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Abstract. In this paper we present improvements to the differential
fault analysis (DFA) of the stream cipher Trivium proposed in the work
of M. Hojśık and B. Rudolf. In particular, we optimize the algebraic rep-
resentation of obtained DFA information applying the concept of Mu-
tants, which represent low degree equations derived after processing of
DFA information. As a result, we are able to minimize the number of
fault injections necessary for retrieving the secret key. Therefore, we in-
troduce a new algebraic framework that combines the power of different
algebraic techniques for handling additional information received from a
physical attack. Using this framework, we are able to recover the secret
key by only an one-bit fault injection. In fact, this is the first attack on
stream ciphers utilizing minimal amount of DFA information. We study
the efficiency of our improved attack by comparing the size of gathered
DFA information with previous attacks.
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1 Introduction

Stream ciphers are encryption algorithms that encrypt plaintext digits one at
a time. Trivium is a hardware-oriented synchronous stream cipher [5]. It was
selected in phase three of the eSTREAM project [17]. Due to its simplicity and
speed, it provides strong security services for many hardware applications, such
as wireless connections and mobile telecommunication. In order to assess the
security of these applications, one can use cryptanalytic methods. Trivium takes
an 80-bit key and an 80-bit initial vector IV as inputs in order to generate up to
264 key-stream bits. Trivium operates in two consecutive phases. In the initial
phase Trivium iterates 1152 times before it actually starts to produce the key-
stream bits of the second phase. The initial iterations are required in order to
scramble the original vector to a random inner state.

The concept of differential fault analysis, firstly introduced for stream ciphers
in [10], aims at generating additional information about the inner state of the
cipher by inspecting and affecting its implementation. The so gathered additional
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information speeds up the process of key recovery. In this work, we are interested
in DFA attacks on the stream cipher Trivium. As for other side-channel attacks,
DFA consists of two stages, the online and the offline phase. In the online phase
one induces a physical corruption to the cipher by injecting a fault to a random
position in the internal state of the cipher. For instance, this is achieved using the
technique proposed in [10]. An attacker needs to reset the cipher several times
with the same secret information in order to inject more faults. As a consequence,
with increasing number of injections one produces more information about the
internal state that helps to recover the secret input.

The offline phase, however, is the process of analyzing the information gath-
ered from the online phase. This part of the attack has a great impact on the
practicability of the whole attack. To be more precise, the less information an
attacker requires from the online part, the less assumptions we impose on the
capabilities of the attacker and hence the success of the attack. So, the challenge
here is to minimize the number of fault injection rounds.

Previous attacks aim at reducing the number of fault injections needed to
find the secret key. The first DFA attack on Trivium was developed by M. Hojśık
and B. Rudolf in [12]. The basic idea of this attack is to inject multiple one-bit
faults into the inner state of Trivium. In this case, an attacker can generate,
in addition to the system of equations that represent the inner state and key-
stream bits, some lower degree equations deduced from the information obtained
from the online phase. Classical linear algebra tools are used for the analysis of
the information produced in the online part. Following this approach, the secret
key can be recovered after approximately 43 fault injection rounds. In order
to decrease the required fault injections, the authors introduced an improved
DFA attack in [11]. This improvement is based on using the so-called floating
representation of Trivium instead of the classical one. Applying this method, one
needs approximately 3.2 fault injections on average and 800 proper and faulty
key-stream bits to recover the inner state of Trivium at a certain time t, which
subsequently allows to compute the secret key of the cipher.

Afterwards, in [13] an improvement to the Hojśık and Rudolf attack was pre-
sented using SAT-solver techniques instead of classical linear algebra. The idea
of this approach consists in translating the additional DFA information together
with the algebraic representation of Trivium into the satisfiability problem and
then using a SAT technique to solve the underlying problem. This improvement
enables the attacker to recover the secret key using two fault injections at a
success rate of 100%. In fact, this is the first attack combining differential fault
analysis with an advanced algebraic technique.

