
Efficient Algorithms for

Multi-Scalar Multiplications

Diploma Thesis

supervised by Prof. Tsuyoshi Takagi

Future University - Hakodate

School of Systems Information Science

presented by Erik Dahmen

Department of Mathematics

Technical University of Darmstadt

November 2005

Acknowledgment

I want to thank Prof. Tsuyoshi Takagi for investing such a great deal of time
to introduce me to the very interesting and challenging topic of efficient multi-
scalar multiplication. I also want to thank Dr. Katsuyuki Okeya who taught me
many interesting things while supervising me during my internship at Hitachi
SDL. Further, I want to thank Daniel Schepers and Katja Schmidt-Samoa for
proofreading this thesis and Hans-Otto Dahmen, Kai Endres, Andreas Müller
and Roland Walter for pointing out typos. Finally, I want to note that this thesis
has been financially supported by Hitachi SDL in terms of the cooperation with
the Technical University of Darmstadt.

Abstract

Since the internet was made accessible for the public, it is used more and more
for the exchange of confidential data. Over the past few years, the number of
electronic frauds increased and nowadays poses a serious threat. It is therefore
extremely important to have methods to secure transactions and communica-
tions made via the internet, or in general in any electronic environment.

The science that made security in electronic environments its business is
called cryptography. Nowadays, there exist several methods, so-called cryp-
tosystems, which enable users to secure their communications. Due to their
tamper resistance and mobility, cryptosystems are often implemented on smart
cards. However, since smart cards have only the size of a credit card, their com-
putational power and memory is very limited. It is therefore crucial to compute
the operations required by a cryptosystem as efficient as possible.

The basic mathematic operation in cryptosystems are scalar multiplications
and more general, sums of scalar multiplications, so-called multi-scalar mul-
tiplications. This thesis analyzes several methods to compute a multi-scalar
multiplication in an efficient way. Here efficient means not only as fast as
possible, but also using as little memory as possible. In detail, there exist sev-
eral basic algorithms to compute a multi-scalar multiplication. The runtime of
those algorithms can be decreased if special representations of the scalars are
deployed. The emphasis of this thesis is on such representations.

This thesis is organized as follows: Chapter 1 introduces the basic concept
of cryptography and smart cards. Chapter 2 discusses elliptic curves and their
application to cryptography. Chapter 3 introduces the basics about integer
representations. Chapter 4 reviews several basic algorithms to compute a multi-
scalar multiplication and Chapters 5 and 6 introduce special representations of
the scalars to speed up those algorithms. In Chapter 7, the author compares
those representations and in Chapter 8, he estimates the total computational
costs for computing a multi-scalar multiplication. Finally, Chapter 9 states the
authors conclusion.

Contents

1 Introduction 1
1.1 Encryption Schemes . 1

1.1.1 Symmetric Schemes . 2
1.1.2 Asymmetric Schemes . 2
1.1.3 Hybrid Schemes . 2

1.2 Digital Signatures . 3
1.3 Certification Authorities . 3
1.4 Embedded Security . 4

2 Elliptic Curves 6
2.1 Defining an Additive Group . 6
2.2 Coordinate Systems and Addition Formulas 8

2.2.1 Affine Coordinates . 8
2.2.2 Jacobian Coordinates . 10
2.2.3 Modified Jacobian Coordinates 11
2.2.4 Mixed Coordinates . 12

2.3 Elliptic Curves in Cryptography 13
2.4 Elliptic Curve Cryptosystems 14

2.4.1 Diffie-Hellman Key Exchange 14
2.4.2 ElGamal Cryptosystem 14
2.4.3 Elliptic Curve Digital Signature Algorithm 15

3 Representations of Integers 17
3.1 The Binary Representation . 17
3.2 General Base-2 Representations 17
3.3 The Weight of a Representation 18

4 Multi-Scalar Multiplication Algorithms 20
4.1 Binary Methods . 20

4.1.1 Right-to-Left Binary Method 20
4.1.2 Left-to-Right Binary Method 22
4.1.3 Left-to-Right vs. Right-to-Left 24

4.2 Interleave Method . 25

i

Contents

4.3 Shamir Method . 27
4.4 Elliptic Curves and Precomputation 28
4.5 Lim-Lee Combing . 29

5 Low-Weight Representations 31
5.1 The width-w Non Adjacent Form 31
5.2 The Joint Sparse Form . 35

6 Left-to-Right producible Low-Weight Representations 42
6.1 The Mutual Opposite Form . 42
6.2 The width-w Mutual Opposite Form 44
6.3 The Left-to-Right Joint Sparse Form 48

7 Computing a Multi-Scalar Multiplication 53
7.1 Speeding up the Interleave Method 53
7.2 Speeding up the Shamir Method 55
7.3 Comparison . 57

8 Field Operations 61
8.1 Evaluation Stage . 62
8.2 Precomputation Stage . 64
8.3 Total Costs . 66

9 Conclusion 69
9.1 Outlook and Further Research 70

Bibliography 71

ii

List of Algorithms

1 ECDSA Signature Generation 16
2 ECDSA Signature Verification 16

3 Decimal to Binary . 18

4 Right-To-Left Binary Method 21
5 General Right-To-Left Binary Method 22
6 Left-to-Right Binary Method 23
7 General Left-to-Right Binary Method 24
8 Interleave Method . 26
9 Shamir Method . 27

10 Decimal to wNAF . 32

11 Binary to MOF . 43
12 MOF to wMOF . 46
13 MOF to ltrJSF . 50

iii

List of Figures

1.1 Basic layout of a smart card . 5

2.1 Elliptic curve point addition and doubling 7

7.1 ECADD operations required by the Interleave method 59
7.2 Points to precompute for the Interleave method 59
7.3 ECADD operations required by the Shamir method 60
7.4 Points to precompute for the Shamir method 60

iv

List of Tables

5.1 Example values of AHD(wNAF) 34
5.2 Example values of AJHDk(JSF) 41

6.1 Example values of AJHDk(ltrJSF) 52

7.1 Costs for the Interleave method 57
7.2 Costs for the Shamir method . 57

8.1 Coordinate systems for the evaluation stage 63
8.2 Field multiplications for the evaluation stage 64
8.3 Coordinate systems for the precomputation stage 66
8.4 Field multiplications for the precomputation stage 66
8.5 Total number of field multiplications 67

v

List of Abbreviations

AHD Average Hamming density.
AJHD Average joint Hamming density.
DLP Discrete Logarithm Problem.
ECADD Elliptic Curve Point Addition.
ECDBL Elliptic Curve Point Doubling.
ECDLP Elliptic Curve Discrete Logarithm Problem.
HD Hamming density.
HW Hamming weight.
JHD Joint Hamming density.
JHW Joint Hamming weight.
JSF Joint Sparse Form.
ltrJSF Left-to-Right Joint Sparse Form.
MOF Mutual Opposite Form.
wNAF Width-w Non Adjacent Form.
wMOF Width-w Mutual Opposite Form.

vi

List of Symbols

k Number of scalars.
n Bit length of a scalar.
d Scalar, i.e. a positive integer.
d[i] The i-th bit of the scalar d, i = 1, . . . , n.
dj The j-th scalar, j = 1, . . . , k.
dj[i] The i-th bit of the j-th scalar, j = 1, . . . , k, i = 1, . . . , n.
x̄ −x, where x is an integer.
D Digit set.
|D| The order of the digit set.
X Class of D-representations.
M Field multiplication.
S Field squaring.
I Field inversion.
Fp Prime field.
E(Fp) Additive group of points on an elliptic curve.
A Affine coordinates.
J Jacobian coordinates.
J m Modified Jacobian coordinates.

vii

1 Introduction

In this modern, computer dominated society of ours, the necessity for electronic
security cannot be denied. Every day, confidential information is sent via email,
credit cards are used for electronic payment and contracts are made without
the counterparties actually coming into face-to-face contact. Such procedures
bear a high risk, because in an unsecured environment users cannot detect if
the content of a message was read or changed by an unauthorized person during
transmission. Also, there is no way to verify the identity of the conversational
partner. To make those security issues more transparent, the following four
major security targets have been defined.

Confidentiality Only the designated receivers of a message must be able to
read its content.

Integrity The receivers of a message must be able to decide whether the content
of the message has been changed during transmission or not.

Authenticity The receivers of a message must be able to verify the identity of
the sender of the message.

Non-repudiation The receivers of a message must be able to prove the identity
of the sender to a third person.

The science, that deals with the achievement of those security targets is called
Cryptography and in the following, the standard cryptographic approaches to
achieve confidentiality, integrity, authenticity and non-repudiation, so-called
cryptographic schemes or cryptosystems are described.

1.1 Encryption Schemes

The purpose of encryption schemes is to cover confidentiality. As the name sug-
gests, this is achieved by encrypting the message. This is done by an encryption
function E . The reverse process, the decryption, is done by a decryption func-
tion D. Besides the message m, the encryption function requires the input of
an encryption key e. It returns the encrypted message, the ciphertext c. The
ciphertext and a decryption key d are the input for the decryption function

1

1 Introduction

which returns the original message, the plaintext. The respective formulas are
given as

Ee(m) = c Dd(c) = m

In cryptography, there are three different approaches to encrypt messages.

1.1.1 Symmetric Schemes

In symmetric schemes the encryption and decryption keys are the same or can
easily be calculated from each other. For that reason, it is often spoken of just
one secret key which can encrypt as well as decrypt messages and therefore must
be kept secret.

While the encryption and decryption with symmetric schemes is very fast,
there is a major drawback, namely the key-exchange between communicating
parties. Any two persons who wish to communicate must share a distinct secret
key which has to be exchanged in a secure way. First of all, the number of keys
to exchange is immense and second, it is not obvious how the keys can easily
be exchanged in a secure way.

1.1.2 Asymmetric Schemes

The main property of asymmetric schemes is, that the decryption key cannot
easily be derived from the encryption key. The security of asymmetric schemes is
usually based on a complex mathematical problem which means, that if someone
is able to solve the underlying problem, he is also able to compute the decryption
key from the encryption key and can therefore break the scheme.

The benefit of asymmetric schemes is, that since the decryption key cannot
be recovered easily from the encryption key, the encryption key can be made
public. For that reason asymmetric schemes are also referred to as public-key
schemes and the encryption and decryption keys are also called public key and
private key, respectively.

With public keys, the key-exchange is no problem anymore. If someone wants
to send an encrypted message, he just has to access a public server to obtain the
recipient’s public key. However, there is also a drawback. Since such schemes
are based on complex mathematical problems, the involved operations are very
costly and for that reason the encryption and decryption processes are very
slow.

1.1.3 Hybrid Schemes

Hybrid schemes are a mixture of symmetric and asymmetric schemes and aim
for using their respective advantages, namely the speed of symmetric schemes
and the simple key-exchange of asymmetric schemes. In the first step, a secret

2

1.2 Digital Signatures

key, sometimes also called session key, is generated and used to encrypt the
data with a symmetric scheme. Then the session key, which is usually very
small, is encrypted using an asymmetric scheme and the recipients public key.
Both the encrypted data and the encrypted session key are sent to the receiver
who at first decrypts the session key using his private key and then decrypts
the data using the recovered session key.

1.2 Digital Signatures

The remaining three security targets integrity, authenticity and non-repudiation
are achieved by the use of digital signatures. Signature schemes work similar
to asymmetric schemes, namely they are based on a complex mathematical
problem and they use private and public keys. Also, there are functions S
and V for generating and verifying signatures, respectively. The input of the
signature generation function S is the message to sign m and the private key
of the signer d. The output is the signature s of the message. The input of
the verification function V is the message, the signature and the public key of
the signer e. This function returns true if the signature is valid and false

otherwise. The formulas are

Sd(m) = s Ve(m, s) ∈ {true, false}

The integrity of the message is guaranteed if the signature is approved valid,
because the verification function compares the message and the signature to
come to a conclusion. If either the signature or the message have been altered
during transmission, this comparison fails.

Authenticity and non-repudiation are also guaranteed if the signature is ap-
proved valid. This is because the verification function returns true only if the
signature was generated using the private key associated with the public key
used for verification.

1.3 Certification Authorities

With the techniques of encryption schemes and digital signatures one might
think that all problems concerning the four security targets are solved. But
there is another point of concern, the way the public keys are obtained. In both
techniques described above it is assumed that the public key used for message
encryption and signature verification indeed belongs to the person one thinks
it does. This is not guaranteed immediately.

Suppose the malicious person Oscar is able to place his public key on a public
server under Alice’s name. If Bob wants to send an encrypted message to Alice,
he accesses the server to download the key which he thinks belongs to Alice. If

3

1 Introduction

Bob uses this key to encrypt a message, Oscar will be able to decrypt it and
can get access to confidential data.

This example shows, that it is very important to be able to verify the authen-
ticity of the public keys. One way to solve this problem is to use a certification
authority (CA). At first, all relevant data of a user like name, email address
and public key is stored in a so-called certificate. The main purpose of a CA is
to verify the contents of such a certificate and to sign it using the CA’s private
key. Now it is only necessary that the public key of the CA is obtained securely.
This can be achieved by including it into operating systems or by publishing it
in press.

Now if Bob downloads Alice’s certificate he can easily check if the public key
is authentic by verifying the name in the certificate and the signature made by
the CA. If Oscar placed a false certificate on the server, Bob would detect it
immediately.

1.4 Embedded Security

According to the last sections, the most sensitive information in cryptographic
schemes are the private keys used for signing and decrypting. It is therefore
of utmost importance that those keys are stored securely. The obvious way to
store them, for example on local hard drives, floppy disks, CDs or USB sticks
is problematic. If some cryptographic operation requires the secret key, it has
to be transfered into the computers memory. If this computer is infected with
a virus or trojan, the security of the private key is endangered.

A more sophisticated approach is to store the private keys on smart cards.
Smart cards are credit card sized computers and capable of performing some
basic operations. Usually a smart card is equipped with the following compo-
nents:

CPU The central processing unit controls the other elements of the smart card
and performs the cryptographic operations. CPUs are available with 8,
16 and 32 bits and usually operate at a frequency of about 5 MHz.

ROM The read only memory is non-volatile memory, meaning that information
stored on it is not lost if the power is switched off. The ROM can be
written only once and is used to store the operating system of the smart
card. Currently smart cards are equipped with about 100 kBytes of ROM.

EEPROM The electronically erasable programmable read only memory is also
non-volatile, but contrary to the ROM it can be erased and rewritten
about 100,000 times. The private keys and cryptographic parameters are
stored here. The size of the EEPROM is currently about 32 kBytes.

4

1.4 Embedded Security

RAM The random access memory is volatile memory, meaning its content is
lost after the power is switched off. The RAM holds temporary infor-
mation required by the calculations performed and the operating system.
The current smart card technology offers up to 4 kBytes of RAM.

AU The arithmetic unit is the cryptographic co-processor. It implements basic
operations like addition, multiplication and modular exponentiation. Not
every smart card is equipped with an AU because they are quite expensive.

I/O Ports In accordance with the ISO 7816-2 standard, smart cards have eight
input/output connectors which provide the power supply for the smart
card and are used for the data transfer between the card and the reader.

The values in the above description were taken from the URLs [Ren05, Phi05].
Figure 1.1 shows an example for the basic layout of a smart card.

CPU

RAM

ROM

EEPROM
AU

I/O Ports

Figure 1.1: Basic layout of a smart card

The great advantage of smart cards is, that they are capable of performing
operations on their own. Hence, all calculations involving the private key can
be performed on the smart card and the private key never has to leave its secure
environment. Another advantage of smart cards is, that they are independent of
other hardware, meaning that they can be used with any card reader. Therefore,
smart cards can be used for various tasks apart from signing and decrypting
messages, for example to control access to buildings.

The drawback of smart cards is, that they offer only little computational
power and memory as shown in the above description. It is therefore extremely
important that the operations performed by a smart card can be computed effi-
ciently, i.e. by using as little memory and CPU as possible. The first step is to
consider which operations actually have to be computed by a smart card. This
is done in the next chapter, where cryptographic schemes which are suitable
for implementation on smart cards are introduced. In the subsequent chap-
ters, this thesis will turn its attention to how the operations involved in those
cryptographic schemes can be computed efficiently.

5

2 Elliptic Curves

The main purpose of this chapter is to introduce three cryptographic schemes
which are suitable for implementation on smart cards. Since all those schemes
are based on the additive group of points on an elliptic curve, at first the basic
concept of elliptic curves over prime fields is explained.

Definition 2.1. Let Fp denote a prime field, where p is a prime number. A
prime field consists of the integers

Fp = {0, 1, . . . , p − 1}

and all arithmetic operations are computed modulo p. Those operations are field
multiplications (M), field squarings (S) and field inversions (I).

In this thesis, the ratio between inversions and multiplications I/M is set to
I = 30M and the ratio between squarings and multiplications S/M is set to
S = 0.8M , as it is customary nowadays. Therefore, inversions are very costly
compared to multiplications and squarings and should be avoided.

The implicit equation of an elliptic curve over a prime field is given as

E : y2 = x3 + ax + b (2.1)

where a, b belong to the prime field Fp and p > 3. A further condition on a and
b is, that the so-called discriminant ∆ = 4a3 + 27b2 is non-zero. This ensures,
that the partial derivatives in x and y never vanish simultaneously and the
curve is therefore smooth.

2.1 Defining an Additive Group

The points on an elliptic curve can be used to define an additive abelian group
with a geometrical group operation as stated in [Kob99]. The group elements
are

E(Fp) = {(x, y) ∈ Fp × Fp|y
2 = x3 + ax + b} ∪ {O}

where O is the so-called point of infinity which serves as neutral group element.
Hence

P + O = O + P = P

is defined for any point P = (x, y) ∈ E(Fp).
The rules for the inverse of a point and the addition of two points can be

derived from the following definition.

6

2.1 Defining an Additive Group

Definition 2.2. Let L be a line which intersects the elliptic curve in the three
points P = (xP , yP), Q = (xQ, yQ), R = (xR, yR) ∈ E(Fp). Then

P + Q + R = O

holds.

If xP 6= xR 6= xQ holds, there are three cases to examine:

i) xP = xQ, yP = −yQ: In other words, Q is the reflection of P across the
x-axis and L is the horizontal line through P and Q. Here, the third point
of intersection R is the point of infinity O. Hence P + Q = O holds and
therefore Q is the inverse of P , which is denoted by −P .

ii) xP 6= xQ: In this case, the third point of intersection R is a distinct point
on the elliptic curve. Therefore, the formula for adding the points P and
Q is given as P + Q = −R.

iii) xP = xQ, yQ = yP : In this case, L is the tangent on E in P = Q.
Therefore, the formula for a point doubling is given as 2P = −R.

