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Abstract. The Internet of Things has become very popular during the
last years, and with it the widespread use of pervasive devices. These
devices are often extremely resource constrained, and most of them require
high performance in terms of security, latency and speed. Hardware based
encryption ciphers are very suitable for these kind of resource constrained
devices in order to provide the required confidentiality. Stream ciphers
often use shift registers, which are easy to implement in hardware, and
thus should be considered when looking for suitable algorithms. Grain and
Trivium are two representative ciphers for this kind of data encryption,
and hence well suited for the application in the Internet of Things. In
this paper, we describe these two algorithms, show their features and
possible drawbacks, and finally present a brief comparison.
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1 Introduction

Over the last years we have seen an extreme growth of data transfer, but also
for the data itself. The internet as a communication technology has become
very important, and is an integral part of our everyday live. New technologies
simplified our access to the internet, it can be accessed nearly everywhere wire-
lessly. Furthermore, with the advent of the Internet of Things, where smart
everyday things get connected and communicate with each other, confidentiality
has become very important. But this wireless data communication is extreme
susceptible to be compromised by malicious adversaries, and therefore this data
communication has to be secured appropriately.

In order to protect privacy and confidentiality of data, cryptography is used.
Modern cryptography can be classified into two major categories: symmetric key
based methods, where the same cryptographic key is used for both encryption of
plaintext and decryption of ciphertext, and asymmetric key based methods, where
communicating parties do not share the same cryptographic key. Stream ciphers
are member of the former group, and have recently received discussions about
their legitimacy, since block ciphers can be easily turned into stream ciphers by
using the OFB, CFB, OCB, or CTR encryption mode[39]. Furthermore block
ciphers are well studied and received a lot of cryptoanalysis. Block ciphers, in
contrast to stream ciphers, operate on a fixed size of data blocks, whereas stream
ciphers operate on a per bit basis. Nonetheless, stream ciphers also have their
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advantages. Due to their low complexity they can be easily implemented in
hardware at low cost. Additionally they proved to work very fast on bit streams,
significantly faster than block ciphers. That is why they are the first choice
for applications with a high throughput, but with low hardware and memory
conditions.

Stream ciphers work similar to a one time pad (OTP) and encrypt each bit
individually. The algorithm can be understood as a pseudorandom digit generator,
i.e., a binary keystream generator. Real random number generators are very
important in cryptography, but also hard to implement since they require an
unpredictable and random source. This random source can be, e.g., thermal
noise inside electrical conductors, or the timing and movement of a read/write
head of a harddisk. The keystream required for stream ciphers needs to be a
deterministic keystream, that means that given the same seed it always creates
the same output. This generated keystream is then xored with the plaintext
to generate the ciphertext. The decryption process is similarly done by xoring
the identical keystream with the previously generated ciphertext to retrieve the
plaintext.

1.1 Related Work

The topic of stream ciphers is a heavily researched area and many algorithms
have been proposed over the years. In 1987 Ronald L. Rivest developed RC4
(Ron’s Code 4), one of the most used stream ciphers, which was kept secret until
an anonymous release of the sourcecode in 1994. RC4 is used in many software
products, e.g., SSL, SSHv1 or the WEP encryption for wireless networks, and
is based on a substitution box in combination with random permutations[37].
Different attacks showed the weaknesses of the algorithm and therefore it can be
seen as broken[1] and should not be used anymore.

The A5/1 stream cipher was also developed in 1987 and is used in the GSM
system to encrypt the communication between the mobile device and the base
station. It is based on three linear feedback shift registers (LFSR). Similar to RC4
this algorithm was also kept secret but eventually became pubic through reverse
engineering[17]. A number of attacks have been presented and the algorithm can
now be cryptanalysed in real time using a time-memory tradeoff attack published
in 2001[14]. Another notable stream cipher is E0[16], which is used in Bluetooth
protocol to protect the communication. E0 must be considered as insecure[42].

