieved documents}|

|{relevant documents}|
=

tp
tp+ fn

In case of the CC, precision measures the percentage of true signup pages among all pages that were

classified as those. Recall on the other hand defines the percentage of signup pages retrieved among all

existent singup pages. Running the crawler on the 200 domains used in the previous evaluations, the

test outcomes as stated in Table 5.4 were observed.

Condition

True False

Test Outcome
True 149 9

False 42 -

Table 5.4.: Classification results of the CC.

From these results, the precision and recall can be derived:

p =
tp

tp+ fp
≈ 0.9430

r =
tp

tp+ fn
= 0.745

The high precision of about 94% indicates that if the CC classifies a web page as a signup page, it is most

likely a true signup page. This means that the majority of output pages are real signup pages. On the

other hand, the in comparison lower recall of 74.5% means that the CC is not able to find signup pages

for all given domains. For the usage of the CC, it can be stated that the precision is the more important

factor, because it is necessary to trust the module that the given documents are correct. Incorrectly

returned documents will otherwise lead to wrong password policies, whereas a low recall only leads to

missing policies. In contrast to incorrect policies, missing policies can be easily recognized as such.

24

5.2.5 Summary and Conclusion

The evaluation has shown that the CC is able to provide accurate results for a large fraction of given

domains. The accuracy of today’s search engines allows a rather easy process of finding signup pages

with a good overall precision. The precision indicates that the majority of extracted pages are real signup

pages that can be used for creating password policies.

The application area of the CC is a very large amount of domains. Looking only at the currently registered

domains within the com TLD, they represent a volume of over 100 million domains [58]. Given this large

amount of domains, the importance of the recall fades into the background. The greatest challenge will

be to set up an infrastructure that is large enough to visit a significant amount of these domains to crawl

for password policies.

Nonetheless, solutions must be provided to overcome the gap of the recall value. Section 9 will discuss

future work including improvements that can be implemented into the CC in order to increase the recall

value. A community-based approach for creating missing password policies and correcting those that

were not fully correctly crawled will be presented.

25

6 Password Policy Extractor
In this chapter, the Password Policy Extractor (PPE) is described in detail. The PPE extracts password

requirements from a given document and creates a corresponding password policy. After a brief descrip-

tion on the functioning and the problem statement, implementation details are provided in Section 6.1.

The subsequent evaluation in Section 6.2 will show that this extractor is able to provide correct password

policies for 91,5% of the evaluated domains.

After signup pages have been found and extracted by the CC (cf. Section 5), the requirements on a pass-

word must be extracted out of the stored HTML document. The PPE uses Natural Language Processing

(NLP) techniques in order to make such information readable for machines. Additionally, information

about the allowed password length is extracted from the password input field. The information that is

present in HTML documents is in general not organized in a pre-defined manner because it is not in-

tended to be read by applications. Instead, this information is solely for the purpose of user-presentation.

Such information that is not per se machine-readable is usually referred as unstructured information (cf.

Section 3.2.1). In order to extract knowledge from these documents, approaches like regular expressions

are usually not expedient because the structure of possible sentences containing the information must

be known prior to parsing the content. To make unstructured information machine-readable, other ap-

proaches such as NLP must be used. This approach allows the extraction of information from sentences

with structures that have not been processed before.

6.1 Implementation

The PPE is based on the UIMA framework (cf. Section 3.2) to process information, extract meaning and

create structured data [59]. The pipeline layout used in UIMA is used to split the process of requirement

extraction into multiple components, as illustrated in Figure 6.1. In UIMA, the components use a Com-

mon Analysis Structure (CAS, cf. Section 3.2), where extracted information is stored and accessible by

proceeding components in the pipeline.

HTML Document

HTML
Preprocessing

Segmentation
Natural Language

Parsing

Keyword Annotator
Dependency

Parser
Information
Interpreter

HTML Meta
Information

Requirement
Storage

Password Policy

Figure 6.1.: Architectural overview of the Password Policy Extractor.

26

Beginning with a HTML document, the components process the document and pass gathered information

along the pipeline. In a first step, the HTML source code is processed and relevant text is being extracted.

This text is then analyzed and splitted into words as well as sentences. The Natural Language Parsing

component analyses the sentences and is able to put the words of a sentence into a hierarchical tree that

represents dependencies between words such as subject and indirect object. The subsequent components

are able to use this information to find sentences that relate to password requirements. Out of these

sentences the specific password requirements are extracted in order to finally store them in a XML

representation using the PPML schema. Additionally, the structure of the HTML source code is used

to extract information about the minimum and maximum password length using the password input

field. In the following, these components are described in detail.

6.1.1 HTML Preprocessing

The HTML Preprocessor is the first component of the PPE module. It is operating on the HTML source

code and prepares content for all other processing steps. Standard UIMA Text Analysis Engines (TAEs)

generally require plain textual input [28]. However, the input that is provided by the CC is raw HTML

and therefore needs to be transformed to a text-only representation that contains no HTML markup. In

general, such a transformation is performed by stripping out all present HTML tags and returning the

remaining text.

To improve information extraction results, the preprocessor uses a more complex algorithm in order to

decide which information should be transferred to the text representation of the document. Overall, the

HTML preprocessor serves three purposes that will be explained in the following:

• Filtering of unnecessary content.

• Filtering of text blocks containing requirements not related to the password.

• Providing sentence delimiters.

Because Natural Language Processing is a very computationally expensive task, the filtering of unnec-

essary content can significantly speed up the process of information extraction. For filtering, the HTML

structure and element type system is being exploited. The nature of the information of interest, namely

password requirements, allows the exclusion of certain HTML elements from the overall analysis. For

instance, it is improbable for password requirements to be found inside a select HTML element that

represents a control for selecting amongst a set of available options [60]. Altogether, the following

elements are completely being discarded including the contained content:

• head

• select

• script

• style

• iframe

• embed

27

Since the use of HTML5 gets more widespread, new elements and attributes are increasingly being used.

One of these attributes is the placeholder attribute [61] that can be used within input elements. This

attribute is shown as long as the input is not focused and is often used to provide information about

the content that has to be filled in. Therefore, the placeholders for input elements of the password

type may also be of interest and are also extracted. Additionally to the placeholder attribute, all data-*

attributes [62] that contain the keyword password or an abbreviation of it will be extracted. Service

providers use the data-* attributes to show conditional error messages that may also contain information

about password requirements (see Figure 6.2).

Figure 6.2.: Password requirements contained in the data attribute on ancestry.com [63].

A crucial part of the preprocessor builds the filtering of text blocks that most likely contain no password-

related requirements. The HTML Preprocessor is therefore also the first component that decides whether

text is referencing a password or any other subject. When parsing natural language, the extractor module

is not tracking the subject a specific sentence is referencing, as long as it is not mentioned in that

exact sentence. For example, the requirements of a password might be provided in a tooltip, where the

keyword password is only mentioned once in the headline, as illustrated in Figure 6.3.

Figure 6.3.: Password requirements used on go.com [64].

However, such kind of tooltips might also be provided for requirements on other information like the

username that can be chosen. To prevent the following components to extract requirements that are not

referencing the password, they need to be filtered out. In order to do so, the hierarchical ordering of

elements in the HTML structure can be used. Looking at the HTML source code of the provided example

(see Figure 6.4), it is noticeable that the title containing the password keywords and the requirements

share the same hierarchical parent.

The Preprocessor uses this fact and utilizes two small sets of keywords for filtering. The first set contains

keywords that indicate that all elements in the hierarchical lower level should be filtered (exclusion set).

28

Figure 6.4.: Password requirements HTML markup on register.go.com.

The second set contains keywords that indicate that the hierarchical structure should not be filtered

(inclusion set). In order to filter a given structure, it must contain keywords of the exclusion set, but

none of the inclusion set. This results in a recursive structure starting from the root node of the DOM

recursively descending until the conditions are met or a leaf node has been reached.

The last preprocessing step serves to improve the overall textual structure of the document. More pre-

cisely, this means the addition of sentence delimiters that are initially missing in the original text. Because

further processing in later components of the pipeline require the detection of sentences, this approach

can help achieving significantly better performance in these processing steps.

To decide where adding punctuation is needed, a distinction between different types of HTML elements

is made. It can be reasonably assumed that a sentence is not spanning across multiple block level

elements [65]. Additionally, punctuation is added after HTML labels and the option element. Examples

of block elements are:

• div

• p

• form

Overall, these presented methods for preprocessing contribute significantly to the performance of com-

ponents presented in the following.

6.1.2 Text Segmentation

Text segmentation is a common preprocessing task in NLP applications. It is the first step in parsing

sentences of natural language and describes the process of dividing text into meaningful chunks of data.

For the PPE, this process is divided into two steps.

The first segmentation step is the word segmentation. Word segmentation is the problem of finding

word boundaries in a given text. For the English language, this is a rather straight-forward process

because there exist orthographic spaces between words [66]. The output of the word segmentation are

annotations that contain information about where a word begins and where it ends.

Because further processing steps also require the input to be divided into sentences, the second segmen-

tation step is the splitting of texts into sentences, known as Sentence Boundary Disambiguation (SBD).

This disambiguation is a non-trivial task because simply splitting text with a small set of punctuation

29

keywords such as ., !, and ? is not sufficient. This is because text might also contain quotations that

contain these keywords, abbreviations like “Dr.” or simple numbers with decimal points [67]. Moreover,

the trailing period of an abbreviation can still mark the end of a sentence [68]. Therefore, more complex

algorithms must be used in order to achieve best results.

For the PPE, the text segmentation component utilizes the StanfordSegmenter [69] for word segmen-

tation as standalone component in the UIMA pipeline. Furthermore, the StanfordParser is responsible

for SBD.

6.1.3 Natural Language Parsing

In general, a Natural Language Parser works out the grammatical structure of sentences. It decides which

groups of words belong together (form “phrases”) and which words of a sentence are verbs or are the

subject or object of a verb [70].

The StanfordParser used in this component is a system that, in addition to phrase structure parses,

is able to automatically extract typed dependency parses of English sentences. Phrase structures rep-

resent the nesting of multi-word constituents, while on the other hand a dependency parse represents

dependencies between individual words, such as subject and indirect object [71].

Such a typed dependency tree can be effectively used to extract textual relations. A graphical representa-

tion of the dependencies for the sentence “Include at least one number or uppercase letter.” is illustrated

in Figure 6.5. This allows accessing grammatical information such as the predicate-argument structure.

