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Abstract. In this paper we present 7 block cipher algorithms Simon,
Speck, KATAN, LED, TEA, Present and Sea. Each of them gets a short
introduction of their functions and it will be examined with regards to
their security. We also compare these 7 block ciphers with each other and
with the state of the art algorithm the Advanced Encryption Standard
(AES) to see how efficient and fast they are to be able to conclude what
algorithm is the best for which specific application.
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1 Introduction

In modern IT The Internet of Things(IoT) is one of the most recent topics.
Through the technical progress the internet has increasingly moving into our
daily lives. More and more devices get functions to go online interconnect with
each other and send and receive data. The increasingly smaller and cheaper
expectant electronic control and communication components were installed in
particular in recent years, increasingly in things of daily life. Typical fields of
application are for example home automation, Security technology in the private
or business environment as well as the supporting usage in the industry [1]. Be-
cause of the very high price sensitivity in this environment the focus is set on the
efficiency of the used programs and algorithms. Requires an optimized algorithm
for example just the half on computing time and memory, it is accordingly pos-
sible to use cheaper hardware. Extrapolated to the produced number of units a
considerable amount can be saved or the IoT technology can be built in accord-
ingly cheaper things. Due to the growing integration of technology in the daily
life and inevitably into the highly personal sphere, the claim of confidentiality
and security on the collected data and the networked devices is increasing. It is
very important to be sure that these connections are secure but also efficient.
The state of the art block cipher AES cannot be used for these low-end devices



such as RFID tags or sensor networks because they are often very small, have
less computing power or have to be very power saving. So we have very con-
strained environments. Against this background particularly efficient algorithms
have been developed, which are partly specially adapted to the used hardware.
Our 7 block ciphers had been developed to fulfil these constraints. KATAN,
LED, SIMON and PRESENT have been optimized for performance on hard-
ware devices and SPECK, SEA and TEA for performance in software. At the
comparison section we will see how good they fulfil these goals.

We organize this paper as follows: In Section 2 we have a short overview of fur-
ther related works which also concerned about our 7 algorithms. In section 3
some attack procedures on block ciphers are explained. Section 4, 5, 6, 7, 8, 9
presents SIMON, SPECK, KATAN, LED, TEA, PRESENT and SEA. How they
work, the different variants and possible attacks against them. In Section 10 the
block ciphers are compared with each other under performance and efficiency
points as well as with AES aspects. Section 11 gives a short conclusion.

2 Related Work

There is a growing number of low-cost cryptography and a number of papers
dealing with their comparison. The Paper from [2] Compact Implementation and
Performance Evaluation of Block Ciphers in ATtiny Devices [3] tries to build a
uniform comparison platform by using the ATMEL ATtiny45. 4 [3] implement
12 block ciphers including AES, DESL, HEIGHT, IDEA, KASUMI, KATAN,
KLEIN, mCrypton, NOEKEON, PRESENT, SEA and TEA on that platform
and published the source code as open source. This should serve as a better com-
parison platform for the future. There is also work done that compares not only
block ciphers among each other. [3] covers block ciphers and stream ciphers. For
the comparison, they focus on key bits, block bits, cycles per block, throughput
at 100 kHz and the area in gate equivalents the algorithm needs for implemen-
tation. They split the algorithms they compared into two groups, hardware and
software oriented ciphers. [4] focused mainly on stream ciphers in their work
Hardware results for selected stream cipher candidates[4].

In the area of SIMON and SPECK there exist two similar papers The SIMON
and SPECK Families of Lightweight Block Ciphers [5] and SIMON and SPECK:
Block Ciphers for the Internet of Things [6]. The papers explains how the al-
gorithm works, it contains many performance comparisons on constrained plat-
forms and it describes many security aspects. A few of the comparisons were
used in this paper too.

One paper which compares KATAN with other lightweight block ciphers is the pa-
per Katan and ktantan - a family of small and efficient hardware-oriented block
ciphers [7] from the designers of KATAN . It explains what are the difference be-
tween KATAN and several existing block ciphers and compares them. The paper
Modellbildung in der algebraischen kryptoanalyse [8] handles among other about
different attacks on KATAN and compares them with each other. Furthermore

4 http://www.atmel.com/devices/attiny45.aspx



does it explain how KATAN is designed and explains a new algebraic attack
which is better than any other known algebraic attacks.

In the area of TEA and LED there exist many papers which also deal with
these algorithms from different points of view. First to call are the papers which
generally deal with these encryption methods. They each illustrate one of the al-
gorithms and concentrate on certain properties in different detail degrees. For the
Tiny Encryption Algorithm (TEA) the following papers are cited as examples:
TEA, a Tiny Encryption Algorithm[9], Tiny Encryption Algorithm (TEA)[10]
and The Tiny Encryption Algorithm (TEA)[11]

Another relevant group are the papers which have a special focus on the light-
ness and therefore the suitability of TEA in very small, computationally weak
and cheaper Hardware. Here are specially the papers: Design and Implemen-
tation of Low Power Hardware Encryption for Low Cost Secure RFID Using
TEA[12] and Hardware Implementation of a TEA-Based Lightweight Encryp-
tion for RFID Security [13] to call.