But there are also some recently developed stream ciphers, such as HC-
128[49], Salsa20[11], or SOSEMANUK]J9]. These three algorithms aim to be easy
to implement in software and also intent to provide decent security as well
as encryption speed. HC-128 consists of two secret tables, which are updated
using a non-linear feedback function. At each step, a non-linear output Filtering
function generates a 32-bit output word, which results in 3.05 cycles/byte on
Pentium M processor. Salsa20 was developed by Daniel J. Bernstein and aims
to be significantly faster than traditional block ciphers. The Salsa20 encryption
function is a chain of XOR, addition, and rotate operations on 32-bit words. The
algorithms rounds can be reduced for applications where speed is more important
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than confidence. SOSEMANUKSs structure is influenced by the stream cipher
SNOW/26] and the block cipher SERPENTJ13]. It has a variable length key
between 128 and 256 bits and a initialization vecor of 128 bits and consists of a
320-bit LFSR, and a Finite State Machine (FSM) including two 32-bit registers.

MICKEYT[4] on the other hand is similar to Trivium and Grain a cipher
designed to be used on hardware with limited resources. The name is an abbrevi-
ation of “Mutual Irregular Clocking keystream generator”, and it uses irregular
clocked shift registers to generate a keystream.

2 Grain

Grain is a family of stream ciphers, which target restricted hardware environments
where gate count, power consumption and the memory is limited. The first version
has been developed by Hell et al. in 2005[32]. An important feature of all Grain
versions is that the speed of the algorithm can be increased by the expense of
more hardware, i.e., the user can decide the speed of the cipher depending on the
amount of available hardware. All versions are based on three building blocks: a
linear feedback shift register (LFSR), a nonlinear feedback shift register (NLFSR),
and a boolean filter function.

The European Network of Excellence in Cryptology (ECRYPT) initiated
a request for stream cipher proposals, which was called the eStream project
(http://www.ecrypt.eu.org/stream/). From initially 34 submitted candidates,
seven final ciphers were eventually turned into a recommended portfolio in
September 2008. The initial version Grain v0 was submitted to the contest as
first Grain version, but several researchers independently discovered a weakness
in the choice of the output function. As a consequence, the output function as
well as the update function for the NLFSR of the cipher have been changed. The
designers submitted the new version called Grain v1[32], as well as a variant
version Grain-128[31] to the second evaluation phase. Grain v1 eventually became
one of the seven final ciphers of the eSTREAM portfolio for the hardware-oriented
profile 2.

In 2011 Martin gren, Martin Hell, Thomas Johansson, and Willi Meier pub-
lished Grain-128a[30], a new version based on Grain-128. This new version sup-
ports optional message authentication with variable tag sizes and was furthermore
strengthened against all known attacks on previous versions by using a slightly
different non-linear update function. Currently, Grain-128a is recommended by
the authors for 128 bit security, and Grain v1 for 80 bit security.

2.1 Specifications

Since the Grain v0 design was susceptible to serious attacks and has been replaced
by Grain vl and Grain-128 shortly after its publication, the specification details
are not covered in this section.
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Grain v1 Grain v1 has a secret key size of 80 bit, and an initialization vector IV
of 64 bit. Figure 1 shows an overview of the building blocks of Grain. The content
of the LFSR is denoted by s;, Sit1,-. ., Si+79 and the content of the NLFSR is
denoted by b;,b;11,...,bi179. In order to update the shift register different tap
positions are used, which can be expressed as a polynomial mod 2 in finite field
arithmetic, called the feedback polynomial, or as an update function which xores
the single tap positions to determine, how to update the LFSR[47]. The feedback
polynomial f(x) of the LFSR is of degree 80 and deliberately chosen to be a
primitive polynomial to guarantee a period of at least 280 — 1. It is defined as

Fl@) =1+ 2 + 220 4 242 4 257 4 267 4 480
which corresponds to the following tap positions and thus creates the following
update function:
8i+80 = Si+62 t Si+51 + Si438 + Si423 + Sit13 + ;.
The feedback polynomial g(z) of the NLFSR is defined as
g(w) =1+ 218 + 220 4 28 4 ¢35 4 g3 | gAT | 52 4 59 4 466 | o T1 | 80
17, 20 4347 65,71 20,28, 35 475259 17,.35,.52, .71