Found information is stored in the CAS and can be accessed by proceeding components.

Include

number

 dobj

at

least

 case

one

 nmod

 nummod

or

 cc

letter

 conj

uppercase

 amod

Figure 6.5.: Graphical dependency tree representation of a sample sentence.

30

6.1.4 Keyword Annotator

The Keyword Annotator consists of a set of Text Analysis Engines (TAEs). They serve the purpose of

finding sentences of interest by utilizing a small set of keywords that contain words that may be related

to password requirements. In the following, the annotation process is explained in detail.

In the first step, character sets are looked up. The PPE has a fixed set of character sets it is able to

recognize, which contains all generally used sets such as:

• Uppercase characters

• Lowercase characters

• Numeric characters

• Special characters

Furthermore, special and more seldom used character sets such as spaces, consecutive characters or non-

blank characters can also be recognized.

In the second step, boundary keywords are recognized. A boundary keyword is a keyword that defines an

upper or lower bound for the use of some object, in this case the character sets. There are boundary key-

words that have a slightly different meaning. For example, the requirement “Use at least one lowercase

character” and “Use more than one lowercase character” is slightly different due to the different bound-

ary keywords “at least” and “more than”. “More than” states that the number that is referenced by the

keyword is not included in the lower bound. The information, whether a boundary keyword includes the

provided number or not, is explicitly provided in the keyword set and utilized in the annotation process.

This information is stored in the CAS for further processing steps.

In addition to character sets and boundary keywords, the sentences are processed to find certain nega-

tions, such as for verbs (e.g. “not use”, “not include”). Also, certain keywords used for specifying a

length attribute (e.g. “long”, “length”) help to recognize which sentences are referring to the allowed

password length.

6.1.5 Dependency Parsing

In the following, the functioning of the Dependency Parser is described. After keywords have been an-

notated, the Dependency Parser component uses information to put content into context. More precise,

this means that the parser examines the dependencies between different parts of text that are related

to password requirements. For example, the parser analyzes whether the presence of a number in a

sentence relates to a mention of a character sets. The analysis is performed in a two-step process.

First, ranges of numbers are analyzed. Sentences such as “Use 6-30 characters” require the analysis of

numeric ranges. The aim is to recognize the text “6-30” as an allowed range from six to thirty. While

the given example could easily be recognized using a simple regular expression, there are more complex

structures that should be recognized as well. For instance, the numbers might be written as text string

(six, thirty) or as digits as well as text: “Use 6 (six) to 30 (thirty) characters”. For all these cases, the

31

natural language annotations allow the recognition of the dependencies between the numeric values 6

and 30 and therefore the recognition of the numeric range.

Second, numeric ranges and single numerals are put into context with mentions of character sets. Us-

ing the dependency tree structure created in Section 6.1.3, the sentence can be analyzed whether the

numerals and character sets have a common dependency that forms a relation. Likewise the recognition

of dependencies between numerals and character sets, the information from previous processing steps is

used to detect dependencies between boundary keywords and character sets as well as other important

features such as negations, verbs, and adjectives.

The component does explicitly not interpret the found information. This means that it is not known to

the component what actual requirements are contained in the sentence. Instead, the component stores

found dependencies as new annotations to the CAS to create an annotation structure that can be accessed

easily by following components.

6.1.6 Information Interpreter

The Information Interpreter is the final component in natural language processing that takes the informa-

tion gathered in previous steps and transfers it to an internal data structure representation that expresses

password requirements. This data structure can be used to directly create a password policy. Information

extraction is done in a recursive algorithm in order to recognize and interpret password requirements

from a sentence as a whole. For each sentence, the corresponding dependency tree is traversed and the

current node is examined.

The main part forms the recognition of requirements related to character sets. For a node that represents

a character sets, dependent requirements such as boundary keywords, numeric ranges or negations are

looked up that were recognized in previous processing steps. For a node that represents a numeric value,

possible requirements such as boundary keywords and negations are analyzed.

The interpretation of information relates to the process of bringing all information together in order to

extract structured information. For example, the requirement “Use not more than 16 characters” has sev-

eral dependencies that have to be considered. First, the numeral “16” refers to the object “characters”. In

combination with the verb “use”, the sentence states that sixteen characters should be used. Considering

the additional boundary keywords “more than”, the sentence theoretically indicates that at least seven-

teen characters must be used. Taking the negation “not” into account, the requirement is reversed. This

means, that the Information Interpreter would ultimately find a requirement that enforces a maximum

password length of sixteen characters.

The above example gives an impression of the required complexity of the algorithm. There are endless

ways only for expressing the maximum length of the password. It also shows that the correct detection

and interpretation of boundary keywords is essential. A slightly different boundary keyword can already

change the requirement. For instance, the sentence “Do not use 16 or more characters” states a maximum

password length of fifteen instead of sixteen.

32

6.1.7 HTML Meta Information Extraction

The HTML Meta Information Extraction component extracts knowledge directly out of the HTML source

code instead of using the preprocessed text. Information about the minimum and maximum length of

the password can be found using the password input field present in the document. In contrast to other

extracted information, this data is considered as structured information where it is not necessary to

utilize complex algorithms for knowledge extraction. In the following, the approach for the extraction

of this information is explained.

Apart from unstructured information, a HTML document does also contain (semi-)structured data: The

markup itself. Semi-structured data is data that contains tags or other markers that separate semantic

elements. The HTML source code contains tags and attributes that serve this purpose. Besides the

placeholder and data-* attributes as explained in Section 6.1.1, the input element allows specifying the

maxlength attribute [72]. This attribute specifies the maximum number of characters that are allowed

to be entered in an input field (see Figure 6.6).

Figure 6.6.: Password input with specified maximum length on barnesandnoble.com.

In combination with inputs of the password type, this attribute can be used in order to retrieve an upper

bound for the password length. However, it cannot be used in all cases to provide information about

the maximum length of a password. In few cases, service providers use the attribute in combination

with a textual requirement that states a maximum password length lower than the length stated in the

attribute. Therefore, this information is not solely used but in conjunction.

Looking at the HTML specification [73], it seems rather counter-intuitive, but there exists no complemen-

tary minlength attribute that can be used in order to specify a minimum required length of characters for

the provided data in an input element. However, during the development of this software, tests showed

that service providers use the minlength attribute as often as the maxlength attribute. Therefore, the

component uses both information in order to retrieve upper and lower bounds for the length of the

password that must be chosen.

6.1.8 Requirement Storage

The Requirement Storage is the last processing step in the UIMA pipeline and creates the final password

policy. The component is responsible for storage of the information that is present in the specialized inter-

nal data structure created by the Information Interpreter (cf. Section 6.1.6). In the following, the process

of password policy creation is described and issues of the extracted information are discussed.

In the process of finding password requirements, there are cases where ambiguous, duplicate, or con-

flicting information is found. Before mapping the requirements into the PPML, this information must

be cleaned. One example is the previously mentioned information that is found through the extraction

33

of structured information using the HTML markup. This information is not always accurate because it

might only provide upper or lower boundaries. Therefore, the information is merged in a way that the

extracted requirements through natural language processing is prioritized over HTML markup informa-

tion. In other cases, it might occur that wrong information was extracted. For instance, the markup

information extraction might have selected the wrong password input element and therefore extracted

requirements for an additional PIN that has to be used during the login. In this case of such conflicting

information, the found information gets discarded.

There are other cases where also multiple information found through natural language parsing is con-

flicting. For instance, a found requirement might state that there must be no spaces in a password, while

another one states that there must be at least one space present. Such information conflicts get resolved

through prioritizing one information over another, depending on the conflict of information. For the

example of spaces, the exclusion of spaces would be prioritized because it can generally be assumed that

this restriction is more likely to occur than the other.

Furthermore, textual password requirements are in general ambiguous. Different service providers use

the same text to express different requirements. For instance, looking at the requirement “Use numbers”.

A service provider might use this statement to tell the user that numbers are allowed to be used in

the password. Another service provider might use the same statement in order to express that at least

one number must be present in the password. Because this cannot be disambiguated without testing the

password, the component sets a minimum occurrence of one for all found character sets that are allowed

to be used in the password.

It will be shown in the evaluation (see Section 6.2) that the overall process of extracting password

requirements out of a given HTML document into a password policy is applicable to generate secure and

valid passwords for the majority of tested services.

6.1.9 Limitations

As the CC, the PPE is also processing English texts only. The implementation of the PPE is focused to

extract requirements only related to passwords. Other requirements such as for the username are not

extracted, as they also cannot be expressed by the PPML.

The PPML also supports the storage of password management information. This information includes

procedures that can be used in order to automatically login to a service, change or reset a user’s password

as well as information of the expiry period of a password. This password management information is

not extracted by the PPE.

Obviously, the PPE is only able to extract requirements that are present in the source code of the given

document. There are multiple reasons why a password requirement might not be present in the source

code. One of the reasons is that the CC was not able to crawl all requirements, as stated in Section 5.1.5.

Another reason might be that the service just does not state all requirements. This is especially the case

for requirements on the character sets that can be used for a password.

34

Regarding the natural language parsing, there is no recognition of referenced objects across multiple

sentences. For instance, the keyword “password” might only occur once in a paragraph that has multiple

sentences containing requirements related to the password. This limitation is bypassed by the HTML

preprocessing that filters requirements that are not related to the password. Without preprocessing, it

might otherwise occur that requirements get extracted that are not password related. Nevertheless, the

evaluation will show that this limitation only has a small impact on the performance of the PPE.

6.2 Evaluation

In the following, the performance of the PPE will be evaluated. This evaluation is divided in multiple

parts. The evaluation set used for the evaluation is presented in Section 6.2.1. Section 6.2.2 explains as-

sumptions that were made about missing information. The correctness criteria explained in Section 6.2.3

explains when a created password policy is considered as correct. Section 6.2.4 presents the evaluation

results and concludes this chapter.

6.2.1 Evaluation Set

This section describes the set of documents that were used for evaluation. From the set of domains as

described in Section 4, the signup pages of the services were manually looked up and stored. As for the

CC, only websites with an available signup page were used. Although it would be possible that the PPE

falsely extracts requirements from a document that is no signup page and does not contain password

requirements, the impact of this error is low because these policies would never be requested in a real

application. Therefore, it is assumed that the component that provides the document for password policy

extraction is providing correct content.

The evaluation set contains a variety of different password requirements (see Table 6.1). Besides require-

ments on the minimum and maximum password length, requirements on character sets such as letters,

numbers and special characters are usually used to enforce users to select strong passwords.

