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Abstract.

In this paper, we present an improved version of an identity-based identification scheme
based on error-correcting codes. Our scheme combines the Courtois-Finiasz-Sendrier signa-
ture scheme using quasi-dyadic codes (QD-CF'S) proposed in [2] and the identification scheme
by Stern [18]. Following the construction proposed in [5], we obtain an identity-based iden-
tification scheme which has the advantage to reduce a public data size, the communication
complexity and the signature length.
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1 Introduction

In 1984, Shamir introduced the concept of identity-based Public Key Cryptography ID-PKC [17] in
order to simplify the management of public keys used for the authentication of users. In ID-PKC,
the public key of a user is obtained from his identity id which can be a concatenation of any publicly
known information that singles out the user: a name, an e-mail, or a phone number. ID-PKC requires
a trusted third part called Key Generation Center (KGC), the KGC is the owner of a system-wide
secret, thus called the master key. After successfully verifying (by non-cryptographic means) the
identity of the user, the KGC computes the corresponding user private key from the master key,
the user identity id and a trapdoor function. The motivation behind identity-based systems is to
create a cryptographic system resembling an ideal mail system. In this ideal system, a knowledge of
a person’s name alone suffices for confidential mailing to that person, and for signature verification
that only that person could have produced. In such an ideal cryptographic system, we get the
following advantages:

1. users need no exchange neither of symmetric keys nor of public keys;

2. public directories (databases containing public keys or certificates) need not be kept;

3. the services of a trusted authority are needed solely during a set-up phase (during which users
acquire authentic public system parameters).

Coding theory is one of few alternatives supposed to be secure in a post quantum world. The most
popular cryptosystems in coding theory are the McEliece [13] and Niederreiter [15] cryptosytems.
The main advantage of these two public cryptosystems is the provision of a fast encryption and
decryption (about 50 times faster for encryption and 100 times faster for decryption than RSA),
but they have a major disadvantage as requiring very large keys and consequently, large memory
size allocation.

In order to make use of the benefits of ID-based cryptography, the authors in [5] proposed the
first identity-based identification (IBI) scheme based on coding theory. This scheme combines the
signature scheme of Courtois, Finiasz and Sendrier (CFS) [7] and Stern identification scheme [18].
The basic idea of this construction is to start from a Niederreiter-like problem which can be inverted
by using the CFS scheme. This permits to associate a secret to a random (public) value obtained
from the identity of the user. The secret and public values are then used for the Stern zero-knowledge
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identification scheme.

An improvement of the CFS signature scheme using the quasi-dyadic (QD) structure was proposed
in [2]. Using this improvement, we propose in this paper an identity based identification scheme
built on quasi-dyadic codes.

The paper is organized as follows. In Section 2, we recall basic facts on code-based cryptography.
Section 3 describes the first identity based on error correcting code proposed by Cayrel et. al. in
[5]. Section 4 presents the improvement of the CFS signature scheme using the quasi-dyadic Goppa
codes proposed in [2]. In Section 4, we introduce our improved identity based identification and the
gain it offers in terms of performance. Finally, we conclude in Section 5.

2 Background of coding theory

Next, we provide some background for coding theory.

Let IF, to denote the finite field with g elements.

Let n and k be two integers such that n > k and IFZ be a finite field over F,. A code C is a
k-dimensional subspace of the vector space Fy.

Definition 1. (Minimum distance and Hamming weight)

The minimum distance is defined by d := inf, yecdist(x,y), where "dist" denotes the hamming dis-
tance.

Let x be a vector of Fy, then we call wi(x):= dist(z,0) the weight of x. It represents the number of
non-zero entries.

C = C[n,k,t] is a code with length n, dimension k and the ability of error-correcting in C is
up to t errors (t is an integer).

Definition 2. (Generator, Parity Check Matriz and Syndrome)
A matriz G € F’;X" 1s called generator matriz of C, if the rows of G span C.
A matriz H € F*", where r =n — k, is called parity check matriz of C, if Hz" =0,Vz € C.