B Y Y v s A v S A /R S/ A s A S AR/ A AR S/ AR/ A A

+ $20$28$43$47 =+ x17x20x59$65 + $17.’E20£L'28£C35£L'43 + $47{E52$59.’E65$71

+ 1‘281‘35I43$471‘52I59

which results in the following update function for the NLFSR:

bi+so =si + bite2 + biteo + bits2 + biyas + bit37 + biyss + bitos + biyor

+bit14 + bito + b; + bitesbiteo + bitarbitss + biy15bito

+ bit60bi+52bitas + bitasbitosbiyor + bitesbitasbiyogbive

+ bit60bit52bi+37bit33 + bitesbiteobit21bit1s

+ bi+63bi+60bi+520i1+45bit37 + bit33bit28bit21bir150i49

+ bit520i145bi+370i133bi+28bi 121
The NLFSR is chosen to be 2-resilient[33] in order to prevent correlation attacks
and information leakage. These two registers describe the current state of the
cipher. The input of the NLFSR is masked with the output of the LFSR, in order
to ensure that the NLFSR is balanced, i.e., the number of 1’s and 0’ are nearly
equal. The balanced boolean function h(x) takes four bits from the LFSR and
one bit from the NLFSR as input and is defined as:

h(z) = x1 + x4 + Tox3 + T2x3 + T3T4 + ToT1T2 + TX2T3 + ToTaxy + T1X224
+ Tox3x4.
The output bit is now generated as follows:
Zi = Z bitk + h(Si+3, Si+25, Sit46, Si+64, bit63)
ke A

where A = {1,2,4,10,31,43,56}
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Fig. 1. Grain cipher (by Yossiea, free use, https://he.wikipedia.org/w/index.php?
curid=1217517)

Key Initialization The Grain algorithm consists of two phases: a key initialization
phase, which initializes the state of the cipher before it can be used to generate
a keystream in the second phase. The key initialization is the first phase and
takes the key k, whose bits are denoted by k;, where 0 < ¢ <79, and loads the
NLFSR with the corresponding bits of the key, b; = k;. After that it loads the
first 64 bit of the LFSR with the initialization vector, denoted by IV;, where
0<1¢<79, s0 that s; =1V, for 0 <4 < 63. The remaining 16 bits of the LFSR
are set to one, s; = 1 for 64 < ¢ < 79. Now the algorithm is clocked 160 times
without producing any output bits, but rather feeding the resulting bit of the
output function z; back and xoring it with the input of the NLFSR, as well as the
LFSR. This process is depicted in Figure 2. The reason for this key initialization
phase is to scramble the contents of the shift registers before the key stream is
generated.

g(z) f(=z)
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Fig. 2. Grain key initialization (by Yossiea, free use, https://he.wikipedia.org/w/
index.php?curid=1217518)

Grain-128 Grain-128 is based on the Grain v1 cipher, but uses 128 bit for
each of the feedback shift registers, representing an internal state of 256 bit. It
supports a key size of 128 bit, the IV consists of 96 bit. Similar to Grain v1 the
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feedback polynomial of the LFSR is denoted by f(x), and is of degree 128. It is
defined as
F@) =1+ 252 + 217 4 258 4 290 4 o120 4 4128

The nonlinear feedback polynomial of the NLFSR is denoted by g(x), and is the
sum of one linear and one bent function. It is defined as

5
g(az) =14+ 3332 + {E37 + 1‘72 + 1’102 + 3’]128 + ’1244$60 + z61x120 + IL'GSLL‘67

+ 1'691‘101 + x80x88 —|—.’13110l'111 + .%‘11531‘117.

