
MXL2 : Solving Polynomial Equations over

GF(2) Using an Improved Mutant Strategy

Mohamed Saied Emam Mohamed1, Wael Said Abd Elmageed Mohamed1,
Jintai Ding2, and Johannes Buchmann1

1 TU Darmstadt, FB Informatik,
Hochschulstrasse 10, 64289 Darmstadt, Germany

{mohamed,wael,buchmann}@cdc.informatik.tu-darmstadt.de
2 Department of Mathematical Sciences, University of Cincinnati,

Cincinnati OH 45220, USA
jintai.ding@uc.edu

Abstract. MutantXL is an algorithm for solving systems of polyno-
mial equations that was proposed at SCC 2008. This paper proposes
two substantial improvements to this algorithm over GF(2) that result
in significantly reduced memory usage. We present experimental results
comparing MXL2 to the XL algorithm, the MutantXL algorithm and
Magma’s implementation of F4. For this comparison we have chosen
small, randomly generated instances of the MQ problem and quadratic
systems derived from HFE instances. In both cases, the largest matrices
produced by MXL2 are substantially smaller than the ones produced by
MutantXL and XL. Moreover, for a significant number of cases we even
see a reduction of the size of the largest matrix when we compare MXL2
against Magma’s F4 implementation.

1 Introduction

Solving systems of multivariate quadratic equations is an important problem in
cryptology. The problem of solving such systems over finite fields is called the
Multivariate Quadratic (MQ) problem. In the last two decades, several cryp-
tosystems based on the MQ problem have been proposed as in [1,2,3,4,5]. For
generic instances it is proven that the MQ problem is NP-complete [6]. However
for some cryptographic schemes the problem of solving the corresponding MQ
system has been demonstrated to be easier, allowing these schemes to be bro-
ken. Therefore it is very important to develop efficient algorithms to solve MQ
systems.

Recently, MutantXL [7] and MutantF4 [8] were proposed at SCC 2008, two
algorithms based on Ding’s mutant concept. Roughly speaking, in algorithms
that operate on linearized representations of the polynomial system by increasing
degree – such as F4 and XL – this concept proposes to maximize the effect
of lower-degree polynomials occurring during the computation. In this paper,
we present MutantXL2 (MXL2 ) – a new algorithm based on MutantXL that
oftentimes allows to solve systems with significantly smaller matrix sizes than
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XL and MutantXL. Moreover, experimental results for both HFE systems and
random systems demonstrate that for a significant number of cases we even get
a reduction of the size of the largest matrix when comparing MXL2 against
Magma’s F4 implementation.

The paper is organized as follows. In Section 2 the key ideas of the MXL2
algorithm and the required definitions are presented. A formal description and
explanations of the algorithm are in Section 3. Section 4 contains the experi-
mental results. In Section 5 we conclude our paper.

2 Improvements to the Mutant Strategy

In this section we present the key ideas of the MXL2 algorithm and explain their
importance for solving systems of multivariate quadratic polynomial equations
more efficiently. Throughout the paper we will use the following notations: Let
X := {x1, . . . , xn} be a set of variables, upon which we impose the following
order: x1 < x2 < . . . < xn. Let

R = F2[x1, . . . , xn]/(x2
1 − x1, ..., x

2
n − xn)

be the ring of polynomial functions over F2 in X with the monomials of R ordered
by the graded lexicographical order <glex. By an abuse of notation, we call the
elements of R polynomials throughout this paper. Let P = (p1, . . . , pm) ∈ Rm

be a sequence of m quadratic polynomials in R. Throughout the operation of
the algorithms described in this paper, a degree bound D will be used. This
degree bound denotes the maximum degree of the polynomials contained in P .
Note that the contents of P will be changed throughout the operation of the
algorithm.