Password Requirement Occurences

Minimum Password Length 187

Maximum Password Length 112

Disallowed Identical Consecutive Characters 8

Letters 31

Lowercase Letters 27

Uppercase Letters 32

Numeric Characters 70

Alphanumeric Characters 5

English Characters 1

Special Characters 33

Spaces 24

Table 6.1.: Password requirements present on the evaluation set.

35

6.2.2 Assumptions

There are several cases in which a service might not provide all information that is necessary in order to

create a valid password policy. Because this missing information must still be provided, there are several

default values that are used in such cases.

First, a service might not provide information about the allowed character sets. For instance, a require-

ment might state that the user must “use more than 6 characters”. This information does not tell the

user which characters are allowed to be used for the password. Therefore, if no allowed character sets

are provided, it is assumed that the allowed characters are English lowercase letters, uppercase letters

and numbers. For the evaluation set, this was a common set that was accepted by all services. Other

characters such as special characters (!, ?, #, %, ...) are accepted by some services, but not all of them.

Similarly, these default character sets will not be considered as not allowed until a requirement is found

that explicitly states so. This means a resulting policy for a website with the only requirement such as

“Use at least one letter” still allows numbers because they are not explicitly restricted.

Second, other services give no information about the allowed length of the password. In this case, the

PPML allows omitting these values in order to leave them as unspecified. Ultimately this means that

applications such as password generators will decide about the length of the generated password.

Finally, some services allow or demand the use of special characters. While it is common practice to force

users to use certain character sets, all character sets must be specified in the password policy. However, a

large amount of websites with the requirement to use special characters do not specify which characters

are included in this set. The PPE uses the following characters as special characters, as they represent a

character set that was accepted by all services in the evaluation set: . , : ; - + * ? % & =

6.2.3 Correctness Criteria

In this section, a definition is provided in which case a password policy is considered as correct. Further-

more, issues and causes of incorrect policies are discussed.

Automating the creation of password policies requires that applications can rely on the information

provided by the policies. Otherwise applications like password generators might create invalid passwords

that are rejected by the service. As described in Section 6.2.2, in many cases it is not possible for

a password policy to exactly reflect a service’s password requirements because services often provide

incomplete and unclear requirements. For instance, a service might state the characters that are not

allowed to be used in a password (e.g. “Do not use spaces”), but does not specify which characters are

actually allowed. PPML would still require the password policy to have defined the allowed characters.

Furthermore, services might state that special characters are allowed to be used, but do not specify

which characters are considered as such. Therefore, it is not demanded that an extracted password

policy exactly matches the password requirements of the service. For a password policy to be considered

as correct, it is required that the policy can be used in order to create random and secure passwords that

will be accepted by the service.

36

Incorrect information about password requirements, and therefore incorrect policies can cause multiple

issues which are discussed in the following. The issues can be distinguished in inconveniences for the

users and security threats, i.e. the generation of weak passwords.

1. Weak Passwords. Incorrect information about the minimum and maximum password length and/or

the character sets can cause the generation of weak passwords that are still accepted by the service.

Using a weak password puts the user’s account at the service at risk. For instance, a policy might

define a maximum length of one instead of ten characters. For services like wikipedia.org, these

insecure passwords would still be accepted, because they accept passwords of length one. For eval-

uation, it is assumed that password generators use the best possible security level when generating

passwords and therefore use the maximum length.

2. Invalid Passwords. Incorrect password lengths and/or incorrect character sets might cause password

generators to generate passwords that do not fulfill the actual requirements of the service and

therefore are rejected. For instance, a password policy might state that the password must contain

at least one special character, while the service actually allows letters and numbers only. Users

would then need to find out the password requirements and configure the password generator

manually again.

Therefore, two classifications of correctness are introduced. A policy is exact if all requirements given by

the service are extracted correctly and represented in the created password policy. If not all requirements

could be extracted, a policy is still considered as correct if it fulfills the following requirements:

• The maximum password length provided in the policy is not significantly (more than 10%) lower

than the actual allowed maximum password length.

• For services that do not provide a minimum length, the password length in the password policy

must also be unspecified or not lower than 10 characters.

• The password policy does not allow significantly less (more than 10%) of the actual allowed char-

acters.

• A password generator, using the maximum allowed password length1, will always generate pass-

words that are accepted by the respective service.

6.2.4 Results

Using the correctness criteria introduced in Section 6.2.3, the PPC successfully provided password poli-

cies for 91,5% (183 out of 200) of the evaluated sites. This means that these policies can be used to

generate random and valid passwords for the services. The amount of correct policies is splitted in

two key figures (see Table 6.2). For a total of 167 (83.5%) of the evaluated services, the PPE correctly

extracted all password requirements present in the HTML documents. Furthermore, for 13 (8.0%) of

the services, not all password requirements were extracted correctly, but the resulting password policies

were still considered as correct because they enforce passwords that are accepted by the service.

1 If no maximum password length is given by the service, the password generator will choose the length of the password.

37

Classification Amount of policies Percentage

Exact 167 83.5%

Correct 16 8.0%

Erroneous 17 8.5%

Table 6.2.: Evaluation results of the PPE.

There are several reasons why a policy does not exactly match the requirements. The main reason is

a different value for minimum/maximum occurrences of character sets (see Table 6.3). For instance, a

requirement might say “Use at least one number or special character”. The PPC will map these require-

ments into “At least one number” and “At least one special character”. While this does not significantly

affect the password security, it does not exactly match the stated requirements. Other reasons are too

low maximum password lengths or incorrect minimum password lengths that do not affect the correct

generation of passwords. For instance, the PPE extracted a minimum length of six instead of four for

the service at bleacherreport.com. For paypal.com, the PPC created a policy that requires the password

to contain at least one number and symbol, whereas the actual requirement is that the password must

contain at least one number or symbol.

Cause for imprecise policies Occurences

Lower maximum length 4

Different minimum length 8

Fewer allowed characters 4

Different character occurrences 14

Table 6.3.: Reasons for imprecise password policies. A single policy may occur multiple times.

The 17 (8.5%) remaining password policies that are considered as incorrect can be further divided into

two groups:

• Inaccurate policies. These policies enforce the generation of passwords that will in some cases,

eventually, be rejected by the service. An example for such an incorrectly crawled password policy

is cisco.com: The requirements on the website state that at least one uppercase and one lowercase

character must be present in the password. The maximum length of the password is 50 characters.

However, the PPC did only extract the requirement on the maximum length of the password.

While a password generator, choosing random passwords of length 50 will generate passwords

that in most cases contain at least one uppercase and lowercase character, it is still possible that

one of these requirements is not met. Therefore, this policy cannot be considered as correct.

• Incorrect policies. These policies have requirements that in most (or all) cases allow passwords,

that are not accepted by the service. An example for an incorrect policy is the policy for the service

at gamefaqs.com: The PPC extracted a maximum password length of 64 characters while the actual

maximum length is 40. This is due to the fact that the website has two password fields of which

38

one has a maximum length set to 40, while the maximum length of the second one it set so 64.

A password generator that always uses the maximum length is never able to generate accepted

passwords.

The evaluation shows that the PPE, and therefore the PPC, is able to provide correct password policies for

the majority of tested services. Therefore, the PPE can be used in a large-scale environment to generate

password policies for a large amount of services. The integration of these password policies in password

generators allows an user-friendly and easy-to-use solution for creating random passwords in accordance

to a service’s requirements.

39

7 Large-Scale Password Policy Generation
This chapter describes a large-scale crawling for password policies that was conducted as part of this

thesis. To solve the issue of missing password policies that can be used to generate passwords in accor-

dance to a service’s requirements, the PPC was run on a total of one million domains. In total, the PPC

created password policies for 72,125 services.

The PPC was run in the period from October to November 2015. As input, the Quantcast list of the top

one million domains [74] were used. This list includes the top ranking domains based on the number

of people visiting the websites from the United States. Using the search engine implemented in the CC

(cf. Section 5.1.1), URLs to possible signup pages could be found for 406,288 domains. From this list of

domains, the websites behind 167,926 were not available (offline) and the pages behind 1,725 domains

were not parsable. This sums up to an amount of 236,837 domains that could be crawled by the CC.

Using the signup page detection and link extraction, signup pages for a total of 72,125 domains could be

found. Each signup page was processed and a corresponding password policy was created. Therefore,

the PPC generated 72,125 password policies (see Table 7.1).

Filter Websites Remaining Websites

Total Domains 1,000,000

No search engine results 593,512 406,488

Service not available 167,926 238,562

Exception while parsing 1,725 236,837

No signup page detected 164,712 72,125

Table 7.1.: Overview of filtered domains during the large-scale crawling.

The crawling establishes a database of password policies for a very large amount of domains. Password

generators that are able to process password policies can use these policies to generate secure and

accepted passwords for the crawled domains. The goal of the large-scale crawling for password policies

was to create a large set of usable password policies. Therefore, no further analysis of the security level of

these policies has been performed. The future work (cf. Section 9) covers such a security analysis.

40

8 Automated Password Generation

This chapter presents a password generator that does not need to be manually configured by the user.

Instead, random passwords that are in accordance with a service’s requirements can be generated only by

providing the URL of the service, for which the password should be generated. The password generator

is implemented as extension for the password manager KeePass [8]. It can be used with the current

version of KeePass Professional Edition (version 2.30) which allows the integration in an already existing

password database.

After a brief introduction into the password management software KeePass and its default functional-

ity for adding account information, the usage of the plugin is presented. The extension was initially

developed by the author of this thesis for an earlier version of the PPML [1].

8.1 KeePass

KeePass is a widely used application for password management, which is published under the GNU

General Public License (GPL). The application allows the secure storage of account information such as

the username, password, the URL of the service, and the expiry of the password. The user interface is

illustrated in Figure 8.1. For better transparency, stored account information can be arranged in groups.

The right side shows the account entries present in the database for the currently selected group.

Figure 8.1.: KeePass graphical user interface.

41

The database containing the account information can be encrypted with Twofish or the Advanced En-

cryption Standard (AES). AES is considered as secure encryption algorithm [75] which is also used for

classified governmental documents [76]. The encryption of the database is not limited to the passwords,

but also includes all other account information.