Grain-128 uses nine variables from the shift registers as input to the boolean
function h(z), two from the NLFSR and seven from the LFSR. This function is
defined as

h(z) = xoz1 + X223 + T4Ts + Tex7 + TTATS

where the variables zg, ..., zg correspond to the tap positions b; 112, S;+8, Si+13,
Si+205 Dito5, Sitd2, Sit60, Sitro and s;195. The output function of Grain-128 is
defined as
2y = Z bit; + h(x) + sito3
jeEA
where A = {2, 15, 36,45,64,73,89}.

Key Initialization The key initialization is similar to the initialization phase for
Grain v1. The NLFSR is loaded with the 128 bit key, the LFSR is loaded with
the 96 bit IV and the remaining bits are filled with ones. After that the cipher is
clocked 256 times, and the output is again fed back into the shift registers.

Grain-128a Grain-128a supports optional message authentication and was
furthermore strengthened in regards to all known attacks against previous versions.
It supports two different operation modes, one with enabled authentication,
and one with disabled authentication. The authentication supports variable
tag sizes w up to 32 bits, and when enabled the cipher creates a different key
stream in comparison to w = 0, i.e., when the authentication is disabled. When
IVy = 1, the authentication is mandatory, otherwise when IV = 0 the message
authentication is forbidden. Since Grain-128 and Grain-128a are so similar, the
following explanation only highlights the differences between these two.

The update function for the NLFSR has been changed, the complexity has
been increased:

g(x) =14 1'32 4 1337 4 {E72 4 1‘102 4 1'128 + $445660 + $6117125 + $63$67
+ $69$101 + .’1780:1)88 4 xlloxlll + .%‘1153?117 4 $46$50x58
+ 1’103301041'106 + 1,331,301,36%40.

In addition to the update function of the NSFR, the initialization phase has been
altered. Grain-128a loads the NLFSR with the 128 bit key, and the LFSR with
the 96 bit IV. The remaining bits of the LFSR are filled with ones, but for the
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last position, which is set to zero s197 = 0 to avoid a possible attack because of
similar IVs (see paragraph 2.3). After that the cipher is clocked 256 times, and
the output is again fed back into the shift registers, exactly like Grain-128 or
Grain v1.

In the course of the introduction of message authentication the output function
also had to be changed. It is different for each mode of operation. The authors
therefore define a pre-output function y;, which is

Yi =Y bipj + h(x) + sivos
jeA

where A = {2,15, 36, 45,64, 73,89}. When the message authentication is disabled,
the output bit is defined as

Zi =Y

That means, that all pre-output bits are directly used as keystream. Given the
case, that message authentication has been enabled, the output bit is defined as

Zi = Y64+2i>»

which means that after skipping 64 bits every second bit is used as output bit.

[ _DI Shift register (r)
i —
ot LFSR
7 | i
7 = ’_!E_‘ 7 1
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L
Lr'!r\‘ Accumulator (a)
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Pre-output stream (y)

Key stream (z)
b 4
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W
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Fig. 3. Grain 128a with optional authentication (CC BY 3.0, https://en.wikipedia.
org/w/index.php?curid=39315190)

Authentication In order to use the authentication two registers were introduced
(cf. Figure 3), called shift register and accumulator. The initially skipped 64 output
bits are used to initialize these two registers. The content of the accumulator
at time 7 is denoted by a?,...,a3! and is initialized with the first 32 bits from

kit
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the initially skipped 64 bits. The content of the shift register is denoted by
T4y ..., Ti+31 and initialized with the second 32 bits. In order to generate a tag for
the message my, ..., mr_1 of the length L, at first the message is appended by a
one, my, = 1, to create different tags for two messages m and m||0. During the
generation of the keystream the shift register is updated as r; {32 = Y2w42i+1, and
the accumulator is updated as @], = a] +m;riy; for 0 < j <31l and 0 <i < L.
The content of the final accumulator, a%H, ...,a®1p,q, is called the tag and
can be used for authentication. For tags of smaller size, w < 32, only the last

w bits from the accumulator are used. The authentication follows the Encrypt
and MAC|8] approach.