At last we have the papers which consider XTEA under the security aspects and
describe vulnerabilities and possible attacks. These include inter alia the follow-
ing: Related-key rectangle attack on 36 rounds of the XTEA block cipher[14] and
Meet-in-the-Middle Attacks on Reduced-Round XTEA[15].

3 Attacks

In this section different types of attacks on block ciphers will be shortly de-
scribed. These attacks play a more or less important role for the in this paper
handled ciphers and will be taken up again in the security section. The attacks
are: brute-force, linear cryptanalysis, algebraic cryptanalysis, differential crypt-
analysis, related-key attacks, meet-in-the-middle attacks, side-channel attacks
and combinations of these methods.

Brute-force. A brute-force attack tests systematically all possible keys on the
cypher text. It is assumed that the attacker don’t have any prior knowledge
about the keys that are more probably than other keys. This type of attack is
often from minor importance because it is uneconomical to decrypt the cypher
text with all possible keys. The complexity of a brute-force attack act as reference
for other attacks.

Linear cryptanalysis This attack requires a known-plaintext attacker ahead,
i.e. the attacker knows the relative cipher text to a certain plaintext. The idea
of the attack is to find linear equations for parts or. single operations of the
cypher. The equations try to determine plain text bits, cipher text bits and key
bits pairs with a better probability than % For these attacks it is an important
performance factor how many plaintext ciphertext pairs are needed.
Algebraic cryptanalysis This attack has the same objective as the linear
cryptanalysis, but instead of only linear equations also polynomial equations
of any degree can be used. An often problem in this context is there is no exact
complexity and because of that it is necessary to use other metrics like runtime
on a specific test environment.



Differential cryptanalysis. The differential cryptanalysis is a chosen-plaintext
attack, i.e. the attacker can encrypt a chosen plaintext. To accomplish the at-
tack pairs (AX, AY) are compared, whereby AX and AY are in each case the
difference (e.g. XOR) of two values, e.g. the difference of two inputs and outputs
of the algorithm. Goal of this analysis is to classify certain keys more likely.
Related-key attack. At a related-key attack it is assumed that the attacker
knows not only the cipher text of the originally keys K but also the decryption
with key K’ which are derived from K ie. K' = f(K).

Meet-in-the-middle attacks (MITM). MITM attacks assume at least one
known pair of plain- and cipher text (known- or. Chosen-plaintext). At the first
step the attacker tries to filter keys i.e. the key space is limited. At the second
step the right key is searched using brute-force or another attack. More details
about this attack technique can be found for example in Takanori Isobe and
Kyoki Shibutanii[16].

Side-channel attacks. A side-channel attack doesn’t attack the algorithm it-
self but the physical implementation. The attacker tries for example of the du-
ration or the power consumption of certain operations to infer information. Also
the attacker can try to specifically tilt bits for example due to manipulate the
applied voltage.

4 Simon and Speck

Simon and Speck is a family of lightweight block ciphers publicly released by
the National Security Agency (NSA) in June 2013. [5] Simon and Speck comes
with ten distinct block ciphers with differing block and key sizes. The most
existing block ciphers were designed to perform well on a single platform and
were not meant to provide high performance across a range of devices. The
aim of Simon and Speck was to fill the need for secure, flexible, and analysable
lightweight block ciphers. Each offers excellent performance on hardware and
software platforms, is flexible enough to admit a variety of implementations on
a given platform, and is amenable to analysis using existing techniques. Both
perform very well across the full spectrum of lightweight applications, but Si-
mon has been optimized for performance in hardware implementations, while
its sister algorithm, Speck, has been optimized for software implementations.
The reason why the algorithms work so well on each platform is that both are
very simple constructed. So it is very easy to find efficient implementations. For
algorithms such as AES it required longer time of research to find near-optimal
implementations.

The Simon block cipher with an n-bit word (and hence a 2n-bit block) is
denoted Simon2n, where n is required to be 16, 24, 32, 48, or 64. Simon2n
with an m-word (mn-bit) key will be referred to as Simon2n/mn. For example,
Simon64/128 refers to the version of Simon acting on 64-bit plaintext blocks and
using a 128-bit key. The notation for the different variants of Speck is entirely
analogous to that used for Simon.



4.1 Simon round function

The Simon2n encryption maps make use of the following operations on n-bit
words:

— bitwise XOR, &,
— bitwise AND, &, and

— left circular shift, S/ , by j bits.
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Fig. 1: The Simon Round Function. Derived from [5]

The round functions for Simon 2n take as input an n-bit round key k, together
with two n-bit intermediate ciphertext words. The round function is the 2-stage
Feistel map

Ri(z,y) = (y @ f(z) © k, x),

where f(z) = (Sz&S8x) & Sz and k is the round key. The inverse of the round
function, used for decryption, is

R (z,y) = (g2 @ fly) @ k).