In order to minimize the number of required fault injections, the mentioned
attacks face the following problem: under the assumption that an attacker has a
large number of key-stream bits before and after inserting faults, he is capable
of using only a limited amount of this information. This is due to the fact that
the degree of the additionally generated polynomial equations increases rapidly
with increasing number of key-stream rounds. But the high degree equations
built during the online phase are useless for an attack. As a consequence, this
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forces the adversary to carry out multiple fault injections. The challenge is,
therefore, to derive more information (low degree equations) after each injection
round and thus minimizing the number of required fault injections.

1.1 Our contribution

After a careful analysis of the system of equations generated during the attack
and the corresponding DFA information, we propose an improvement to the
above two attacks. As a result, we present a more practical algebraic differential
fault attack called Mutant DFA (MDFA). Specifically, instead of addressing the
gathered DFA information with just one particular algebraic technique as sug-
gested in [11] and [13], we combine several algebraic techniques. In this way we
benefit from the advantages of each individual technique. Further, after study-
ing the structure of the corresponding system of equations, we take advantage
of Mutants to enrich the collected data after one injection. More specifically,
we reduce the amount of DFA information required to solve the corresponding
system of equations by enhancing the role of linear Mutants during the system
generation stage. As a consequence, we efficiently derive new useful relations
that were hidden. In addition to this, we even deduce more information about
the system when using advanced algebraic techniques. For instance, we used an
adapted version of MutantXL [7], a Gröbner basis technique, for exploring the
polynomial ideal generated by the system of equations. This preprocessing step
simplifies the corresponding satisfiability problem which subsequently speeds up
SAT solver algorithms. Finally, we present a guessing strategy that deals with
the high degree equations appearing during the attack in order to produce fur-
ther Mutants. These improvements enable us to successfully find the key by
injecting only a single bit fault into the inner state. Table 1 compares our results
with other previous attacks on the selected eStream ciphers [17].

Table 1. Comparison of different attacks w.r.t required number of fault injections

Cipher Attack Key size # Fault injections

MICKEY DFA [1] 128 216.7

Grain DFA [2] 80 28.5

Trivium DFA [11] 80 3.2

Trivium MDFA 80 1

1.2 Organization

This paper is organized as follows. In Section 2, we provide the relevant back-
ground of our attack. In Section 3, we explain how to generate the polynomial
equation system that represents both the inner state of Trivium and the gathered
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DFA information. A detailed description of the attack and our improved differ-
ential fault analysis (MDFA) of Trivium is given in Section 4. Our experimental
results are presented in Section 5. Finally, Section 6 concludes this paper.

2 Preliminaries

2.1 Algebraic Cryptanalysis

The discipline of algebraic cryptanalysis uses a range of algebraic tools and tech-
niques to assess the security of cryptosystems, which are essential for trusted
communications over open networks. Algebraic cryptanalysis is a young and
largely heuristic discipline, and the exact complexity of algebraic attacks is often
hard to measure. However, it has proven to be a remarkably successful practi-
cal method of attacking cryptosystems, both symmetric and asymmetric, and
provides a strong measure for the overall security of a scheme.

The first step in algebraic cryptanalysis is to model a given cipher as a system
of polynomial equations. The challenge is then to find a solution to the system,
which corresponds to secret information used in the cipher (e.g. plaintext or
secret key). In general, finding a solution to a set of polynomial equations is
NP-hard. But equations generated by a cipher (from e.g. plaintext/ciphertext
pairs) often have structural properties which may be exploited to find a solution
significantly faster than a brute force search for the key.