KeePass includes several usability and security features that make this application an easy-to-use and

secure password manager. The integrated memory protection ensures that external programs are not

able to retrieve passwords from the memory while the encrypted database is opened in KeePass. Using

the Auto-Type feature, stored account information can be automatically transferred to other applications

like a browser in order to automatically log in the user.

KeePass is written in C# and allows adding features by installing extensions. Extensions can add a variety

of new features such as import and export functionality, different encryption methods for the database

or new password generators.

Password Management

This section describes the default functionality of KeePass for adding account information and generating

random passwords. It will be shown that the current functionality for generating passwords it not user-

friendly and does not necessarily generate accepted passwords.

Users can add new account information using the Add Entry dialog in KeePass. Besides the password, the

user can add a wide range of information associated to a service’s account. The user can either enter a

manually chosen password or utilize the integrated password generator to generate a random password.

Random password generation can either be performed using a previously defined configuration, or using

the password generator dialog (see Figure 8.2).

Figure 8.2.: Add Entry dialog in KeePass with opened password generator configuration dialog.

42

The integrated password generator only has a limited set of options that can be configured. Besides the

length of the generated passwords, the allowed characters can be provided using a fixed set of selectable

character sets. Additionally, users can manually provide further allowed characters. However, it is

obvious that this configuration is not sufficient for all services. Services might have requirements such as

“Use at least one uppercase character” that might not necessarily be fulfilled by the random password,

especially for short passwords. Furthermore, services may require passwords to not include two identical

consecutive characters which cannot be configured. Therefore, users might need to adjust the generated

password manually to be accepted by the service.

8.2 Password Generation using Password Policies

This section presents a password generator that is developed as extension for the KeePass password

manager. The extension allows the generation of passwords in accordance with a service’s password

requirements by specifying the URL to the service. This makes the manual configuration of the password

generator obsolete.

The extension adds a reduced version of the Add Entry dialog to the application, which allows the

specification of all basic account information. The dialog is accessible from the same locations where the

original dialog can be accessed. For instance, the user can right click on the user interface to add a new

entry in the currently selected group (see Figure 8.3).

Figure 8.3.: Password generator using password policies integrated in the KeePass context menu.

In the new dialog the user can provide a title for the account entry, the URL to the service, the username,

and password (see Figure 8.4). After the URL to the service has been entered, the extension checks

whether a password policy can be found that has a scope matching the entered URL. The user can then

click the key icon to generate a password in accordance to the requirements present in the password

policy. The quality meter gives an indication about the strength of the generated password.

43

Figure 8.4.: Reduced version of the Add Entry dialog using password policies.

After the password has been generated, the user has two options to save the account information. Click-

ing OK creates a new entry and stores it in the database. The Advanced button opens the original Add

Entry dialog and transfers the already provided information so that the user is able to enter advanced

settings such as information regarding the Auto-Type feature.

44

9 Conclusion
This thesis provided a comprehensive solution for an easy-to-use approach that allows users to gener-

ate secure and unique passwords for services on the internet. First, the PPC was introduced. The PPC

automatically creates the necessary password policies that had to be created manually until now. Fur-

thermore, the crawling of one million domains provided an initial set of password policies for 72,125

services. With the provided password generator, a comprehensive solution is provided to allow the

generation of passwords that are accepted by a service without the need for manual configuration.

It was shown that the PPC achieves good overall results in the process of password policy creation.

The first module of the PPC, the CC, achieves a high precision of about 94% and a recall of 74.5% in

the process of finding the signup page for a service. The precision indicates that the vast majority of

returned pages are correctly classified as signup page. Furthermore, the recall indicates that the CC is

able to return signup pages for around 75% of the given domains. The second module, the PPE, uses

the crawled signup pages and extracts the password requirements. Using the PPML, these requirements

are mapped into a password policy, a machine-readable representation of password requirements. The

evaluation showed that 91.5% of the returned password policies were correct and could be used to

generate accepted passwords.

The created password policies can be used by applications such as password generators in order to auto-

matically generate accepted passwords without the need for manual configuration of the generator. This

eliminates the burden for users having to manually find out the password requirements and configure

the password generator when registering for a service. In this thesis, an extension for the password man-

agement software KeePass was introduced. The extension provides a password generator that accepts

a URL to a service as input. This information is sufficient for the extension to look up the password

policy and generate accepted passwords. The 72,125 password policies that were extracted in the large-

scale password policy generation can be used to set up a service that provides password generators the

necessary password policies.

To conclude, the development of the PPC represents a positive step in providing users an easy-to-use

solution for creating secure and accepted passwords for each service. This helps to eliminate security

risks that are associated with password reuse and the choosing of weak password. Moreover, the PPC

opens up completely new possibilities for the development of applications that use these password poli-

cies. Besides password generators, the policies can be used to analyze the enforced password strength of

services on the Internet.

Future Work

This section provides future work on multiple topics regarding the PPC and password policies. First,

future work on the CC is provided, how the crawling of signup pages can be further improved. Second,

45

a community-based approach for creating missing password policies is discussed. Finally, future work on

a security analysis of the crawled password policies is provided.

The CC currently utilizes a search engine in order to find signup pages of a given service. After a signup

page has been found, the password input field is focused (cf. Section 5.1.4) and the resulting HTML

markup is stored. While this works well for most of the services, there exist some limitations with this

approach. The crawler is only able to store requirements that are present at this time of the process.

However, some services only show the requirements when an invalid password is entered. For example,

a user might type in a password of five characters. After the user removes the focus from the input field,

an error message is shown that states that the password must be six or more characters. After the user

enters another character and removes the focus from the field, another error is shown stating that the

password must have at least one upper case letter. Currently, the CC is not able to interact with websites

in a way that these requirements can be crawled. Therefore, it can be extended to interact in a way that

such requirements are also stored in the resulting document that is processed by the PPE.

The PPE is able to extract correct password policies for 91.5% of tested documents. To overcome the

gap of the missing policies and/or incorrect policies, a community-based approach can be used. While

it would not be applicable to solely have a community-based approach because of the huge number of

services on the internet, it can be used complementary. In a community-based approach, users could

submit new password policies that did not exist before, for instance for new services. The requirements

could be entered in a graphical user interface that allows creation of password policies without the

need of writing pure XML files. Additionally, users could use this tool to correct existing password

policies. Besides the possibility that a policy is incorrect because of an erroneous requirement extraction,

it may also be outdated because a service updated its requirement. Both issues can be addressed with a

community-based approach in a centralized environment that provides password policies.

The large-scale password policy generation provided a database of 72,125 password policies. The goal of

the generation of password policies was to have a large set of policies that can be used by the developed

password generator. The set of password policies can be used to analyze the password security level of

the crawled websites. For example, an average minimum and maximum password length can be derived

from the data. Calculating a maximum and minimum entropy possible for the generation of passwords

can help to classify services with regard to password security. Furthermore, the set can be used to analyze

whether it is possible to create a password policy that can be used to generate accepted passwords for

the majority of services.

46

10 Glossary
Analysis Engine

An analysis engine is a component responsible for analyzing unstructured information. An analysis

engine contains one or more annotators that include logic for analysis. The analysis logic contained

in the annotators process the document and create meta data about artifacts that will be stored in the

Common Analysis Structure.

Common Analysis Structure

The Common Analysis Structure (CAS) contains the documents to be analyzed. Analysis Engines

add objects to the CAS containing analysis results. As the CAS gets passed along the components in the

analysis process, the CAS is more and more enriched with information. The results added by an analysis

engine can be accessed and used by all proceeding analysis engines.

Document Object Model (HTML)

The Document Object Model (DOM) in HTML refers to a convention for representation and inter-

action with objects. The objects are represented as nodes and organized in a tree structure, called the

DOM tree. Using the DOM, the structure of the document can be traversed and objects can be added,

modified and deleted. The objective of the DOM is to provide a programming interface that can be used

in a wide range of applications.

Sentence Boundary Disambiguation

Sentence Boundary Disambiguation (SBD) is the process of dividing a document text into sentences.

This disambiguation is a non-trivial task, because simply splitting text using punctuation keywords such

as ., !, and ? is not sufficient. For example, a text might contain abbreviations like “Dr.” or numbers

with decimal points that do not mark the end of a sentence. Furthermore, question marks and exclama-

tion marks may appear in quotations without marking the end of a sentence. Toolkits such as Apache

OpenNLP [77] contain complex algorithms that are able to split over 95% of sentences correctly.

Structured information

In Natural Language Processing, structured information refers to information that is structured in

fields such as “title”, “price” and “stock”. Structured information is often stored in relational databases.

This allows querying the database to answer questions like “How many products are out of stock?”.

Tokenization

Tokenization refers to the process of breaking a document text into meaningful elements called

tokens. Tokens can be of different types such as words, phrases or sentences. For instance, word seg-

mentation takes a document texts and breaks it into words. For the English language, this task does

not need complex algorithms, because there exist orthographic spaces between words. The Sentence

Boundary Disambiguation is a special case of tokenization.

47

Unstructured Information

The term unstructured information (or unstructured data) refers to content that is not organized in

a pre-defined data model. Unstructured information typically includes text or multimedia content such

as emails, presentations and webpages. In contrast to structured information, such content cannot be fit

into a relational database that can be used to gain information.

48

Bibliography

[1] Mario Schlipf. Passwort-Richtlinien. Bachelor Thesis, TU Darmstadt, October 2014. http://www.

cdc.informatik.tu-darmstadt.de/reports/reports/Mario_Schlipf.bachelor.pdf. (I, II, 2,

41)

[2] Xiaoyuan Suo, Ying Zhu, and G Scott Owen. Graphical passwords: A survey. In Computer security

applications conference, 21st annual, pages 10–pp. IEEE, 2005. (2)

[3] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita Borisov, and XiaoFeng Wang. The tangled

web of password reuse. In Symposium on Network and Distributed System Security (NDSS), 2014.