Figure 2.1 illustrates the elliptic curve point addition and doubling which from
now on are denoted by ECADD and ECDBL, respectively.

1 1

−1 −1

2 2

−2 −2

11 −1−1 22 00

P

P

Q

R

R

−R=P +Q

−R=2P

Figure 2.1: Elliptic curve point addition and doubling

The commutativity (P + Q = Q + P) of E(Fp) follows directly from the
construction of the group operation. The associativity (P + (Q + R) = (P +
Q) + R) can be verified using the following fact from projective geometry:

7

2 Elliptic Curves

Proposition 2.3. Let L1, L2, L3 be three lines that intersect a cubic curve in
nine points P1, . . . , P9 (counting multiplicity) and let L

′

1, L
′

2, L
′

3 be three lines
that intersect the cubic curve in nine points Q1, . . . , Q9. If Pi = Qi for i =
1, . . . , 8, then also P9 = Q9.

The six lines are set as follows

L1 : the line through P,Q and −(P +Q)

L2 : the line through R,−R and O

L3 : the line through −P,−(Q+R) and S = P +(Q+R)

L
′

1 : the line through Q,R and −(Q+R)

L
′

2 : the line through P,−P and O

L
′

3 : the line through −(P +Q),−R and S
′

= (P +Q)+R

Now the lines L1, L2, L3 and L
′

1, L
′

2, L
′

3 have eight points of intersection in com-
mon, namely P,−P,Q,R,−R,−(P + Q),−(Q + R) and O. One can therefore
conclude that S = S

′

which proves the associativity.
Finally, the scalar multiplication dP , where d is a positive integer and P ∈

E(Fp) is defined as

dP = P + . . . + P
︸ ︷︷ ︸

d times

In the case where d < 0, −P is added to itself |d| times.

2.2 Coordinate Systems and Addition Formulas

The next step is to derive explicit formulas for point additions (ECADD) and
point doublings (ECDBL). This section explains those formulas in different
coordinate systems and also compares the number of field operations required.

2.2.1 Affine Coordinates

The most straight forward coordinates to use are affine coordinates (A). Here,
the formulas for point additions and point doublings can be derived using the
geometrical structure of the group operation introduced in Section 2.1. Let
P = (x1, y1) and Q = (x2, y2) be two distinct points lying on the curve, with
Q 6= −P . The target is to calculate P + Q = (x3, y3). The equation of the line
L which intersects P and Q is given as

L : y = λx + γ, (2.2)

8

2.2 Coordinate Systems and Addition Formulas

where

λ =
(y2 − y1)

(x2 − x1)
, γ = y1 − λx1

The third point where L intersects the curve is R = (x̃, ỹ). Since P + Q = −R,
(x3, y3) = (x̃,−ỹ) holds and inserting this into (2.2) yields a formula for the
y-coordinate of P + Q.

ỹ = λx̃ + γ

⇐⇒ y3 = −λx3 − γ

= −λx3 − y1 + λx1

= λ(x1 − x3) − y1

The x-coordinate of P + Q is obtained by inserting (2.2) into the equation of
the elliptic curve. This yields

(λx + γ)2 = x3 + ax + b

⇐⇒ 0 = x3 − λ2x2 + (a − 2λγ)x − γ2 + b

This equation can be solved by using the fact, that the sum of the roots of
a monic polynomial is equal to minus the coefficient of the variable of the
second highest power. The three roots are x1, x2, x3 and the coefficient is −λ2.
Therefore x1 + x2 + x3 = λ2 holds and since two of those roots are given by the
x-coordinates of the points P and Q, x3 can be calculated. Hence, the formula
for a point addition (ECADD) in affine coordinates is:

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3) − y1

λ = (y2−y1)
(x2−x1)

(2.3)

Next, the case P = Q has to be examined to obtain the formula for a point
doubling. The only difference to the former case is that λ is now given as the
derivative

λ =
dy

dx
=

3x2
1 + a

2y1

in P = (x1, y1), because the line L is now the tangent on the curve in P .
The formula for a point doubling (ECDBL) can be derived by using the same
arguments as above and is given as

x3 = λ2 − 2x1

y3 = λ(x1 − x3) − y1

λ = (3x1+a)
(2y1)

(2.4)

9

2 Elliptic Curves

Note, that x1 = x2 holds in that case. The computational costs for both
operations are

ECADDA = 2M + S + I

ECDBLA = 2M + 2S + I

The drawback of affine coordinates is, that the required field inversion is very
costly compared to multiplications and squarings. To avoid inversions, alter-
native coordinate systems such as Projective, Jacobian, Chudnovsky Jacobian
or modified Jacobian coordinates can be used. In this thesis, only those coor-
dinate systems which are of most interest for a multi-scalar multiplication are
reviewed. A full review of all coordinate systems can be found in [CMO98].

2.2.2 Jacobian Coordinates

Points in Jacobian coordinates (J) are represented as a triple P = (X,Y, Z)
and the transformation between affine and Jacobian coordinates is:

TA→J : (x, y) 7→ (x, y, 1)

TJ→A : (X,Y, Z) 7→ (X/Z2, Y/Z3)

By applying the replacements x = X/Z2 and y = Y/Z3 to (2.1), the equation
of the elliptic curve becomes:

EJ : Y 2 = X3 + aXZ4 + bZ6 (2.5)

The formula for a point addition (ECADD) is obtained by applying the re-
placements to (2.3). Let P = (X1, Y1, Z1), Q = (X2, Y2, Z2) and P + Q =
(X3, Y3, Z3). Further, let U1 = X1Z

2
2 , U2 = X2Z

2
1 , S1 = Y1Z

3
2 , S2 = Y2Z

3
1 , r =

S2 − S1, H = U2 − U1.

x3 =

(
Y2

Z3

2

− Y1

Z3

1

)2

(
X2

Z2

2

− X1

Z2

1

)2 −
X1

Z2
1

−
X2

Z2
2

=
(Y2Z

3
1 − Y1Z

3
2)

2

(X2Z2
1 − X1Z2

2)
2
Z2

1Z
2
2

−
X1

Z2
1

−
X2

Z2
2

=
r2

H2Z2
1Z

2
2

−
X1

Z2
1

−
X2

Z2
2

=
r2 − X1Z

2
2H

2 − X2Z
2
1H

2

(Z1Z2H)2

=
r2 − 2X1Z

2
2H

2 − H3

(Z1Z2H)2

=
r2 − 2U1H

2 − H3

(Z1Z2H)2
=

X3

Z2
3

10

2.2 Coordinate Systems and Addition Formulas

y3 =

(
Y2

Z3

2

− Y1

Z3

1

)

(
X2

Z2

2

− X1

Z2

1

)

(
X1

Z2
1

−
X3

Z2
3

)

−
Y1

Z3
1

=
Y2Z

3
1 − Y1Z

3
2

(X2Z2
1 − X1Z2

2) Z1Z2

(
X1

Z2
1

−
X3

(Z1Z2H)2

)

−
Y1

Z3
1

=
r

HZ1Z2

(
X1(Z2H)2 − X3

(Z1Z2H)2

)

−
Y1

Z3
1

=
r (X1Z

2
2H

2 − X3) − Y1Z
3
2H

3

(Z1Z2H)3

=
r (U1H

2 − X3) − S1H
3

(Z1Z2H)3
=

Y3

Z3
3

In total, this yields

X3 = r2 − 2U1H
2 − H3

Y3 = r
(
U1H

2 − X3

)
− S1H

3

Z3 = Z1Z2H

The formula for a point doubling (ECDBL), where P = (X1, Y1, Z1) and
2P = (X3, Y3, Z3) is obtained by applying the same replacements to (2.4) and
given as

X3 = T

Y3 = −8Y 4
1 + M(S − T)

Z3 = 2Y1Z1,

where S = 4X1Y
2
1 , M = 3X2

1 + aZ4
1 , T = −2S + M2.

The costs for point additions and doublings in Jacobian coordinates are

ECADDJ = 12M + 4S

ECDBLJ = 4M + 6S

and no inversion is required anymore, since the Z-coordinate is used for the
denominator.

2.2.3 Modified Jacobian Coordinates

The purpose of modified Jacobian coordinates (J m) is to provide faster point
doublings while neglecting the speed of point additions. This is achieved by rep-
resenting the Jacobian coordinates internally as the quadruple (X,Y, Z, aZ4),
where a is the first parameter of the elliptic curve.

11

2 Elliptic Curves

The formula for a point addition (ECADD), where P = (X1, Y1, Z1, aZ4
1),

Q = (X2, Y2, Z2, aZ4
2) and P + Q = (X3, Y3, Z3, aZ4

3) is given as

X3 = r2 − 2U1H
2 − H3

Y3 = r
(
U1H

2 − X3

)
− S1H

3

Z3 = Z1Z2H

aZ4
3 = aZ4

3 ,

where U1 = X1Z
2
2 , U2 = X2Z

2
1 , S1 = Y1Z

3
2 , S2 = Y2Z

3
1 , r = S2 − S1, H =

U2 − U1.
The formula for a point doubling (ECDBL), where P = (X1, Y1, Z1, aZ4

1) and
2P = (X3, Y3, Z3, aZ4

3) is given as

X3 = T

Y3 = −U + M(S − T)

Z3 = 2Y1Z1

aZ4
3 = 2U(aZ4

1),

where S = 4X1Y
2
1 , U = 8Y 4

1 , M = 3X2
1 + (aZ4

1), T = −2S + M2.
The costs for point additions and doublings in modified Jacobian coordinates

are

ECADDJm = 13M + 6S

ECDBLJm = 4M + 4S

and one can see that in the case of an ECDBL operation, two squarings are
saved compared to Jacobian coordinates.

2.2.4 Mixed Coordinates

It is also possible to mix different coordinate systems to further speed up point
additions and doublings. The notation C1 + C2 → C3 means, that for a point
addition one point is given in C1 coordinates, the other in C2 coordinates and the
result is obtained in C3 coordinates. For a point doubling, 2C1 → C2 means that
the input is given in C1 coordinates and the result is obtained in C2 coordinates.
The costs for the three most interesting mixed coordinate systems for multi-
scalar multiplications are

ECADDJ+A→Jm = 9M + 5S
ECADDJm+A→Jm = 9M + 5S
ECDBL2Jm→J = 3M + 4S

because they provide the fastest point addition and doubling of all coordinate
systems reviewed here.

12

2.3 Elliptic Curves in Cryptography

2.3 Elliptic Curves in Cryptography

Until the late eighties, cryptosystems were mainly using the multiplicative group
(Fp)

∗. To use the additive group of points on an elliptic curve for cryptographic
purposes was independently proposed by Koblitz [Kob87] and Miller [Mil86].
Their idea was that cryptosystems, which exploit that the discrete logarithm
problem (DLP) is a complex mathematical problem, can also be adjusted to
work with elliptic curves.

Definition 2.4. Let x and y be elements of the multiplicative group (Fp)
∗ such

that y = xd mod p holds for some secret integer d. The discrete logarithm

problem (DLP) is to compute d whilst knowing only x and y.
The DLP for elliptic curves has to be slightly modified, because the group is

additive. Let P and Q be elements of E(Fp) such that P = dQ holds for some
secret integer d. The elliptic curve discrete logarithm problem (ECDLP)
is to compute d whilst knowing only P and Q.

In the group (Fp)
∗ exist sub-exponential algorithms to solve the DLP, e.g.

the Index-Calculus Algorithm [Odl84]. That is the reason why the secret keys
nowadays have to be at least 1024-bits to guarantee security. Then again, there
exists no sub-exponential algorithm to solve the ECDLP in the group of points
on an ”well chosen” elliptic curve. This means, that if the parameters defining
the curve are chosen careless, there are also sub-exponential algorithms to solve
the ECDLP [MOV93].

Recommended elliptic curves for cryptographic purposes can be found in
[NIST01]. The best methods to solve the ECDLP on those curves are Shanks
Babystep-Giantstep-Algorithm [Sha69] and Pollards-ρ-Algorithm [Pol78]. Both
algorithms use only the fact that they are working in a group, without exploit-
ing a special group structure. In total, both algorithms require O(

√

ord(Q))
operations to solve the ECDLP and are therefore exponential. Since nowadays
280 operations are assumed to be computationally infeasible, it is sufficient to
choose the parameters of the elliptic curve p, a, b and the base point Q such,
that its order is a 160-bit number. Therefore it is also sufficient to choose
the secret keys to be 160-bits to guarantee security. According to [Mil86] it is
extremely unlikely that a sub-exponential algorithm will ever work on general
elliptic curves. Hence, parameters with a small bit length should also suffice in
the future.

When used in conjunction with smart cards, elliptic curves have two great
advantages. At first, the required memory to store the secret keys is reduced
by a factor of 6.4, compared to 1024-bit keys. Second, the required field multi-
plications can be computed much faster, since the runtime of a multiplication
depends quadratic on the input length of the multipliers. In other words, a mul-
tiplication with 160-bit numbers is about 41 times faster than a multiplication
with 1024-bit numbers. The result is a significant saving of operations.

13

2 Elliptic Curves

2.4 Elliptic Curve Cryptosystems

This section reviews three cryptographic schemes which exploit that the ECDLP
is hard to solve. Although they were all originally designed for the group (Fp)

∗

and therefore exploit that the DLP is a complex mathematical problem, they
can be adjusted to work with elliptic curves.

Throughout this section, it is assumed that the elliptic curves used in the
cryptosystems are chosen in accordance with [NIST01] and that the order of
the public points as well as the chosen parameters are 160-bit numbers.

2.4.1 Diffie-Hellman Key Exchange

The Diffie-Hellman key exchange protocol was proposed by Diffie and Hellman
in [DH76]. Its purpose is to allow Alice and Bob to agree on a secret key over
an insecure channel, like the internet.

At first a public point Q ∈ E(Fp) is required. The remainder of the protocol
works as follows:

1. Alice and Bob each choose a random scalar ka, kb ∈ Fp, respectively.

2. Alice calculates Qa = kaQ and sends Qa to Bob. Bob calculates Qb = kbQ
and sends Qb to Alice.

3. Alice computes kaQb and Bob computes kbQa.

Now both possess the secret point Qab = kakbQ and the desired secret key can
be chosen as the x-coordinate of the point Qab.

The Diffie-Hellman problem is to compute Qab by using only the three points
Qa, Qb and Q which are transmitted over the insecure channel. If an eaves-
dropper Eve can solve the ECDLP, she can extract ka from Qa and retrieve
Qab. However, it is unknown if Eve can solve the ECDLP if she can recover Qab

from Qa, Qb and Q, i.e. it is not known if the ECDLP and the Diffie-Hellman
problem are equivalent.

This protocol can be used to establish a secure tunnel between two parties,
e.g. the SSH protocol uses this technique to exchange the secret key required
for a symmetric scheme.

2.4.2 ElGamal Cryptosystem

The ElGamal cryptosystem is an extension of the Diffie-Hellman key exchange
protocol and its purpose is to encrypt and decrypt messages. It was originally
proposed by ElGamal in [ElG85].

Suppose that Bob wants to send a message M ∈ E(Fp) to Alice. At first,
Alice has to generate a public and a private key. Alice chooses a random scalar

14

2.4 Elliptic Curve Cryptosystems

ka ∈ Fp and calculates Qa = kaQ, where Q is again a public point. The pair
(Q,Qa) is Alice’s public key and ka is her private key.

Prior to sending the message, Bob has to obtain Alice’s public key in a secure
way. To encrypt the message he performs the following steps:

1. Generate a random integer r ∈ Fp.

2. Compute P1 = rQ.

3. Compute P2 = M + rQa.

Then Bob sends P1 and P2 to Alice who computes

P2 − kaP1 = M + rQa − ka(rQ)

= M + rQa − rQa

= M

and can therefore decrypt the message M .
If Eve is able to solve the ECDLP, she can decrypt the message M by retriev-

ing the private key ka from the public key Qa. But again the other direction is
unknown.

The difference to the Diffie-Hellman protocol is, that Alice has to generate
her key pair only once and not anew every time someone wants to send her an
encrypted message. Hence, this scheme is more convenient for the exchange of
email.

2.4.3 Elliptic Curve Digital Signature Algorithm

The elliptic curve digital signature algorithm (ECDSA) [JM99, Van92] is the
elliptic curve analogue of the digital signature algorithm (DSA), which is the
digital signature standard used by the U.S. government [NIST01]. The ECDSA
is also based on the ECDLP and it requires the following public system param-
eters.

E an elliptic curve defined over Fp

q the largest prime factor of the order of E(Fp)
P a point in E(Fp) with order q

Also, a one-way function H is required.

Definition 2.5. Given a function H : X → Y and y ∈ Y such that H(x) = y
holds for some x ∈ X. H is called a one way function, if the problem to find
an x̃ ∈ X, such that H(x̃) = y holds, is computationally infeasible.

15

2 Elliptic Curves

Suppose Alice wants to sign a message m she is about to send to Bob. At
first, she has to generate a key pair. Alice randomly chooses her private key a
within the range 1 < a < q − 1 and then calculates her public key as Q = aP .
Next, she signs the message m using Algorithm 1. Finally, Alice sends the
message m and its signature (r, s) to Bob.

Algorithm 1 ECDSA Signature Generation

Require: Message m.
Ensure: Signature (s, r) of m.
1: choose k ∈ {1, . . . , q − 1} randomly
2: R = (x, y) ←[kP
3: r ←[x mod q
4: if r = 0 then goto step 1
5: s ←[k−1(H(m) + ar) mod q
6: if s = 0 then goto step 1
7: return (r, s)

At first, Bob has to obtain Alice’s public key. Then, he verifies the signature
of the message using Algorithm 2.

Algorithm 2 ECDSA Signature Verification

Require: Message m, signature (s, r).
Ensure: true, if the signature is valid, false, otherwise.
1: if (r, s) /∈ {1, 2, . . . , q − 1}2 return false
2: u ←[H(m)s−1 mod q
3: v ←[rs−1 mod q
4: R = (x, y) ←[uP + vQ
5: if x = r mod q return true
6: return false

The correctness of Algorithm 2 can be verified by using that if Alice in-
deed generated the signature, s ≡ k−1(H(m) + ar) mod q and therefore
k ≡ s−1(H(m) + ar) mod q holds. Thus, step 4 can be rearranged to

uP + vQ = uP + vaP

= (u + va)P

=
(
H(m)s−1 + rs−1a

)
P

=
(
s−1 (H (m) + ar)

)
P

= kP

and therefore x = r mod q holds.