There are many approaches in use today for algebraic cryptanalysis, such as
linearization, Gröbner basis, and SAT-solver approaches. These approaches have
many tunable parameters. Choosing the right technique and choosing the right
parameters has a big impact on the attack performance, the running time and
the memory consumption. Each of these techniques has the advantage on the
others for certain cases. For example, when the system has many linear connec-
tions among large number of terms, a linearization technique performs better
than others. One also observes, that Gröbner basis techniques operate more ef-
ficiently when the systems are dense or tend to have many solutions. Although
having been used for several algebraic attacks, Gröbner basis algorithms yield a
large number of new polynomials or, equivalently, huge matrices. This requires
long computing time and large memory resources rendering these approaches in-
applicable for real-world problems. However, Gröbner bases provide an implicit
representation of all possible solutions instead of just a single (random) one.
This perfectly complements solvers for the satisfiability problem that we present
next.

In [7], Ding et al. present the so-called MutantXL algorithm (a Gröbner
basis algorithm) which came with the concept of Mutants, certain low degree
polynomials appearing during the matrix enlargement step of the XL algorithm.
In this paper we utilize this concept in order to derive new low degree equations
in the offline phase of the DFA attack as we will explain later. Involving this
particular algorithm also helps to understand the structure of the system of
equations.
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In the last decade solving the satisfiability problem of Boolean logic (SAT)
was heavily researched and SAT-solvers became one of the main approaches
of algebraic cryptanalysis. In our setting a system of equations is translated
into a set of clauses constituting an equivalent SAT instance, which is then
given to a SAT solver (e.g. Mini-SAT2 [15]). Converting a SAT solution into a
root of the corresponding algebraic problem is usually straightforward. A SAT
problem is to decide whether a given logical formula is satisfiable, i.e. whether
we can assign Boolean values to its variables such that the formula holds. A
variant is to prove that such an assignment does not exist. We may assume
that the formula is in conjunctive normal form (CNF): The formula consists of
a set of clauses. Each clause consists of a set of literals that are connected by
disjunctions and each literal is either a variable or a negated variable. Moreover,
all clauses are assumed to be related by conjunctions. SAT solvers are usually
based on the DPLL algorithm. This algorithm uses depth-first backtracking in
order to search the space of all possible assignments of the decision variables.
Advanced SAT solvers operate with various heuristics allowing for an improved
search quality. For instance, they learn new clauses (conflict clauses) from wrong
variable assignments in order to guide the further search. Courtois et al. [6]
employed the SAT solver MiniSAT2 in conjunction with the slide attack to break
160 rounds of the block cipher Keeloq.

Recently there have been several works combining algebraic attacks with
other methods of cryptanalysis. For example, [16] shows how to combine alge-
braic attack with side-channel attacks, and in [9] DES was attacked by combining
algebraic cryptanalysis with differential attacks. In this paper we present a new
framework, which integrates the power of several algebraic techniques to optimize
differential fault analysis of the Trivium stream cipher. The key idea underlying
our proposal, when handling DFA information, is to exploit the advantages of
multiple algebraic techniques in order to extract more useful equations such that
a solution to the secret key is efficiently obtained with less assumptions imposed
on an attacker.

2.2 Differential Fault Analysis (DFA)

Differential fault analysis can be considered as a type of implementation attacks.
The DFA attack is divided into two phases, the online and the offline phases.
During the online phase of DFA an attacker investigates stream or block ciphers
by the ability to insert faults to random places of the inner state of a cipher.
There are different types of DFA, in this work we are interested in DFA attacks
associated to the scenario, where the attacker is assumed to be capable of inject-
ing a fault to the inner state of a cipher. This requires to permit the attacker to
reset the cipher to its initial state using the same key and initial vector. Know-
ing the plaintext and both the correct and the faulty ciphertext generated after
the fault injection, the attacker can deduce new relations that help at solving
the underlying problem. In previous attack scenarios, the attacker is allowed to
repeat the previous steps several times in order to succeed. Our attack, however,
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restricts the attacker to inject at most one fault and hence requires less assump-
tions as compared to previous proposals. The fault position can be determined
following the approach provided in [11].