(2)

[4] Blake Ives, Kenneth R Walsh, and Helmut Schneider. The domino effect of password reuse. Com-

munications of the ACM, 47(4):75–78, 2004. (2)

[5] Dinei Florencio and Cormac Herley. A large-scale study of web password habits. In Proceedings of

the 16th international conference on World Wide Web, pages 657–666. ACM, 2007. (2)

[6] LastPass. LastPass Password-Manager, 2015. https://lastpass.com/. (2)

[7] Dashlane. Password Generator - Generate random passwords, 2015. https://www.dashlane.com/

password-generator. (2)

[8] D. Reichl. KeePass Password Safe, 2015. http://www.keepass.info. (2, 41)

[9] RANDOM.ORG Ltd. RANDOM.ORG Password Generator, 2015. https://www.random.org/

passwords/. (2, 4)

[10] Christian Thoeing. PWGen, 2015. http://pwgen-win.sourceforge.net. (2, 4)

[11] Richard Shay, Abhilasha Bhargav-Spantzel, and Elisa Bertino. Password policy simulation and

analysis. In Proceedings of the 2007 Workshop on Digital Identity Management, Fairfax, VA, USA,

November 2, 2007, pages 1–10, 2007. (4)

[12] Anna C Squicciarini, Abhilasha Bhargav-Spantzel, Elisa Bertino, and Alexei B Czeksis. Auth-SL-a

system for the specification and enforcement of quality-based authentication policies. In Informa-

tion and Communications Security, pages 386–397. Springer, 2007. (4)

[13] Richard Shay and Elisa Bertino. A comprehensive simulation tool for the analysis of password

policies. Int. J. Inf. Sec., 8(4):275–289, 2009. (4)

[14] Password Requirements. http://passrequirements.com. (4)

49

http://www.cdc.informatik.tu-darmstadt.de/reports/reports/Mario_Schlipf.bachelor.pdf
http://www.cdc.informatik.tu-darmstadt.de/reports/reports/Mario_Schlipf.bachelor.pdf
https://lastpass.com/
https://www.dashlane.com/password-generator
https://www.dashlane.com/password-generator
http://www.keepass.info
https://www.random.org/passwords/
https://www.random.org/passwords/
http://pwgen-win.sourceforge.net
http://passrequirements.com

[15] Serge Egelman, Andreas Sotirakopoulos, Ildar Muslukhov, Konstantin Beznosov, and Cormac Her-

ley. Does My Password Go up to Eleven? The Impact of Password Meters on Password Selection. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 2379–2388.

ACM, 2013. (4)

[16] Craigslist, 2015. http://craigslist.com. (4)

[17] David Recordon and Drummond Reed. OpenID 2.0: a platform for user-centric identity manage-

ment. In Proceedings of the second ACM workshop on Digital identity management, pages 11–16.

ACM, 2006. (5)

[18] Moo Nam Ko, Gorrell P Cheek, Mohamed Shehab, and Ravi Sandhu. Social-networks connect

services. Computer, (8):37–43, 2010. (5)

[19] Manuel Urueña, Alfonso Muñoz, and David Larrabeiti. Analysis of privacy vulnerabilities in single

sign-on mechanisms for multimedia websites. Multimedia Tools and Applications, 68(1):159–176,

2014. (5)

[20] Rui Wang, Shuo Chen, and XiaoFeng Wang. Signing me onto your accounts through facebook and

google: A traffic-guided security study of commercially deployed single-sign-on web services. In

Security and Privacy (SP), 2012 IEEE Symposium on, pages 365–379. IEEE, 2012. (5)

[21] Xavier de Carné de Carnavalet and Mohammad Mannan. From Very Weak to Very Strong: Analyz-

ing Password-Strength Meters. In 21st Annual Network and Distributed System Security Symposium,

NDSS 2014, San Diego, California, USA, February 23-26, 2014, 2014. (7)

[22] Waraporn Viyanon. Structure and content semantic similarity detection of eXtensible markup lan-

guage documents using keys. 2010. (8)

[23] Eric van der Vlist. xsd:dateTime Datatype Reference, 2015. http://books.xmlschemata.org/

relaxng/ch19-77049.html. (9)

[24] Graham Klyne and Chris Newman. Date and time on the internet: Timestamps. 2002. (9)

[25] Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu, Tal Shaked, Stephen Soder-

land, Daniel S Weld, and Alexander Yates. Methods for domain-independent information extraction

from the web: An experimental comparison. 2004. (10)

[26] Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu, Tal Shaked, Stephen Soder-

land, Daniel S Weld, and Alexander Yates. Unsupervised named-entity extraction from the web:

An experimental study. Artificial intelligence, 165(1):91–134, 2005. (10)

[27] P Ana-Maria. Information extraction from unstructured Web text [Ph. D Dissertation]. University

of Washington, 2007. (10)

[28] David Ferrucci and Adam Lally. UIMA: an architectural approach to unstructured information

processing in the corporate research environment. Natural Language Engineering, 10(3-4):327–

348, 2004. (10, 11, 27)

50

http://craigslist.com
http://books.xmlschemata.org/relaxng/ch19-77049.html
http://books.xmlschemata.org/relaxng/ch19-77049.html

[29] Gobinda G Chowdhury. Natural language processing. Annual review of information science and

technology, 37(1):51–89, 2003. (10)

[30] Gerard Salton and Michael J McGill. Introduction to modern information retrieval. 1986. (10)

[31] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006. (10)

[32] Larry Wos, Ross Overbeck, Ewing Lusk, and Jim Boyle. Automated reasoning: introduction and

applications. 1984. (10)

[33] Erik F Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-2003 shared task:

Language-independent named entity recognition. In Proceedings of the seventh conference on Natu-

ral language learning at HLT-NAACL 2003-Volume 4, pages 142–147. Association for Computational

Linguistics, 2003. (10)

[34] Alexa. Top Sites in United States, 2015. http://www.alexa.com/topsites/countries/US. (13)

[35] Comcast. Xfinity official site, 2015. http://www.xfinity.com/. (13)

[36] Jennifer A Bartlett. Internet Reviews: Alternatives to Google. 2014. (15)

[37] StartPage. Search results StartPage web search, 2015. https://startpage.com/do/search?prf=

fda1640a2945756371defed40e240d42&cat=web&query=facebook.com+sign+up. (15)

[38] World Wide Web Consortium et al. HTML5 specification. Technical Specification, Jun, 24:2010,

2010. (15)

[39] Andreas Bruns, Andreas Kornstädt, and Dennis Wichmann. Web application tests with selenium.

Software, IEEE, 26(5):88–91, 2009. (16)

[40] Thomas Powell. Ajax: The Complete Reference. McGraw-Hill, Inc., 2008. (16)

[41] Danny Sullivan. How search engines work. SEARCH ENGINE WATCH, at http://www.

searchenginewatch. com/webmasters/work. html (last updated June 26, 2001)(on file with the New

York University Journal of Legislation and Public Policy), 2002. (16)

[42] Wikipedia, the free encyclopedia. Create account, 2015. https://en.wikipedia.org/w/index.

php?title=Special:UserLogin&type=signup. (16)

[43] Martijn Koster. A standard for robot exclusion. NEXOR., 1994. (17)

[44] Mark Nottingham and Eran Hammer-Lahav. Defining well-known uniform resource identifiers

(URIs). 2010. (17)

[45] Yang Sun, Ziming Zhuang, and C Lee Giles. A large-scale study of robots.txt. In Proceedings of the

16th international conference on World Wide Web, pages 1123–1124. ACM, 2007. (17)

[46] iStockPhoto. Sign Up Pictures, Images, and Stock Photos - iStock, 2015. http://www.

istockphoto.com/photos/sign+up. (17)

51

http://www.alexa.com/topsites/countries/US
http://www.xfinity.com/
https://startpage.com/do/search?prf=fda1640a2945756371defed40e240d42&cat=web&query=facebook.com+sign+up
https://startpage.com/do/search?prf=fda1640a2945756371defed40e240d42&cat=web&query=facebook.com+sign+up
https://en.wikipedia.org/w/index.php?title=Special:UserLogin&type=signup
https://en.wikipedia.org/w/index.php?title=Special:UserLogin&type=signup
http://www.istockphoto.com/photos/sign+up
http://www.istockphoto.com/photos/sign+up

[47] Walmart. Create your account, 2015. https://www.walmart.com/account/signup?returnUrl=

%2Faccount%2F. (18)

[48] Walmart. JavaScript resource, 2015. https://i5.walmartimages.com/dfw/63fd9f59-90f9/k2-_

377fb962-2829-491c-ab4b-e3ae5e03fd8a.v1.js. (18)

[49] Wei Koong Chai, Ning Wang, Ioannis Psaras, George Pavlou, Chaojiong Wang, Gerardo García

De Blas, Francisco Javier Ramon-Salguero, Lei Liang, Spiros Spirou, Andrzej Beben, et al. Curling:

Content-ubiquitous resolution and delivery infrastructure for next-generation services. Communi-

cations Magazine, IEEE, 49(3):112–120, 2011. (18)

[50] Pandora. Restricted access for Germany, 2015. http://www.pandora.com/restricted. (19)

[51] Facebook. Sign up for Facebook, 2015. https://www.facebook.com/r.php. (20)

[52] Facebook. What is the minimum password strength and how can I make my password strong?,

2015. https://www.facebook.com/help/124904560921566. (21)

[53] Adobe. Create an Adobe ID, 2015. https://accounts.adobe.com/. (23)

[54] CNBC, 2015. http://www.cnbc.com. (23)

[55] T-Mobile. T-Mobile ID, 2015. https://account.t-mobile.com/oauth2/v1/controller. (23)

[56] David Lewis. Representation quality in text classification: An introduction and experiment. In Proc.

Workshop on Speech and Natural Language. Morgan Kaufmann, Hidden Valley, PA, pages 288–295,

1990. (24)

[57] Tom Fawcett. An introduction to ROC analysis. Pattern recognition letters, 27(8):861–874, 2006.

(24)

[58] Techcrunch. Report: More Than 250M Domain Names Have Now Been Regis-

tered, Almost Half Are .Com And .Net, 2013. http://techcrunch.com/2013/04/08/

internet-passes-250m-registered-top-level-domain-names/. (25)

[59] Prakash M Nadkarni, Lucila Ohno-Machado, and Wendy W Chapman. Natural language processing:

an introduction. Journal of the American Medical Informatics Association, 18(5):544–551, 2011.