The security of the most code-based cryptosystems relies on the difficulty of solving a syndrome
decoding problem (SD), which is defined as follows:

Definition 3. (Syndrome Decoding (SD) Problem)
Input: A r x n random binary matriz H over Fy, a target vector y € Fy and an integer t > 0.
Problem: Find a vector x € F)} with wt(x) < t, such that Hx" = y.

This problem is proven NP-complete in [3].

2.1 Quasi-dyadic codes

Since a large public matrix size is one of the drawbacks of code-based cryptography, there have
been many attempts to reduce the matrix size. Miscozki and Barreto proposed in [14] the use of
quasi-dyadic Goppa codes which admit a compact parity-check matrix and permit then to store it
more efficiently.

In what follows we recall some definitions from [14] that we need in this paper, and we refer the
reader to [14] for a detailed description of the quasi-dyadic codes construction.

Definition 4. Given a vector h = (hg, ..., hn—1) € [y, where q is a power of 2. The dyadic matriz
A(h) € Fy*™ is the symmetric matriz with components A;; = higj, where © stands for bitwise
exclusive-or on the binary representations of the indices. The sequence h is called its signature. The

set of dyadic n x n matrices over Fq is denoted A(Fy).
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Given t > 0, A(t,h) denotes A(h) truncated to its first t rows.
We call a matriz quasi-dyadic matriz if it is a block matriz whose component blocks are dyadic
submatrices.

If n is a power of 2, then every 2¥ x 2% dyadic matrix M can be recursively characterized as

w-[22],

B A
where A and B are 257! x 2*~1 dyadic matrices.

We remark that the signature h = (ho, ..., hy—1) of a dyadic matrix coincides with its first row.

Definition 5. A quasi-dyadic (QD) code is a linear error-correcting code that admits a quasi-dyadic
parity-check matriz.

Definition 6. Given two disjoint sequences z = (zg,...,2t—1) € IFZ and L = (Lo,...,Ln_1) € Fy
of distinct elements, the Cauchy matrix C(z, L) is the t x n matriz with elements C;; = 1/(z; — L;j),
i.e.

1 1

2w—Lo 7 29— Ln_a
O(va) - :
1 1

zee1— Lo zm1— Lpa

Cauchy matrices have the property that all of their submatrices are nonsingular [16]. Notice that,
Goppa codes admit a parity-check matrix in cauchy form under certain assumption [12]. Misoczki
and Barreto showed in [14] Theorem 2 that the intersection of these two classes is non-empty if the
code is defined over a field with characteristic 2.

This result was given in the following theorem.

Theorem 1 ([14]). Let H € Fp*" with n > 1 be simultaneously a dyadic matriz H = A(h) for
some h € Fy and a Cauchy matriz H = C(z,L) for two disjoint sequences z € Fy and L € Fy of
distinct elements. Then Fy is a binary field, h satisfies

L1, 1

(1)
and z; =1/h; +w, Lj = 1/h; +1/hg + w for some w € Fy.

2.2 Usual attacks

Any public-key cryptosystem primarily requires to be resistant to an adversary who manages either
to extract the private data given only public data, or to invert the trapdoor encryption function
given the ciphertexts of his choice (and public data). Against code-based cryptosystem there are two
classes of attacks : structural attacks which try to recover the structure of the code and decoding
attacks which try to decode directly a plaintext. The most threatening attacks are based on decoding
algorithms for generic, but because we deal with Goppa codes, one has to take care as well of
structural attacks.

3 Identity-based identification and signature scheme

Identity-based (IB) public key cryptography was introduced in 1984 by Shamir [17] in order to
simplify public key management and to avoid the need for digital certificates. However, identity
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based PKC need a third party called Key Generation Center (KGC) or trusted, which generates
user private keys corresponding to user identities (e.g., name, e-mail,. . .); the key generation requires
a secret, called master key.

The first identity-based scheme based on error-correcting codes was proposed by Cayrel et. al in [5].
This scheme consists of two phases: the key generation part using the signature scheme of Courtois,
Finiasz, and Sendrier (CFS) [7] and the interaction part, which uses the Stern identification scheme
[18].