Figure 1 shows the effect of the round function Ry, on the two words of sub
cipher (x;11, ;) at the i*" step of this process.

The round functions are composed some number of times which depends on

the block and key size. Parameters for all versions of Simon are specified in Table
1.



Table 1: SIMON parameters. Derived from [5]

block key word key const rounds
size 2n  size mn | size n  words m seq T
32 64 16 4 20 32
48 72 24 3 20 36
96 4 21 36
64 96 32 3 Z2 42
128 4 23 44
96 96 48 2 22 52
144 3 23 54
128 128 64 2 22 68
192 3 23 69
256 4 24 72

4.2 Simon key schedules

The key schedule is needed to turn a key into a sequence of round keys. The
Simon key schedules employ a sequence of 1-bit round constants specifically
for the purpose of eliminating slide properties and circular shift symmetries.
The designers provide some cryptographic separation between different versions
of Simon having the same block size by defining five such sequences: zg, ..., 24.
Each of these sequences is defined in terms of one of the following period 31
sequences:

U = upuyuz... = 1111101000100101011000011100110...,
v = vgV1v2... = 1000111011111001001100001011010...,
w = wowyws... = 1000010010110011111000110111010....

The first two sequences are simply zp = v and z; = v. The other three, zo,
z3, and z4, have period 62 and are formed by computing the bitwise XOR of the
period 2 sequence t = tgtits... = 01010101... with u, v, and w, respectively:

2o = (22)0(22)1(22)2-.. = 1010111101110000001101001001100
0101000010001111110010110110011...,
23 = (23)0(23)1(23)2-.. = 1101101110101100011001011110000
0010010001010011100110100001111...,
24 = (24)0(24)1(24)2-.. = 1101000111100110101101100010000
0010111000011001010010011101111...,

(1)

where (z;); is the " bit of z;.
The sequences u, v, and w can be generated as follows: Define 5 x 5 matrices U,
V, and W over GF(2) by



01000 01100 01000

00100 00100 00100
U=1]10010|,V=(10010,W=1]10010
00001 00001 00001
10001 10000 10000

The 74, element of each sequence is then obtained by initializing a 5-bit linear
feedback shift register to 00001, stepping i times using the corresponding matrix,
and extracting the right-hand bit. Thus (u); = (0,0,0,0,1)U%(0,0,0,0,1)*.

Let c=2"—4 =0xff--- fc. For Simon2n with m key words (k;,—1, ..., k1, ko)
and constant sequence z;, round keys are generated by

c® (2j)i®ki® (I S™1)S 3kit, ifm=2

Kitm =< c®(2))i ®ki ® (I DS 1S 3kito, ifm=3

cD (Zj)i Sk D (I ©® 871)(573]{14_3 G ki1, ifm=4
for 0 < i < T —m. In Figure 2 is the key schedules represented and which
version-dependent choice of constant sequence z; have to used is shown in Table
1. Note that yourself choose the first m key words which will used as the first

m round keys. They are loaded into the shift registers with kg on the right and
km—1 on the left. Only the next ones will be generated with key schedule.

4.3 Speck round function

The Speck2n encryption maps make use of the following operations on n-bit
words:

bitwise XOR, @,
addition modulo 2™, +,
left and right circular shifts, S7 and S™j , respectively, by j bits.
For k € GF(2)", the key-dependent Speck2n round function is the map Ry:
GF(2)"x GF(2)™ — GF(2)"x GF(2)™ defined by

Ri(z,y) = (S +y) ©k,SPy @ (S +y) ® k),

with rotation amounts « = 7 and 8 = 2 if n = 16 (block size = 32 ) and
a = 8 and = 3 otherwise.

The inverse of the round function, necessary for decryption, uses modular
subtraction instead of modular addition, and is given by

Ry (z,y) = (S*((z @ k) = Sz @y), S (z @ y)),
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Fig. 3: Speck round function; (x2;41 , X2; ) denotes the sub-cipher after i steps
of encryption. Derived from [5]



Table 2: Speck parameters. Derived from [5]

block key word key rot rot rounds
size 2n  size mn | sizen wordsm | « B8 T
32 64 16 4 7 2 22
48 72 24 3 8 3 22
96 4 23
64 96 32 3 8 3 26
128 4 27
96 96 48 2 8 3 28
144 3 29
128 128 64 2 8 3 32
192 3 33
256 4 34

Parameters for all versions of Speck are specified in Table 2.

The Speck key schedules take a key and from it generate a sequence of T
key words kg, ..., kr_1, where T is the number of rounds. The effect of the single
round function Ry, is shown in Figure 3. Encryption is then the composition

Ryy_, 0...0 Ry, o Ry, read from right to left.