Some algorithms for solving the system

pj(x1, . . . , xn) = 0, 1 ≤ j ≤ m (1)

such as XL and MutantXL are based on finding new elements in the ideal gener-
ated by the polynomials of P that correspond to equations that are easy to solve,
i.e. univariate or linear polynomials. The MutantXL algorithm is an application
of the mutant concept to the XL algorithm. The following definitions explain
the term mutant:

Definition 1. Let g ∈ R be a polynomial in the ideal generated by the elements
of P . Naturally, it can be written as

g =
∑

p∈P

gpp (2)

where gp ∈ R, p ∈ P . The level of this representation is defined to be

max{deg(gpp) : p ∈ P}.
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Note that this level depends on P . The level of the polynomial g is defined to be
the minimum level of all of its representations.

Definition 2. Let g ∈ R be a polynomial in the ideal generated by the elements
of P . The polynomial g is called a mutant with respect to P if its degree is less
than its level.

Next, we explain the meaning of mutants. When a mutant is written as a linear
combination (2), then one of the polynomials gpp has a degree exceeding the
degree of the mutant. This means that a mutant of degree d cannot be found
as a linear combination of polynomials of the form mp where m is a monomial,
p ∈ P and the degree of mp is at most d. However, such mutants could help in
solving the system (1) if we can find them efficiently.

Given a degree bound D, the MutantXL algorithm extends the system of
polynomial equations (1) by multiplying the polynomials on the left-hand side
by all monomials up to degree D − deg(pi). Then the system is linearized by
considering the monomials as new variables and applying Gaussian elimination
on the resulting linear system. MutantXL searches for univariate equations, if
no such equations exist, it searches for mutants, that are new polynomials of
degree < D. If mutants are found, they are multiplied by all monomials such
that the produced polynomials have degree ≤ D. Using this strategy, MutantXL
achieves to enlarge the system without incrementing D.

In many experiments with MutantXL on some HFE systems and some ran-
domly generated multivariate quadratic systems, we noticed that there are two
problems. The first occurs when the number of lower degree mutants is very
large, we observed this produces many reductions to zero. A second problem
occurs when an iteration does not produce mutants at all or produces only an
insufficient number of mutants to solve the system at lower degree D. In this
case MutantXL behaves like XL.

Our proposed improvements handle both problems, while using the same lin-
earization strategy as the original MutantXL. This allows us to compute the
solution with fewer polynomials. To handle the first problem, we need the fol-
lowing notation.

Let Sk : { m ∈ R : deg(m) ≤ k} be the set of all monomials of R that have
degree less than or equal to k. Combinatorially, the number of elements of this
set can be computed as

|Sk| =
k∑

�=1

(
n

�

)
, 1 ≤ k ≤ n (3)

where n is the number of variables.
The MXL2 algorithm as well as MutantXL are based on the mutant concept,

however MXL2 introduces a heuristic strategy of only choosing the minimum
number of mutants, which will be called necessary mutants. Let k be the degree
of the lowest-degree mutant occuring and the number of the linearly independent
elements of degree≤ k+1 in P be Q(k+1). Then the smallest number of mutants
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that are needed to generate |Sk+1| linearly independent equations of degree ≤
k + 1 is

�(|Sk+1| −Q(k + 1))/n�, (4)

where Sk+1 is as in (3) and n is the number of variables. Therefore by multiplying
only the necessary number of mutants, the system can potentially be solved by
a smaller number of polynomials and a minimum number of multiplication. This
handles the first problem. In the following we explain how MXL2 solves the
second problem.

Suppose we have a system with not enough mutants. In this case we noticed
that in the process of space enlargement, MutantXL multiply all original poly-
nomials by all monomials of degree D− 2. In most cases only a small number of
extended polynomials that are produced are needed to solve the system. More-
over the system will be solved only when some of these elements are reduced to
lower degree elements. To be more precise, the degree of the extended polyno-
mials is decreased only if the higher degree terms are eliminated. We have found
that by using a partitioned enlargement strategy and a successive multiplication
of polynomials with variables method, while excluding redundant products, we
can solve the system with a smaller number of equations. To discuss this idea in
details we first need to define the following:

Definition 3. The leading variable of a polynomial p in R is x, if x is the
smallest variable, according to the order defined on the variables, in the leading
term of p. It can be written as

LV(p) = x (5)

Definition 4. Let Pk = {p ∈ P : deg(p) = k} and x ∈ X. We define P x
k as

follows
P x

k = {p ∈ Pk : LV (p) = x} (6)

In the process of space enlargement, MXL2 deals with the polynomials of PD

differently. Let PD be divided into a set of subsets depending on the leading
variable of each polynomial in it. In other words, PD =

⋃
x∈X

P x
D, where X is the

set of variables as defined previously and P x
D as in (6). MXL2 enlarges P by

increments D and multiplies the elements of PD as follows: Let x be the largest
variable, according to the order defined on the variables, that has P x

D �= ∅. MXL2
successively multiplies each polynomial of P x

D by variables such that each variable
is multiplied only once. This process is repeated for the next smaller variable x
with P x

D �= ∅ until the solution is obtained, otherwise the system enlarges to the
next D. Therefore MXL2 may solve the system by enlarging only subsets of PD,
while MutantXL solves the system by enlarging all the elements of PD. MXL2
handles the second problem by using this partitioned enlargement strategy.

In the next section we describe MXL2. In section 4 we present examples that
show that MXL2 completely beats the first version of MutantXL and beats in
most cases Magma’s implementation of F4 for only the memory efficiency.
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3 MXL2 Algorithm

In this Section we explain the MXL2 algorithm. We use the notation of the
previous section. So P is a finite set of polynomials in R. For simplicity, we
assume that the system (1) is quadratic and has a unique solution.

We use a graded lexicographical ordering in the process of linearization and
during the Gaussian elimination. MXL2 creates a multiplication history one
dimension array to store each previous variable multiplier of each polynomial
and for the originals the previous multiplier is 1. The set of solutions of the
system is defined as {x = b : x is variable and b ∈ {0, 1}}. The description of the
algorithm is as follows.

– Initialization Use Gaussian elimination to make P linearly independent. Set
the set of root polynomials to ∅, the total degree bound D to 2, the elimina-
tion degree to D, system extended to false, mutants to ∅, and multiplication
history to a one dimension array with number of elements as P and initialize
these elements by ones (Algorithm 1 lines 16 – 21).

– Gauss Use linearization to transform the set of all polynomials in P of degree
≤ elimination degree into reduced row echelon form (Algorithm 1 lines 23
and 24).

– Extract Roots copy all new polynomials of degree≤ 2 to the root polynomials
set (Algorithm 1 line 25).

– If there are univariate polynomials in the roots, then determine the values
of the corresponding variables, and remove the solved variables from the
variable set. If this solves the system return the solution and terminate.
Otherwise, substitute the values for the variables in the roots, set P to the
roots, set elimination degree to the maximum degree of the roots, reset the
multiplication history to an array of number of elements as P and initialize
these elements to ones, and go back to Gauss (Algorithm 1 lines 26 – 32).

– Extract Mutants copy all new polynomials of degree < D from {P} to mu-
tants (Algorithm 1 line 34).

– If there are mutants found, then extend the multiplication history by an ar-
ray of the number of elements of the same length as the new polynomials
initialized by ones, multiply the necessary number of mutants having the
minimum degree, as stated in Section 2, by all variables, set the multipli-
cation history for each new polynomial by its variable multiplier, include
the resulting polynomials in P , set the elimination degree to that minimum
degree + 1, and remove all multiplied mutants from mutants (Algorithm 2
lines 9 – 20).