The offline phase, on the other hand, is the process of analysing the infor-
mation gathered from the online phase. This part of the attack has a great
impact on the practicability of the whole attack. More specifically, minimizing
the amount of required DFA information entails a more practical attack. As a
result, the challenge here is to minimize the number of fault injections.

2.3 Notation

Let X := {x1, . . . , xn} be a set of variables and

R = F2[x1, . . . , xn]/〈x21 − x1, ..., x2n − xn〉

be the Boolean polynomial ring in X with the terms of R ordered by a certain
polynomial ordering. We represent an element of R by its minimal representative
polynomial over F2, where the degree of each term w.r.t any variable is 0 or 1.
Let p be a polynomial and T be a set of polynomials in R. We define the head
term of p ∈ R, denoted by HT(p), as the largest term in p according to the order
defined on R and the degree of p, denoted by deg(p), as the degree of HT(p).
A row echelon form RE(T ) is simply a basis for span(T ) with pairwise distinct
head terms (see [14] for definition). We define V(p) and V(T ) as the set of all
variables in p and T , respectively.

We define the ideal I(T ) of T as the set of all polynomials inR generated by T .
A polynomial p in the ideal I(T ) is called Mutant if p is a low degree polynomial
obtained from the reduction of higher degree ones in I(T). For example, let
p = f + g and deg(f) = deg(g) = d; p is Mutant if deg(p) < d. In this paper, we
restrict ourselves with Mutants which have degree ≤ 2.

Finally, we define the difference between two sets S1 and S2, denoted by
diff(S1, S2), as the number of elements that exist in S1 and do not exist in S2.

3 Algebraic Representation

In this section, we revisit the algebraic description of both Trivium and DFA
information introduced in [11]. First, we start with the algebraic representation
of the Trivium stream cipher. Trivium builds a huge number of key-stream bits
using an 80-bit secret key K and an 80-bit initial vector IV . It consists of three
quadratic feedback shift registers X, Y , Z with lengths 93, 84, 111 respectively.
These registers represent the 288-bits inner state of Trivium. The initial inner
state of Trivium at time t = 0 is filled with K and IV as shown in Figure 1. At
time t0 Trivium starts to produce key-stream bits.

In this paper we use the floating representation of Trivium according to [11].
Following this, the three shift registers X, Y , and Z are updated for t ≥ 1 as
follows:
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X Y Z

...
...

...

t = 0

...

t = t0

k0 k1 . . . k79 k80 0 . . . 0 i0 i1 . . . i79 i80 0. . . 0 0 0 . . . 0 0 1 1 1

x1 x2 . . . . . . . . . . . . . . . x93 y1 y2 . . . . . . . . . . . . . . . y84 z1 z2 . . . . . . . . . . . . . . . z111

Fig. 1. Internal state of Trivium.

xj ← xj+1 . . . . . . . . . xj+92 ← xj+93 = xj+68 + zj+65 + zj+110 + zj+109 · zj+108 (1.1)

yj ← yj+1 . . . . . . . . . yj+83 ← yj+84 = yj+77 + xj+65 + xj+92 + xj+90 · xj+91 (1.2)

zj ← zj+1 . . . . . . . . . zj+110 ← zj+111 = zj+86 + yj+68 + yj+83 + yj+81 · yj+82 (1.3)

The output key-stream sequence oj produced by Trivium is generated as
follows

oj = xj+65 + xj+92 + yj+68 + yj+83 + zj+65 + zj+110, j ≥ 1. (2)

Therefore, let t0 denote the starting point as explained before. Further, de-
note by n the number of key-stream bits and let the inner state be represented
as depicted in Figure 1. By using the floating representation from (1.1)-(1.3)
and (2), Algorithm 1 describes the procedure of generating a system of 4n poly-
nomial equations (n linear and 3n quadratic). Solving this system requires to
find the inner state of Trivium at time t ≥ t0 and then by clocking Trivium
backwards, we get the secret key k. The best known algebraic attack on a scaled
version of Trivium (called Bivium) was developed by Eibach et al. in [8] using
SAT solvers and up to date there is no known algebraic attack better than the
brute force on Trivium.