(26)

[60] W3C. HTML/Elements/select, 2015. https://www.w3.org/wiki/HTML/Elements/select. (27)

[61] W3Schools. HTML input placeholder Attribute, 2015. http://www.w3schools.com/tags/att_

input_placeholder.asp. (28)

[62] W3Schools. HTML Global data-* Attributes, 2015. http://www.w3schools.com/tags/att_

global_data.asp. (28)

[63] Ancestry. Sign In, 2015. https://secure.ancestry.com/login. (28)

[64] Disney. Create Your Disney Account, 2015. https://register.go.com/global/login. (28)

52

https://www.walmart.com/account/signup?returnUrl=%2Faccount%2F
https://www.walmart.com/account/signup?returnUrl=%2Faccount%2F
https://i5.walmartimages.com/dfw/63fd9f59-90f9/k2-_377fb962-2829-491c-ab4b-e3ae5e03fd8a.v1.js
https://i5.walmartimages.com/dfw/63fd9f59-90f9/k2-_377fb962-2829-491c-ab4b-e3ae5e03fd8a.v1.js
http://www.pandora.com/restricted
https://www.facebook.com/r.php
https://www.facebook.com/help/124904560921566
https://accounts.adobe.com/
http://www.cnbc.com
https://account.t-mobile.com/oauth2/v1/controller
http://techcrunch.com/2013/04/08/internet-passes-250m-registered-top-level-domain-names/
http://techcrunch.com/2013/04/08/internet-passes-250m-registered-top-level-domain-names/
https://www.w3.org/wiki/HTML/Elements/select
http://www.w3schools.com/tags/att_input_placeholder.asp
http://www.w3schools.com/tags/att_input_placeholder.asp
http://www.w3schools.com/tags/att_global_data.asp
http://www.w3schools.com/tags/att_global_data.asp
https://secure.ancestry.com/login
https://register.go.com/global/login

[65] W3Schools. HTML Block and Inline Elementst, 2015. http://www.w3schools.com/html/html_

blocks.asp. (29)

[66] James H Martin and Daniel Jurafsky. Speech and language processing. International Edition, 2000.

(29)

[67] Jeffrey C Reynar and Adwait Ratnaparkhi. A maximum entropy approach to identifying sentence

boundaries. In Proceedings of the fifth conference on Applied natural language processing, pages

16–19. Association for Computational Linguistics, 1997. (30)

[68] Haoyi Wang and Yang Huang. Bondec–A Sentence Boundary Detector. CS224N Project, Stanford,

2003. (30)

[69] The Stanford Natural Language Processing Group. Stanford Word Segmenter, 2015. http://nlp.

stanford.edu/software/segmenter.shtml. (30)

[70] The Stanford Natural Language Processing Group. The Stanford Parser: A statistical parser, 2015.

http://nlp.stanford.edu/software/lex-parser.shtml. (30)

[71] Marie-Catherine De Marneffe, Bill MacCartney, Christopher D Manning, et al. Generating typed

dependency parses from phrase structure parses. In Proceedings of LREC, volume 6, pages 449–

454, 2006. (30)

[72] W3Schools. HTML input maxlength Attribute, 2015. http://www.w3schools.com/tags/att_

input_maxlength.asp. (33)

[73] Dave Raggett, Arnaud Le Hors, Ian Jacobs, et al. HTML 4.01 Specification. W3C recommendation,

24, 1999. (33)

[74] Quantcast. Top Ranking International Websites, 2011. https://www.quantcast.com/top-sites.

(40)

[75] Herman Isa, Iskandar Bahari, Hasibah Sufian, and Muhammad Reza Z’aba. AES: current security

and efficiency analysis of its alternatives. In Information Assurance and Security (IAS), 2011 7th

International Conference on, pages 267–274. IEEE, 2011. (42)

[76] Annabelle Lee. Guideline for Implementing Cryptography in the Federal Government. Technical

report, DTIC Document, 1999. (42)

[77] J Baldridge and T Morton. OpenNLP, 2004. (47)

53

http://www.w3schools.com/html/html_blocks.asp
http://www.w3schools.com/html/html_blocks.asp
http://nlp.stanford.edu/software/segmenter.shtml
http://nlp.stanford.edu/software/segmenter.shtml
http://nlp.stanford.edu/software/lex-parser.shtml
http://www.w3schools.com/tags/att_input_maxlength.asp
http://www.w3schools.com/tags/att_input_maxlength.asp
https://www.quantcast.com/top-sites

A Password Policy Crawler Manual
This chapter serves to explain the software usage of the PPC. The PPC is a software package that is de-

signed to run in parallel on multiple machines. The ability to split time consuming and computationally

expensive tasks of the PPC onto multiple machines makes it necessary to run the PPC sequentially in

different run modes. In the following, the necessary steps are explained in order to crawl password

policies form a given database of domains.

Retrieving search results

The first step in crawling password policies is to run the CC in the search mode. This retrieves search

results for a given database of domains. The command looks as follows:

java − j a r crawler . j a r search <targe t > <source>

The <source> parameter specifies a path to a database that is expected to be a valid SQLite database.

The database must contain a table called services. This table must contain the columns name and url

specifying the name and domain of the service. A corresponding table can be created using the following

sql statement:

CREATE TABLE services (name TEXT, url TEXT);

The <target> parameter specifies a path to another SQLite database containing a table called results.

This table is expected to have the columns ID, domain, time, result1, result2, result3. If the given

target file does not exist, a database containing the necessary table is automatically created. Otherwise,

the table can also be manually created using the following statement:

CREATE TABLE results (

’ID’ INTEGER PRIMARY KEY AUTOINCREMENT ,

’domain’ TEXT UNIQUE,

’time’ INTEGER,

’result1’ TEXT,

’result2’ TEXT,

’result3’ TEXT

);

Crawling Signup Pages

The second step is the crawling of signup pages. In order to do so, the CC is run by using the following

command:

java − j a r crawler . j a r crawler <database> <threadCount>

54

The <database> parameter is specifying a path to a database as created in the previous step. The

<threadCount> parameter specifies with how many threads the crawling is performed. Each thread is

representing the concurrent crawling of found URLs for one domain.

The output in this step is an output folder that is named after the database name. Inside the output

folder, subfolders are created for each crawled domain. These subfolders contain the found signup page

as well as a log file with debug information. The CC can run with the given amount of threads. However,

it is not supported to run multiple instances of the application.

Building the Files List

In the third step, a files list is created that contains the paths to all found signup pages. In order to create

the list, the PPE is run using the following command:

java − j a r e x t r a c t o r . j a r bui ld− f i l e s l i s t <input> <output>

The <input> parameter specifies the path to a folder that should be read. The folder is recursively read

and can therefore contain output folders from multiple runs of the CC. The <output> specifies the file to

which the files list should be written.

Parsing the Signup Pages

The fourth step runs the extraction of password requirements. This step creates the final password

policies:

j ava − j a r e x t r a c t o r . j a r run−parse r <f i l e s L i s t >

The PPE uses the path to the files list given in the <filesList> parameter to retrieve the paths to the

signup pages. The extractor runs in a single threaded environment parsing one signup page at a time.

The application uses file based locks in order to check whether another instance is parsing a file contained

in the files list. This enables the application to be run multiple times and even on different machines

sharing the same storage (e.g. network storage).

The extracted password policies are stored in the file system with the same file name as the signup page

including an appended .xml.

Utilities

The previously explained four steps are sufficient to create password policies from a existing database

of domains. However, there are a few more utility run modes that can be used, e.g. for quickly copying

the created password policies to another location. In the following, the available utility run modes are

briefly described:

1. j ava − j a r e x t r a c t o r . j a r copy−r e s u l t s <input> <output>

Recursively copies the created password policies present in the <input> folder to the specified

target <output> location.

55

2. java − j a r e x t r a c t o r . j a r clean−l o ck s <path>

Recursively deletes all locks created during the process of password policy extraction. This mode

should only be run if all parsing processes are finished. Otherwise, already processed documents

would be processed again.

3. j ava − j a r e x t r a c t o r . j a r clean−a l l <path>

Additionally to the clean-locks run mode, the created password policies will also be deleted. This

deletes all files created in the process of password policy extraction.

56

B PPML XML Schema Definition

<?xml version="1.0" encoding="UTF−8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:vc="http://www.w3.org/2007/XMLSchema−versioning" elementFormDefault="qualified"

xmlns:xerces="http://xerces.apache.org" vc:minVersion="1.1">

<xs:element name="policies" type="Policies"> </xs:element>

<xs:complexType name="Policies">

<xs:sequence>

<xs:element maxOccurs="unbounded" minOccurs="0" name="policy" type="Policy">

<xs:unique name="uniqueScope">

<xs:selector xpath="policy"/>

<xs:field xpath="scope"/>

</xs:unique>

<xs:key name="characterSetKey">

<xs:selector xpath="./characterSets/characterSet"/>

<xs:field xpath="@name"/>

</xs:key>

<xs:keyref name="requirementRuleKeyRef" refer="characterSetKey">

<xs:selector

xpath="./properties/characterSettings/requirementGroup/requirementRule"/>

<xs:field xpath="@characterSet"/>

</xs:keyref>

<xs:keyref name="positionRestrictionKeyRef" refer="characterSetKey">

<xs:selector xpath="./properties/characterSettings/positionRestriction"/>

<xs:field xpath="@characterSet"/>

</xs:keyref>

<xs:keyref name="characterSetSettingsKeyRef" refer="characterSetKey">

<xs:selector xpath="./properties/characterSettings/characterSet"/>

<xs:field xpath="@name"/>

</xs:keyref>

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Policy">

<xs:annotation>

<xs:documentation>The Policy represents a single password policy for the given scope.</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="characterSets" minOccurs="0" type="CharacterSets">

<xs:unique name="characterSetUniqueName">

<xs:selector xpath=".//characterSet"/>

<xs:field xpath="@name"/>

</xs:unique>

</xs:element>

<xs:element name="properties" minOccurs="0" type="Properties">

<xs:annotation>

<xs:documentation>Required. Represents the properties of the password.</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="service" minOccurs="0" type="Service">

<xs:annotation>

<xs:documentation>Holds information related to the service the password is used for.</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

<xs:attribute name="version" type="xs:string">

<xs:annotation>

<xs:documentation>The current version of the policy.</xs:documentation>

</xs:annotation>

</xs:attribute>

<xs:attribute name="timestamp" type="xs:dateTime">

57

<xs:annotation>

<xs:documentation>Timestamp when this policy was created/updated. It must include the time, the date, and the offset from the UTC

time.</xs:documentation>

</xs:annotation>

</xs:attribute>

<xs:attribute name="scope" type="xs:anyURI" use="required">

<xs:annotation>

<xs:documentation>Relative path of the webpage where this policy will be used.