In this section, we recall the description of the CFS and Stern schemes, then we show how the
authors in [5] combined them in order to construct an identity-based identification scheme.

3.1 Description of CFS signature scheme

In 2001, Courtois, Finiasz and Sendrier proposed in [7] the first practical signature scheme in coding
theory, which is based on the Niederreiter cryptosystem. Due to the fact that not all syndromes are
decodable, the idea of CFS is to hash the message M, which has to be signed after a counter has
been appended to it. If the resulting hash value is not decodable, it has to try successive counter
values until a decodable syndrome is found. The actual signature on the message M consists of both
the error pattern of weight ¢ corresponding to the syndrome, and the value of the counter giving
this syndrome.

Let H : {0,1}* x N — IF’; be a random oracle for a given vector space F’; over a finite field IFy.
Formally, the CFS signature scheme consists of the following algorithms:

— Keygen: For the desired security level expressed by suitable integers ¢, n, k, ¢, choose a linear
t-error correcting [n, k, t]-code over F, defined by a public parity-check matrix H with a private
decoding trapdoor 7. The private-public key pair is (7, H).

— Sign: Let M € {0,1}* be the message to sign. Find iy € N (either sequentially or by random
sampling) such that = «— H(M,1ip) is a decodable syndrome. Using the decoding trapdoor 7,
find s € F of weight wt(s) <t such that Hs" = . The signature is the pair (s, io).

— Verify: Let (s,i9) be a purported signature of a message M. Compute x — H(M,iy), and accept
iff wt(s) <t and Hs™ = z.

The authors of [7] used Goppa codes, which have a good proportion of decodable words, and
choose parameters such that this proportion is reasonable. For a t-error correcting Goppa code
[n = 2™ n — mt,t] (m integer), the number of decoding attempt required to get one signature will
be approximately around (t!). The security of this scheme can be reduced to the syndrome decoding
(SD) problem.

3.2 Description of the Stern identification scheme

At CRYPTO’93, Stern proposed the first identification scheme based on error-correcting codes [18].
This construction is an interactive zero-knowledge protocol which enables a prover (P) to identify
himself to a verifier (V).

Let H be a public random (n— k) x n binary matrix (n > k) and h a hash function returning a binary
word n. Each prover P receives a n-bit secret key s of Hamming weight ¢ (¢ > n) and computes
a public identifier idp such that idp = H sf. This identifier is calculated once in the lifetime of H
and can be used for several identifications.

We now describe this protocol:

— Commitment Step: P randomly chooses y € F5 and a permutation o of {1,2,...,n}. Then P
sends to V the commitments ¢y, co, and c3 such that :

c1 = h(o|Hy"); ca = h(o(y)); e = h(o(y @ sk)),

where h(a|b) denotes the hash of the concatenation of the sequences a and b.
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— Challenge Step: V sends b € {0, 1,2} to P.
— Answer Step: There are three possibilities :
e if b =0 : P reveals y and o.
e if b=1 : P reveals (y ® s) and o.
e if b=2 : P reveals o(y) and o(sy).

— Verification Step: There are three possibilities :
e if b =0 :V verifies that ¢, co are correct.
e if b =1 :V verifies that ¢y, c3 are correct.
e if b =2 :V verifies that cg, c3 are correct, and that the weight of o(sy) is ¢.

— Soundness Amplification Step: Iterate the above steps until the expected security level is reached.

For the verification step and when b equals 1, it can be noticed that Hy” derives directly from
H(y @ s)7 since we have: Hy" = H(y @ s,)" @ id, = H(y @ s)” & Hs}. It is proven in [18]
that this protocol verifies the zero-knowledge proof and for each iteration, the probability that a
dishonest party succeeds in cheating is (2/3). Therefore, to get a confidence level of 3, the protocol
must be iterated a number « of times with (2/3)* < ( holds.