Algorithm 1 T(o = (o1, . . . , on))

Sys← ∅
for j = 1 to n do
Sys← Sys ∪ xj+93 + xj+68 + zj+65 + zj+110 + zj+109 · zj+108 = 0
Sys← Sys ∪ yj+84 + yj+77 + xj+65 + xj+92 + xj+90 · xj+91 = 0
Sys← Sys ∪ zj+111 + zj+86 + yj+68 + yj+83 + yj+81 · yj+82 = 0
Sys← Sys ∪ oj + xj+65 + xj+92 + yj+68 + yj+83 + zj+65 + zj+110 = 0

end for
return Sys

As explained above, we assume that an attacker obtains from the online
phase after inserting m fault injections the following DFA information:

– The sequence (oj)
n
j=1 of the correct key-stream bits.

– The set of sequences {(okj )nj=1}mk=1 of the faulty key-stream bits for each fault
injection k ∈ {1, . . . ,m}.
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– The set {lk}mk=1 corresponds to the indices of the k fault injections carried
out on the inner state of Trivium at time t0.

The second step of the attack is the process of analyzing the gathered informa-
tion. Intuitively, one has to carry out as many fault injections as required linear
equations that are sufficient to recover all bit values of an inner state at time
t ≥ t0. As in [11], we study the difference between the correct and the faulty
inner state at t0 in order to generate a sequence of additional equations that we
add to the algebraic representation of Trivium. In this case, the system of equa-
tions is enlarged without increasing the number of unknowns. In the beginning,
the bit values of the inner state differences have zeros everywhere, except at the
position of injection it has one. Figure 2 illustrates a potential attack, where the
injection occurred at a random position of the second register Y .

www�
4ST (t0)

IS(t0)

inject a fault

0 0 0 0 . . . 0 0 0 0 0 . . . 0 1 0 . . . 0 0 0 0 0 . . . 0 0 0

x1 x2 x93 y1 y2 y84 z1 z2 z111

Fig. 2. Fault injection to the internal state of Trivium.

As already explained above, each one-bit fault injection provides a sequence
of faulty key-stream bits. Under the assumption that an attacker has also the
proper sequence, he uses this information to build the sequence (∆oj)

n
j=1 of

key-stream bit differences. Using equation (2), we have for j ≥ 1

∆oj = ∆xj+65 +∆xj+92 +∆yj+68 +∆yj+83 +∆zj+65 +∆zj+110. (3)

Moreover, equations (1.1)-(1.3) are used to deduce the sequences of equations
(∆xj)

n+93
j=94 , (∆yj)

n+84
j=85 , and (∆zj)

n+111
j=112 of inner state differences as in (4.1)-(4.3).

∆xj+93 = ∆xj+68 +∆zj+65 +∆zj+110 +∆(zj+109 · zj+108) (4.1)

∆yj+84 = ∆yj+77 +∆xj+65 +∆xj+92 +∆(xj+90 · xj+91) (4.2)

∆zj+111 = ∆zj+86 +∆yj+68 +∆yj+83 +∆(yj+81 · yj+82) (4.3)

4 Generating Mutants

Now we are going to explain our improvements that aim at maximizing the
amount of Mutants during the process of generating DFA equations. In previous
attacks only the free Mutants obtained from DFA information and the deduced
univariate equations were used to simplify the high degree equations. However,
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our approach also includes all new derived linear Mutants in order to provide
more simplifications. This helps us to reduce the degrees of evaluated equations.
Indeed, this helps to delay the appearance of high degree relations and enables
us to generate further new Mutants.