If the scope attribute references a file (i.e. does not end with a slash), the policy is only valid for the referenced file. A policy with a scope that ends with

a slash is valid for the referenced folder, all subfiles and folders. Policies with a more specific scope are chosen over ones with more general

scopes. The default value of the scope is "/", which is valid for all files and folders.</xs:documentation>

</xs:annotation>

</xs:attribute>

<xs:attribute name="redirect" type="xs:anyURI"/>

<xs:attribute name="name" type="xs:string"/>

<xs:assert

test="(@redirect and not(characterSets) and not(properties) and not(service)) or (not(@redirect) and characterSets)"

xerces:message="Either the redirect attribute or both characterSets and properties elements must be present, but not both."

/>

</xs:complexType>

<xs:complexType name="CharacterSets">

<xs:sequence>

<xs:element maxOccurs="unbounded" name="characterSet" type="CharacterSet"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="CharacterSet">

<xs:sequence>

<xs:element maxOccurs="unbounded" minOccurs="0" name="base" type="xs:string">

<xs:annotation>

<xs:documentation>Reference to an already defined character set. All characters from the character set referenced by this element will be added to the

character set this element is a child of.</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="characters" type="xs:string" minOccurs="0">

<xs:annotation>

<xs:documentation>String containing all characters that will be added to the character set.</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

<xs:attribute name="name" use="required" type="xs:string"/>

</xs:complexType>

<xs:complexType name="Properties">

<xs:all>

<xs:element minOccurs="0" name="characterSettings" type="CharacterSettings">

<xs:annotation>

<xs:documentation>Parent node for character settings. If the node is omitted, all characters defined in the characterSets element are treated as available

for use with no restrictions on minimum and maximum ocurrences.</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element default="0" minOccurs="0" name="maxConsecutive" type="xs:nonNegativeInteger">

<xs:annotation>

<xs:documentation>Indicates whether consecutive characters are allowed or not. A omitted value or 0 inidaces no limitation on consecutive

characters.</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="minLength" type="xs:nonNegativeInteger" minOccurs="0" default="1">

<xs:annotation>

<xs:documentation>Minimum length of the password.</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="maxLength" type="xs:nonNegativeInteger" minOccurs="0" default="0">

<xs:annotation>

<xs:documentation>Maximum length of the password. A value of 0 means no maximum length.</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="expires" type="xs:nonNegativeInteger" minOccurs="0" default="0"

nillable="false">

<xs:annotation>

<xs:documentation>Password expiry in days. A value of 0 means no expiry.</xs:documentation>

58

</xs:annotation>

</xs:element>

</xs:all>

</xs:complexType>

<xs:complexType name="CharacterSettings">

<xs:sequence>

<xs:element maxOccurs="unbounded" minOccurs="1" name="characterSet"

type="CharacterSetSettings">

<xs:annotation>

<xs:documentation>Settings element for a globally available character set.</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element maxOccurs="unbounded" minOccurs="0" name="requirementGroup"

type="RequirementGroup">

<xs:annotation>

<xs:documentation>Character sets specified in the requirement groups are implicitly added to the available character sets for the given position (or all

position if no positions are specified) if they were not allowed previously. For a given character position this means that first, the available characters

are evaluated using the characterSet element and the positionRestriction element. After this, the requirementRules add possible characters, they do

not remove previously allowed characters (like the positionRestriction element does).</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element maxOccurs="unbounded" minOccurs="0" name="positionRestriction"

type="PositionRestriction">

<xs:annotation>

<xs:documentation>Restriction element used to restrict the allowed characters for a given character position. The globally available character sets are not

available for any character position that has at least one position restriction as long as they are not made available by a positionRestriction

element.</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:complexType name="CharacterSetSettings">

<xs:all>

<xs:element minOccurs="0" name="minOccurs" type="xs:nonNegativeInteger" nillable="false">

<xs:annotation>

<xs:documentation>Minimum password global occurrences of the character set. Omitted for no restrictions on minimum

occurences.</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element minOccurs="0" name="maxOccurs" type="xs:nonNegativeInteger" nillable="false">

<xs:annotation>

<xs:documentation>Maximum password global occurrences of the character set. Omitted for no restrictions on maximum

occurences.</xs:documentation>

</xs:annotation>

</xs:element>

</xs:all>

<xs:attribute name="name" type="xs:string" use="required"/>

</xs:complexType>

<xs:complexType name="PositionRestriction">

<xs:all>

<xs:element name="positions" type="xs:string">

<xs:annotation>

<xs:documentation>Comma separated list of character positions the restriction is applied to. Each position can be a character position starting with 0.

Negative character positions can be used to specify the position beginning from the end of the password. A value in the interval (0,1) can be used to

specify a position by ratio. E.g. 0.5 refers to the center position of the password.</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element default="0" minOccurs="0" name="minOccurs" type="xs:nonNegativeInteger">

<xs:annotation>

<xs:documentation>Minimum occurences of the character set for the given positions. A value of 0 means no restrictions of minimum

occurences.</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element default="0" minOccurs="0" name="maxOccurs" type="xs:nonNegativeInteger">

<xs:annotation>

<xs:documentation>Maximum occurences of the character set for the given positions. A value of 0 means no restrictions of maximum

occurences.</xs:documentation>

</xs:annotation>

</xs:element>

59

</xs:all>

<xs:attribute name="characterSet" type="xs:string" use="required"/>

</xs:complexType>

<xs:complexType name="RequirementGroup">

<xs:sequence>

<xs:element default="1" minOccurs="0" name="minRules" type="xs:positiveInteger">

<xs:annotation>

<xs:documentation>Minimum number of rules that must be fulfilled.</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element maxOccurs="unbounded" name="requirementRule" type="RequirementRule"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="RequirementRule">

<xs:all>

<xs:element default="0" minOccurs="0" name="minOccurs" type="xs:nonNegativeInteger">

<xs:annotation>

<xs:documentation>Minimum occurrences of the given character set. A value of 0 means no minimum occurrences.</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element default="0" minOccurs="0" name="maxOccurs" type="xs:nonNegativeInteger">

<xs:annotation>

<xs:documentation>Maximum occurrences of the given character set. A value of 0 means no maximum occurrences.</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element minOccurs="0" name="positions" type="xs:string">

<xs:annotation>

<xs:documentation>List of character positions this rule applies to as defined in the PositionRestriction type.</xs:documentation>

</xs:annotation>

</xs:element>

</xs:all>

<xs:attribute name="characterSet" type="xs:string" use="required"/>

</xs:complexType>

<xs:complexType name="Service">

<xs:all>

<xs:element minOccurs="0" name="login" type="ServiceLogin"/>

<xs:element minOccurs="0" name="register" type="ServiceRegister"/>

<xs:element minOccurs="0" name="passwordChange" type="ServicePasswordChange"/>

<xs:element minOccurs="0" name="passwordReset" type="ServicePasswordReset"/>

</xs:all>

</xs:complexType>

<xs:complexType name="ServiceLogin">

<xs:all>

<xs:element name="url" type="xs:anyURI" minOccurs="0"/>

<xs:element minOccurs="0" name="maxTries" type="xs:positiveInteger"/>

</xs:all>

</xs:complexType>

<xs:complexType name="ServiceRegister">

<xs:all>

<xs:element name="url" type="xs:anyURI" minOccurs="0"/>

</xs:all>

</xs:complexType>

<xs:complexType name="ServicePasswordChange">

<xs:all>

<xs:element name="url" type="xs:anyURI" minOccurs="0"/>

<xs:element minOccurs="0" name="maxTries" type="xs:positiveInteger"/>

</xs:all>

</xs:complexType>

<xs:complexType name="ServicePasswordReset">

<xs:all>

<xs:element name="url" type="xs:anyURI" minOccurs="0"/>

<xs:element minOccurs="0" name="maxTries" type="xs:positiveInteger"/>

</xs:all>

</xs:complexType>

</xs:schema>

Listing B.1: Password Policy Markup Language XML Schema

60

C Example Password Policy
<?xml version="1.0" encoding="UTF−8" standalone="yes"?>

<policies>

<policy scope="https://100mb.co.in/">

<characterSets>

<characterSet name="Uppercase">

<characters>ABCDEFGHIJKLMNOPQRSTUVQXYZ</characters>

</characterSet>

<characterSet name="Lowercase">

<characters>abcdefghijklmnopqrstuvwxyz</characters>

</characterSet>

<characterSet name="Numbers">

<characters>0123456789</characters>

</characterSet>

<characterSet name="Special">

<characters><![CDATA[.,:;−+*?%&=]]></characters>

</characterSet>

<characterSet name="Letters">

<characters>abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVQXYZ</characters>

</characterSet>

</characterSets>

<properties>

<characterSettings>

<characterSet name="Uppercase">

<minOccurs>1</minOccurs>

</characterSet>

<characterSet name="Lowercase">

<minOccurs>1</minOccurs>

</characterSet>

<characterSet name="Numbers">

<minOccurs>1</minOccurs>

</characterSet>

<characterSet name="Special">

<minOccurs>1</minOccurs>

</characterSet>

<characterSet name="Letters"/>

</characterSettings>

<minLength>8</minLength>

<maxLength>32</maxLength>

</properties>

</policy>

</policies>

Listing C.1: Password Policy crawled by the PPC.