Note that Speck can be realized as the composition of two Feistel-like maps with

respect to two different types of addition, namely,

(z,y) — (y, (S~ %z +y) & k)and(z,y) — (y, 5%z & y).

This decomposition is pictured in Figure 4.

Fig. 4: Speck round function decomposed into Feistel-like steps. Derived from [5]

4.4 Speck key schedules

The Speck key schedules use the own round function to generate round keys
k;. This is useful cause we don’t need to implement a new method. Let K be




a key for a Speck2n block cipher. We can write K = (l,,—2, ..., lo, ko), where
lisko € GF(2)™, for a value of m in 2, 3, 4. Sequences k; and [; are defined by

ligm—1 = (ki + 7)) @i

and
kivi = SPki ® ligm1-

The value k; is the it" round key, for 0 < i < T'. See Figure 5.

Fig. 5: Speck key expansion, where R; is the Speck round function with ¢ acting
as round key. Derived from [5]

4.5 Security Analysis

Simon and Speck attacks was studied in many articles since its publication in
2013. The most published attacks on Simon and Speck are of the reduced-round
variety. The goal of this sort of analysis is to determine the maximal number of
rounds that would be susceptible to a theoretical attack (i.e., anything better
than an exhaustive key search). A measure of security is the number of rounds
that have been attacked, as a percentage of the total. So far no published attack
makes it more than about 74% of the way through any version of Simon or Speck.
The best attacked rounds for all versions of Simon was with the improved linear
hull and differential attacks with dynamic key-guessing technique [17], [18] . The
best attacked rounds in Speck is with differential cryptanalysis and improved
differential cryptanalysis [19], [20]. The results are shown in table 3.

The content of the table 3 is simple: there are no attacks on any member of
the Simon or Speck families, and each block cipher maintains a healthy security
margin.

5 KATAN

KATAN/KTANTAN is a family of hardware oriented block ciphers designed in 2009
by Chrstophe de Canniere, Orr Dunkelman, and Miroslav Knezevic [7]. In sum-
mary the family consists of six block ciphers. They are divided into two sets of



Table 3: Security of Simon and Speck derived from [6] Table 1
size alg rounds ref
total  attacked

32/64  Simon 32 23 (12%)  [17]
Speck 22 14 (64%) [19]
48/72  Simon 36 24 (67%)  [17]
Speck 22 14 (64%) [19]
48/96  Simon 36 25 (69%)  [17]
Speck 23 15 (65%) [19]
64/96  Simon 42 30 (71%)  [17]
Speck 26 18 (69%) [19]
64/128 Simon 44 31 (70%)  [17]
Speck 27 19 (70%) [19]
96/96  Simon 52 37 (71%) [18,[17]
Speck 28 16 (57%) [19]
96/144 Simon 54 38 (70%) [17]
Speck 29 17 (59%) [19]
128/128 Simon 68 49 (72%) [18,[17]
Speck 32 17 (53%) [19]
128/192 Simon 69 51 (74%)  [17]
Speck 33 18 (55%) [19],120]
128/256  Simon 72 53 (T4%)  [17]
Speck 34 19 (56%)

three KATAN block ciphers with 32, 48 or 64-bit block size and three KTANTAN
block ciphers with the same block size. They share the same 80-bit key size and
security level. The difference between KATAN and KTANTAN is that at KTANTAN the
key is burnt into the device and cannot be changed. Therefor KTANTAN are very
small block ciphers and more compact than KATAN and can only be used in cases
where the device is initialized with one key.

KATAN32 has 802 GE and an encryption speed of 12.5 KBit/sec.

KATAN48 has 927 GE and an encryption speed of 18.8 KBit/sec.

KATAN64 has 1054 GE and an encryption speed of 25.1 KBit/sec.

KTANTAN32 has 462 GE and an encryption speed of 12.5 KBit/sec.

KTANTAN48, which is the recommend for RFID tags has 588 GE and an encryption
speed of 18.8 KBit/sec.

KTANTAN64 has 688 GE and an encryption speed of 25.1 KBit/sec.

A comparison with some other ciphers is shown in Table 4.
The specific design goals from the developers were as follows:[7]

For an n-bit block size, no differential characteristic with probability greater
than 27" exists for 128 rounds (about half the number of rounds of the cipher).
For an n-bit block size, no linear approximation with bias greater than 2~"/2
exists for 128 rounds.



Table 4: Comparison of Ciphers Designed for Low-End Environments (optimized
for size). Derived from [7].