16

3 Representations of Integers

Most of the operations required by the above explained cryptosystems involve
scalars, which are positive integral numbers, i.e. integers. The purpose of this
chapter is to give a brief introduction into how those integers can be repre-
sented. Apart from the well known decimal representation, several other ways
to represent an integer exist. The emphasis of this chapter is on so-called base-2
representations, where the integer is represented by the sum of multiple powers
of two.

3.1 The Binary Representation

The simplest base-2 representation is the uniquely determined binary represen-
tation.

Definition 3.1. The vector (d[n−1], . . . , d[0]) is called the binary represen-

tation of the integer d, if

d =
n−1∑

i=0

d[i] · 2i

and d[i] ∈ {0, 1},∀i = 0, . . . , n − 1.

The length of this representation, the so-called bit length n is calculated as
n = blog2 dc + 1. The d[i] are called bits, which is short for binary digits.
Algorithm 3 represents one way to generate the binary representation from the
decimal representation.

Example 3.2. The vector (1, 0, 1, 1, 0, 1) is the binary representation of 45 with
bit length 6, since 25 + 23 + 22 + 1 = 45 and blog2(45)c + 1 = 6.

3.2 General Base-2 Representations

Apart from the binary representation, another more general approach for base-2
representations exists. The main idea is to permit other digits than 0 and 1 in
the representation. The set of valid digits is called the digit set and denoted by
D. The number of elements in the digit set, i.e. its order is denoted by |D|.

17

3 Representations of Integers

Algorithm 3 Decimal to Binary
Require: Integer d in its decimal representation.
Ensure: Binary representation (d[n − 1], . . . , d[0]) of d.
1: n ← 0
2: while d 6= 0 do

3: if d mod 2 = 1 then

4: d[n] ← 1
5: else

6: d[n] ← 0
7: end if

8: d ← bd/2c
9: n ← n + 1

10: end while

11: return (d[n−1], . . . , d[0]), where n = blog2 dc + 1

Definition 3.3. The vector (d[n−1], . . . , d[0]) a called a D-representation of
the integer d, if

d =
n−1∑

i=0

d[i] · 2i

and d[i] ∈ D,∀i = 0, . . . , n − 1.

If D = {0,±1} holds, the representation is also called a signed binary rep-
resentation. More general, if D = {0,±1, . . . ,±x} holds, the representation is
also called a signed representation.

In general, D-representations loose the property of uniqueness. For example
(1, 0, 1, 1, 1, 1̄) and (1, 1, 0, 1̄, 0, 1) are both signed binary representations of 45
with bit length 6, where 1̄ = −1.

In the following, classes of D-representations, which can be generated by
applying a certain algorithm to another representation will be discussed. In
general these classes are denoted by X . An example for such a class is the
binary representation which can be generated from the decimal representation
by applying Algorithm 3.

3.3 The Weight of a Representation

For comparison purposes, it is necessary to measure the quality of D-
representations. This can be done by using the weight of either one D-
representation separately, or several D-representation at once. Let X be a
class of D-representations generated by a certain algorithm.

Definition 3.4. Let r = (d[n−1], . . . , d[0]) be a D-representation with bit length
n. The Hamming weight (HW) of r is the number of non-zero digits in

18

3.3 The Weight of a Representation

r and denoted by HW(r). The Hamming density (HD) of r is given as
HD(r) := HW(r)/n. The average Hamming density (AHD) of a class of
D-representations X is the expected Hamming density of a randomly chosen
D-representation in X with bit length n → ∞ and denoted by AHD(X).

Definition 3.5. Let r1 = (d1[n−1], . . . , d1[0]), . . . , rk = (dk[n−1], . . . , dk[0]) be
k D-representations with bit length n. The joint Hamming weight (JHW)
of r1, . . . , rk is the number of non-zero columns, i.e. columns with at least one
entry different from zero in the matrix








r1

r2
...
rk








=








d1[n−1] . . . d1[0]
d2[n−1] . . . d2[0]

...
...

dk[n−1] . . . dk[0]








and denoted by JHW(r1, . . . , rk). If some D-representations are less than n
bits, zeros are padded to the left as required. The joint Hamming density

(JHD) of r1, . . . , rk is given as JHD(r1, . . . , rk) := JHW(r1, . . . , rk)/n. The
average joint Hamming density (AJHD) of a class of D-representations X
is the expected joint Hamming density of k randomly chosen D-representations
in X with bit length n → ∞ and denoted by AJHDk(X).

Example 3.6. Consider the two binary representations

r1 = (1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0) (= 2906)
r2 = (1, 0, 1, 0, 1, 0, 0, 1, 1) (= 339)

with bit lengths 12 and 9, respectively. Using the above definitions shows that

HW(r1) = 7 HW(r2) = 5 JHW(r1, r2) = 8
HD(r1) = 7/12 HD(r2) = 5/9 JHD(r1, r2) = 8/12

Lemma 3.7. In the case of the binary representation, the digits 0 and 1 appear
each with a probability of 1/2. Therefore

AHD(binary) =
1

2

holds. If considering the binary representations of k integers, the probability for
a zero column is given as 1/2k and therefore

AJHDk(binary) = 1 −
1

2k

holds.

19

4 Multi-Scalar Multiplication
Algorithms

According to Chapter 2, the basic operation in elliptic curve cryptosystems is
a scalar multiplication dP and more general, a sum of scalar multiplications

k∑

j=1

djPj,

where dj are the scalars and Pj are points on an elliptic curve, j = 1, . . . , k.
Such a sum of scalar multiplications is called a multi-scalar multiplication.

In fact, those multi-scalar multiplications are the most time consuming oper-
ations and since an implementation on devices with little computational power
and memory is desired, they have to be computed efficiently.

This chapter at first introduces two algorithms that can be used to compute
a scalar multiplication. After comparing those two algorithms, two extensions
of the superior algorithm are introduced which are specifically designed for
multi-scalar multiplications.

4.1 Binary Methods

Binary methods are methods for the efficient computation of a scalar multi-
plication dP . As the name suggests, they were originally designed to use the
binary representation of the scalar. However, as it will turn out they can also be
adjusted to work with D-representations of the scalar. There exist two different
binary methods, one that parses the scalar starting at the least significant bit,
i.e. right-to-left, and one that parses the scalar starting at the most significant
bit, i.e. left-to-right.

4.1.1 Right-to-Left Binary Method

The task is to compute a scalar multiplication dP , where d is an n-bit scalar
and P is a point on an elliptic curve. If the binary representation of the scalar
d is considered, it is possible to write

dP = (d[n−1]2n−1 + d[n−2]2n−2 + . . . + d[1]2 + d[0]) P
= d[n−1]2n−1P + d[n−2]2n−2P + . . . + d[1]2P + d[0]P

(4.1)

20

4.1 Binary Methods

This equation is evaluated starting at the least significant bit d[0], i.e. right-to-
left. In the i-th iteration, 2iP is added to the intermediate result, if the current
bit d[i] is 1. This method is represented in Algorithm 4, where the register X
stores the result and Q1 stores the point 2iP in the i-th iteration.

Algorithm 4 Right-To-Left Binary Method
Require: Point P ∈ E(Fp), n-bit scalar d in its binary representation.
Ensure: Scalar multiplication dP
1: X ← O
2: Q1 ← P
3: for i = 0 to n − 1 do

4: if d[i] = 1 then

5: X ← ECADD(X, Q1)
6: end if

7: Q1 ← ECDBL(Q1)
8: end for

9: return X

Algorithm 4 performs an ECADD operation each time the current digit d[i]
is 1, hence with probability 1/2. An ECDBL operation is performed in each
iteration. Therefore, the right-to-left binary method on average requires

n ECDBL + n ·
1

2
ECADD

operations to compute a scalar multiplication dP , where the scalar is repre-
sented in the binary representation.

Example 4.1. Let d = 18 with binary representation (1, 0, 0, 1, 0). The follow-
ing figure shows the sequence of ECADD and ECDBL operations performed by
the right-to-left binary method to compute the scalar multiplication dP .

P

2P

2P4P8P16P32P

18P

Q1 ← P

X ← O

d

+2P+16P

·2·2 ·2·2·2

11 0 0 0

Algorithm 4 can also be adjusted to work with D-representations. The dif-
ference is, that instead of adding only 2iP to the result, t · 2iP, t ∈ D has to be
added, depending on the current digit d[i]. The adjusted version is shown in
Algorithm 5.

21

4 Multi-Scalar Multiplication Algorithms

Algorithm 5 General Right-To-Left Binary Method
Require: Point P ∈ E(Fp), n-bit scalar d in a D-representation X .
Ensure: Scalar multiplication dP
1: X ← O
2: Qt ← tP,∀t ∈ D \ {0}
3: for i = 0 to n − 1 do

4: if d[i] 6= 0 then

5: X ← ECADD(X, Qd[i])
6: end if

7: Qt ← ECDBL(Qt),∀t ∈ D \ {0}
8: end for

9: return X

The first step is to compute all points which might have to be added to the
result (line 2). During runtime, the algorithm performs an ECADD operation
each time the current digit d[i] is non-zero, hence with probability AHD(X).
Since the point t ·2iP, t ∈ D has to be added in the i-th iteration, all the |D|−1
points which were computed in line 2, have to be doubled in each iteration. On
average, the general right-to-left binary method requires

n · (|D| − 1) ECDBL + n · AHD(X) ECADD

operations to compute a scalar multiplication dP , where the scalar is repre-
sented in the D-representation X . Further, the precomputation of |D| − 2
points is required, which are all points of the form tP, t ∈ D \ {0, 1}.

Note, that additional ECADD and ECDBL operations are required for the
precomputation.

The right-to-left binary method can also be used to compute a multi-scalar
multiplication. This is done by computing each scalar multiplication separately
and adding the results together, which requires another (k − 1) ECADD op-
erations. In the case of k scalars, the general right-to-left binary method on
average requires

n · k · (|D| − 1) ECDBL + (n · k · AHD(X) + (k − 1)) ECADD

operations to compute a multi-scalar multiplication
∑k

j=1 djPj, where the
scalars are represented in a D-representation X . Further, the precomputation
of k · (|D| − 2) points is required.

4.1.2 Left-to-Right Binary Method

Another method to compute a scalar multiplication dP is the left-to-right binary
method. The basic idea is to successively factor out 2 in equation (4.1), which
yields

22

4.1 Binary Methods

dP = d[n−1]2n−1P + d[n−2]2n−2P + . . . + d[1]2P + d[0]P
= 2 (d[n−1]2n−2P + d[n−2]2n−3P + . . . + d[1]P) + d[0]P

...

= 2 (2 (. . . 2 (d[n−1]2P + d[n−2]P) + . . .) + d[1]P) + d[0]P
= 2 (2 (. . . 2 (2 (d[n−1]P) + d[n−2]P) + . . .) + d[1]P) + d[0]P

(4.2)

Now it is possible to start the evaluation at the most significant bit d[n−1], i.e.
left-to-right. In the i-th iteration, the intermediate result X is doubled and if
the current bit d[i] is 1, P is added as shown in Algorithm 6.

Algorithm 6 Left-to-Right Binary Method
Require: Point P ∈ E(Fp), n-bit scalar d in its binary representation.
Ensure: Scalar multiplication dP
1: X ← O
2: for i = n − 1 down to 0 do

3: X ← ECDBL(X)
4: if d[i] = 1 then

5: X ← ECADD(X, P)
6: end if

7: end for

8: return X

Algorithm 6 performs an ECADD operation each time the current digit d[i]
is 1, hence with probability 1/2. An ECDBL operation is performed in each
iteration. Therefore, the left-to-right binary method on average requires

n ECDBL + n ·
1

2
ECADD

operations to compute a scalar multiplication dP , where the scalar is repre-
sented in the binary representation.

Example 4.2. Let d = 18 with binary representation (1, 0, 0, 1, 0). The follow-
ing figure shows the sequence of ECADD and ECDBL operations performed by
the left-to-right binary method to compute the scalar multiplication dP .

P

2P 4P 8P

9P

18PX ← O O

d

+P+P
·2·2

·2·2·2

11 0 0 0

23

4 Multi-Scalar Multiplication Algorithms

The left-to-right binary method can also be adjusted to work with D-
representations. Here, the addition with P is replaced by an addition with
t · P, t ∈ D and all those points have to be precomputed. The adjusted version
is shown in Algorithm 7.

Algorithm 7 General Left-to-Right Binary Method
Require: Point P ∈ E(Fp), n-bit scalar d in a D-representation X .
Ensure: Scalar multiplication dP
1: X ← O
2: Qt ← tP,∀t ∈ D \ {0}
3: for i = n − 1 down to 0 do

4: X ← ECDBL(X)
5: if d[i] 6= 0 then

6: X ← ECADD(X, Qd[i])
7: end if

8: end for

9: return X

The first step is to compute all points which might have to be added to the re-
sult (line 2). During runtime, Algorithm 7 performs an ECADD operation each
time the current digit d[i] is non-zero, hence with probability AHD(X). Also,
one ECDBL operation is performed in each iteration to double the intermediate
result. On average, the general left-to-right binary method requires

n · ECDBL + n · AHD(X) ECADD

operations to compute a scalar multiplication dP , where the scalar is repre-
sented in the D-representation X . Further, the precomputation of |D| − 2
points is required, which are all points of the form tP, t ∈ D \ {0, 1}.

Also in this case, additional ECADD and ECDBL operations are required for
the precomputation.

To compute a multi-scalar multiplication, each scalar multiplication is per-
formed separately and the results are summed up, which requires additional
(k − 1) ECADD operations. In the case of k scalars, the general left-to-right
binary method on average requires

n · k ECDBL + (n · k · AHD(X) + (k − 1)) ECADD

operations to compute a multi-scalar multiplication
∑k

j=1 djPj, where the
scalars are represented in a D-representation X . Further, the precomputation
of k · (|D| − 2) points is required.

4.1.3 Left-to-Right vs. Right-to-Left

In this section, the right-to-left binary method and the left-to-right binary
method are compared regarding their efficiency.

24

4.2 Interleave Method

While the basic versions of both methods (Algorithm 4 and 6) require the
same amount of ECADD and ECDBL operations, the right-to-left binary
method requires one additional register to store 2iP .

In the case of the general methods (Algorithm 5 and 7), the difference is more
drastic. The left-to-right binary method requires only one ECDBL operation
in each iteration, while the right-to-left binary method requires one ECDBL
operation for each precomputed point in each iteration. This means, that the
right-to-left binary method requires (|D| − 1) times more ECDBL operations
than its left-to-right counterpart.

Another advantage of the left-to-right binary method is, that the precom-
puted points for the ECADD step remain fixed during the whole runtime. It is
therefore possible to represent those points in affine coordinates and use mixed
coordinates for the ECADD step as introduced in Section 2.2.4. Since the only
suitable coordinate systems for the right-to-left binary method are Jacobian
or modified Jacobian coordinates, the ECADD step of the left-to-right binary
method can be executed 15% to 27% faster.

Summarizing, the left-to-right binary method is more efficient than the right-
to-left binary method, regardless of which representation of the scalars is used.
For that reason, the right-to-left binary method will not be investigated any
further. Instead, the next two sections introduce two enhancements of the
left-to-right binary method which are specifically designed for multi-scalar mul-
tiplications.

4.2 Interleave Method

The first enhancement of the left-to-right binary method is the Interleave
method proposed by Möller in [Möl01]. It aims for reducing the number of
ECDBL operations required for a multi-scalar multiplication, by performing
them simultaneously. Suppose d1P1 + d2P2 is to be computed. By using equa-
tion (4.2) it is possible to write

2 (2 (. . . 2 (2 (d1[n−1]P1) + d1[n−2]P1) + . . .) + d1[1]P1) + d1[0]P1

+ 2 (2 (. . . 2 (2 (d2[n−1]P2) + d2[n−2]P2) + . . .) + d2[1]P2) + d2[0]P2

= 2 (2 (. . . 2 (2 (d1[n−1]P1 + d2[n−1]P2) + d1[n−2]P1

+d2[n−2]P2) + . . .) + d1[1]P1 + d2[1]P2) + d1[0]P1 + d2[0]P2

In other words, first the intermediate result is doubled and then d1[i]P1 and
d2[i]P2 are added if the respective digit is different from zero. Of course, this
strategy can also be extended to an arbitrary number of points and scalars as
shown in Algorithm 8. Also, this algorithm is adjusted already to work with
D-representations.

25

4 Multi-Scalar Multiplication Algorithms

Algorithm 8 Interleave Method
Require: Points Pj ∈ E(Fp), n-bit scalars dj in a D-representation X , j = 1, . . . , k.

Ensure: Multi-scalar multiplication
∑k

j=1 djPj

1: X ← O
2: for i = n − 1 down to 0 do

3: X ← ECDBL(X)
4: for j = 1 to k do

5: if dj [i] 6= 0 then

6: X ← ECADD(X, dj [i]Pj)
7: end if

8: end for

9: end for

10: return X

Since it would be far to costly to compute the points tPj, t ∈ D \ {0, 1}, j =
1, . . . , k required in line 6 anew every time they occur, they are precomputed
and stored.

Algorithm 8 requires only one ECDBL operation in each iteration, which
reduces the total number of ECDBL operations required by a factor k, compared
to the left-to-right binary method. Also, the (k−1) ECADD operations to add
the final results are saved. In total, the Interleave method on average requires

n ECDBL + n · k · AHD(X) ECADD

operations to compute a multi-scalar multiplication
∑k

j=1 djPj, where the
scalars are represented in a D-representation X . Further, the precompu-
tation of k · (|D| − 2) points is required, which are all points of the form
tPj, t ∈ D \ {0, 1}, j = 1, . . . , k.

Example 4.3. Let d1 = 18, d2 = 3 with binary representations (1, 0, 0, 1, 0) and
(0, 0, 0, 1, 1), respectively. The following figure shows the sequence of ECADD
and ECDBL operations performed by the Interleave method to compute the
multi-scalar multiplication d1P1 + d2P2.

P1

2P1 4P1 8P1

9P1

9P1 + P2

18P1 + 2P2

18P1 + 3P2

X ← O O

d1

d2

+P1 +P1

+P2+P2

·2

·2

·2·2·2

11

1 1

0 0 0

0 00

26

4.3 Shamir Method

In general, the Interleave method requires

n ECDBL + n ECADD

operations to compute a multi-scalar multiplication d1P1 +d2P2, where the n-bit
scalars d1, d2 are represented in their binary representation. In this case, no
points have to be precomputed.

4.3 Shamir Method

In this section, a further improvement of the left-to-right binary method is
introduced. Although this method was proposed by ElGamal in [ElG85], it is
known by the name Shamir method since it was described with a reference to
Shamir.