3.3 Identity based identification (IBI) protocol

The identity based identification protocol proposed in [5] is an interactive identification protocol
between a prover and a verifier, consisting of two parts: the first one, called key deliverance, uses
the CFS signature scheme to create the private key for the prover, while the Stern’s protocol is used
for the identification in the second part. We describe these two parts as follows:

— Key deliverance: Let h be a hash function with values in {0,1}"~* and let id, be the prover’s
identifier identities. The goal of this part is to generate a prover’s secret key by using the CFS
signature. The prover receives a secret key sy, such that Hs] = h(id,ig), where ig is the smallest
value of ¢ for which it is possible to decode h(idp|ig). The secret key corresponding to the prover’s
identifier consists then of {sg,ig}.

— Prover and verifier's interaction: Each prover is associated now with the tuple {s,ig}. In this
case a prover P wishes to identify to a verifier V using the same matrix H and proving that
he knows the secret key. This is achieved by Stern’s protocol such that in the commitment
step, the prover has to submit the counter iy together with the other commitments c¢1, co and
c3. The knowledge of iy is needed for the verification step when b equals 1, since we have:
Hy" = H(y & s)T @ h(id,lio) = H(y & si)T & Hs}.

By virtue of the so-called Fiat-Shamir Paradigm [9], it is possible to convert this identity based
identification scheme into an identity based signature scheme, but the resulting signature size is
long (about 1.5 Mbyte long for 280 security).

A proof of security for this scheme in the random oracle model is given in [4], assuming the hardness
of the two problems: Goppa Parametrized Bounded Decoding (GPBD) and Goppa Code Distin-
guishing (GD). However, due to the recently work proposed in [8] , the hardness of GD problem is
no longer valid.

Suggested parameters Because the IBI scheme uses CFS scheme in the first part of the protocol,
its security relies on CFS parameters. The authors of IBI scheme in [4] suggest ¢ = 9 and m = 16,
which gives the following properties:

— Public Key: tm (180 Bits)
— Private Key: tm (180 Bits)
— Matrix size: 2™tm (1 Mbyte)
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— Communication cost for IBI & 2™ x #rounds (500 Kbyte), where #rounds = 58.
— Signature length for IBS a 2™ x #rounds (2.2 Mbyte), where #rounds = 150.

Due to Daniel Bleichenbacher attack’s described in [11] are these suggested parameters not realistic
for 280 as security level, to ensure this security level, the authors of [11] suggested t = 12 and
m = 15.

4 Identity-based identification using quasi-dyadic codes

In what follows, we give the main idea of the quasi-dyadic CFS signature construction, which consists
of using a family of quasi-dyadic codes described in Section 2 instead of Goppa codes. The use of
such family of codes allows to reduce the public key size by almost a factor of 4, but the number of
signing attempts is increased by a factor of 2. For more detail, we refer the reader to [2].

4.1 Quasi-dyadic codes for CFS signature

The strategy to get shorter keys is due to the fact that the CFS signature scheme needs only a very
small ¢, so most rows of the parity matrix H are unused anyway when defining the code. Therefore,
we can have some undefined entries in H, as long as the corresponding rows are not used to define
the code. This leads to extend the code length to 2™ —¢.

Algorithm 1 picked from [2] describes this construction.

Parameter combinations proposed in [2] are put forward on Table 1.

Table 1. Suggested parameters for practical security levels.

level|m/| t [n = |2™ Y|k = n — mt|key size

(Kbyte)
80 |15(12 30924 30744 169
100 |20(12 989724 989484 7248

120 (25|12 31671168 | 31670868 | 289956

Implementation of QD-CFS signature scheme: To attract the attention of QD-CFS scheme,
the authors in [1] proposed an GPU implementation of this scheme, it was demonstrated that signing
a document using a QD-CFS can be performed in acceptable time (around 5 minutes). A GTX 295
running CUDA Version 3.0 has been used for the implementation process.