Cipher Block Key Size Gates per Throughput! Logic

(bits) (bits) (GE) Memory Bit  (Kb/s)  Process
AES-128 128 128 3400 7.97 12.4 0.35u
AES-128 128 128 3100 5.8 0.08 0.13u
HIGHT 64 128 3048 N/A 188.25 0.25u
mCrypton 64 64 2420 5 492.3 0.13p
DES 64 56 23097 12.19 44.4 0.18u
DESL 64 56 18482 12.19 44.4 0.18u
PRESENT-80 64 80 1570 6 200 0.18u
PRESENT-80 64 80 1000 N/A 11.4 0.35u
Grain 1 80 1294 7.25 100 0.13u
Trvivium 1 80 749 2° 100* 0.35u
KATAN32 32 80 802 6.25 12.5 0.13u
KATAN48 48 80 927 6.25 18.8 0.13u
KATANG64 64 80 1054 6.25 25.1 0.13u
KTANTAN32 32 80 462 6.25 12.5 0.13u
KTANTAN48 48 80 588 6.25 18.8 0.13u
KTANTANG4 64 80 688 6.25 25.1 0.13u

—A throughput is estimated for frequency of 100 KHz.
—Fully serialized implementation (the rest are only synthesized).
—This is a full-custom design using C2MOS dynamic logic.

T
2
3
4 —This throughput is projected, as the chip requires higher frequencies.




No related-key key-recovery or slide attack with time complexity smaller than
280 exists on the entire cipher.

High enough algebraic degree for the equation describing half the cipher to
thwart any algebraic attack.

Also they rank the possible design targets as follows:[7]

Minimize the size of the implementation.

Keeping the critical path as short as possible.

Increase the throughput of the implementation (as long as the increase in the
footprint is small).

Decrease the power consumption of the implementation.

We concentrate on KATAN in this paper so KTANTAN is not examined in more
detail.

5.1 Round function and key schedule

We have three variants of the KATAN ciphers. KATAN32, KATAN48 and KATANG4. The
main difference between them is the block size and that KATAN48 executes the
nonlinear function twice and KATANG4 three times with the same round key per
round. For example, we use KATAN32 to describe the key schedule. The plaintext
(bit 0-31) is used to generate the ciphertext. For that it is loaded into two
registers Lj(bit 19-31) and Lo(bit 0-18) and L; and Ly are shifted to the left
(bit i is shifted to position i+i) each round. After that both registers get updated
each round with the following nonlinear functions f, and f; for 254 rounds.

fa(L1) = L1[z1] @ L1 [x2) & (L1 [x3] * L1[z4]) & (L1[zs] * IR) ® kg

fo(L2) = La[y1] ® La[ya] @ (L2[ys] * Lalya]) © (La[ys] * Lalys]) © ks

IR is an irregular update rule (which is only used if IR = 1) shown in Table 6,
ko and k;, are two subkey bits. The bits for x; and y; for each variant are shown
in Table 5[7]. Afther the round the LSB of L; is the output of f, and the LSB
of Ly is the output of f,.

The key schedule for all variants of the KATAN family accepts a 80-bit key K with
the secret key Ky - K79 and the following mapping:

(2)

b K; for i =0...79
" ) kimso @ kimgr = ®ki_so D k13 Otherwise

The values of k, and k; for a round i are ko; and koi,;. And for that k, || kp =
k2 || koyi. Figure 6[7] shows a round of the KATAN family.



Table 5: Parameters of the KATAN family. Derived from [7].
Cipher |L1| |L2| x1 22 x3 T4 x5
KATAN32/KTANTAN32 13 19 127 8 5 3
KATAN48/KTANTAN48 19 29 181215 7 6
KATANG64/KTANTANG64 25 39 24152011 9

Cipher Y1 Y2 Y3 Y4 Ys Ys
KATAN32/KTANTAN32 18 7 1210 8 3
KATAN48/KTANTAN48 28 19 211315 6
KATAN64/KTANTANG64 38 23 332114 9

Table 6: Sequence of the irregular updates. 1 IR is used, 0 IR is not used. Derived
from [7].

Rounds 0-9 10-19 20-29 30-39 40-49 50-59
Irregular 1111111000 1101010101 1110110011 0010100100 0100011000 1111000010
Rounds 60-69 70-79 80-89 90-99 100-109 110-119

Irregular 0001010000 0111110011 1111010100 0101010011 0000110011 1011111011
Rounds 120-129 130-139 140-149 150-159 160-169 170-179
Irregular 1010010101 1010011100 1101100010 1110110111 1001011011 0101110010
Rounds 180-189 190-199 200-209 210-219 220-229 230-239
Irregular 0100110100 0111000100 1111010000 1110101100 0001011001 0000001101
Rounds 240-249 250-253

Irregular 1100000001 0010

| 7
ke 4(%(;7 A
A W

—

Fig. 6: Outline of a round of the KATAN family. Derived from [7].



5.2 Security Analysis

The first two mentioned design goals ensure that no differential-linear attack
or a boomerang attack exist for the entire cipher. Only one successful attack
is known at the moment. The attack on KTANTAN32 was presented by Andrey
Bogdanov and Christian Reichberger at Selected Areas in Cryptography 2010
[21]. The meet-in-the-middle attack can find the key with a time complexity of
279 The other variants of the KATAN family are not affected by this attack and
still secure. Mainly differential, meet-in-the-middle, algebraic and side channel
attacks have been executed on KATAN. First we look at 2 differential attacks.