The idea is to perform not only the ECDBL operations simultaneously, but
also the ECADD operations. In other words, the second for-loop of the inter-
leave method is computed by using only one ECADD operation. Algorithm 9
shows the Shamir method adjusted already for D-representations and an arbi-
trary number of scalars.

Algorithm 9 Shamir Method
Require: Points Pj ∈ E(Fp), n-bit scalars dj in a D-representation X , j = 1, . . . , k.

Ensure: Multi-scalar multiplication
∑k

j=1 djPj

1: X ← O
2: for i = n − 1 down to 0 do

3: X ← ECDBL(X)
4: if (d1[i], . . . , dk[i]) 6= (0, . . . , 0) then

5: X ← ECADD(X, d1[i]P1 + . . . + dk[i]Pk)
6: end if

7: end for

8: return X

Since Algorithm 9 performs only one ECADD operation in each iteration
(line 5), all points of the form t1P1 + . . .+ tkPk, where t1, . . . , tk ∈ Dk, such that
at least two of the tj are different from zero must be precomputed and stored.

The Shamir method performs an ECADD operation each time the current
column (d1[i], . . . , dk[i]) is non-zero. An ECDBL operation is performed in each
iteration. Therefore, the Shamir method on average requires

n ECDBL + n · AJHDk(X) ECADD

operations to compute a multi-scalar multiplication
∑k

j=1 djPj, where the
scalars are represented in a D-representation X . Further, the precomputation
of |D|k−1−k points is required, which are all points of the form t1P1+. . .+tkPk,
where t1, . . . , tk ∈ Dk, such that at least two of the tj are different from zero.

27

4 Multi-Scalar Multiplication Algorithms

Example 4.4. Let d1 = 18, d2 = 3 with binary representations (1, 0, 0, 1, 0) and
(0, 0, 0, 1, 1), respectively. The following figure shows the sequence of ECADD
and ECDBL operations performed by the Shamir method to compute the multi-
scalar multiplication d1P1 + d2P2.

P1

2P1 4P1 8P1

9P1 + P2

18P1 + 2P2

18P1 + 3P2

X ← O O

d1

d2

+P1 +P2+(P1 + P2) ·2·2

·2·2·2

11

1 1

0 0 0

0 00

In general, the Shamir method requires

n ECDBL + n ·
3

4
ECADD

operations to compute a multi-scalar multiplication d1P1 +d2P2, where the n-bit
scalars d1, d2 are represented in their binary representation. Also, the single
point P1 + P2 has to be precomputed.

This shows, that compared to the Interleave method, 1/4 of the ECADD op-
erations can be saved at the cost of one precomputed point.

4.4 Elliptic Curves and Precomputation

So far, two algorithms specifically designed for multi-scalar multiplications were
introduced. As it turned out, the precomputation of several points is required
by both algorithms, depending on the D-representation used for the scalars.
This section considers how the number of points to precompute can be reduced
in the case of elliptic curves.

Contrary to prime fields where inversions are very costly, inversions of points
on an elliptic curve can be computed virtually for free. As explained in Section
2.1, the inverse of a point P = (x, y) ∈ E(Fp) is given as −P = (x,−y).
This means that the inverse of P is obtained just by changing the sign of the
y-coordinate. This fact can be exploited to reduce the number of points to
precompute drastically if the scalars are represented in a signed representation
[MO90].

Suppose d1P1+d2P2 is to be computed, where the scalars are represented in a
signed binary representation, i.e. D = {0,±1}. Usually, the Interleave method
would require the precomputation of the two points −P1 and −P2. Both those
points are inverses of known points (P1, P2) and can therefore be obtained at
negligible costs. For that reason the points are not precomputed and stored,

28

4.5 Lim-Lee Combing

but computed anew by an on-the-fly inversion each time they are required by
the Interleave method.

To compute d1P1+d2P2 with the Shamir method, usually the precomputation
of the six points −P1,−P2, P1+P2,−P1−P2, P1−P2,−P1+P2 would be required.
Here it is sufficient to precompute the two points P1 + P2 and P1 − P2. Then,
the remaining four points (−P1,−P2,−P1−P2,−P1 +P2) are inverses of known
points and can therefore be obtained by an on-the-fly inversion during runtime.

This shows, that in the case of two scalars given in a signed binary represen-
tation, the number of points to precompute can be reduced from two to zero in
the case of the Interleave method and from six to two in the case of the Shamir
method.

In the general case of k scalars, given in a signed representation, the number
of points to precompute for the Interleave method can be reduced from

k · (|D| − 1) − k to k ·
(|D| − 1)

2
− k

and the number of points to precompute for the Shamir method can be reduced
from

|D|k − 1 − k to
|D|k − 1

2
− k.

In total this means, that when using signed representations of the scalars,
the number of points to precompute can be reduced by more than 50%. This
not only reduces the memory required to store those points, but also the num-
ber of ECADD and ECDBL operations which are required to compute those
points. Yet another advantage of elliptic curves in conjunction with resource
constrained devices.

4.5 Lim-Lee Combing

By examining the operations required by the cryptosystems introduced in Sec-
tion 2.4, it turns out that the majority of the scalar multiplications involve only
one scalar. To legitimate the generalization to an arbitrary number of scalars,
this section introduces an efficient method to convert a single scalar multiplica-
tion dP to a multi-scalar multiplication

∑k
j=1 djPj. This method was proposed

by Lim and Lee in [LL94] and is therefore often referred to as Lim-Lee combing.

The Lim-Lee combing method is based on the observation that an n-bit scalar
d can be divided into two parts d1, d2 of bit length n/2 such that d = 2n/2d1 +d2

holds. Then, a scalar multiplication dP can be written as d1P1 + d2P2, where
P1 = 2n/2P and P2 = P .

In general, the scalar d is divided into k parts d1, . . . , dk each with bit length
a = n/k. If n is no multiple of k, the scalar is padded with zeros to the left as

29

4 Multi-Scalar Multiplication Algorithms

required. Then, dP can be written as

dP = d12
a(k−1)P + d22

a(k−2)P + . . . + dk−12
aP + dkP

= d1P1 + d2P2 + . . . + dk−1Pk−1 + dkPk

=
k∑

j=1

djPj

and an algorithm for multi-scalar multiplication like the Interleave method or
the Shamir method can be applied.

Before that, the k points Pj = 2a(k−j), j = 1, . . . , k have to be precomputed
which requires n−n/k ECDBL operations. However, this does not increase the
total costs for the multi-scalar multiplication considerably, since the bit length of
each of the scalars d1, . . . , dk is only n/k. Therefore, both the Interleave method
and the Shamir method require only n/k ECDBL operations to compute the
multi-scalar multiplication. Only in the case where the bit length of the original
scalar d is not a multiple of k, k·dn/ke−n extra ECDBL operations are required.

30

5 Low-Weight Representations

In the last chapter, two efficient methods to compute a multi-scalar multiplica-
tion were introduced. On the one hand, it turned out that the required number
of ECDBL operations is always n, independent of the number of scalars involved
and the D-representation used. On the other hand, the required number of
ECADD operations depends on the AHD or the AJHD of the D-representation
used for the scalars. It is therefore possible to save ECADD operations by
deploying the scalars in D-representations with a low AHD or AJHD. It also
turned out, that the number of points which have to be precomputed can be
more than halved, if the scalars are represented in a signed representation.

In this section, two D-representations are introduced. One that provides a low
AHD and can therefore speed up the Interleave method and one that provides
a low AJHD and can therefore speed up the Shamir method. In addition, both
presented D-representations are signed representations.

In general, the process of generating a D-representation, i.e. rewriting the
scalar is called recoding. One way to recode scalars are so-called window meth-
ods. Here, the binary representation of the scalar is divided into several parts,
the windows. Then, each window is recoded independently of the other win-
dows (see [Gor98] for an overview). A more sophisticated approach are sliding
window methods. Here, the positions and the lengths of the windows are not
fixed, but depend on the structure of the scalar. Both methods reviewed in this
chapter are sliding window methods.

5.1 The width-w Non Adjacent Form

The width-w Non Adjacent Form (wNAF) is a D-representation, that provides
a low AHD and can therefore speed up the Interleave method. It was inde-
pendently proposed by Solinas in [Sol00] and by Blake, Seroussi and Smart in
[BSS99]. The basic idea of the wNAF was first proposed by Miyaji, Ono and
Cohen in [MOC97]. The definition of the wNAF as stated in [Sol00] is reviewed
in Definition 5.1. Throughout this section, w ≥ 2 is assumed.

Definition 5.1. The vector (δ[n], δ[n−1], ..., δ[0]) is called a wNAF, if and only
if the following three properties hold.

wNAF-1 The most significant non-zero bit is positive.

31

5 Low-Weight Representations

wNAF-2 Among any w consecutive digits, at most one is non-zero.

wNAF-3 Each non-zero digit is odd and less than 2w−1 in absolute value.

According to this definition, the digit set used by the wNAF is given as
Dw = {0,±1,±3, . . . ,±2w−1−1} and consists of odd numbers only. In [MS04a]
Muir and Stinson proved the following two properties of the wNAF.

1. Each scalar has a unique wNAF.

2. The wNAF of a scalar is at most one bit longer than its binary represen-
tation.

Algorithm 10 describes the generation of the wNAF from the decimal repre-
sentation as stated [Sol00]. This algorithm uses the signed modulo operation.

Definition 5.2. The signed modulo operation a mods b is defined as a mod b
and −b/2 ≤ a < b/2, the residue with smallest absolute value.

Algorithm 10 Decimal to wNAF
Require: Width w, an n-bit scalar d in its decimal representation.
Ensure: The wNAF (δ[n], δ[n−1], . . . , δ[0]) of d.
1: i ← 0
2: while d ≥ 1 do

3: if d is even then

4: δ[i] ← 0
5: else

6: δ[i] ← d mods 2w

7: d ← d − δ[i]
8: end if

9: d ← d/2
10: i ← i + 1
11: end while

12: return (δ[n], δ[n−1], ..., δ[0]).

Note, that d is odd each time a signed modulo operation is performed. There-
fore, the absolute value of the result is always odd and ≤ 2w−1−1, i.e. an element
of the digit set.

Remark 5.3. For w = 2, Algorithm 10 produces the same output as Reitwies-
ner’s famous algorithm to generate the Non Adjacent Form (NAF) [Rei60]. In
other words: 2NAF equals NAF.

The wNAF can also be generated from the binary representation of the scalar
d as shown in Example 5.5. Here, the scalar is scanned bitwise, starting at the
least significant bit. If the current bit d[i] is zero, δ[i] is set to zero and the scan

32

5.1 The width-w Non Adjacent Form

continues. If d[i] = 1 holds, the algorithm examines a window of w bits, namely
(d[i+w−1], . . . , d[i]). δ[i] is set to the decimal value of the current window mods
2w and (δ[i+w−1, . . . , δ[i+1]) is set to (0, . . . , 0). If δ[i] < 0 holds, 1 is added
to the remaining binary representation of the scalar, i.e. (d[n−1], . . . , d[i+w])
is set to (d[n−1], . . . , d[i+w]) + 1. This is justified by the following lemma.

Lemma 5.4. Let (d[w−1], . . . , d[0]) be the binary representation of an odd scalar
d < 2w. Further let r ≡ d mods 2w. There are two cases:

(r > 0) : (0, . . . , 0
︸ ︷︷ ︸

w−1

, r) has the same decimal value as (d[w−1], . . . , d[0]).

(r < 0) : (1, 0, . . . , 0
︸ ︷︷ ︸

w−1

, r) has the same decimal value as (d[w−1], . . . , d[0]).

Proof. At first, d odd implies that r is also odd, since 2w is even.

(r > 0) : This implies that r = d, since d < 2w. Therefore r =
w−1∑

i=0

d[i] · 2i = d.

(r < 0) : This implies that r = d − 2w ⇔ r + 2w = d, since d < 2w. Therefore

2w + r =
w−1∑

i=0

d[i] · 2i = d.

This construction also clarifies that the resulting representation satisfies the
property wNAF-2. The 1’s which have to be added to the remaining binary
representation are called carry bits, because they carry out of the current win-
dow. Those carry bits are the reason why the wNAF of a scalar can be one bit
longer than its binary representation, namely if a carry bit appears in the last
window (d[n−1], . . . , d[n−w]).

Example 5.5. Let d = 619 with binary representation (1, 0, 0, 1, 1, 0, 1, 0, 1, 1)
and w = 3. The 3NAF of d is generated as follows

1 0 0 1 1 0 1 0 1 1
︸ ︷︷ ︸

1 0 0 1 1 0 1 0 0 3
︸ ︷︷ ︸

1 0 0 3̄

1 0 1 0
︸︷︷︸

1 0 1 0
︸ ︷︷ ︸

1 0 0 3̄

1 0 0 3̄ 0 0 0 3̄ 0 0 3

Hence, the 3NAF of 619 is given as (1, 0, 0, 3̄, 0, 0, 0, 3̄, 0, 0, 3).

33

5 Low-Weight Representations

Theorem 5.6. The AHD of the wNAF is

AHD(wNAF) =
1

w + 1

Proof. Recall that the AHD is the average density of non-zero digits of a ran-
domly chosen wNAF with bit length n → ∞. This density is given as the
average number of non-zero digits divided by the average number of digits writ-
ten out by the algorithm to generate the wNAF. Two cases exist:

d[i] = 0 : In this case only one digit is written out, which is zero.

d[i] = 1 : In this case w digits are written out, one non-zero and w − 1 zero.

The cases mentioned above appear each with a probability of 1/2. Those prob-
abilities are also correct after a carry bit was generated, since this also happens
with probability 1/2. Therefore, the AHD is given as

AHD(wNAF) =
1
2
· 0 + 1

2
· 1

1
2
· 1 + 1

2
· w

=
1

w + 1

Table 5.1 shows some example values of the AHD of the wNAF for different
values of w.

w AHD(wNAF)

2 1/3 ≈ 0.3333
3 1/4 = 0.2500
4 1/5 = 0.2000
5 1/6 ≈ 0.1667
6 1/7 ≈ 0.1429

Table 5.1: Example values of AHD(wNAF)

In [MS04a], Muir and Stinson also proved that the HW of a scalar given
in its wNAF is minimal for any choice of w. This implies, that the AHD of
the wNAF is minimal amongst all D-representations which use the digit set
Dw = {0,±1,±3, . . . ,±2w−1 − 1}. Therefore, no other D-representation using
this digit set provides fewer non-zero digits than the wNAF.

34

5.2 The Joint Sparse Form

5.2 The Joint Sparse Form

The Joint Sparse Form (JSF) is a D-representation, that provides a low AJHD
and can therefore speed up the Shamir method. It was originally proposed by
Solinas in [Sol01] to recode two scalars. In [Pro03], Proos generalized the JSF
to an arbitrary number of scalars. Here, the goal is to generate zero columns
in the matrix 






d1[n−1] . . . d1[0]
d2[n−1] . . . d2[0]

...
...

dk[n−1] . . . dk[0]








which consists of the binary representations of the scalars d1, . . . , dk. The defi-
nition of the JSF as stated in [Pro03] is reviewed in Definition 5.7.

Definition 5.7. The matrix







δ1[n] δ1[n−1] . . . δ1[0]
δ2[n] δ2[n−1] . . . δ2[0]

...
...

...
δk[n] δk[n−1] . . . δk[0]








where δj[i] ∈ D = {0,±1} for i = 0, . . . , n, j = 1, . . . , k is called a JSF, if and
only if the following three properties hold.

JSF-1 For each non-zero column i, there exists a row (δj[n], δj[n−1], . . . , δj[0])
such that

1. dj[i] 6= 0

2. Either i = 0 or there exists an b < i such that δj[i−1] = δj[i−2] =
. . . = δj[b] = 0 and either b = 0 or the (b − 1)-st column is a zero
column.

JSF-2 No consecutive bits are 11̄ or 1̄1.

JSF-3 If there exists a row (δj[n], δj[n−1], . . . , δj[0]) and integers i, b such that
b < i, δj[i+1] 6= δj[i] and δj[i] = δj[i−1] = . . . δj[b] 6= 0 then the (i + 1)-st
column is a zero column.

According to this definition, the JSF uses the digit set D = {0,±1} and is
therefore a signed binary representation. Further, the JSF has the following
properties as proven in [Pro03].

1. Each k scalars have a unique JSF.

2. The JSF of k scalars is at most one bit longer than the binary represen-
tation of the largest scalar.

35

5 Low-Weight Representations

Efficient algorithms to generate the JSF can be found in [Pro03] and
[HKPR04]. However, those algorithms are long and complicated and there-
fore not copied here. Instead, the basic idea of generating a JSF is explained
with the following two lemmata.

Lemma 5.8. Let (0, d[n−1], . . . , d[1], 1) be the binary representation of an odd
scalar d < 2n. There exists a signed binary representation (δ[n], δ[n−1], . . . , δ[0])
of d such that δ[n−1] = 0.

Proof. If d[n−1] = 0 nothing has to be done, i.e.

(δ[n], δ[n−1], . . . , δ[0]) ← (0, d[n−1], . . . , d[1], 1).

If d[n−1] = 1 set

(δ[n], δ[n−1], . . . , δ[1], δ[0]) ← (1, d[n−1] − 1, . . . , d[1] − 1, 1̄).

This yields a signed binary representation of d, since

n∑

i=0

δ[i] · 2i = −1 +
n−1∑

i=1

(d[i] − 1) · 2i + 2n

= −1 +
n−1∑

i=1

d[i] · 2i −
n−1∑

i=1

2i + 2n

= −1 +
n−1∑

i=1

d[i] · 2i − (2n − 2) + 2n

= 1 +
n−1∑

i=1

d[i] · 2i

and d[0] = 1.

The following lemma generalizes Lemma 5.8 and shows how it can be applied
successively to a scalar.

Lemma 5.9. Let (δ[n], δ[n−1], . . . , δ[0]) be a signed binary representation of
the scalar d < 2n, such that for some integer a, δ[i] ∈ {0, 1} for i = a, . . . , n.

Then for all b ∈ {a+1, . . . , n− 1} a similar transformation as in Lemma 5.8
can be used to form a signed binary representation (δ[n]′, δ[n−1]′, . . . , δ[0]′) of
d, such that

1. δ[i]′ = δ[i] for i = 0, . . . , a − 1

2. δ[b]′ = 0

3. δ[i]′ ∈ {0, 1} for i = b + 1, . . . , n

36

5.2 The Joint Sparse Form

if either δ[b] = 0 or there exists an w ∈ {a, . . . b − 1} such that δ[w] = 1. Such
a transformation will be referred to as an elementary transformation.

Proof. If δ[b] = 0 nothing has to be done, i.e.