4.2 Improved identity-based identification and signature schemes using quasi-dyadic
Goppa codes (QD-IBI)

The main advantage of the QD-CFS signature scheme presented in subsection 4.1 is to reduce the
size of the public key. But, the drawback is the high signature cost, which originates in the elaborate
key deliverance process of the IBI scheme. However, since the key deliverance is a one-time process,
the long-term computational cost is reduced by the smaller parity check matrix. We extend this
result by using quasi-dyadic codes in the identity based identification (IBI) scheme presented in
subsection 3.3. The main idea consists in replacing the CFS signature scheme by the QD-CFS sig-
nature scheme during the key deliverance in the IBI-protocol. In the second part of our IBI scheme,
the prover can identify itself through Stern’s protocol using the same matrix H and proving that he
knows the private key si. The quasi-dyadic structure of the matrix used as public key permits to
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Algorithm 1 Constructing a purely dyadic, CFS-friendly code [2]

INPUT: m, n, t.

OutpUT: A dyadic signature h from which a CFS-friendly t-error correcting binary Goppa code of length
n can be constructed from a code over Fam, and the sequence b of all consistent blocks of columns (i.e.
those that can be used to define the code support).

1. g« 2™
2: repeat
3: U —TF,\ {0}

4: hoEU, U —U\{ho}

5: for s— 0tom—1do

6: 1 2°

7: hi &U, U—U\{hi}

8: for j«— 1toi—1do

9: if hy #0 and h; #0 and 1/h; +1/h; + 1/ho # 0 then
10: hi+jH1/(1/hi+1/hj+1/ho)
11: else

12: hi+; < 0 > undefined entry

13: end if

14: U«—U\{hit;}

15: end for

16: end for

17: c«— 0 also: U «— Ty
18: if 0 ¢ {ho,...,ht—1} then > consistent root set

19: bo — 0, c—1palso: U —U\{1/hi,1/hi +1/ho |i=0,...,t —1}

20: for j — 1to |g/t] —1do

21: if 0 ¢ {hj¢,...,h¢j1+1)—1} then > consistent support block

22: be —j, c—c+1palso: U—U\{1l/hi +1/ho|i=7t,...,(j +1)t —1}
23: end if

24: end for

25: end if

26: until ¢t > n > consistent roots and support
27: h— (ho,...,hg_1), b— (bo, ..., he_1) > also: w U
28: return h, b > also: w

reach better performance compared to the original IBI scheme in [5]. We can mention, that the use of
a quasi-dyadic matrix in Stern’s protocol preserves the security against Simple Analysis (SPA) and
Differential Power Analysis (DPA) attacks, this can be achieved by adapting the masking technique
suggested in [6] for the case of quasi-cyclic codes.

By virtue of the so-called Fiat-Shamir Paradigm [9], it is possible to convert the identity based
identification scheme using quasi-dyadic codes (QD-IBI) into an identity based signature scheme
(QD-IBS).

Suggested parameters of the QD-IBI scheme We suggest the same parameters suggested for
the QD-CFS in subsection 4.1, i.e.(m, t) = (15,12); these parameters are enough to ensure a security
of more than 2% binary operations.against all currently known attacks.

In the following table, we compare the QD-IBI and QD-IBS schemes using the QD-CFS with the
original IBI and IBS schemes for the parameters m = 15, ¢t = 12.

Table 2 shows the advantage of QD-IBI and QD-IBS schemes concerning the size of public data,
the signature size, and the communication overhead.
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Table 2. Comparison of IBI/IBS and IBI (QD-IBI/IBS)

IBI/IBS (IBI (QD-IBI/IBS)
Private key size 180 Bit 180 Bit
Public key size 180 Bit 180 Bit
Matrix size 720 kByte 169 kByte
Communication cost|232 kByte 219 kByte
Signature length |600 kByte 560 kByte

Conclusion

In this paper, we have proposed an improved identity based identification and signature scheme
based on coding theory using quasi-dyadic codes. Our scheme has the advantage to reduce a public
data size, the communication complexity and the signature length. For further improvements, we can
imagine the use of Parallel-CFS proposed in [10]. Unfortunately, as often in code-based cryptography
our improved scheme suffers from large system parameters, therefore we encourage the cryptography
community to work in this area because a lot of proposals are needed to make code based schemes
more practical and then to be a good alternative for the classic cryptography.
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