– Otherwise, if system extended is false; then increment D by 1, set x to the
largest leading variable under the variable order satisfies that P x

D−1 �= ∅, set
system extended to true; multiply each polynomial p in P x

D−1 by all unsolved
variables < the variable stored in the multiplication history of p, include the
resulting polynomials in P , set x to the next smaller leading variable satisfies
that P x

D−1 �= ∅, if there is no such variable, then set system extended to false,
elimination degree to D, and go back to Gauss (Algorithm 2 lines 22 – 39).
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To give a more formal description of MXL2 algorithm and its sub-algorithms,
firstly we need to define the following subroutines:

Solve(Roots, X): if there are univariate equations in the roots, then solve them
and return the solutions.
Substitute(Solution, roots): use all the solutions found to simplify the roots.
Reset(history, n): reset history to an array with number of elements equal to n
and initialized by ones.
Extend(history, n): append to history an array with number of elements equal
to n and initialized by ones.
SelectNecessary(M, D, k, n): compute the necessary number of mutants with
degree k as in equation (4), let the mutants be ordered depending on their lead-
ing terms, then return the necessary mutants by ascending order.
Xpartition(P, x): return {p ∈ P : LV (p) = x}.
LargestLeading(P ): return max{y : y = LV (p), p ∈ P, y ∈ X}.
NextSmallerLeading(P, x): return max{y: y = LV (p), p∈P , y∈X and y<x}.

Algorithm1. MXL2

1. Inputs
2. F : set of quadratic polynomials.
3. D: highest system degree starts by 2.
4. X : set of variables.
5. Output
6. Solution: solution of F=0.
7. Variables
8. RP : set of all regular polynomials produced during the process.
9. M : set of mutants.

10. roots: set of all polynomials of degree ≤ 2
11. x: variable
12. ed: elimination degree
13. history: array of length #RP to store previous variable multiplier
14. extended: a flag to enlarge the system
15. Begin
16. RP ← F
17. M ← ∅

18. Solution ← ∅

19. ed ← 2
20. history ← [1,. . .,1]
21. extended ← false
22. repeat
23. Linearize RP using graded lex order
24. Gauss(Extract(RP, ed,≤), history)
25. roots ← roots ∪ Extract(RP, 2,≤)
26. Solution ← Solution ∪ Solve(roots, X)
27. if there are solutions then
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28. roots ← Substitute(Solution, roots)
29. RP ← roots
30. history ← Reset(history, #roots)
31. M ← ∅
32. ed ← D ← max{deg(p) : p ∈ roots}
33. else
34. M ← M ∪ Extract(RP, D − 1,≤)
35. RP ← RP ∪ Enlarge(RP, M, X, D, x, history, extended, ed)
36. end if
37. until roots = ∅

38. End

Algorithm2: Enlarge(RP, M, X, D, x, history, extended, ed)
1. history, extended, ed: may be changed during the process.
2. Variable
3. NP : set of new polynomials.
4. NM : necessary mutants
5. Q: set of degree D-1 polynomials have leading variable x
6. k: minimum degree of the mutants
7. Begin
8. NP ← ∅
9. if M �= ∅ then

10. k ← min{deg(p) ∈ M}
11. NM ← SelectNecessary(M, D, k, #X)
12. Extend(history, #X ·#NM)
13. for all p ∈ NM do
14. for all y in X do
15. NP ← NP ∪ {y · p}
16. history[y · p] = y
17. end for
18. end for
19. M ← M\ SM
20. ed ← k + 1
21. else
22. if not extended then
23. D ← D + 1
24. x← LargestLeading(Extract(RP, D− 1, =))
25. extended ← true
26. end if
27. Q ← XPartition(Extract(RP, D− 1, =), x)
28. Extend(history, #X ·#Q)
29. for all p ∈ Q do
30. for all y ∈ X : y < history[p] do
31. NP ← NP ∪ {y · p}
32. history[y · p] ← y
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33. end for
34. end for
35. x← NextSmallerLeading(Extract(RP, D− 1, =), x)
36. if x is undefined then
37. extend← false
38. end if
39. ed← D
40. end if
41. Return NP
42. End

Algorithm3: Extract(P, degree, operation)
1. P : set of polynomials
2. SP : set of selected polynomials
3. operation: conditional operations belongs to {<,≤, >,≥, =}
4. Begin
5. for all p ∈ P do
6. if deg(p) operation degree then
7. SP ← SP ∪ {p}
8. end if
9. end for

10. End

We show that the system is partially enlarged, so MXL2 leads to the original
MutantXL if the system is solved with the last partition enlarged. Whereas
MXL2 outperforms the original MutantXL if it solves the system by earlier
partition enlarged. This will be clarified experimentally in the next section.