(δ[n]′, . . . , δ[0]′) ← (δ[n], . . . , δ[0]).

If δ[b] = 1, choose an w ∈ {a, . . . b − 1} such that δ[w] = 1 holds and set

(δ[n]′, . . . , δ[b+1]′) ← (δ[n], . . . , δ[b+1]) + 1

(δ[b]′, . . . , δ[w+1]′, δ[w]′) ← (δ[b] − 1, . . . , δ[w+1] − 1, 1̄)

(δ[w−1]′, . . . , δ[0]′) ← (δ[w−1], . . . , δ[0])

This yields a signed binary representation of d, since

n∑

i=0

δ[i]′ · 2i =
w−1∑

i=0

δ[i]′ · 2i +
b∑

i=w

δ[i]′ · 2i +
n∑

i=b+1

δ[i]′ · 2i

=
w−1∑

i=0

δ[i] · 2i − 2w +
b−1∑

i=w+1

(δ[i] − 1) · 2i +
n∑

i=b+1

δ[i] · 2i + 2b+1

=
w−1∑

i=0

δ[i] · 2i − 2w +
b−1∑

i=w+1

δ[i] · 2i

−
b−1∑

i=w+1

2i +
n∑

i=b+1

δ[i] · 2i + 2b+1

=
w−1∑

i=0

δ[i] · 2i − 2w +
b−1∑

i=w+1

δ[i] · 2i

−(2b − 2w+1) +
n∑

i=b+1

δ[i] · 2i + 2b+1

=
w−1∑

i=0

δ[i] · 2i + 2w +
b−1∑

i=w+1

δ[i] · 2i + 2b +
n∑

i=b+1

δ[i] · 2i + 2b+1

=
n∑

i=0

δ[i] · 2i

and d[b] = 1 = d[w].

37

5 Low-Weight Representations

Example 5.10. Let (0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1) be the binary representation of
d = 731 padded with one zero to the left. The following table shows how ele-
mentary transformations can be applied starting at the least significant bit. The
entry d[b] is marked bold.

(d[10], . . . , d[0]) a b w

(0, 1, 0, 1, 1, 0, 1,1, 0, 1, 1) 0 3 0
(0, 1, 0, 1,1, 1, 0, 0, 1̄, 0, 1̄) 3 6 5
(0,1, 1, 0, 0, 1̄, 0, 0, 1̄, 0, 1̄) 6 9 8
(1, 0, 1̄, 0, 0, 1̄, 0, 0, 1̄, 0, 1̄)

Here, the choices for b and w are made arbitrarily. For example, it is also
possible to apply the first elementary transformation with b = 3 and w = 1,
which yields (0, 1, 0, 1, 1, 1, 0, 0, 1̄, 1̄, 1).

The above lemmata and the example also clarify, why the JSF can be at most
one bit longer than the original binary representation. If (δ[n]′, . . . , δ[b+1]′) is
set to (δ[n], . . . , δ[b+1]) + 1, this addition can carry over the most significant
bit of the binary representation (d[n − 1]) and d[n] becomes 1.

The algorithm to generate the JSF works as follows. Consider the matrix







0 d1[n−1] . . . d1[0]
0 d2[n−1] . . . d2[0]
...

...
...

0 dk[n−1] . . . dk[0]








which consists of the binary representations of the scalars and one zero column
to the left. The columns of this matrix are denoted by Cn, Cn−1, . . . , C0. Fur-
ther, an index a is required which denotes the current column. At first, a is set
to 0.

The algorithm starts scanning, beginning at the a-th column, until it finds the
smallest block of columns Cr, . . . , Ca, such that an elementary transformation
with b = r can be applied to all rows (dj[r], . . . , dj[a]), j = 1, . . . , k. Such
blocks are called convertible blocks. In other words, the algorithm searches for
the smallest r which satisfies

1. r ≥ a

2. For each j = 1, . . . , k, either dj[r] = 0 or there exists an w ∈ {a, . . . , r−1},
such that dj[w] = 1.

Then, an elementary transformation is applied to each row and Cr becomes a
zero column. Next, the algorithm sets a ← r + 1 and continues the scan.

After the algorithm terminates, the matrix satisfies the property JSF-1
[Pro03]. In a second stage, the algorithm applies certain replacements to ensure
that the scalars also satisfy the properties JSF-2 and JSF-3, which guarantee
the uniqueness. The replacements are

38

5.2 The Joint Sparse Form

1. Replace (1̄, 1) with (0, 1̄) and (1, 1̄) with (0, 1) whenever possible.

2. If there exists a row (δj[n], δj[n−1], . . . , δj[0]) and integers i, b such that
b < i, δj[i+1] = 0, the i + 1-th column is no zero column and δj[i] =
δj[i−1] = . . . δj[b] = 1 or δj[i] = δj[i−1] = . . . δj[b] = 1̄ then replace
(dj[i+1], . . . , dj[b]) with (1, 0, . . . , 0, 1̄) or (1̄, 0, . . . , 0, 1), respectively.

Also, both those replacements are applied starting at the least significant bit.

Example 5.11. This example shows how the algorithm generates the JSF of
the four scalars d1 = 2716, d2 = 801, d3 = 3742 and d4 = 3395. The convertible
blocks are marked bold.







0 1 0 1 0 1 0 0 1 1 1 0 0

0 0 0 1 1 0 0 1 0 0 0 0 1

0 1 1 1 0 1 0 0 1 1 1 1 0

0 1 1 0 1 0 1 0 0 0 0 1 1













0 1 0 1 0 1 0 1 0 0 1̄ 0 0
0 0 0 1 1 0 0 1 0 0 0 0 1
0 1 1 1 0 1 0 1 0 0 1̄ 1 0
0 1 1 0 1 0 1 0 0 0 0 1 1













0 1 0 1 0 1 0 1 0 0 1̄ 0 0
0 0 0 1 1 0 0 1 0 0 0 0 1
0 1 1 1 0 1 0 1 0 0 1̄ 1 0
0 1 1 0 1 0 1 0 0 0 0 1 1













0 1 0 1 1 0 1̄ 1̄ 0 0 1̄ 0 0
0 0 0 1 1 0 0 1 0 0 0 0 1
0 1 1 1 1 0 1̄ 1̄ 0 0 1̄ 1 0
0 1 1 0 1 0 1 0 0 0 0 1 1













0 1 1 0 1̄ 0 1̄ 1̄ 0 0 1̄ 0 0
0 0 1 0 1̄ 0 0 1 0 0 0 0 1
1 0 0 0 1̄ 0 1̄ 1̄ 0 0 1̄ 1 0
0 1 1 0 1 0 1 0 0 0 0 1 1







The next step is to apply the replacements to ensure JSF-2 and JSF-3. The
entries to replace are marked bold.







1 0 1̄ 0 1̄ 0 1̄ 1̄ 0 0 1̄ 0 0
0 0 1 0 1̄ 0 0 1 0 0 0 0 1
1 0 0 0 1̄ 0 1̄ 1̄ 0 0 1̄ 1 0
1 0 1̄ 0 1 0 1 0 0 0 0 1 1







39

5 Low-Weight Representations

After applying those replacements, the JSF of the scalars d1, . . . , d4 is given as







1 0 1̄ 0 1̄ 0 1̄ 1̄ 0 0 1̄ 0 0
0 0 1 0 1̄ 0 0 1 0 0 0 0 1
1 0 0 0 1̄ 0 1̄ 1̄ 0 0 0 1̄ 0
1 0 1̄ 0 1 0 1 0 0 0 1 0 1̄







The original algorithm proposed by Proos in [Pro03] can generate the JSF
from any signed binary representation of the scalars. The difference is, that
his algorithm is using a generalized elementary transformation, which can also
be applied to signed binary representations. However, since the scalars are
typically given in their binary representation, the above explained method is
sufficient.

The next step is to compute the AJHD of the JSF as stated in [Pro03].

Theorem 5.12. The AJHD of the JSF is

AJHDk(JSF) = 1 −
1

ck

,

where ck is given by the recursive formula

ck =
1

2k

(

3 +
k−1∑

j=1

(
k

j

)

(cj + 1)

)

and c1 = 1.5.

Proof. The first step is to find an upper bound of the AJHD. Recall that a block
of columns Cb, . . . , Ca is convertible, if for each row j = 1, . . . , k, there exists a
wj ∈ {a, . . . , b− 1} such that dj[wj] = 1. In the worst case, all those entries are
in different columns, i.e. w.l.o.g. w1 = a, w2 = a + 1, . . . , wk = a + k − 1. Then
the (a + k)-th column can be transformed to a zero column. This means, that
the algorithm has to scan at most k +1 columns to find a convertible block, i.e.
to generate one zero column and therefore 1/(k + 1) is an upper bound for the
AJHD.

The next step is to estimate the expected number of columns which have to
be scanned in order to generate one zero column. Let ck denote this number.
If k = 1, the a-th column is 0 or 1 each with probability 1/2. If d1[a] = 0 one
column has to be scanned. If d1[a] = 1, an elementary transformation can be
used to insure that the a+1-th column becomes zero and therefore two columns
have to be scanned. Hence, c1 = 1/2 · 1 + 1/2 · 2 = 3/2.

Now assume that c1, c2, . . . , ck−1 are known and consider ck. When a column
is scanned, exactly j of the k entries are 1 with probability

(
k
j

)
/2k. If all entries

are 0, only one column has to be scanned. If all entries are 1, the next column
can be transformed into a zero column and two columns have to be scanned. If

40

5.2 The Joint Sparse Form

j entries are are 1, the expected number of additional columns to scan is ck−j

and ck−j + 1 in total. Therefore

ck =
1

2k
· 1 +

(
k
1

)

2k
(ck−1 + 1) + . . . +

(
k

k−1

)

2k
(c1 + 1) +

1

2k
· 2

=
1

2k

(

3 +
k−1∑

j=1

(
k

j

)

(cj + 1)

)

The quotient 1/ck gives the average density of zero columns which are generated
and therefore

AJHDk(JSF) = 1 −
1

ck

Table 5.2 shows some example values of the AJHD of the JSF for different
values of k.

k AJHDk(JSF)

1 1/3 ≈ 0.3333
2 1/2 = 0.5000
3 23/39 ≈ 0.5897
4 115/179 ≈ 0.6424
5 4279/6327 ≈ 0.6763
6 152821/218357 ≈ 0.6998

Table 5.2: Example values of AJHDk(JSF)

According to this table, the JSF of one scalar has the same AHD as the
2NAF. In fact, the output of both algorithms is exactly the same.

In [Pro03], Proos also proved that the JHW of k scalars given in their JSF
is minimal. This implies, that the AJHD of the JSF is minimal amongst all
D-representations which use the digit set D = {0,±1}. Therefore, no other
D-representation using this digit set provides fewer non-zero columns than the
JSF.

41

6 Left-to-Right producible
Low-Weight Representations

In the last chapter, two D-representations which minimize the AHD of one
scalar and the AJHD of k scalars were introduced. One might therefore think
that the research in this direction is concluded. But there still remains an issue,
namely the direction in which the scalars are recoded. Both the wNAF and the
JSF can only be generated starting at the least significant bit, i.e. right-to-left.
This is due to the carry bit, which is generated by both algorithms.

The problem with right-to-left recoding is, that the algorithms to compute
the multi-scalar multiplication start the evaluation at the most significant bit,
i.e. left-to-right (see Section 4.1.3). If the scalars are to be represented in the
wNAF or the JSF, the recoding has to be done in a separate step, prior to
the evaluation. Hence, it is necessary to store the whole recoded scalars, which
requires memory of the order of magnitude of n bits for each scalar.

Recently, a solution for this problem was found. The idea is to recode the
scalars starting at the most significant bit, i.e. left-to-right. Then it becomes
possible to merge the recoding of the scalars and the evaluation of the multi-
scalar multiplication, by recoding only small portions of the scalars at once.
Instead of storing the whole recoded scalars, only the recoded portions must be
stored, which leads to a significant saving of memory.

The D-representations introduced in this chapter are left-to-right duals of
the D-representations introduced in the last chapter. This means, that they
use the same digit set and provide the same, minimal AHD and AJHD as the
wNAF and the JSF, respectively. The key to left-to-right producible low-weight
representations is a special signed binary representation introduced in the next
section.

6.1 The Mutual Opposite Form

The Mutual Opposite Form (MOF) was proposed by Okeya, Schmidt-Samoa,
Spahn and Takagi in [OSST04]. It is also known by the name Alternating Greedy
Expansion as proposed by Grabner, Heuberger, Prodinger and Thuswaldner in
[GHPT03]. The definition of the MOF as stated in [OSST04] is reviewed in
Definition 6.1.

42

6.1 The Mutual Opposite Form

Definition 6.1. The vector (µ[n], µ[n−1], ..., µ[0]), where µ[i] ∈ D = {0,±1}
for i = 0, . . . , n is called a MOF, if and only if the following two properties
hold.

MOF-1 The signs of adjacent non-zero digits (without considering zeros) are
opposite.

MOF-2 The most significant non-zero digit is 1 and the least significant non-
zero digit is −1.

According to this definition, the MOF uses the digit set D = {0,±1} and is
therefore a signed binary representation. Also, the two following properties of
the MOF were proven in [OSST04].

1. Each scalar has a unique MOF.

2. The MOF of a scalar is at most one bit longer than its binary represen-
tation.

Interestingly, the MOF of a scalar d can be generated by the bitwise subtrac-
tion 2d º d, as proven in [OSST04]. Algorithm 11 represents the left-to-right
generation of the MOF from the binary representation.

Algorithm 11 Binary to MOF
Require: An n-bit scalar d in its binary representation (d[n−1], . . . , d[0]).
Ensure: The MOF (µ[n], µ[n−1], . . . , µ[0]) of d.
1: µ[n] ← d[n−1]
2: for i = n−1 down to 1 do

3: µ[i] ← d[i−1] − d[i]
4: end for

5: µ[0] ← −d[0]
6: return (µ[n], µ[n−1], ..., µ[0]).

In order to generate one MOF digit, Algorithm 11 requires only two consec-
utive binary digits. Therefore each MOF digit can be generated independently
from other digits, which is clarified by the following example. In particular, the
MOF can also be generated from right-to-left.

Example 6.2. Let d = 3749. The MOF of d is generated from the binary
representation of d as follows

1 1 1 0 1 0 1 0 0 1 0 1 0 2d
º 1 1 1 0 1 0 1 0 0 1 0 1 d

1 0 0 1̄ 1 1̄ 1 1̄ 0 1 1̄ 1 1̄

Hence, the MOF of d = 3749 is given as (1, 0, 0, 1̄, 1, 1̄, 1, 1̄, 0, 1, 1̄, 1, 1̄).

43

6 Left-to-Right producible Low-Weight Representations

Theorem 6.3. The AHD of the MOF is

AHD(MOF) =
1

2

Proof. The i-th MOF digit µ[i] is computed as d[i− 1] − d[i]. Without consid-
ering the most and least significant bit,

µ[i] = 0 ⇔ (d[i], d[i−1]) = (1, 1) ∨

(d[i], d[i−1]) = (0, 0)

µ[i] 6= 0 ⇔ (d[i], d[i−1]) = (0, 1) ∨

(d[i], d[i−1]) = (1, 0)

holds each with a probability of 1/2. From this, it immediately follows that
AHD(MOF) = 1/2.

Remark 6.4. The MOF equals the recoding performed by the classical Booth
algorithm [Boo51] to speed up the binary multiplication A ·B. The Booth algo-
rithm successively scans two consecutive bits of the multiplier A from right-to-
left. Depending on these bits, one of the following operations is performed:

(a[i], a[i−1]) = (1, 1) : No operation.

(a[i], a[i−1]) = (0, 0) : No operation.

(a[i], a[i−1]) = (0, 1) : Add B to the intermediate result.

(a[i], a[i−1]) = (1, 0) : Subtract B from the intermediate result.

where a[−1] is defined as 0.

6.2 The width-w Mutual Opposite Form

The width-w Mutual Opposite Form (wMOF) is a left-to-right dual of the wNAF
and can therefore be used to speed up the Interleave method. It was introduced
by Okeya, Schmidt-Samoa, Spahn and Takagi in [OSST04]. Similar representa-
tions were proposed by Muir and Stinson in [MS04b] and by Avanzi in [Ava04].
The definition of the wMOF as stated in [OSST04] is reviewed in Definition
6.5. Throughout this section, w ≥ 2 is assumed.

Definition 6.5. The vector (δ[n], δ[n−1], . . . , δ[0]) is called a wMOF if and
only if the following three properties hold:

wMOF-1 The most significant non-zero digit is positive.

44

6.2 The width-w Mutual Opposite Form

wMOF-2 All but the least significant non-zero digit x are adjoint by w−1 zeros
as follows:

• In the case of 2k−1 < |x| < 2k for an integer 2 ≤ k ≤ w − 1, the
pattern equals 0 . . . 0

︸ ︷︷ ︸

k

x 0 . . . 0
︸ ︷︷ ︸

w−k−1

,

• In the case of |x| = 1, either the pattern equals x 0 . . . 0
︸ ︷︷ ︸

w−1

and the next

lower non-zero digit has the opposite sign of x or the pattern equals
0x 0 . . . 0

︸ ︷︷ ︸

w−2

and the next lower non-zero digit has the same sign as x.

If x is the least significant non-zero digit, it is possible that the number
of right-hand adjacent zeros is smaller than stated above. In addition, it
is not possible that the last non-zero digit is a 1 following any non-zero
digit.

wMOF-3 Each non-zero digit is odd and less than 2w−1 in absolute value.

According to this definition, the wMOF uses the same digit set as the wNAF,
namely all odd digits in Dw = {0,±1,±3, . . . ,±2w−1 − 1}. It is also shown in
[OSST04] that

1. Each scalar has a unique wMOF.

2. The wMOF of a scalar is at most one bit longer than its binary represen-
tation.

Algorithm 12 represents the algorithm to generate the wMOF (δ[n], . . . , δ[0])
of a scalar d from its MOF (µ[n], . . . , µ[0]), as stated in [OSST04]. The algo-
rithm scans the MOF bitwise, starting at the most-significant bit. If the current
MOF digit µ[i] is zero, δ[i] is set to zero and the scan continues. If µ[i] is differ-
ent from zero, a window consisting of w consecutive MOF digits is examined,
namely (µ[i], . . . , µ[i − w + 1]). Let µ[l] be the least significant non-zero entry
in this window, i.e. µ[l] 6= 0 and µ[b] = 0 for b = i − w + 1, . . . , l − 1. In this
case, δ[l] is set to the decimal value of the window and the remaining w − 1
digits are set to zero. Note, that the window is recoded without producing any
carry over.