The authors from [22] used a known chosen plaintext scenario with multiple
instances with the same key to attack KATAN. They get 16 differentials for 95
rounds which makes it possible to break 115 rounds of KATAN with a time and
data complexity of 232,

In [23] multiple KATAN instances with a difference in plaintext and key. The
attack breaks 120 rounds of KATAN with a time and data complexity of 23!

The third attack is a meet-in-the-middle-attack from [24]. They break 153
rounds from KATAN with a time and data complexity of 278° and a memory
complexity of 276. So this is a more theoretical attack and not practicable with
the current technologies.

Another meet-in-the-middle-attack is from [25]. 174 rounds are broken with

a time complexity of 2785, a memory complexity of 226-% and a data complexity
of 2276,

An algebraic attack is from [26]. The attack breaks 79 rounds with a time
complexity of 276 and a data complexity of 2°.

A little better is the algebraic attack from [8]. The attack breaks 80 rounds
with a time complexity of 272 and a data complexity of 27.

In Table 7 a comparison of the attacks is shown.

Table 7: Comparison of the attacks

attack method rounds time memory data
22] differential 115 2% — 2%
23] differential 120 28— 23

[
[ :
[24] meet-in-the-middle 153 2785 276 2785
[25] meet-in-the-middle 174 2785 2266 9276
[26] algebraic 79 2765 25
8] algebraic 80 27 — 27




6 LED

Light Encryption Device is a symmetric block cipher which was published from
Guo et al.[27] in 2011. The cipher is lightweight and can efficiently be imple-
mented in hardware. Because of these properties the authors suggest that LED
is basically suitable for encryption and decryption in the IoT area. A concrete
use case is the secure storage and transmission of RFID tags.

6.1 Mathematical notations

This paper uses the following mathematical operators:

Integer addition: The addition of two integer numbers modulo 2™ is written
down as x Hy. Where z,y € Zon.The value of n results from the context.

Exclusive or (xor): z @y

Bitwise Shift: The logical shift from x to y bits is written down as z << y
(to left). The logical shift from x to y to right is written down as x >> y.

6.2 Encryption

LED uses a block size of 64 bits. The key length is 64 bit (LED-64) or 128 bit
(LED-128). Even key length between 64 bit and 128 bit are basically possible
for example 80 bit. In this case the remaining bits will be padded with the prefix
of the key (padding). We call the actual bytes of the blocks to be encrypted
as a State. The state and the keys will be written down as a (4 x 4) matrix.
The matrix entries of the state and key are respectively 4 bit blocks (Nibble)
and represents elements of the body Fos. With a key length of 128 bit, there
are accordingly 2 matrices, each with 64 bit. A round consists of 4 sub-steps:
AddConstants, SubCells, ShiftRows and MixColumnsSerial. The number of
rounds are 32 (LED-64) or 48 (LED-128). Below each sub-step of a round will
be described.

AddConstants. At the beginning of each round the operation AddConstants
is performed. For this purpose, the State with the following matrix is added
bitwise using XOR:

0 (res||real|res) 00

1 (regllres]|ree) 00

2 (res||rea||res) 00

3 (rezg||rei||reo) 00

The bit vector (rcs,rcq,rcs,rea,rer1,rco) is initialized with 0 before the first
round. Before each addition the matrix on the last round is taken, the bit vector
is shifted by one positon to the left and rc¢g is set to res @ req @ 1.
SubCells. In this step every Nibble of the state will be replaced by another
(Sbox). The Sbhox was borrowed by the block cypher PRESENT [28].



Table 8: PRESENT Shox.
z [[0[1]2[3]4[5[6]7[8[9[A[B[CD[E[F
STz][[C[5[6/B[9[0[A|D[3[E[F[8[4]7[1]2

ShiftRows. For i = 1,2,3,4 each i-th is shifted cyclical ¢ — 1 positions to the
left.

MixColumnsSerial. Each column vector v of the state is replaced with M - v.
To multiply the elements, the polynomial X* + X + 1 is used.
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After every step (4 rounds) and at the start of the encryption is also still the
operation addRoundKey performed. In addition to that the key is added to the
state by use of XOR. In the case of LED-128 the two keys switch after each step.
The name round key is misleading at this point because the key never changes.
An outline of the encryption process is shown in Fig. 7.

)~} ) [T @) )@«

Fig.7: LED encryption

6.3 Security

LED is very similar to AES with regard to the rounding operation. The round
number is comparatively set high with 32 (LED-64) or 48 (LED-128). AES-128
uses 10 rounds. However, should be noted that AES adds the round key each
round. LED uses the operation AddConstants instead. Therefore, one step (4
rounds) in LED is equivalent to 4 rounds single-key AES. This comparison is
drawn because the security for 4 rounds single-key AES was further explored
[29][30].