2.2 Hardware Implementation and Complexity

The design of the different Grain ciphers is deliberately chosen to be extremely
simple to implement in hardware. Grain v1 only requires a memory of 160 bit,
Grain-128 and Grain-128a of 256 bit, and the authors tried to simplify the used
functions in order to save gates but still provide high security. The shift registers
are regularly clocked which results in an output of 1 bit per single clock for
the different ciphers. When using Grain-128a with message authentication every
second bit is used to generate the tag, therefore the throughput rate is reduced
by half. An important feature of all Grain implementations is that the speed
of the algorithm can be increased by the expense of more hardware. This is
accomplished by implementing f(z) and g(z), and the output function several
times. In order to enable this functionality the last bits of the shift registers are
not used in the feedback functions, but can be fed as input to multiple instances
of parallel implemented feedback functions. For Grain v1 the last 15 bits are
ignored, for Grain-128 and Grain-128a the last 31 bits are ignored. If the speed
is increased by the factor ¢, one has to keep in mind that the shift registers need
to be implemented so that each bit is shifted ¢ steps instead of one. Using this
implementation it is possible to increase the speed up to 16 times for Grain v1,
i.e., output 16 bit per clock, and up to 32 times for Grain-128 and Grain-128a.

The amount of required gates for Grain is comparable to other hardware
implementations of stream ciphers, e.g., EO or A5/1[32], and with 1294 gates
for the internal state, Grain v1 is one with the lowest amount of required gates
from the complete eSTREAM portfolio[29]. Regarding the complete algorithm,
Grain v1 requires 1450 gate equivalents, Grain-128 requires 2133 gate equivalents,
Grain-128a without authentication requires 2145 gate equivalents, and Grain-128
with authentication requires 2769 gate equivalents (see Table 1).

Energy Consumption The energy consumption for Grain ciphers is also very low,
at a clocking speed of 100 kHz, Grain v1 only requires 3.3 uW, and 4.3 uW
for Grain-128. To the best of the authors knowledge, no energy consumption
measurements have been conducted for Grain-128a.
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2.3 Security

All the Grain algorithms have been cryptoanalyzed frequently during the last ten
years, and a lot of papers on the topic have been published. Among the attacks
the analysts identified are side channel attacks, e.g., different fault attacks, as
well as some algebraic attacks, e.g., cube attack.

In 2005 Khazaei et al. published a distinguishing attack[36] on Grain v0.
Using this attack it was possible to distinguish the Grain keystream output from
a completely random data stream with a complexity of O(2°!). Furthermore,
Berbain et al. showed in 2006[10] a recovery attack against Grain v0 by exploiting
linear approximations of the feedback and filter function to derive the LFSR
bits and recover the initial state of the NLFSR and get knowledge of the key.
This attack requires 243 computations and 23® keystream bits to determine the
80 bit key. These attacks lead the authors of the initial Grain version to release
Grain v1 and Grain-128 with changed output and feedback functions.

Slide resynchronization attack In 2006[38] zgl Kk presented an attack on the
initialization of the of Grain v1, where they tried to find related keys and IVs.
Although it did not result in an efficient key recovery attack, it showed a weakness
in the initialization phase. De Cannire, Kk, and Preneel extended this research
and published their results in 2008[21], where they pointed out that the existence
of the sliding property in the initialization part of the Grain ciphers can be used to
reduce the cost of an exhaustive key search by half. Lee, Yuseop, et al. presented
2008[40] a related-key chosen IV attack based on the slide resynchronization
attack against Grain-vl and Grain-128. This was the first recovery attack and
was able to recover the secret key with 222-59 chosen IVs, 226-29 bit keystream
sequences and 22290 computational complexity for Grain v1. To recover the secret
key of Grain-128, the attack required 22659 chosen IVs, 23139 bit keystream
sequences, and 227-1 computational complexity. In 2013 Ding et al.[22] and Banik
et al.[7] independently used the related-key chosen IV attack on Grain-128a and
showed that the attack is better than an exhaustive key search.