4 Experimental Results

In this section, we present the experimental results for our implementation of the
MXL2 algorithm. We compare MXL2 with the original MutantXL, Magma’s
implementation of F4, and the XL algorithm for some random systems (5-24
equations in 5-24 variables). The results can be found in Table 1. Moreover,
we have another comparison for MXL2, original MutantXL, and Magma for
some HFE systems (25-55 equations in 25-55 variables) in order to clarify that
mutant strategy has the ability to be helpful with different types of systems. See
the results in Table 2. For XL and MutantXL, all monomials up to the degree
bound D are computed and accounted for as columns in the matrix, even if they
did not appear in any polynomial. For MXL2 on the other hand, we omitted
columns that only contained zeros.

Random systems were taken from [9], HFE systems (30-55 equations in 30-
55 variables) were generated with code contained in [10], and one HFE sys-
tem (25 equations in 25 variables) was taken from the Hotaru distribution [11].
The results for F4 were obtained using Magma version 2.13-10; the parameter
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Table 1. Random Comparison

# Var XL MutantXL Magma MXL2

# Eq

5 30×26 30×26 30×26 20×25
6* 42×42 47×42 46×40 33×38
7* 203×99 154×64 154×64 63×64
8* 296×163 136×93 131×88 96×93
9 414×256 414×256 480×226 151×149
10 560×386 560×386 624×3396 228×281
11 737×562 737×562 804×503 408×423
12 948×794 948×794 1005×704 519×610
13 1196×1093 1196×1093 1251×980 1096×927
14* 6475×3473 1771×1471 1538×1336 1191×1185
15* 8520×4944 2786×2941 2639×1535 1946×1758
16 11016×6885 11016×6885 9993×4034 2840×2861
17 14025×9402 14025×9402 12382×5784 3740×4184
18 17613×12616 17613×12616 15187×8120 6508×7043
19 21850×16664 21850×16664 18441×11041 9185×11212
20 26810×21700 26810×21700 22441×14979 14302×12384
21* 153405×82160 31641×27896 26860×19756 14365×20945
22* 194579×110056 92831×35443 63621×21855 35463×25342
23* 244145×145499 76558×44552 41866×29010 39263×36343
24* no sol. obtained 298477×190051 207150×78637 75825×69708

HFE:=true was used to solve HFE systems. The MXL2 algorithm has been im-
plemented in C/C++ based on the latest version of M4RI package [12]. For each
example, we give the number of equations (#Eq), number of variables (#Var),
the degree of the hidden univariate high-degree polynomial for HFE (HUD) and
the size of the largest linear system to which Gauss is applied. The ’*’ in the first
column for random systems means that, there are some mutants in this system.

In all experiments, the highest degree of the polynomials generated by Mu-
tantXL and MXL2 is equal to the highest degree of the S-polynomial in Magma.
In MXL2 implementation, we use only one matrix from starting to the end of
the process by enlarging and extending the initial matrix, the largest matrix is
the accumulative of all polynomials that are held in the memory. unfortunately,
in Magma we can not know the total accumulative matrices size because it is
not an open source.

In Table 1, we see that in practice MXL2 is an improvement for memory effi-
ciency over the original MutantXL. For systems for which mutants are produced
during the computation, MutantXL is better than XL. If no mutants occur,
MutantXL behaves identically to XL. Comparing XL, MutantXL, and MXL2 ;
MXL2 is the most efficient even if there are no mutants. In almost all cases
MXL2 has the smallest number of columns as well as a smaller number of rows
compared to the F4 implementation contained in Magma. We can see easily that
70% of the cases MXL2 is better, 5% is equal, and 25% is worse.
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Table 2. HFE Comparison