The above explained transformation is always possible, because the largest
decimal value that can be represented using w consecutive MOF digits is 2w−1−
1, which corresponds to the MOF (1, 0, . . . , 0, 1̄). Therefore, the wMOF digit
δ[l] can be set to the decimal value of the current window without risking to
exceed the digit set Dw. This is the MOF’s great advantage over the binary
representation, where the largest decimal value that can be represented using w
bits is 2w − 1, namely (1, 1, . . . , 1). When using the binary representation, the

45

6 Left-to-Right producible Low-Weight Representations

case where the decimal value is larger that 2w−1−1 has to be treated separately,
which causes a carry over to the left, see Section 5.1.

To summarize, the fact that the decimal value of w consecutive MOF digits
is at most 2w−1 − 1 is the key feature that allows the wMOF to be generated
from left-to-right.

The algorithm to generate the wMOF as stated in [OSST04] doesn’t compute
the decimal value of the current window directly. Instead it utilizes a table Tw

where the conversions for all possible windows of length w, where the most
significant digit is non-zero, are stored. For example, the conversion table T4

looks as follows:

1000 → 1000 11̄10 → 0030 11̄01 → 0005 1001̄ → 0007

1̄000 → 1̄000 1̄11̄0 → 003̄0 1̄101̄ → 0005̄ 1̄001 → 0007̄

11̄00 → 0100 101̄0 → 0030 11̄11̄ → 0005 101̄1 → 0007

1̄100 → 01̄00 1̄010 → 003̄0 1̄11̄1 → 0005̄ 1̄011̄ → 0007̄

This table also clarifies that the representation produced by Algorithm 12 sat-
isfies the property wMOF-2. In addition to the table Tw, Algorithm 12 also
requires the tables T2, . . . Tw−1 to convert the last couple of bits correctly. Effi-
cient methods to store and access this table were also proposed in [OSST04].

Algorithm 12 MOF to wMOF
Require: Width w, an n-bit scalar d in its MOF (µ[n], µ[n−1], . . . , µ[0]).
Ensure: The wMOF (δ[n], δ[n−1], . . . , δ[0]) of d.
1: i ← n
2: while i ≥ w − 1 do

3: if d[i] = 0 then

4: δ[i] ← 0
5: i ← i − 1
6: else

7: (δ[i], . . . , δ[i−w+1]) ← Tw(µ[i], . . . , µ[i−w+1])
8: i ← i − w
9: end if

10: end while

11: if i ≥ 0 then

12: (δ[i], . . . , δ[0]) ← Ti+1(µ[i], . . . , µ[0])
13: end if

14: return (δ[n], δ[n−1], ..., δ[0]).

The purpose of the second if-clause (line 11) is to convert the last couple
of digits correctly. Leading zeros in the window are also skipped in this case.
Since each MOF digit can be generated independently from any other MOF
digit, the wMOF can also be generated directly from the binary representation
of the scalar d, by generating the MOF digits on-the-fly as required [OSST04].

46

6.2 The width-w Mutual Opposite Form

Example 6.6. Let d = 619 and w = 3. The MOF of d is computed using
Algorithm 11 and given as (1, 1̄, 0, 1, 0, 1̄, 1, 1̄, 1, 0, 1̄). Algorithm 12 performs
the following steps to generate the 3MOF of d.

1 1̄ 0 1 0 1̄ 1 1̄ 1 0 1̄
︸ ︷︷ ︸

0 1 0 1 0 1̄ 1 1̄ 1 0 1̄
︸ ︷︷ ︸

0 0 3 1 1̄ 1 0 1̄
︸ ︷︷ ︸

0 0 3 0 1̄
︸ ︷︷ ︸

0 1̄

0 1 0 0 0 3 0 0 3 0 1̄

Hence, the 3MOF of 619 is given as (0, 1, 0, 0, 0, 3, 0, 0, 3, 0, 1̄).

Remark 6.7. Algorithm 12 can also be applied to the MOF of the scalar from
right-to-left. In this case, the result exactly equals the output of Algorithm 10.
Therefore, the MOF can also be used for a carry free generation of the wNAF
[OSST04].

Theorem 6.8. The AHD of the wMOF is

AHD(wMOF) =
1

w + 1

Proof. The AHD is the average density of non-zero digits of a randomly chosen
wMOF with bit length n → ∞. This density is given as the average number of
non-zero digits divided by the average number of digits written out by Algorithm
12. Two cases exist:

µ[i] = 0 : In this case only one digit is written out, which is zero.

µ[i] 6= 0 : In this case w digits are written out, one non-zero and w − 1 zero.

Since AHD(MOF) = 1/2, both cases appear each with a probability of 1/2.
Therefore, the AHD of the wMOF is given as

AHD(wMOF) =
1
2
· 0 + 1

2
· 1

1
2
· 1 + 1

2
· w

=
1

w + 1

Since the AHD of the wMOF is the same as the AHD of the wNAF, Table
5.1 is also valid for the wMOF.

In [Ava04], Avanzi proved that the HW of a scalar given in its wMOF is
minimal for any choice of w. This implies, that the AHD of the wMOF
is minimal amongst all D-representations which use the digit set Dw =
{0,±1,±3, . . . ,±2w−1 − 1}. Therefore, no other D-representation using this
digit set provides fewer non-zero digits than the wMOF.

47

6 Left-to-Right producible Low-Weight Representations

6.3 The Left-to-Right Joint Sparse Form

The Left-to-Right Joint Sparse Form (ltrJSF) is a left-to-right dual of the JSF
and can therefore be used to speed up the Shamir method. It was independently
proposed by Okeya, Takagi and the author of this thesis in [DOT05a] and by
Heuberger, Katti, Prodinger and Ruan in [HKPR04]. Here, the goal is to
generate zero columns in the matrix








µ1[n] µ1[n−1] . . . µ1[0]
µ2[n] µ2[n−1] . . . µ2[0]

...
...

...
µk[n] µk[n−1] . . . µk[0]








which consists of the MOF’s of the scalars. The ltrJSF is a signed binary
representation, i.e. it uses the digit set D = {0,±1} and its generation is based
on the following lemma.

Lemma 6.9. Let (µ[n], µ[n− 1], . . . , µ[0]) be the MOF of a non-zero scalar
d < 2n. There exists a signed binary representation (δ[n], δ[n−1], . . . , δ[0]) of
d, such that δ[b] = 0 for each b ∈ {0, . . . , n} \ {l}, where l is the index of the
least significant non-zero digit in the MOF of d, i.e. µ[l] 6= 0 and µ[i] = 0, for
i = 0, . . . , l − 1.

Proof. If µ[b] = 0 nothing has to be done, i.e.

(δ[n], . . . , δ[0]) ← (µ[n], . . . , µ[0]).

If µ[b] 6= 0, choose an w ∈ {l, . . . , b−1}, such that (µ[b], µ[b−1], . . . , µ[w+1], µ[w])
is equal to (1, 0, . . . , 0, 1̄) or (1̄, 0, . . . , 0, 1). Such a w always exists because of
the first MOF property (MOF-1). Then set

(δ[n], . . . , δ[b+1]) ← (µ[n], . . . , µ[b+1])

(δ[b], δ[b−1], . . . , δ[w]) ← (0, µ[b], . . . , µ[b])

(δ[w−1], . . . , δ[0]) ← (µ[w−1], . . . , µ[0])

In other words, one of the replacements

(0, 1, . . . , 1, 1) ← (1, 0, . . . , 0, 1̄)

(0, 1̄, . . . , 1̄, 1̄) ← (1̄, 0, . . . , 0, 1)

is applied to (µ[b], . . . , µ[w]). Since

2n − 1 = 2n−1 + 2n−2 + . . . + 2 + 1

those replacements are valid and because no other digits are changed by the
transformation, (δ[n], . . . , δ[0]) is indeed a signed binary representation of d.

48

6.3 The Left-to-Right Joint Sparse Form

Lemma 6.9 also shows, that the generation of the ltrJSF doesn’t generate
any carry bit. Hence, the transformation explained above can be applied suc-
cessively from left-to-right without further considerations.

Example 6.10. Let (1, 1̄, 1, 0, 1̄, 1, 0, 1̄, 1, 0, 1̄) be the MOF of d = 731. Here,
l = 0 holds and the following table shows how the transformation explained in
Lemma 6.9 can be applied successively. The entry d[b] is marked bold.

(δ[10], . . . , δ[0]) b w

(1, 1̄, 1, 0, 1̄, 1, 0, 1̄, 1, 0, 1̄) 10 9
(0, 1, 1, 0, 1̄, 1, 0, 1̄, 1, 0, 1̄) 6 5
(0, 1, 1, 0, 0, 1̄, 0, 1̄,1, 0, 1̄) 2 0
(0, 1, 1, 0, 0, 1̄, 0, 1̄, 0, 1, 1)

Here, the values for b were chosen arbitrarily. For example, it is also possible
to use b = 8 in the second step, which yields (0, 1, 0, 1, 1, 1, 0, 1̄, 1, 0, 1̄).

The algorithm to generate the ltrJSF of k scalars works as follows. Consider
the matrix 






µ1[n] µ1[n−1] . . . µ1[0]
µ2[n] µ2[n−1] . . . µ2[0]

...
...

...
µk[n] µk[n−1] . . . µk[0]








which consists of the MOF’s of the scalars. The columns of this matrix are
denoted by Cn, Cn−1, . . . , C0. Further, an index a is required which denotes the
current column. At first, a is set to n.

The algorithm starts scanning at the a-th column, until it finds the smallest
block of columns Ca, . . . , Cr such that a conversion as explained in lemma 6.9
can be applied to all rows (µj[a], . . . , µj[r]), j = 1, . . . , k for an b ∈ {r, . . . , a}.
Such blocks are called convertible blocks. In other words, the algorithm searches
for the largest r which satisfies

1. r ≤ a

2. There exists an b ∈ {r, . . . , a} such that for j = 1, . . . k either

a) µj[b] = 0 or

b) there exists an wj ∈ {lj, . . . , b − 1}, such that µj[wj] = −µj[b] and
µj[i] = 0, for i = wj + 1, . . . , b − 1.

Here, lj ∈ {r, . . . a} is again the index of the least significant non-zero digit
in the window (µj[a], . . . , µj[r]), meaning that µj[lj] 6= 0 and µj[i] = 0 for
i = r, . . . , lj − 1, j = 1, . . . , k.

49

6 Left-to-Right producible Low-Weight Representations

Then, the transformation explained in Lemma 6.9 is applied to all rows and
the b-th column becomes a zero column. Next, the algorithm sets a ← r − 1
and continues the scan.

According to Lemma 6.9, the value of b can be any value in the set

Z := {r, . . . , a} \ {l1, . . . , lk},

where lj is set to −1, if the row (µj[a], . . . , µj[r]) is all zero. If Z contains more
than one element, b is chosen as large as possible. Hence, a convertible block is
the smallest block of columns such that Z 6= ∅ holds. Algorithm 13 shows an
implementation of this strategy.

Algorithm 13 MOF to ltrJSF
Require: k n-bit scalars dj in their MOF (µj [n], µj [n−1], . . . , µj [0]), j = 1, . . . , k.
Ensure: The ltrJSF (δj [n], δj [n−1], ..., δj [0]) of the k scalars, j = 1, . . . , k.
1: a ← n
2: while a ≥ 0 do

3: r ← a
4: Z ← ∅
5: while Z = ∅ ∧ r ≥ 0 do

6: Z ← {r, . . . , a} \ {l1, . . . , lk}
7: if Z 6= ∅ then

8: b ← max{z : z ∈ Z}
9: for j = 1 to k do

10: if µj [b] = 0 then

11: (δj [a], . . . , δj [r]) ← (µj [a], . . . , µj [r])
12: else

13: (δj [a], . . . , δj [b+1]) ← (µj [a], . . . , µj [b+1])

14: (δj [b], δj [b−1], . . . , δj [wj]) ← (0, µj [b], . . . , µj [b])
15: (δj [wj−1], . . . , δj [r]) ← (µj [wj−1], . . . , µj [r])
16: end if

17: end for

18: else

19: r ← r − 1
20: end if

21: end while

22: a ← r − 1
23: end while

24: return (δj [n], δj [n−1], ..., δj [0]).

50

6.3 The Left-to-Right Joint Sparse Form

Example 6.11. This example shows how Algorithm 13 generates the ltrJSF of
the four scalars d1 = 2716, d2 = 801, d3 = 3742 and d4 = 3395. The convertible
blocks are marked bold.







1 1̄ 1 1̄ 1 1̄ 0 1 0 0 1̄ 0 0
0 0 1 0 1̄ 0 1 1̄ 0 0 0 1 1̄
1 0 0 1̄ 1 1̄ 0 1 0 0 0 1̄ 0
1 0 1̄ 1 1̄ 1 1̄ 0 0 0 1 0 1̄













1 0 1̄ 1̄ 1 1̄ 0 1 0 0 1̄ 0 0
0 0 1 0 1̄ 0 1 1̄ 0 0 0 1 1̄
1 0 0 1̄ 1 1̄ 0 1 0 0 0 1̄ 0
1 0 1̄ 1 1̄ 1 1̄ 0 0 0 1 0 1̄













1 0 1̄ 0 1̄ 1̄ 0 1 0 0 1̄ 0 0
0 0 1 0 1̄ 0 1 1̄ 0 0 0 1 1̄
1 0 0 0 1̄ 1̄ 0 1 0 0 0 1̄ 0
1 0 1̄ 0 1 1 1̄ 0 0 0 1 0 1̄













1 0 1̄ 0 1̄ 0 1̄ 1̄ 0 0 1̄ 0 0
0 0 1 0 1̄ 0 1 1̄ 0 0 0 1 1̄
1 0 0 0 1̄ 0 1̄ 1̄ 0 0 0 1̄ 0
1 0 1̄ 0 1 0 1 0 0 0 1 0 1̄













1 0 1̄ 0 1̄ 0 1̄ 1̄ 0 0 1̄ 0 0
0 0 1 0 1̄ 0 1 1̄ 0 0 0 1 1̄
1 0 0 0 1̄ 0 1̄ 1̄ 0 0 0 1̄ 0
1 0 1̄ 0 1 0 1 0 0 0 1 0 1̄







After applying the algorithm, the ltrJSF of the scalars d1, . . . , d4 is given as







1 0 1̄ 0 1̄ 0 1̄ 1̄ 0 0 1̄ 0 0
0 0 1 0 1̄ 0 1 1̄ 0 0 0 1 1̄
1 0 0 0 1̄ 0 1̄ 1̄ 0 0 0 1̄ 0
1 0 1̄ 0 1 0 1 0 0 0 1 0 1̄







In [HKPR04], the authors also proved that the JHW of k scalars given in
their ltrJSF is minimal. This implies, that the AJHD of the ltrJSF is minimal
amongst all D-representations which use the digit set D = {0,±1}. Therefore
no other D-representation using this digit set provides fewer non-zero columns
than the ltrJSF. This leads to the following theorem.

51

6 Left-to-Right producible Low-Weight Representations

Theorem 6.12. The AJHD of the ltrJSF is

AJHDk(ltrJSF) = 1 −
1

ck

,

where ck is given by the recursive formula

ck =
1

2k

(

3 +
k−1∑

j=1

(
k

j

)

(cj + 1)

)

and c1 = 1.5.

Furthermore, in [DOT05a], the authors proposed an algorithm to compute
the AJHD of the ltrJSF for certain values of k. Table 6.1 shows some values
computed by this algorithm which underline the correctness of Theorem 6.12.

k AJHDk(ltrJSF)

1 1/3 ≈ 0.3333
2 1/2 = 0.5000
3 23/39 ≈ 0.5897
4 115/179 ≈ 0.6424
5 4279/6327 ≈ 0.6763
6 152821/218357 ≈ 0.6998

Table 6.1: Example values of AJHDk(ltrJSF)

According to this table, the ltrJSF of one scalar has the same AHD as the
2MOF. In fact, the output of both algorithms is exactly the same.

52

7 Computing a Multi-Scalar
Multiplication

In Chapter 4, two efficient algorithms to compute a multi-scalar multi-
plication were introduced, namely the Interleave method and the Shamir
method. It turned out, that those algorithms can be sped up by deploying
D-representations of the scalars which provide a low AHD or AJHD. Such D-
representations were introduced in Chapters 5 and 6.

The purpose of this chapter is to examine, in what way those D-represen-
tations can speed up the computation of a multi-scalar multiplication com-
pared to the binary representation. Further, the D-representations are com-
pared based on the required number of ECADD operations and the number of
points to precompute.

7.1 Speeding up the Interleave Method

According to Section 4.2, the Interleave method on average requires

n ECDBL + n · k · AHD(X) ECADD

operations to compute a multi-scalar multiplication
∑k

j=1 djPj, where the
scalars are represented in the D-representation X . This implies, that the re-
quired number of ECADD operations can be reduced by applying the scalars
in a D-representation with a low AHD. Further, the Interleave method requires
the precomputation of

k ·
(|D| − 1)

2
− k

points if the scalars are represented in a signed representation and

k · (|D| − 1) − k

points otherwise, as explained in Section 4.4.
The binary representation uses the digit set D = {0, 1} and provides an AHD

of 1/2. Therefore, no points must be precomputed and the Interleave method
on average requires

n ECDBL + n · k ·
1

2
ECADD

53

7 Computing a Multi-Scalar Multiplication

operations to compute a multi-scalar multiplication
∑k

j=1 djPj, if the scalars
are represented in the binary representation.
D-representations which specifically aim on minimizing the AHD of the

scalars were introduced in Sections 5.1 and 6.2, namely the wNAF and the
wMOF. Both representations use the digit set

Dw = {0,±1,±3, . . . ,±2w−1 − 1},

which consists of 2w−1 + 1 elements, and provide the same AHD, namely

AHD(wNAF) = AHD(wMOF) =
1

w + 1
.

Therefore, both D-representations decrease the number of ECADD operations
required by the Interleave method in the same way. For a given w, the Interleave
method on average requires

n ECDBL + n · k ·
1

w + 1
ECADD

operations to compute a multi-scalar multiplication
∑k

j=1 djPj, if the scalars are
represented in either the wNAF or the wMOF. Further, the precomputation of

k · (2w−2 − 1)

points is required, since both the wNAF and the wMOF are signed represen-
tations. Note, that in the case w = 2, no points have to be precomputed. The
points to precompute if w ≥ 3 are all points of the form tPj, t ∈ Dw, t > 1,
j = 1, . . . , k, namely

3P1, 5P1, . . . , (2
w−1 − 1)P1

3P2, 5P2, . . . , (2
w−1 − 1)P2

...