61

D PPC Evaluation

google.com yelp.com mint.com opentable.com popads.net

amazon.com zillow.com steamcommunity.com myway.com ksl.com

wikipedia.org wordpress.com creditkarma.com tvguide.com seekingalpha.com

ebay.com groupon.com dailymotion.com bankrate.com foxsports.com

twitter.com cnet.com telegraph.co.uk zendesk.com speedtest.net

craigslist.org stackoverflow.com hootsuite.com qualtrics.com fanfiction.net

linkedin.com adobe.com monster.com sourceforge.com investopedia.com

paypal.com bleacherreport.com evernote.com fool.com macrumors.com

apple.com twitch.tv alibaba.com sharesale.com gamespot.com

target.com goodreads.com match.com cars.com disqus.com

outbrain.com tmz.com gamefaqs.com biblegateway.com wnd.com

usps.com woot.com rottentomatoes.com bizjournals.com fatwallet.com

ups.com cbssports.com marketwatch.com cafemom.com basecamp.com

forbes.com engadget.com bedbathandbeyond.com starbucks.com jcrew.com

slickdeals.net surveymonkey.com qvc.com thefreedictionary.com arstechnica.com

lowes.com allrecipes.com nypost.com refinery29.com liveleak.com

fedex.com godaddy.com hotels.com primewire.ag cisco.com

kohls.com nydailynews.com fandango.com stumbleupon.com cc.com

guthub.com united.com barnesandnoble.com livestrong.com victoriassecret.com

newegg.com kickstarter.com bhphotovideo.com officedepot.com uproxx.com

wsj.com aa.com photobucket.com vox.com espncricinfo.com

expedia.com weebly.com ebates.com battle.net timeanddate.com

theguardian.com ticketmaster.com wix.com orbitz.com businessinsider.com

wunderground.com coupons.com webex.com rei.com zulily.com

southwest.com jcpenny.com shutterfly.com shopify.com meetup.com

nordstrom.com houzz.com hilton.com pogo.com eventbrite.com

gap.com zappos.com kbb.com drugs.com nfl.com

costco.com delta.com babycenter.com gamestop.com lifebuzz.com

ancestry.com theverge.com instructables.com xda-developers.com deviantart.com

staples.com myfitnesspal.com addthis.com thechive.com dailymail.co.uk

npr.org mailchimp.com barclaycardus.com kmart.com ign.com

accuweather.com dell.com adcash.com aarp.org retailmenot.com

time.com wayfair.com slideshare.net shutterstock.com mapquest.com

constantcontact.com airbnb.com forever21.com angieslist.com yellowpages.com

okcupid.com hp.com evite.com livejournal.com cnbc.com

go.com fitbit.com topix.com tigerdirect.com priceline.com

imdb.com whitepages.com bodybuilding.com samsung.com change.org

nytimes.com sbnation.com reuters.com zergnet.com city-data.com

walmart.com t-mobile.com careerbuilder.com stubhub.com signupgenius.com

weather.com theblaze.com archive.org tomshardware.com howtogeek.com

Table D.1.: Domains used for evaluating the PPC modules.

62

Domain Found using Search Engine Found using Link Extraction Signup Page returned Returned Signup Page correct

google.com Yes - Yes Yes

amazon.com No Yes Yes Yes

wikipedia.org No Yes Yes Yes

ebay.com Yes - Yes Yes

twitter.com Yes - Yes Yes

craigslist.org No No No -

linkedin.com Yes - Yes Yes

paypal.com Yes - Yes Yes

apple.com Yes - Yes Yes

target.com No No No -

outbrain.com Yes - Yes Yes

usps.com Yes - Yes Yes

ups.com No No No -

forbes.com Yes - Yes Yes

slickdeals.net Yes - Yes Yes

lowes.com Yes - Yes Yes

fedex.com Yes - Yes Yes

kohls.com Yes - Yes Yes

github.com Yes - Yes Yes

newegg.com Yes - Yes No

wsj.com No No No -

expedia.com Yes - Yes Yes

theguardian.com Yes - Yes Yes

wunderground.com Yes - Yes Yes

southwest.com Yes - Yes Yes

nordstrom.com No No No -

gap.com No No No -

costco.com Yes - Yes Yes

ancestry.com Yes - Yes Yes

staples.com No No No -

npr.org Yes - Yes Yes

accuweather.com Yes - Yes Yes

time.com No No No -

constantcontact.com Yes - Yes Yes

okcupid.com Yes - Yes Yes

go.com Yes - Yes Yes

imdb.com Yes - Yes Yes

nytimes.com Yes - Yes Yes

walmart.com Yes - Yes Yes

weather.com Yes - Yes No

yelp.com Yes - Yes Yes

zillow.com No No No -

wordpress.com Yes - Yes Yes

groupon.com Yes - Yes Yes

cnet.com No No No -

stackoverflow.com Yes - Yes Yes

adobe.com Yes - Yes No

bleacherreport.com Yes - Yes Yes

twitch.tv Yes - Yes Yes

goodreads.com Yes - Yes Yes

tmz.com Yes - Yes Yes

woot.com Yes - Yes Yes

cbssports.com Yes - Yes Yes

engadget.com Yes - Yes Yes

surveymonkey.com Yes - Yes Yes

allrecipes.com Yes - Yes Yes

godaddy.com No Yes Yes Yes

nydailynews.com Yes - Yes Yes

united.com Yes - Yes Yes

kickstarter.com Yes - Yes Yes

aa.com Yes - Yes Yes

weebly.com Yes - Yes Yes

ticketmaster.com Yes - Yes Yes

63

coupons.com No No No -

jcpenny.com No No No -

houzz.com No No No -

zappos.com No Yes Yes Yes

delta.com No Yes Yes Yes

theverge.com Yes - Yes Yes

myfitnesspal.com Yes - Yes Yes

mailchimp.com Yes - Yes Yes

dell.com Yes - Yes No

wayfair.com Yes - Yes Yes

airbnb.com Yes - Yes Yes

hp.com Yes - Yes No

fitbit.com No No No -

whitepages.com Yes - Yes Yes

sbnation.com Yes - Yes Yes

t-mobile.com Yes - Yes No

theblaze.com No Yes Yes Yes

mint.com Yes - Yes Yes

steamcommunity.com Yes - Yes Yes

creditkarma.com Yes - Yes Yes

dailymotion.com No No No -

telegraph.co.uk Yes - Yes Yes

hootsuite.com Yes - Yes No

monster.com Yes - Yes Yes

evernote.com No No No -

alibaba.com No Yes Yes Yes

match.com Yes - Yes Yes

gamefaqs.com Yes - Yes Yes

rottentomatoes.com Yes - Yes Yes

marketwatch.com Yes - Yes Yes

bedbathandbeyond.com No No No -

qvc.com No Yes Yes Yes

nypost.com No Yes Yes Yes

hotels.com No No No -

fandango.com No Yes Yes Yes

barnesandnoble.com Yes - Yes Yes

bhphotovideo.com No Yes Yes Yes

photobucket.com Yes - Yes Yes

ebates.com Yes - Yes Yes

wix.com No No No -

webex.com No Yes Yes Yes

shutterfly.com Yes - Yes Yes

hilton.com Yes - Yes Yes

kbb.com No No No -

babycenter.com Yes - Yes Yes

instructables.com Yes - Yes Yes

addthis.com Yes - Yes Yes

barclaycardus.com Yes - Yes Yes

adcash.com Yes - Yes Yes

slideshare.net Yes - Yes Yes

forever21.com Yes - Yes Yes

evite.com Yes - Yes Yes

topix.com No No No -

bodybuilding.com Yes - Yes No

reuters.com No No No -

careerbuilder.com Yes - Yes Yes

archive.org Yes - Yes Yes

opentable.com Yes - Yes Yes

myway.com Yes - Yes Yes

tvguide.com Yes - Yes Yes

bankrate.com No Yes Yes Yes

zendesk.com Yes - Yes Yes

qualtrics.com Yes - Yes Yes

sourceforge.com Yes - Yes Yes

64

fool.com No No No -

sharesale.com Yes - Yes Yes

cars.com No Yes Yes Yes

biblegateway.com Yes - Yes Yes

bizjournals.com No No No -

cafemom.com Yes - Yes Yes

starbucks.com Yes - Yes Yes

thefreedictionary.com No Yes Yes Yes

refinery29.com No No No -

primewire.ag Yes - Yes Yes

stumbleupon.com Yes - Yes Yes

livestrong.com Yes - Yes Yes

officedepot.com No No No -

vox.com Yes - Yes Yes

battle.net Yes - Yes Yes

orbitz.com No Yes Yes Yes

rei.com No No No -

shopify.com Yes - Yes Yes

pogo.com No Yes Yes No

drugs.com Yes - Yes Yes

gamestop.com Yes - Yes Yes

xda-developers.com Yes - Yes Yes

thechive.com No Yes Yes Yes

kmart.com No No No -

aarp.org No Yes Yes Yes

shutterstock.com Yes - Yes Yes

angieslist.com No Yes Yes Yes

livejournal.com Yes - Yes Yes

tigerdirect.com No Yes Yes Yes

samsung.com Yes - Yes Yes

zergnet.com Yes - Yes Yes

stubhub.com Yes - Yes Yes

tomshardware.com No No No -

popads.net Yes - Yes Yes

ksl.com Yes - Yes Yes

seekingalpha.com Yes - Yes Yes

foxsports.com No No No -

speedtest.net Yes - Yes Yes

fanfiction.net Yes - Yes Yes

investopedia.com Yes - Yes Yes

macrumors.com No No No -

gamespot.com No Yes Yes Yes

disqus.com Yes - Yes Yes

wnd.com No No No -

fatwallet.com Yes - Yes Yes

basecamp.com No No No -

jcrew.com No Yes Yes Yes

arstechnica.com No No No -

liveleak.com No Yes Yes Yes

cisco.com Yes - Yes Yes

cc.com No No No -

victoriassecret.com No No No -

uproxx.com No No No -

espncricinfo.com Yes - Yes Yes

timeanddate.com Yes - Yes Yes

businessinsider.com Yes - Yes Yes

zulily.com No No No -

meetup.com Yes - Yes Yes

eventbrite.com Yes - Yes Yes

nfl.com No Yes Yes Yes

lifebuzz.com Yes - Yes Yes

deviantart.com Yes - Yes Yes

dailymail.co.uk No No No -

ign.com Yes - Yes Yes

65

retailmenot.com Yes - Yes Yes

mapquest.com Yes - Yes Yes

yellowpages.com Yes - Yes Yes

cnbc.com No No No -

priceline.com Yes - Yes Yes

change.org No No No -

city-data.com Yes - Yes Yes

signupgenius.com Yes - Yes Yes

howtogeek.com No No No -

Table D.2.: Detailed evaluation results of the CC.

66

	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Related Work
	Background
	Password Policy Markup Language
	Functionality
	Meta Data
	Password Requirements
	Password Management
	Implementation

	Unstructured Information Management Architecture
	Unstructured Information
	High-Level Architecture

	Password Policy Crawler
	Content Crawler
	Implementation
	Search Engine
	Signup Page Detection
	Link Extraction
	Content Extraction
	Limitations

	Evaluation
	Findings
	Search Results
	Link Extraction
	Final Results
	Summary and Conclusion

	Password Policy Extractor
	Implementation
	HTML Preprocessing
	Text Segmentation
	Natural Language Parsing
	Keyword Annotator
	Dependency Parsing
	Information Interpreter
	HTML Meta Information Extraction
	Requirement Storage
	Limitations

	Evaluation
	Evaluation Set
	Assumptions
	Correctness Criteria
	Results

	Large-Scale Password Policy Generation
	Automated Password Generation
	KeePass
	Password Generation using Password Policies

	Conclusion
	Glossary
	Bibliography
	Password Policy Crawler Manual
	PPML XML Schema Definition
	Example Password Policy
	PPC Evaluation