Dynamic Cube Attack The cube attack is an efficient mathematical known
plaintext attack, very similar to the distinguishing attack. It is able to fully
recover the key and was initially introduced by Dinur and Shamir[24] in 2009,
and soon efficiently implemented on a FPGA by Aumasson et al. in 2009[3].
An extrapolation of their results suggested, that it is possible to conduct a
distinguishing attack on Grain-128 in time 283, which is below the 2'2® complexity
for an exhaustive search. Dinur, Itai and Shamir presented a new variant of the
cube attack on Grain-128 in 2011[25], which they called the dynamic cube attack.
This attack recovers the secret key by exploiting distinguishers obtained from
cube testers. They were able to recover the full key of Grain-128, but only
when it belongs to a subset of 2710 of the possible keys. Nonetheless this attack
is faster than an exhaustive search over the 2''8 possible keys by a factor of
about 2'°. This method has also been implemented against Grain v1 in 2013 by
Rahimi and Barmshory[46]. They were able to to recover the full key in feasible
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time complexity with decreased initialization rounds. This attack is faster than
exhaustive search by a factor of 232,

Fault Attacks A fault attack is a side channel attack, where the adversary induces
faults in states or operations of the cipher and then analyzes the faulty ciphertext
in comparison to a ciphertext without faults to break the system. The first fault
attack has been presented by Berzati et al. in 2009[12] against Grain-128, Banik
et al.[6] extended this work to other cipher, and showed 2012[5] a differential
fault attack on Grain-128a using MACs. Most of the previous work targets the
LFSR, but recently Karmakar and Chowdhury showed|[34], that both LFSR and
NLFSR can be attacked by an adversary and concluded, that both registers have
to be protected.

Summary Although this section makes no claim of completeness, we showed
attacks on the Grain family of stream ciphers. More information regarding Grain
security can be found in these papers[15] [44] [50] [2] [51] [35] [19] [48] [23]. The
mathematical attack based on the dynamic cube attack showed by Aumasson et
al.[3] and the fault attacks are the only known weaknesses of Grain. Nontheless
Grain-128a is the most secure member of the family, since Michael Lehmann and
Willi Meier suggested[41] that it seems to be immune against dynamic cube and
differential attacks.
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3.1 Specifications

In 2005 Christophe De Canniere and Bart Preneel developed a synchronous
stream cipher called Trivium [20,?]. It became part of the eSTREAM portfolio
and was designed for resource constrained environments with high performance
requirements. Beside efficiency concerning speed and area a plain and simple
architecture was also an important aspect in the design process. Just like Grain,
the cipher consists of two phases which are explained in more detail in subsequent
sections. The first phase deals with the initialization of the algorithm where the
secret state of the algorithm is determined using a secret key and an initialization
vector (IV). In the second phase the keystream generation process is executed
by the algorithm using the data gathered in the first phase. The whole process
produces keystreams with a maximum length of 264 bits.

Setup phase In this phase the secret state (S) of the cipher is defined and stored
using three Non-Linear Feedback Shift Register (NLFSR) of different capacities
(93, 84, 111). The 93 bit NLFSR holds the secret key (SK) of the cipher. The
remaining 13 bits of the register are initialized with zero and concatenated with
the secret key bits:

(51, SQ, .. .7893) — (SKl, SKQ, ey SKgo,O, ,0)

As second component of the secret state the 80-bit initialization vector (IV)
is used. The latter is stored in the 84 bit NLFSR representing the secret state
positions from Sgy to Si73. The four remaining bits are set to zero:

(Soa, So5, ..., S177) = (IV1,1V3, ..., IV3, 0, ..., 0)

The lower section of the secret state i.e. 111 bit NLFSR is initialized with
zero while the last three bits (Sage, Sas7, S288) are set to one:

(Si78, S179, ..., S286, S287, S2gs) < (0,0,...,1,1,1)

Afterwards the secret state is further processed by executing several operations
like AND, XOR and bit shifts. The following steps are repeated 1152 times in
order to produce a secret state, which is required later to generate the keystream.
In the first step certain state bits are associated in a predefined manner where @
denotes the XOR operation and A denotes the AND operation. The results are
stored in particular variables T7, T> and T3. Then the whole state is updated in
each iteration.