To be more precise, our generator gets the set of equations T that estab-
lishes relations of the inner state and key-stream bits as depicted in (1.1)-
(1.3) and (2). Furthermore, the generator is fed with a set of n key-stream
bit differences {∆oj}nj=1, which we use to build additional relations. As indi-
cated in (3), the polynomials represented by the sequence (∆oj) are linear w.r.t
the three inner state bit difference sequences (∆xj), (∆yj), and (∆zj). These
sequences as provided in (4.1)-(4.3) have a great impact on the procedure of
generating new relations, since the degrees of the constructed polynomial equa-
tions rapidly increase. For example, assuming the last term of equation (4.1)
∆(zj+109 · zj+108), it is algebraically equivalent to the two quadratic terms
(zj+109 ·∆zj+108) + (∆zj+109 · zj+108). Hence, when any of ∆zj+108 or ∆zj+109

equals to one, then zj+109 or zj+108 starts to appear, respectively. By time the
degrees of such terms grow into the process of the system generator. Therefore,
we give the expansion of these three chains more attention in order to generate
many Mutants.

As shown in Figure 2, the sequences (∆xj), (∆yj), and (∆zj) start with
constants (zeros everywhere and 1 only at the injection position). As j increased,
the value “one” spreads to many positions of the three sequences. Afterwords,
the variables express the Trivium inner state bit sequences (xj), (yj), and (zj)
are started to appear. In the early steps these linear terms transmit to (∆oj)
equations, which in turn leads to generating new linear Mutants. Thereafter,
the relations become more complicated as j is incremented. We gathered all new
deduced polynomials in M , the set of generated mutants.

In [11], the authors deal with the problem of building high degree relations
in M by simplifying all constructed polynomial equations H = T ∪ M using
any deduced univariate Mutants. Further, they used Gaussian elimination to
evaluate the row echelon of H (see the notation in Section 2), which provides
more univariates. In our approach, we use not only univariate Mutants but also
we simplify H using new derived linear Mutants. The EQgenerator procedure
constructs such equations as described in Algorithm 2. It takes as inputs m fault
injection positions (l1, . . . , lm), the keystream vector Z before any fault injections
and m keystream vectors Z(1), . . . , Z(m) obtained after each one of the m fault

injections, where each keystream vector Z(j) = (z
(j)
1 , · · · , z(j)n ), 1 ≤ j ≤ m.

Table 2 illustrates the impact of giving Mutants a dominant role for build-
ing the system of equations. We compare our generator approach with the ap-
proaches used in the previous attacks. For this comparison, we assume an at-
tacker has n = 800 proper and faulty key-stream bits. We denote the number of
faults by m. We report the number of new derived linear equations (Mutants)
and the total number of equations in the generated system. Clearly, the first
attack generates only 192 mutants and the second one slightly improves it. Our
generator produces 330 Mutants, which in turn improves the attack.
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Algorithm 2 EQgenerator(l1, . . . , lm, o, o
(1), . . . , o(m))

Sys← T(Z)
x← [x1, . . . , xn+93]
y ← [y1, . . . , yn+84]
z ← [z1, . . . , zn+111]
S ← ∅
for j = 1 to m do
∆x← [0, . . . , 0] // length(∆x) = n+ 93
∆y ← [0, . . . , 0] // length(∆y) = n+ 84
∆z ← [0, . . . , 0] // length(∆z) = n+ 111
InjectFault(∆x,∆y,∆z, lj)
// Insert a one-bit fault to one of ∆x,∆y,∆z based on the value of lj
for i = 1 to n do
S1 ← ∅
dz ← oi + o