# Var HUD Magma MutantXL MXL2

# Eq

25 96 12495×15276 14219×15276 11926×15276
30 64 23832×31931 26922×31931 19174×31931
35 48 27644×59536 31255×59536 30030×59536
40 33 45210×102091 49620×102091 46693×102091
45 24 43575×164221 57734×164221 45480×164221
50 40 75012×251176 85025×251176 67826×251176
55 48 104068×368831 119515×368831 60116×368831

Table 3. Time Comparison

System MutantXL MXL2

RND5 0.004 0.001
RND6 0.001 0.004
RND7 0.004 0.008
RND8 0.004 0.001
RND9 0.016 0.012
RND10 0.024 0.016
RND11 0.044 0.024
RND12 0.072 0.040
RND13 0.112 0.084
RND14 0.252 0.184
RND15 0.372 0.256
RND16 13.629 1.636
RND17 28.342 2.420
RND18 92.078 9.561
RND19 178.971 20.057
RND20 346.062 70.001
RND21 699.108 126.576
RND22 1182.410 498.839
RND23 1636.000 854.753
RND24 23370.001 12384.700

In Table 2, we also present HFE systems comparison. In all these seven ex-
amples for all the three algorithms (Magma’s F4, MutantXL, and MXL2 ), all
the monomials up to degree bound D appear in Magma, MutantXL, and MXL2.
therefore, the number of columns are equal in all the three algorithms. It is clear
that MXL2 has a smaller number of rows in four cases of seven. In all cases
MXL2 outperforms MutantXL.

A time comparison in seconds for random systems between MutantXL and
MXL2 can be found in Table 3. We use in this comparison a Sun Fire X2200
M2 server with 2 dual core Opteron 2218 CPU running at 2.6GHz and 8GB
of RAM. We did not make such a comparison between Magma and MXL2 for
HFE instances. This is due to the following reasons: we use a special Magma
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Table 4. Strategy Comparison

# Var Method1 Method2 Method3 Method4

# Eq

5 30×26 30×26 25×25 20×25
6 47×42 47×42 33×38 33×38
7 154×64 63×64 154×64 63×64
8 136×93 96×93 136×93 96×93
9 414×239 414×239 232×149 151×149
10 560×367 560×367 318×281 228×281
11 737×541 737×541 408×423 408×423
12 948×771 948×771 519×610 519×610
13 1196×1068 1196×1068 1616×967 1096×927
14 1771×1444 1484×1444 1485×1185 1191×1185
15 2786×1921 1946×1921 2681×1807 1946×1758
16 11016×5592 10681×5592 6552×2861 2840×2861
17 14025×7919 13601×7919 4862×4184 3740×4184
18 17613×10930 17086×10930 6508×7043 6508×7043
19 21850×14762 21205×14762 9185×11212 9185×11212
20 26810×19554 26031×19554 14302×12384 14302×12384
21 31641×25447 31641×25447 14428×20945 14365×20945
22 92831×34624 38116×32665 56385×28195 35463×25342
23 76558×43650 45541×43650 39263×36343 39263×36343
24 298477×190051 297810×190051 75825×69708 75825×69708

implementation for HFE systems by using the HFE:=true parameter, the MXL2
implementation is based on M4RI package which is not in its optimal speed
as claimed by M4RI contributors and the MXL2 implementation itself is not
optimal at this point. From Table 3, it is clear that the MXL2 has a good
performance for speed compared to MutantXL.

In order to shed light on which strategy (necessary mutants or partitioned
enlargement) worked more than the other in which case, we make another com-
parison for random systems. In this comparison, we have 4 methods that cover
all possibilities to use the two strategies. Method1 is for multiplying all lower
degree mutants that are extracted at certain level, non of the two strategies are
used. Method2 is for multiplying only our claimed necessary number of mutants,
necessary mutant strategy. We use Method3 for partitioned enlargement strat-
egy, multiplications are for all lower degree mutants. For both the two strategies
which is MXL2 too, we use Metod4. See Table 4.