In the following, an overview of the attacks is given that exists on LED® are
given. Vincent Grosso et al.[31] research algebraic attacks on LED. Evaluated
is the time needed for the key recovery with different number of key bits. At
full number of rounds, the key can be recovered in about 5 minutes® when 16

5 The given values refer to LED-64, if not otherwise specified.
5 A statement about the used test environment is not taken.



of 64 key bits are unknown. Result for the case that more than 16 key bits are
unknown are not provided. It is also noted that the attack is only an advantage
over a brute-force attack brings if at least 9 key bits are unknown.

In the papers by Xinjie Zhao et al.[32] and Philipp Jovanovic et al.[33] alge-
braic attacks are combined with side-channel attacks. Both attacks require that
the same plain text can be encrypted with the same key twice. At the second
encryption in the 30 round after the operation SubCells it is attempted to pro-
duce an error in the first entry of the state so that at this entry is a random
value. Based on the difference of the outputs and the inverse rounds a system
of equations is formed with that the key space of 219 ~ 225 or 26 ~ 217 can be
reduced [33][32].

Takanori Isobe und Kyoji Shibutani[16] research MITM attack on lightweight
ciphers. It is about a chosen-plaintext attack with the objective to recover the
key. In the case LED-64 rounds are attacked where 2% plain-cipher-text pairs and
256 encryptions are needed. At LED-128 are 16 rounds at a time complexity of
2112 and a data complexity of 2'6 achieved.

Mendel et al.[34] describe differential attacks in the single- and related-key
context. Objective of the attack is the key-recovery. In the related-key attack
the authors succeed to attack in 16 rounds at 2627 encryptions. However, the
attack also has with 2627 a high data- and memory complexity. In the paper is
also an attack shown on LED-128 provided that Ky will guess (data complexity
264) the complete key Kol||K; at 29 encryptions can be recovered.

That in 2015 published paper by Ivica Nikoli et al.[29] attacks with a combi-
nation of MITM and differential crypto analysis the so far most rounds (without
side-channel) with 20 (LED-64) or 40 (LED-128).In contrast to the previously
noted attacks its objective is not the key-recovery. Instead at a successful attack
the attacker can distinguish a randomly permutation of the 2¥ possible permu-
tations of the used key (distinguish attack). This attack is less threatening than
a key recovery but on this basis with less complexity further attacks can be
accomplished. The results are as follows. In the case LED-6420 rounds at a time
complexity of 2602 and a data complexity of 2615 are attacked. For LED-128 are
10 rounds with 203 encryptions and a memory complexity of 260 affected.

A summary of the attacks is shown in table 9[29]. In addition to the com-
plexities, the attack conditions (single-key (SK), related-key (RK), chosen-key
(CK)), the number of attacked rounds and the effect of the attack (key-recovery
(KR), distinguisher (D)) listed.

7 Tea family

7.1 Introduction TEA

The Tiny Encryption Algorithm (TEA) was developed with the objective to
design a high performance and mathematical not to complicated encryption
algorithm which in particular also for use on low-performing small computers
in the IoT environment is. The algorithms of the TEA-family are variants of



Table 9: Attacks on LED[29]

Cipher Attack Type Rounds Time Data Memory Ref
MITM (SK) KR 8 276 o8 21T 116

LED-64 Linear/Differential (CK/RK) KR 16 20627 2627 9627 [34]
(32 as) Linear/Differential (CK) D 15 216 — 216 [27]
TOURES) Al MITM/Differential (CK) D 16 2335 — 232 [gg]
MITM /Differential (CK) D 20 2002 9615 99

MITM (SK) KR 16 277 2 219 [i§]

LED-198 Linear/Differential (CK/RK) KR 24 2% 264 932 [34]
(48 rounds) Linear/Differential (CK/RK) D 27 26 216 932 [97]
rou MITM /Differential (CK) D 32 2335 _ 232 [29]
MITM /Differential (CK) D 40 2003 _ 260 [29]

a Feistel Cipher and thus block ciphers. TEA encrypts 64 bit blocks which are
directly split into 32 bit blocks. The classical TEA algorithm uses a 128-bit
length key. TEA is a round based encryption method. The number of the used
rounds are variable but 32 Tea cycles are recommended. Due to the symmetrical
construction of the encryption algorithm (see point 7.3) is one cycle in TEA
equivalent to two Feistel rounds. [10]

The algorithm exceeds the performance of DES (see point 7.7) and can be
implemented in all programming languages. For many common programming
languages exist reference implementations which can be used with little effort.
With a strength of 32 cycles is the test implementation 60% faster than the
reference implementation with 56-Bit DES. The encryption strength of TEA
can be further increased by increasing the encryption cycle. [9]

7.2 ”The golden number”

To counter attacks which try to exploit the symmetric of the encryption rounds
it is a frequent practice by some encryption methods to include golden numbers
at each round. This has the effect that there are no bits which do not change in
sequential rounds. The classic golden number is defined as: [35]

1+5
2

3)
TEA uses a derived constant from the golden number: [9]