Key stream generation phase The key stream generation process is similar
to the cipher initialization process described in the setup phase. Based on the
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: for i =1 to 1152 do

T1 = See @ So1 A So2 @ Soz @ Si71

T> = Si62 @ Si75 A S176 B S177 B S264
T3 = S243 @ Sage N S2s7 B Sass B Seo

(S17527-..7SQ3) = (T3,Sl,...7592)

(So4, S95, ..., S177) = (11, Sou, - . ., S176)
(S17s, S179, - .., S288) = (T2, Si7s, . - ., S287)
: end for

current state (S) a keystream of length N (where N < 26%) is generated by
repeating the subsequent instructions one after the other up to N times. The first
instructions consist of three XOR operations which are performed on three pairs
of specific state bits, respectively. Each result is assigned to a particular variable
Ty, T5 and T3. Afterwards one bit of keystream (denoted by Z;) is generated for
each iteration ¢ as a result of a linear combination of 77,75 and T3.

1: fori=1to N do

2: T1 = Se6 @ So3

3 T> = Si62 ® S177

4: T3 = So43 B Soss

5:

6: Zi=Tr@To @13

7
8: Ty =T1 & So1 A So2 @ Si71

9: To =To @ S175 A S176 B S264

10: T3 = T35 @ Sage N Sa87 ® Seo

11:

12: (51752,...7593):(T3,Sl,..‘7592)

13: (S94, 595, - - -, S177) = (T1, Sou, - - ., S176)
14:  (Si7s, Si79,. .., Soss) = (T2, Sirs, - - ., Sas7)
15: end for

After a keystream Z is generated, it can be used to perform encryption and
decryption operations. The structure of Trivium is shown in Figure 4.

3.2 Hardware Implementation

Even though Trivium is primary considered as hardware oriented cipher it can
be implemented in software as well. Tts default setting (containing three AND
gates, several XOR gates and three NLFSR) is able to produce one bit of
keystream per cycle. In [45] a low power implementation of Trivium based on
logic parallelization is suggested. First, the authors split each NLFSR up in
two single registers with half size, respectively. One group of registers stores
data based on a transition from zero to one in clock signal. The second group
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Fig. 4. Trivium structure (copyrighted free use, https://commons.wikimedia.org/w/
index.php?curid=598665)
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reacts to a transition from one to zero for storing data. This step divides the
primary frequency used for one shift register by half. Afterwards the authors
used additional logic (multiplexers) in combination with clock signal for selecting
the right bits out of the different registers. They also considered loading the
secret key and the initialization vector in parallel. For verifing results they
implemented both standard and low power version of Trivium in Very High
Speed Integrated Circuit Hardware Description Language (VHDL) and used
three different kind of Complementary metal-oxide-semiconductor technologies
(CMOS) for comparison. Martin Feldhofer [27] describes an optimized low power
implementation of Trivium for usage in Radio-frequency identification (RFID)
tags. In order to keep the clock frequency and threfore the (dynamic) power
consumption as low as possible he divided all Flip-flops (using to store state bits)
in 19 x 16 bit registers to reduce the number of elements beeing active at the
same time.

3.3 Energy Consumption

Running standard Trivium with 100 kHz clock frequency it consumes about 5.6
uW energy [29]. Other energy consumption profiles for the different Trivium
configurations can be seen in Table 1.