(j)
i

Sys← ∆x[i] +∆x[i+ 27] +∆y[i] +∆y[i+ 15] +∆z[i] +∆z[i+ 45] + dz // (3)
∆x[i+ 93]← right hand side of (4.1)
∆y[i+ 84]← right hand side of (4.2)
∆z[i+ 111]← right hand side of (4.3)
repeat
S2 ← ∅
S2 ← ExtractMutant(Sys)
Sys← Substitute(Sys, S2)
S1 ← S1 ∪ S2

until S2 = ∅
∆x,∆y,∆z, x, y, z ← Substitute(∆x,∆y,∆z, x, y, z, S1)
S ← S ∪ S1

end for
end for
return Sys ∪ S

Generator m #Linears # mutants

- 0 800 0

H-R [11] 1 992 192

Attack in [13] 1 994 194

our 1 1130 330

Table 2. Compare the size of generated linear mutants and total system
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In addition to that, we used a modified version of the MutantXL algorithm,
in order to perform an intelligent exploration of the ideal generated by the set
of equations H, where H is the set resulting from the process described above.
This allows us to construct further additional Mutants. Specifically, we partition
the set of equations H into subsets Hi, i ∈ {0, . . . , 6} based on the distance from
the set of Mutants M . In this case, Hi = {p ∈ H| diff(V(p), V (M)) = i}, see
the notation in Section 2. In other words, H0 is the set of all polynomials in H
that relate only variables occurring in M , V(M). Thereby, H1 is the set of all
polynomials in H such that only one variable does not appeared in M , and so on.
Our smart MutantXL aims to enlarge each subset Hi using elements from Hi+1.
Without loss of generality, consider the subset H1. Let p be a polynomial in H1

and the variable v in V(p) is the different variable from V(M), i.e. v /∈ V(M). If p
is linear, then we use it to eliminate the variable v from the whole system. In case
of p is quadratic, based on the structure of Trivium equations as in (1.1)-(1.3),
only the head term HT(p) is quadratic and the remaining terms are linear. Let v
occur in HT(p) and HT(p) = u ·v where u ∈ V(M). If v does not appeared in the
linear part of p, then we eliminate it by replacing p with f = p+u·p. However, if v
occurs in both linear and quadratic parts then we replace p with f = u · p. Then
p is transmitted from H1 to H0. Consequently, after performing the previous
reduction procedure, all such polynomials are included in H0. We perform the
same reduction procedure on each subset Hi. Moreover, we use a linear algebra
technique, namely Gaussian elimination, in order to derive more mutants. We
repeat this procedure until we gathered all possible mutants. Finally, we include
all new Mutants to M . Figure 3 illustrates the previous procedure.

Fig. 3. Reducing polynomials from Hi to Hi−1, in order to derive additional mutants.

In order to find the secret information of Trivium, we need to recover se-
quential 288 inner state bits (xj , . . . , xj+92), (yj , . . . , yj+83), and (zj , . . . , zj+110)
at certain 0 < j < N using only one-bit fault injection. The above procedure
improved the algebraic representation of the system derived from the attack,
however as we will show in the next section, we still have to gather more infor-
mation to be able to solve the system. To be more precise, we need to derive
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a sufficient number of Mutants from the high degree relations in order to solve
the system. It may be argued that the only way to do this is to guess some vari-
ables. The challenge here is to generate the required additional Mutants with
fewer variables to guess.

We present the following smart guessing strategy for achieving the goal that
has been mentioned. As we explained earlier, we are able to gather more mutants
from the sequences described the inner state and key-stream bit differences as
in (4.1)-(4.3) and (3). We noticed from the constructed chains (∆xj), (∆yj),
and (∆zj) for 0 ≤ j ≤ n that, each unsolved variable v constructed in these
chains builds a tree for its relations with the consecutive constructed equations.
The first level of this tree contains all linear relations with v, the second level
all quadratic relations and so on. In order to deduce more hidden relations from
those sequences, we select for our guessing approach some of these variables
which have the biggest trees. In other words, we chose to guess the most frequent
variables in the ∆ chains. Table 3 explains the additional Mutants produced after
guessing g variables.