3Pk, 5Pk, . . . , (2
w−1 − 1)Pk

The difference between the wNAF and the wMOF is the direction in which
they are recoded. The wNAF is recoded from right-to-left, while the wMOF
is recoded from left-to-right. Since the Interleave method is applied to the
scalars from left-to-right, it is inevitable to perform the recoding in a separate
stage if the scalars are to be represented in their wNAF. Therefore, the whole
recoded scalars must be stored in memory, which requires memory of the order
of magnitude of k · n bits.

If the scalars are represented in their wMOF, it is possible to perform the
recoding on-the-fly during the evaluation. In other words, the scalars are only

54

7.2 Speeding up the Shamir Method

recoded as much as required at once. The algorithm to generate the wMOF,
Algorithm 12, outputs at most w digits of the recored scalar at once. Therefore,
only memory of the order of magnitude of k · w bits is required in total, which
is very small compared to k · n.

This significant saving of memory is the great advantage of the wMOF over
the wNAF and also the reason why the wMOF should be favored.

7.2 Speeding up the Shamir Method

According to Section 4.3, the Shamir method on average requires

n ECDBL + n · AJHDk(X) ECADD

operations to compute a multi-scalar multiplication
∑k

j=1 djPj, where the
scalars are represented in the D-representation X . This implies that the re-
quired number of ECADD operations can be reduced by applying the scalars
in a D-representation with a low AJHD. Further, the Shamir method requires
the precomputation of

|D|k − 1

2
− k

points if the scalars are represented in a signed representation and

|D|k − 1 − k

points otherwise, as explained in Section 4.4.
The binary representation uses the digit set D = {0, 1} and provides a AJHD

of 1 − 1/2k. Therefore, the Shamir method on average requires

n ECDBL + n ·

(

1 −
1

2k

)

ECADD

operations to compute a multi-scalar multiplication
∑k

j=1 djPj, if the scalars
are represented in the binary representation. Further, the precomputation of

2k − 1 − k

points is required. Those points are all points of the form t1P1 + . . . + tkPk,
where t1, . . . , tk ∈ {0, 1}k, such that at least two of the tj are non-zero. For
example, if k = 3 holds, the four points to precompute are

P1 + P2, P1 + P3, P2 + P3, P1 + P2 + P3.

D-representations which specifically aim on minimizing the AJHD of the
scalars were introduced in Sections 5.2 and 6.3, namely the JSF and the ltrJSF.
Both representations use the digit set

D = {0,±1},

55

7 Computing a Multi-Scalar Multiplication

which consists of 3 elements, and provide the same AJHD, namely

AJHDk(JSF) = AJHDk(ltrJSF) = 1 −
1

ck

,

where

ck =
1

2k

(

3 +
k−1∑

j=1

(
k

j

)

(cj + 1)

)

and c1 = 1.5. Therefore, both D-representations decrease the number of
ECADD operations required by the Shamir method in the same way. On aver-
age, the Shamir method requires

n ECDBL + n ·

(

1 −
1

ck

)

ECADD

operations to compute a multi-scalar multiplication
∑k

j=1 djPj, if the scalars
are represented in either the JSF or the ltrJSF. Further, the precomputation of

3k − 1

2
− k

points is required, since both the JSF and the ltrJSF are signed binary rep-
resentations. Those points are all points of the form t1P1 + . . . + tkPk, where
t1, . . . , tk ∈ {0,±1}k, such that at least two of the tj are non-zero and the left-
most non-zero entry equals 1. For example, if k = 3 holds, the ten points to
precompute are

P1 + P2, P1 − P2, P1 + P3, P1 − P3, P2 + P3, P2 − P3,

P1 + P2 + P3, P1 − P2 + P3, P1 + P2 − P3, P1 − P2 − P3.

The difference between the JSF and the ltrJSF is the direction in which they
are recoded. The JSF is recoded from right-to-left, while the ltrJSF is recoded
from left-to-right. Since the Shamir method is applied to the scalars from left-
to-right, it is inevitable to perform the recoding in a separate stage if the scalars
are to be represented in their JSF. Therefore, the whole recoded scalars must
be stored in memory, which requires memory of the order of magnitude of k · n
bits.

If the scalars are represented in their ltrJSF, it is possible to perform the
recoding on-the-fly during the evaluation. In other words, the scalars are only
recoded as much as required at once. The algorithm to generate the ltrJSF,
Algorithm 13, outputs at most (k + 1) digits of the recored scalar at once.
Therefore, only memory of the order of magnitude of k · (k + 1) bits is required
in total, which is very small compared to k · n.

This significant saving of memory is the great advantage of the ltrJSF over
the JSF and also the reason why the ltrJSF should be favored.

56

7.3 Comparison

7.3 Comparison

This section compares the D-representations introduced so far. The comparison
is based on the average number of ECADD operations required and the number
points which have to be precomputed to compute a multi-scalar multiplication
with the Interleave method and the Shamir method. In this section, the scalars
are assumed to be 160-bit.

Table 7.1 shows those values for the Interleave method were the scalars are
represented in the binary representation and the wMOF for different values of
w. Those values are visualized in Figures 7.1 and 7.2 for different values for k.

Table 7.2 shows those values for the Shamir method were the scalars are
represented in the binary representation and the ltrJSF for different values of
k. Those values are visualized in Figures 7.3 and 7.4.

D-representation avg. # ECADD # points

Binary 80.00k 0
2MOF 53.33k 0
3MOF 40.00k k
4MOF 32.00k 3k
5MOF 26.67k 7k
6MOF 22.86k 15k

Table 7.1: Costs for the Interleave method

avg. # ECADD # points
k ltrJSF Binary ltrJSF Binary

1 53.33 80.00 0 0
2 80.00 120.00 2 1
3 94.39 140.00 10 4
4 102.79 150.00 36 11
5 108.21 155.00 116 26
6 111.98 157.50 358 57

Table 7.2: Costs for the Shamir method

The first thing that draws attention when examining Tables 7.1 and 7.2 is,
that compared to the binary representation, both the wMOF and the ltrJSF sig-
nificantly decrease the average number of ECADD operations required. Those
tables also show, that decreasing the number of ECADD operations always re-
sults in an increased number of points which have to be precomputed. Thus,

57

7 Computing a Multi-Scalar Multiplication

there is always a trade-off between the speed for the evaluation and the number
of points which have to be precomputed.

In the case of the wMOF, increasing the value of w further decreases the
average number of ECADD operations required. While this reduction gets very
small if w gets large, the number of points which have to be precomputed
grows exponentially with the value of w. Therefore, increasing the value of
w does not automatically yields a better total performance of the multi-scalar
multiplication, since additional ECADD and ECDBL operations are required for
the precomputation. Also, the number of points to precompute and the required
number of ECADD operations increase linear with the number of scalars.

In the case of the ltrJSF, the number of ECADD operations required does
not increase linear with the number of scalars k, but converges against 160
for k → ∞. This is because the AJHD converges against 1, and therefore
at most n ECADD operations are required. The same holds for the binary
representation. For both representations, the number of points to precompute
increases exponential with the number of scalars.

It is also interesting, that in the case where the number of points to precom-
pute is the same, the wMOF and the ltrJSF decrease the required number of
ECADD operations in the same way. In the case where k = 1, no points have
to be precomputed if the scalar is represented in the 2MOF or the ltrJSF. Here,
the Interleave method as well as the Shamir method on average require 53.33
ECADD operations. In the case where k = 2, two points must be precom-
puted if the scalars are represented in the 3MOF or the ltrJSF. Those points
are 3P1, 3P2 and P1 + P2, P1 −P2, respectively. Here, both methods on average
require 80 ECADD operations.

58

7.3 Comparison

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6
k

A
ve

ra
ge

n
u
m

b
er

of
E

C
A

D
D

op
er

at
io

n
s 2MOF

3MOF
4MOF
5MOF
6MOF

Binary

Figure 7.1: ECADD operations required by the Interleave method

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6
k

N
u
m

b
er

of
p
oi

n
ts

to
p
re

co
m

p
u
te

3MOF
4MOF
5MOF
6MOF

Figure 7.2: Points to precompute for the Interleave method

59

7 Computing a Multi-Scalar Multiplication

40

60

80

100

120

140

160

1 2 3 4 5 6
k

A
ve

ra
ge

n
u
m

b
er

of
E

C
A

D
D

op
er

at
io

n
s ltrJSF

Binary

Figure 7.3: ECADD operations required by the Shamir method

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6
k

N
u
m

b
er

of
p
oi

n
ts

to
p
re

co
m

p
u
te

ltrJSF
Binary

Figure 7.4: Points to precompute for the Shamir method

60

8 Field Operations

According to the last chapter, the computation of a multi-scalar multiplication
is done in two stages. Those stages are

Precomputation Stage Precompute the required points and store them in
memory.

Evaluation Stage For the evaluation stage, two methods exist.

Interleave Method Evaluate the multi-scalar multiplication by applying
Algorithm 8. If the scalars are to be represented in the wMOF, call
Algorithm 12 to partially recode the scalars as required.

Shamir Method Evaluate the multi-scalar multiplication by applying Al-
gorithm 9. If the scalars are to be represented in the ltrJSF, call
Algorithm 13 to partially recode the scalars as required.

In the last chapter, the number of ECADD and ECDBL operations required
for the evaluation stage as well as the number of points to precompute during
the precomputation stage were estimated.

In order to decide which method offers the best total performance, it is nec-
essary to estimate the number of field operations required by those stages. In
other words, it has to be considered how the required ECADD and ECDBL op-
erations are actually computed. As explained in Section 2.2, the number of field
multiplications, squarings and inversions required for an ECADD or ECDBL
operation depends on the coordinate system used to represent the points.

Section 8.1 estimates the number of field operations required for the evalua-
tion stage, where the points are represented using mixed coordinates as proposed
in [CMO98].

Section 8.2, at first introduces a straight forward method for the precompu-
tation stage of both the Interleave and the Shamir method. Then, the required
number of field operations is estimated.

Finally, Section 8.3 states the total costs required to compute a multi-scalar
multiplication and compares the introduced D-representations based on those
values.

Throughout this section, the ratio of squarings and multiplications S/M is
set to S = 0.8M and the ratio of inversions and multiplications I/M is set to
I = 30M . Further, the scalars are assumed to be 160-bit.

61

8 Field Operations

8.1 Evaluation Stage

To estimate the required number of field operations, it is at first necessary to
divide the evaluation stage of the Interleave method and the Shamir method
into four steps. Those steps are distinguished by the current operation and the
succeeding operation. Hence, there are four possibilities:

DD An ECDBL operation is followed by an ECDBL operation.

This happens, if the current column is all zero.

DA An ECDBL operation is followed by an ECADD operation.

This happens, if the current column is non-zero.

AA An ECADD operation is followed by an ECADD operation.

This step occurs only in the Interleave method, namely if the current
column is non-zero and the entry which is currently examined is not the
last non-zero entry in this column.

AD An ECADD operation is followed by an ECDBL operation.

In the case of the Interleave method, this happens if the current column
is non-zero and the entry which is currently examined is the last non-zero
entry in this column.

In the case of the Shamir method, this happens if the current column is
non-zero. Here, an ECADD operation is always followed by an ECDBL
operation, since only one ECADD operation is performed for each non-
zero column.

Example 8.1. Consider d1 = 18 and d2 = 3 with binary representations
(1, 0, 0, 1, 0) and (0, 0, 0, 1, 1), respectively. While computing d1P1+d2P2, the se-
quences of the four steps (DD, DA, AA, AD) introduced above for both methods
are:

Interleave method Shamir method

1 0 0 1 0 1 0 0 1 0
0 0 0 1 1 0 0 0 1 1

DA DD DD DA DA DA DD DD DA DA
AD AA AD AD AD AD

AD

62

8.1 Evaluation Stage

In [CMO98], the authors proposed an optimal choice for the coordinate sys-
tem to use for each step as shown in Table 8.1. Here, the same notation as in
Section 2.2.4 is used to denote the chosen coordinate system. Further, A,J and
J m stands for Affine, Jacobian and modified Jacobian coordinates, respectively.

Step Coordinates Costs

DD 2J m → J m 4M + 4S = 7.2M
DA 2J m → J 3M + 4S = 6.2M
AD J + A → J m 9M + 5S = 13M
AA J m + A → J m 9M + 5S = 13M

Table 8.1: Coordinate systems for the evaluation stage

This explains also, why the precomputed points should be represented in
Affine coordinates as mentioned in Section 4.1.3. The next step is to estimate,
how often those four steps on average occur during the evaluation of a multi-
scalar multiplication. Here it is assumed that the scalars are represented in a
D-representation X .

In the case of the Interleave method, the probability that the current column
is all zero is given as (1−AHD(X))k. This implies, that the current column is
non-zero with probability 1 − (1 −AHD(X))k. This gives the probabilities for
the DD and DA steps, respectively. In the case of the ECADD operations, note
that the steps AD and AA have the same costs and can therefore be considered
equal. The probability that either of those steps occurs is given as AHD(X).
Therefore, the average costs of the evaluation stage of the Interleave method in
terms of the four steps is given as

n (1 −AHD(X))k DD + n
(
1 − (1 −AHD(X))k

)
DA + n · k · AHD(X) AD

The case of the Shamir method is less complicated. Here, the probability
that the current column is all zero is given as 1 −AJHDk(X). Therefore, the
probability that the current column is non-zero is given as AJHDk(X). An AD
step occurs every time the current column is non-zero, hence with probability
AJHDk(X). Therefore, the average costs of the evaluation stage of the Shamir
method in terms of the four steps is given as

n(1 −AJHDk(X)) DD + n · AJHDk(X) DA + n · AJHDk(X) AD

Table 8.2 shows the average number of field multiplications required by the
Interleave method and the Shamir method for different values of k and different
representations of the scalars. These numbers were obtained by substituting
the respective AHD and AJHD as well as the costs for the four steps according
to Table 8.1 in the above formulas.

63

8 Field Operations

k 1 2 3 4 5 6

Int. + Binary 2112.00 3112.00 4132.00 5162.00 6197.00 7234.50
Int. + 2MOF 1792.00 2449.78 3119.41 3796.94 4479.74 5166.05
Int. + 3MOF 1632.00 2122.00 2619.50 3122.63 3629.97 4140.49
Int. + 4MOF 1536.00 1926.40 2321.92 2721.54 3124.43 3529.94
Int. + 5MOF 1472.00 1796.44 2124.59 2455.83 2789.63 3125.58
Int. + 6MOF 1426.29 1703.84 1984.19 2266.94 2551.74 2838.31

Sha. + Binary 2112.00 2592.00 2832.00 2952.00 3012.00 3042.00
Sha. + ltrJSF 1792.00 2112.00 2284.31 2385.52 2450.51 2495.75

Table 8.2: Field multiplications for the evaluation stage

The differences between the compared methods shown by this table are sim-
ilar to what was shown by Tables 7.1 and 7.2.

Interesting is, that although both the ltrJSF and the 3MOF require the same
amount of ECADD operations in the case of k = 2, the ltrJSF requires less
field multiplications. This is because the more expensive DD step occurs more
frequent when using the 3MOF.

8.2 Precomputation Stage

Before the number of field operations required for the precomputation stage
can be estimated, it is at first necessary to estimate the number of ECADD
and ECDBL operations required to precompute those points. In other words,
an explicit method for the precomputation stage is required.

Recall, that the Interleave method requires no precomputation if the digit
set is given as D = {0, 1}. In the case of a digit set of the form Dw =
{0,±1,±3, . . . ,±2w−1 − 1}, the precomputation of k · (2w−2 − 1) points is re-
quired by the Interleave method. Those are all points of the form tPj, where
t ∈ Dw and t > 1, j = 1, . . . , k. The precomputation is done using the chain:

P1 → 2P1 → 3P1 → 5P1 → . . . → (2w−1 − 1)P1

P2 → 2P2 → 3P2 → 5P2 → . . . → (2w−1 − 1)P2
...

Pk → 2Pk → 3Pk → 5Pk → . . . → (2w−1 − 1)Pk

where (2i + 1)Pj is computed as (2i − 1)Pj + 2Pj. Hence,

k ECDBL + k · (2w−2 − 1) ECADD

operations are required in total.

64

8.2 Precomputation Stage

In the case of the Shamir method and the digit set D = {0, 1}, the pre-
computation of 2k − 1 − k points is required. Those are all points of the form
t1P1 + . . . + tkPk, where t1, . . . , tk ∈ {0, 1}k, such that at least two of the tj are
non-zero. This is done using the chain:

Pj1 + Pj2 , j1, j2 = 1, . . . , k : j1 < j2

→ Pj1 + Pj2 + Pj3 , j1, j2, j3 = 1, . . . , k : j1 < j2 < j3
...

→ Pj1 + Pj2 + . . . + Pjk
, j1, j2, . . . , jk = 1, . . . , k : j1 < j2 < . . . < jk

In the first step,
(

k
2

)
points are computed and the same amount of ECADD

operations is required. In the second step
(

k
3

)
points are computed also by

using only one ECADD operation per point. This is because two of the required
summands were already added in the first step. In general, each point in each
step can be computed with only one ECADD operation by reusing the points
computed in the preceding step. Hence,

k∑

j=2

(
k

j

)

ECADD = 2k − 1 − k ECADD

operations are required in total.
If D = {0,±1}, the precomputation of (3k − 1)/2 − k points is required by

the Shamir method. Those are all points of the form t1P1 + . . . + tkPk, where
t1, . . . , tk ∈ {0,±1}k, such that at least two of the tj are non-zero and the
leftmost non-zero entry equals 1. This is done using the chain:

Pj1 ± Pj2 , j1, j2 = 1, . . . , k : j1 < j2

→ Pj1 ± Pj2 ± Pj3 , j1, j2, j3 = 1, . . . , k : j1 < j2 < j3
...

→ Pj1 ± Pj2 ± . . . ± Pjk
, j1, j2, . . . , jk = 1, . . . , k : j1 < j2 < . . . < jk

Here, Pj1 − Pj2 is computed as Pj1 + (−Pj2) and the costs to invert Pj2 are
neglected, see Section 4.4. In the first step,

(
k
2

)
2 points are computed, each

with one ECADD operation. In the second step
(

k
3

)
22 points are computed.

Here, also only one ECADD operation is required for each point, since two of
the required summands were already added in the first step. In the j-th step
(

k
j

)
2j−1 points are computed, each by using only one ECADD operation, since

the points computed in the preceding step can be reused. Hence,

k∑

j=2

(
k

j

)

2j−1 ECADD =
3k − 1

2
− k ECADD

operations are required in total.