3.4 Security

Trivium is still an object of various security analysis. Despite its simplistic
architecture it hardly discloses information about internal components like its
secret state. To reveal as much information as possible a wide range of approaches
and methods have been established so far. One obvious and inefficent approach
is exhaustive key search. A more sophisticated way is found in [43] where both
authors explain how to recover the secret key assuming some parts (about 261-5
bits) of the keystream are known before. They propose increasing the size of
the internal state rather than increasing the size of the secret key to provide an
effective protection against their recovery attack. Another kind of key recovery
attack is described by Fischer et al. [28]. In this paper the authors perform a
key recovery attack on a reduced version of Trivium with a lower initialization
complexity (using a total of 672 rounds). However there is no advantage over
exhaustive search when using this key recovery attack on Trivium with 1152
initialization steps. A better performance is achieved when using the concept
of cube attacks as described in [24]. Therein the concept is appropriated on
reduced versions of Trivium, consisting 672, 735 and 767 initialization rounds,
respectively. The former has an overall complexity of up to 2'° bits which is
much better compared to the performance achieved by Fischer et al. The latter
have complexities of 23° and accordingly of 24° bits.
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4 Comparison

When it comes to environments with high demands concerning speed, security
and power efficiency one might think about stream ciphers like Trivium or
Grain. Both ciphers are optimized in providing value for similar use cases. They
are clear in size and work properly on hardware with a low clock frequency.
Assuming Grain v1 the size of the secret key is identical to that from standard
Trivium, namely 80 bits. In both ciphers crucial operations are performed in a non
linear manner preventing the disclosure of sensitive data to adversaries. Therefore
NLFSR components are used for both stream ciphers. Although primary hardware
oriented both can be implemented in software as well.

Nonetheless there are some major distinctions between Grain and Trivium.
The former has no restrictions concerning the output of the keystream generation
process. More precisely, the lengths of the produced keystreams are arbitrary com-
pared to the keystreams generated by Trivium. The latter produces keystreams
at most 254 bits in size. In addition, there are differences concerning the number
of initialization rounds and the energy consumptions between both algorithms.
Table 1 provides a summary of both algorithms regarding Gate Count, Energy
Consumption (uW) and Throughput (Mbps) based on 100 kH z clock frequency.
In terms of Trivium, the data for calculating the Gate Count is derived from
[18]. To provide a better comparison to Grain a reduced number of NAND
gates per Flip-flop (8 rather than 12) is assumed, the calculation rule and the
number of gates remain the same [18] though. The results (Gate Count) and
other information [29] are reflected in Table 1. The parameter ¢ indicates the
level of parallelization.
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Table 1. Comparison of Grain and Trivium at 100kH z

Cipher Gate Count  Energy (¢W) Throughput (Mbps)
Grain v0 1435 na na
Grain v1, t=0 1450 3.3 0.1
Grain v1, t=2 1637 na 0.2
Grain v1, t=4 2010 4.5 0.4
Grain v1, t=8 2756 6.1 0.8
Grain v1, t=16 4248 9.3 1.6
Grain 128, t=0 2133 4.3 0.1
Grain 128, t=2 2218 na 0.2
Grain 128, t=4 2388 5.6 0.4
Grain 128, t=8 2728 6.9 0.8
Grain 128, t=16 3408 9.3 1.6
Grain 128, t=32 4768 14.8 3.2
Grain 128a w/o ; with MAC, t=0 2145.5 ; 2769.5 na 0.1; 0.05
Grain 128a w/o ; with MAC, t=2 2243 ; 2867 na 0.2 ;0.1
Grain 128a w/o ; with MAC, t=4 2438 ; 3174 na 0.4;0.2
Grain 128a w/o ; with MAC, t=8 2828 ; 3788 na 0.8;0.4
Grain 128a w/o ; with MAC, t=16 3608 ; 5016 na 1.6;0.8
Grain 128a w/o ; with MAC, t=32 5168 ; 7472 na 3.2;1.6
Trivium v1, t=0 2336 5.6 0.1
Trivium v1, t=4 na 5.9 0.4
Trivium v1, t=8 2560 6.4 0.8
Trivium v1, t=16 2816 6.4 1.6
Trivium v1, t=32 3328 10.3 3.2
Trivium vl, t=64 4352 14.3 6.4

5 Conclusion

In this paper Trivium and all existing modifications of Grain have been introduced.
Both ciphers have been described in terms of their specifications, their hardware
implementations and their security. Finally a comparison between both ciphers
has been drawn. The results show that each cipher can be recommended for the
application on resource constrained devices.
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