g #L. Mutants

0 330

5 392

10 436

15 489

20 527

25 576

30 620

35 649

Table 3. The size of generated linear Mutants after guessing g variables

5 Experimental Results

In this section, we present our experimental results which establish the perfor-
mance of our improved DFA attack. Since we used SAT tools to solve the system
obtained from the attack as explained in the previous section, we need to build
CNF instances corresponding to our optimized algebraic systems of polynomial
equations. We consider this as the final step of our attack. Since our system
is represented by the algebraic normal form ANF, we used the ANF to CNF
converter implemented in SAGE, a mathematical open source tool [18]. It uses
two different techniques for converting ANF to CNF. The first one is based on
looking at a form of a polynomial itself [3]: representing each monomial in CNF
and then representing sums of monomials (polynomials) in CNF. The latter is
a bottleneck for SAT, since XOR chains need exponentially large representation
in CNF. To overcome this issue, one “cuts” a sum (a XOR chain) into several



Mutant Differential Fault Analysis of Trivium 13

ones by introducing new variables; each sum is now of moderate size. One then
represents each sum separately. This method performs better when the system
is slightly dense, we call it the dense technique. The second method is based on
considering the truth (value) table of a Boolean polynomial seen as a function
(PolyBoRi’s CNF converter [4]). We call it the sparse technique. We use a com-
bination of the two methods based on the value of a sparsity parameter called
sp. So, for example, if we set sp = 3, then each polynomial p in the system with
|V(p)| ≤ 3 will be translated to clauses using the sparse technique. Otherwise,
the converters use the dense technique. As a result from the previous algebraic
procedure, we optimize the representation of the satisfiabilty problem.

We used our C++ implementation to generate the optimized system of equa-
tions and the additional set of Mutants resulting from the input DFA information
gathered in the online phase of the attack. Further, we use again SAGE and its
Boolean polynomial ring to develop the smart version of MutantXL that we
used in the attack. Finally, we use the SAT solver Minisat2 [15] to solve the
system. The result is obtained as an average over 100 runs under a time limit
3600 seconds (one hour). We run all the experiments on a Sun X4440 server,
with four “Quad-Core AMD OpteronTM Processor 8356” CPUs and 128 GB of
RAM. Each CPU is running at 2.3 GHz.

g time t (sec.) attack complexity C (sec.)

22 9248.13 ' 235.17

23 4224.57 ' 235.04

24 939.40 ' 233.87

25 108.76 ' 231.76

26 76.38 ' 232.26

27 56.64 ' 232.82

28 42.37 ' 233.40

29 36.48 ' 234.19

30 22.15 ' 234.47

31 4.21 ' 233.07

32 2.82 ' 233.49

33 1.94 ' 233.96

34 1.32 ' 234.39

35 1.27 ' 235.35

Table 4. Results of our attack using only a one-bit fault injection

Table 4 reports our experiments. The number of guessed variables is denoted
by g, the average time (in seconds) of the SAT-solver Minisat2 for solving one
instance is denoted by t, and finally C is the total time complexity in seconds.
In this scenario, we select g variables of the inner state sequences as explained in
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the previous section. We studied both the correct and the wrong guessing cases
and took the average time. We found that at least 22 variables are needed to
guess in order to solve the constructed system and guessing 25 bits gives us the
lowest time complexity as explained in Table 4. Consequently, in order to recover
the secret key of Trivium we require in (on average) about 231.76 seconds using
only one core. Since our generator can be used in parallel by dividing the 225

possible cases on N cores and assuming we have a super computer with more
than 1000 cores, then one can use our attack and recover the secret information
in approximately 42 days.

6 Conclusion

In this paper, we presented an improvement of a differential fault attack (DFA)
on the stream cipher Trivium. The main idea of the paper is to combine several
algebraic tools to reveal the secret key by injecting only one single fault. First,
we enhanced the role of linear Mutants (lower degree relations) during the step
of processing the gathered DFA information. Secondly, we modified MutantXL
in such a way that it generates additional sparse relations which in turn improves
the CNF representation of the constructed system and speeds up the SAT-solver
process. Finally, we presented a guessing strategy that deals with high degree
relations appearing during the attack. Our attack methodology can be considered
as a template for attacking other stream ciphers, such as MICKEY and Grain.
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