In Table 4, comparing Method1 and Method2, we see that practically the
necessary mutant strategy sometimes has an effect in the cases which have a
large enough number of hidden mutants (cases 7, 8, 14, 15, 22 and 23). In a case
that has less mutants (cases 6, 21 and 24) or no mutants at all (cases 5, 9, 10-13,
and 16-20), the total number of rows is the same as in Method1. Furthermore,
in case 22 because of not all mutants were multiplied, the number of columns
is decreased. By comparing Method1 and Method3, most of the cases in the
partitioned enlargement strategy have a smaller number of rows except for case
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13 which is worst because Method3 extracts mutants earlier than Method1, so it
multiplies all these mutants while MutantXL solves and ends before multiplying
them. In a case that is solved with the last partition, the two methods are
identical (case 7 and 8).

Indeed, using both the two strategies as in Method4 is the best choice. In
all cases the number of rows in this method is less than or equal the minimum
number of rows for both Method2 and Method3,

#rows in Method4 ≤ min(#rows in Method2, #rows in Method3)

In some cases (13, 15 and 22) using both the two strategies leads to a smaller
number of columns.

5 Conclusion

Experimentally, we can conclude that the MXL2 algorithm is an efficient im-
provement over the original MutantXL in case of GF(2). Not only can MXL2
solve multivariate systems at a lower degree than the usual XL but also can
solve these systems using a smaller number of polynomials than the original
MutantXL, since we produce all possible new equations without enlarging the
number of the monomials. Therefore the size of the matrix constructed by MXL2
is much smaller than the matrix constructed by the original MutantXL. We did
not claim that we are absolutely better than F4 but we are going in this direction.
We apply the mutant strategy into two different systems, namely random and
HFE. We believe that mutant strategy is a general approach that can improve
most of multivariate polynomial solving algorithms.

In the future we will study how to build MXL2 using a sparse matrix represen-
tation instead of the dense one to optimize our implementation. We also need
to enhance the mutant selection strategy to reduce the number of redundant
polynomials, study the theoretical aspects of the algorithm, apply the algorithm
to other systems of equations, generalize it to other finite fields and deal with
systems of equations that have multiple solutions.

Acknowledgment

We would like to thank Ralf-Philipp Weinmann for several helpful discussions
and comments on earlier drafts of this paper.

References

1. Matsumoto, T., Imai, H.: Public Quadratic Polynomial-Tuples for Efficient
Signature-Verification and Message-Encryption. In: Günther, C.G. (ed.) EURO-
CRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

2. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP):
two new families of Asymmetric Algorithms. In: Maurer, U.M. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)



MXL2 : Solving Polynomial Equations over GF(2) 215

3. Patarin, J., Goubin, L., Courtois, N.: C∗
−+ and HM: Variations Around Two

Schemes of T. Matsumoto and H. Imai. In: Ohta, K., Pei, D. (eds.) ASIACRYPT
1998. LNCS, vol. 1514, pp. 35–50. Springer, Heidelberg (1998)

4. Moh, T.: A Public Key System With Signature And Master Key Functions. Com-
munications in Algebra 27, 2207–2222 (1999)

5. Ding, J.: A New Variant of the Matsumoto-Imai Cryptosystem through Pertur-
bation. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp.
305–318. Springer, Heidelberg (2004)

6. Courtois, N.T., Klimov, A., Patarin, J., Shamir, A.: Efficient Algorithms for Solving
Overdefined Systems of Multivariate Polynomial Equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)

7. Ding, J., Buchmann, J., Mohamed, M.S.E., Moahmed, W.S.A., Weinmann, R.P.:
MutantXL. In: Proceedings of the 1st international conference on Symbolic Com-
putation and Cryptography (SCC 2008), Beijing, China, LMIB, pp. 16–22 (2008),
http://www.cdc.informatik.tu-darmstadt.de/reports/reports/

MutantXL Algorithm.pdf

8. Ding, J., Cabarcas, D., Schmidt, D., Buchmann, J., Tohaneanu, S.: Mutant
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