65

8 Field Operations

Because of the coordinate systems chosen for the evaluation stage in the
last section, the precomputed points must be represented in Affine coordinates.
Table 8.3 shows the number of field operations required for the ECADD and
ECDBL operations of the precomputation stage as explained in Section 2.2.

Operation Coordinates Costs

ECDBL 2A → A 2M + 2S + I = 33.6M
ECADD A + A → A 2M + S + I = 32.8M

Table 8.3: Coordinate systems for the precomputation stage

Table 8.4 shows the number of field multiplications required to precompute
the points for different values of k and different representations of the scalars.
These numbers were obtained by substituting the costs shown in Table 8.3 in
the above formulas.

k 1 2 3 4 5 6

Int. + Binary 0.0 0.0 0.0 0.0 0.0 0.0
Int. + 2MOF 0.0 0.0 0.0 0.0 0.0 0.0
Int. + 3MOF 66.4 132.8 199.2 265.6 332.0 398.4
Int. + 4MOF 132.0 264.0 396.0 528.0 660.0 792.0
Int. + 5MOF 263.2 526.4 789.6 1052.8 1316.0 1579.2
Int. + 6MOF 525.6 1051.2 1576.8 2102.4 2628.0 3153.6

Sha. + Binary 0.0 32.8 131.2 360.8 852.8 1869.6
Sha. + ltrJSF 0.0 65.6 328.0 1180.8 3804.8 11742.4

Table 8.4: Field multiplications for the precomputation stage

The differences between the compared methods shown by this table are sim-
ilar to what was shown by Tables 7.1 and 7.2.

Interesting is, that although both the ltrJSF and the 3MOF require the same
amount precomputed points in the case of k = 2, the ltrJSF requires less field
multiplications to compute them. This is because the precomputation of 3P1

and 3P2 requires two additional ECDBL operations.

8.3 Total Costs

To estimate the total number of field operations required to compute a multi-
scalar multiplication, the number of field operations required for the evaluation
stage and the precomputation stage obtained in the last two sections have to

66

8.3 Total Costs

be added. The total number of field multiplications required for the different
methods is shown in Table 8.5. The smallest and therefore optimal value for
each number of scalars is marked bold.

k 1 2 3 4 5 6

Int. + Binary 2112.00 3112.00 4132.00 5162.00 6197.00 7234.50
Int. + 2MOF 1792.00 2449.78 3119.41 3796.94 4479.74 5166.05
Int. + 3MOF 1698.40 2254.80 2818.70 3388.23 3961.97 4538.88
Int. + 4MOF 1668.0 2190.40 2717.92 3249.5 3784.4 4321.9

Int. + 5MOF 1735.20 2322.84 2914.19 3508.63 4105.63 4704.78
Int. + 6MOF 1951.89 2755.04 3560.99 4369.34 5179.74 5991.91

Sha + Binary 2112.00 2624.80 2963.20 3312.80 3864.80 4911.60
Sha + ltrJSF 1792.00 2177.6 2612.3 3566.32 6255.31 14238.15

Table 8.5: Total number of field multiplications

In the case of the Interleave method, this table shows that the wMOF leads to
a better performance than the binary representation for any number of scalars
and any value of w considered here. This table also shows, that the choice
w = 4 is optimal for any number of scalars. For larger values of w, the costs
for the precomputation stage are too high and for smaller values the evaluation
stage is too expensive. Of course, the value w = 4 can only be chosen if there
is sufficient memory to store the precomputed points. In the case where no
memory is available for precomputed points, the choice w = 2 still provides a
significant improvement compared to the binary representation.

In the case of the Shamir method, the ltrJSF only results in a better per-
formance than the binary representation if k ≤ 3. After that, the number of
points to precompute is too large and the superior evaluation stage of the ltrJSF
cannot compensate the immense costs of the precomputation stage. Therefore,
the binary representation has a better performance if k > 3.

In total, this comparison shows that for k = 2, 3 the Shamir method in
conjunction with the ltrJSF provides the best performance, while for any other
number of scalars the Interleave method in conjunction with the 4MOF is the
fastest.

However, the above values only apply in this specific scenario. For example, if
the bit length n of the scalars is longer than 160, the evaluation stage becomes
more expensive. Then, the value w = 4 is not necessarily optimal anymore,
since it might be better to precompute more points and in exchange save some
ECADD operations in the evaluation stage. Also, the method used to precom-
pute the points and the ratio of multiplications and inversions I/M plays an
important role. If the costs for the precomputation stage can be reduced, larger

67

8 Field Operations

values than w = 4 might become optimal. Of course, it is also possible that
the wMOF becomes optimal in the case of k = 2, 3 or that the ltrJSF becomes
optimal for other values of k.

The scenario also changes if some or all of the points to precompute are
already known. For example in the signature generation of the ECDSA (Algo-
rithm 2) the point P is publicly known and doesn’t change. Therefore the pre-
computation stage must be performed only once and the points can be stored
in non-volatile memory. In this case, the method that utilizes the available
memory best should be chosen.

Summarizing, the task of finding the best method to compute a multi-scalar
multiplication in a specific scenario depends on many factors and requires a lot
of fine tuning. It was the authors intention to present some values which apply
in a very general scenario and give a good impression of the differences of the
introduced methods.

68

9 Conclusion

This thesis presented several measures which can be taken to efficiently imple-
ment cryptosystems on smart cards.

As explained in Chapter 1, one of the most critical issues concerning cryp-
tosystems is the security of the secret key which is used for signing and de-
crypting messages. Due to their tamper resistance and mobility, smart cards
are a good choice to serve as host for the secret keys and the cryptosystems.
However, since the computational power and the available memory on smart
cards is very limited, efficient implementations are needed.

The first measure to reduce the memory and computational power required,
is to use cryptosystems that are based on the additive group of points on an
elliptic curve, as explained in Chapter 2. The main advantage of elliptic curves
over commonly used groups is, that the same level of security can be achieved
with much smaller key sizes, i.e. 160-bit instead of 1024-bit.

As it turned out, the most basic operation used in elliptic curve cryptosystems
is a multi-scalar multiplication

k∑

j=1

djPj,

where dj are the scalars and Pj are points on an elliptic curve. The remaining
chapters of the thesis dealt with the efficient computation of such multi-scalar
multiplications.

In Chapter 4, two basic algorithms for the efficient computation of a multi-
scalar multiplication were introduced. Those were the Interleave method and
the Shamir method. Here, the fact that points on an elliptic curve can be in-
verted at negligible costs proved very useful, namely the effort for precomputing
the required points can be reduced by more than 50%, if the scalars are repre-
sented in a signed representation. It also turned out, that the average number of
ECADD operations required by the Interleave method and the Shamir method
depends on the AHD and the AJHD of the scalars, respectively.

In Chapter 5 two D-representations which minimize the AHD and the AJHD
of the scalars were presented, namely the wNAF and the JSF, respectively.
While those representations speed up the Interleave method and the Shamir
method in the best possible way, i.e. the resulting AHD and AJHD is minimal,
there still is a drawback. The generation of the wNAF and the JSF is only
possible starting at the least significant bit, i.e. right-to-left. Therefore, the

69

9 Conclusion

recoding of the n-bit scalars must be performed in a separate stage and the
whole recoded scalars must be stored, which requires memory of the order of
magnitude of n · k bits for both D-representations.

A solution to this problem was proposed in Chapter 6, namely the wMOF
and the ltrJSF. Both those D-representations provide the same, minimal AHD
and AJHD as the wNAF and the JSF, respectively. Their great advantage is,
that they can be generated from left-to-right which means, that the recoding
doesn’t have to be done in a separate stage, but can be performed on-the-fly
during the evaluation. As a result, it is no longer necessary to store the whole
recoded scalars, but only small parts at once. In detail, the wMOF requires
only memory of the order of magnitude of k · w bits and the ltrJSF requires
only memory of the order of magnitude of k · (k + 1) bits, which is very small
compared to n · k bits.

Chapter 7 showed in detail, in what way the introduced D-representations
improve the speed of the Interleave method and the Shamir method. A com-
parison was made based on the average number of ECADD operations required
and the number of points which have to be precomputed. It turned out, that
compared to the binary representation, the introduced D-representations sig-
nificantly reduce the average number of ECADD operations required. However,
it was also shown that there is a trade-off between the number of points to
precompute and the number of ECADD operations required.

To decide, which method offers the best trade-off, the total number of field
operations required to compute a multi-scalar multiplication was estimated ex-
plicitly in Chapter 8. It turned out, that in the chosen scenario the Shamir
method in conjunction with the ltrJSF provides the best performance if k = 2, 3,
while for any other number of scalars the Interleave method in conjunction with
the 4MOF is the fastest.

9.1 Outlook and Further Research

In this thesis two different kinds of D-representations were discussed. On
the one hand two D-representations that use digit sets of the form Dw =
{0,±1,±3, . . . ,±2w−1−1} and provide a low AHD were introduced. The prob-
lem with such digit sets is, that their size grows exponentially with the value of
w.

To provide more flexibility, there also exist D-representations which use a
digit set of the form Dx = {0,±1,±3, . . . ,±x}, for any odd x ≥ 1 [SST04,
Möl02, Möl04]. It has also been proven that the AHD provided by those D-
representations is minimal, which implies that if x = 2w−1−1 holds for some w,
the AHD is the same as of the wMOF and the wNAF. The D-representations
that use such digit sets can also be generated from left-to-right and from right-
to-left likewise.

70

9.1 Outlook and Further Research

On the other hand, two D-representations that use the digit set D = {0,±1}
and provide a low AJHD were introduced. Naturally, the next step here is to
consider D-representations which use the next larger digit set D = {0,±1,±3}.
In the case of two scalars, this has been done in [Ava02, DOT05b, KZZ04].
Different to the other digit sets, a D-representation which provides a minimal
AJHD amongst all D-representations using the digit set {0,±1,±3} is still
unknown. However, the D-representation that currently provides the lowest
AJHD was proposed in [DOT05b], namely AJHD2([DOT05b]) = 239/661 ≈
0.3615. Further, this D-representation can also be generated from left-to-right.
Research that has to be done here is to find minimal representations for an
arbitrary number of scalars, not only for the digit set D = {0,±1,±3}, but also
for any larger digit set.

Also, the research in the direction of the precomputation stage is not com-
pleted. The methods for precomputing the required points introduced in Section
8.2 are straight forward and not very complicated. A superior approach, which
significantly decreases the number of field inversions required was proposed in
[CMO98]. However, a method that minimizes the computational costs for the
precomputation stage is still unknown.

71

Bibliography

[Ava02] Avanzi, R., On multi-exponentiation in cryptography, Cryptology
ePrint Archive, Technical Report 2002/154, 2002, available at http:
//eprint.iacr.org/2002/154/.

[Ava04] Avanzi, R., A Note on the Signed Sliding Window Integer Recoding
and a Left-to-Right Analogue, Selected Areas in Cryptography - SAC
2004, LNCS 3357, Springer, 2004, pp. 130-143.

[Boo51] Booth, A., A signed binary multiplication technique, Quarterly Jour-
nal of Mechanics and Applied Mathematics, vol. 4, no. 2, 1951, pp.
236-240.

[BSS99] Blake, I., Seroussi, G., and Smart, N., Elliptic Curves in Cryp-
tography, London Mathematical Society, Lecture Note Series 265,
Cambridge University Press, 1999.

[CMO98] Cohen, H., Miyaji, A., Ono, T., Efficient Elliptic Curve Exponen-
tiation Using Mixed Coordinates, Advances in Cryptology - ASI-
ACRYPT ’98, LNCS 1514, Springer, 1998, pp. 51-65.

[DH76] Diffie, W., and Hellman, M., New directions in cryptography, IEEE
Transactions on Information Theory, vol. IT-22, no. 6, 1976, pp.
644-654.

[DOT05a] Dahmen, E., Okeya, K. and Takagi, T., Efficient Left-
to-Right Multi-Exponentiations, Technical University of Darm-
stadt, Technical Report TI-2/05, 2005, to appear, will
be available at http://www.cdc.informatik.tu-darmstadt.de/

reports/README.TR.html.

[DOT05b] Dahmen, E., Okeya, K. and Takagi, T., An Advanced Method for
Joint Scalar Multiplications on Memory Constraint Devices, 2nd
European Workshop on Security and Privacy in Ad hoc and Sensor
Networks - ESAS 2005, LNCS 3813, Springer, 2005, to appear.

72

Bibliography

[ElG85] ElGamal, T., A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms, Advances in Cryptology - CRYPTO
’84, LNCS 196, Springer, 1985, pp. 10-18.

[GHPT03] Grabner, P., Heuberger, C., Prodinger, H., Thuswaldner J., Analy-
sis of linear combination algorithms in cryptography, ACM Trans-
actions on Algorithms - TALG, vol. 1, no. 1, 2005, pp. 123-142.

[Gor98] Gordon, D., A survey of fast exponentiation methods, Journal of
Algorithms, vol. 27, no. 1, 1998, pp. 129-146.

[HKPR04] Heuberger, C., Katti, R., Prodinger, H., Ruan, X., The Alternat-
ing Greedy Expansion and Applications to Left-To-Right Algorithms
in Cryptography, Theoretical Computer Science, vol. 341, 2005, pp.
55-72.

[JM99] Johnson, D., and Menezes, A., The Elliptic Curve Digital Signa-
ture Algorithm (ECDSA) University of Waterloo, Technical Re-
port CORR 99-34, 1999, available at http://www.cacr.math.

uwaterloo.ca.

[Kob87] Koblitz, N., Elliptic Curve Cryptosystems, Mathematics of Compu-
tation, vol. 48, no. 177, 1987, pp. 203-209.

[Kob99] Koblitz, N., Algebraic Aspects of Cryptography, Algorithms and
Computation in Mathematics, vol. 3, 2nd printing, Springer, 1999.

[KZZ04] Kuang, B., Zhu, Y., Zhang, Y., An Improved Algorithm for uP+vQ
using JSF3, Applied Cryptography and Network Security - ACNS
2004, LNCS 3089, Springer, 2004, pp. 467-478.

[LL94] Lim, C., Lee, P., More flexible exponentiation with precomputation,
Advances in Cryptology - CRYPTO ’94, LNCS 839, Springer, 1994,
pp. 95-107.

[Mil86] Miller, V.S., Use of Elliptic Curves in Cryptography, Advances in
Cryptology - CRYPTO ’85, LNCS 218, Springer, 1986, pp. 417-426.

[MOC97] Miyaji, A., Ono, T., and Cohen, H., Efficient Elliptic Curve Expo-
nentiation, Information and Communication Security - ICICS 1997,
LNCS 1334, Springer, 1997, pp. 282-291.

[MO90] Morain, F., Olivos, J., Speeding Up the Computations on an Elliptic
Curve using Addition-Subtraction Chains, Theoretical Informatics
and Applications, vol. 24, no. 6, 1990, pp.531-543.

73

Bibliography

[MOV93] Menezes, A., Okamoto, T., Vanstone, S., Reducing elliptic curve
logarithms to logarithms in a finite field, IEEE Transactions on In-
formation Theory, vol. 39, no. 5, 1993, pp. 1639-1646.

[Möl01] Möller, B., Algorithms for Multi-exponentiation, Selected Areas in
Cryptography - SAC 2001, LNCS 2259, Springer, 2001, pp. 165-180.

[Möl02] Möller, B., Improved Techniques for Fast Exponentiation, Informa-
tion Security and Cryptology - ICISC 2002, LNCS 2587, Springer,
2003, pp. 298-312.

[Möl04] Möller, B., Fractional Windows Revisited: Improved Signed-Digit
Representations for Efficient Exponentiation, Information Security
and Cryptology - ICISC 2004, LNCS 3506, Springer, 2005, pp. 137-
153.

[MS04a] Muir, J., Stinson, D., Minimality and Other Properties of the
Width-w Nonadjacent Form, University of Waterloo, Technical Re-
port CORR 2004-08, 2004, available at http://www.cacr.math.

uwaterloo.ca.

[MS04b] Muir, J., Stinson, D., New Minimal Weight Representations for
Left-to-Right Window Methods, University of Waterloo, Technical
Report CORR 2004-19, 2004, available at http://www.cacr.math.
uwaterloo.ca.

[NIST01] Daley, W., Kammerer, R., Digital Signature Standard (DSS), Na-
tional Institute of Standards and Technology - NIST, Federal In-
formation Processing Standards - FIPS 186-2, 2001, available at
http://csrc.nist.gov/publications/fips/index.html.

[Odl84] Odlyzko, A., Discrete Logarithms in Finite Fields and Their Cryp-
tographic Significance, Advances in Cryptology - EUROCRYPT ’84,
LNCS 209, Springer, 1984, pp. 224-314.

[OSST04] Okeya, K., Schmidt-Samoa, K., Spahn, C., Takagi, T., Signed Bi-
nary Representations Revisited, Advances in Cryptology - CRYPTO
2004, LNCS 3152, Springer, 2004, pp. 123-139, full version available
at http://eprint.iacr.org/2004/195/

[Phi05] Philips products - SmartMX, available at http://www.

semiconductors.philips.com/

[Pol78] Pollard, J.M., Monte Carlo methods for index computation (mod p),
Mathematics of Computation, vol. 32, no. 143, 1978, pp. 918-924.

74

Bibliography

[Pro03] Proos, J., Joint Sparse Forms and Generating Zero Columns when
Combing, University of Waterloo, Technical Report CORR 2003-23,
2003, available at http://www.cacr.math.uwaterloo.ca.

[Rei60] Reitwiesner, G. W., Binary arithmetic, Advances in Computers, vol.
1, 1960, pp. 231-308.

[Ren05] Renesas Technology - Product range, available at http://eu.

renesas.com/

[Sha69] Shanks, D., Class number, a theory of factorization, and genera,
Proceedings of Symposia in Pure Mathematics, vol. 20, 1969, pp.
415-440.

[SST04] Schmidt-Samoa, K., Semay, O., Takagi, T., Analysis of Some Frac-
tional Window Recoding Methods and their Application to Elliptic
Curve Cryptosystems, IEEE Transactions on Computers, vol. 55,
no. 1, 2006, pp. 1-10.

[Sol00] Solinas, J.A., Efficient Arithmetic on Koblitz Curves, Design, Codes
and Cryptography, vol. 19, 2000, pp. 195-249.

[Sol01] Solinas, J.A., Low-weight binary representations for pairs of in-
tegers, University of Waterloo, Technical Report CORR 2001-41,
2001, available at http://www.cacr.math.uwaterloo.ca.

[Van92] Vanstone, S., Responses to NIST’s proposal, Communications of the
ACM, vol. 35, no. 7, 1992, pp. 41-54, communicated by John An-
derson.

75