(V5 —1)2% (4)

This constant initialized the variable delta and equates to a rounded integer: [9]:

delta = 265443576910 = 9E3779B9:6 (5)

The mathematical definition of the constant should counter the suspicion that
it is not a random number but a conscious weakening of the algorithm installing



a backdoor. In cryptography it is for this reason a frequent practice not to use
hardcoded random chosen numbers but to generate them by a simple compre-
hensible mathematical operation.[35]

7.3 Encryption algorithm

As already described under 7.1TEA is a block-cipher encryption method which
can only encrypt 64 bit blocks. To encrypt the 64-bit block gets split in two 32 bit
blocks. One block named L (left) the other R (right). The blocks get interchanged
after each encryption round. The 128-bit key gets split in 4 sub keys and named
with K[0-3]. The first 32 bit are in key K[0], the second 32 bit are in key K[1] etc.
the encryption steps are shown in 8 and get formally introduced under section
7.5. For further details, you can also look into the mentioned sources. [10]

7.4 TEA encryption routine characteristics
The TEA encryption algorithm has the following characteristics:

As usual for a Feistel cipher every round I has 2 inputs Left(i) and Right(i) from
the second round it is in each case the output of the opposite side from the round
before. In each case the variables will be initialised with one half of the block to
be encrypted.

The in every round used key KJi] is a part of the 128 Bit long key K.

The constant delta will be initialised with a golden number derived constant
and ensures that the partial keys generate different ciphers and have no relevant
cryptographic significance. (see section 7.2).

The encryption algorithm don’t use random numbers i.e. identical text by the
same key leads to the identical cipher.

7.5 Formal definition of the encryption

To clarify the functionality are hereinafter the encryption functions of the TEA
block cipher listed. Figure 8 shows the encryptions steps graphically. As intro-
duced in section 7.3 the respectively part of the used key is named K][0-3] and
the respectively part of the current block to be encrypted is named with Right(i)
or. Left(i). Deltali] is a modification of the under section 7.2 introduced golden
number. As described delta is defined as follows:

delta = (V5 — 1)2%" = 2654435769,¢ = 9E3779B9: (6)

One TEA round consists of two Feistel rounds and for that reason the control
variable i increases by 2 each round. The variable i indicates the Feistel rounds.
In one TEA round the following operations were executed:

deltali] = (i + 1)/2 * delta (7)



Left[i + 1] = Right]i] (8)
Right[i + 1) = Left[i]| B F(Rightli], K0, 1], deltals]) 9)
Leftli + 2] = Right[i + 1] (10)

Rightli + 2] = Left[i + 1) B F(Right[i + 1], K[2, 3], deltal[i]) (11)

F(M, Kj, k], deltali]) = (M << 4)BK[j])®(MBdeltali]) & (M >> 5)BK][k])

(12)

Equation 8 and 9 form the first step of a TEA round (the first Feistel round).

The equations 10 and 11 close the TEA round (the second Feistel round). F()

referred the so called round function (equation 12) which contains the significant

steps of the cryptographically operations. The function is always the same but
get called with different parameters each Feistel round.

RIi]
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L[i+2] R[i+2]

Fig. 8: Encryption steps TEA, Source: Based on [36]



7.6  Vulnerabilities of TEA

TEA has been handled in some crypto analysis and examined for vulnerabilities.
The current known vulnerabilities of the original TEA implementation are:

Hash collisions used as hash functions: TEA wasn’t developed for being used as a
hash function and does not meet the central condition of preimage resistance for
cryptographically hash functions. That means it is possible with comparatively
little effort to find to a given hash value Y an input value X its hash value after
using the hash function also maps to Y. Therefore, specifically collisions can be
calculated to a given hash value. [11] [37]

Key cracking: Vulnerability for simple attempts of keys (brute force). In combi-
nation with a known plaintext-ciphertext pair the necessary iterations strongly
decrease and the efficiency of the attack strongly increase.[11]

Equivalent keys: Because of a constructional vulnerability at the TEA encryption
algorithm every key to decrypt a cipher has 3 equivalent keys which can although
be used to decrypt the cipher. This means that the effective key space of a 128
Bit long key is reduced to 126 Bit.[11]

The following describes detailed and exemplarily the equivalent key vulnera-
bility of the TEA algorithm depended on [38] and derived the mathematical
backgrounds. If two different keys (K and K’) in an encryption system with
identical plaintext generate the identical cipher both keys K and K’ were called
as equivalent. Following equation express this:

By (T) = Exc(T) (13)

Conversely that means that a with K encrypted cipher can be decrypted with
K’
Dg/(Ex(T))=T (14)

At a good encryption system the claim should be that there are no equivalent
keys. The number of the equivalence classes of the ciphers are in this case 2*
whereby k is the key length in Bit. For TEA with a 128 Bit key length it should
be 2128 x5 3, 4 x 1038different equivalence classes. Analysis show that in TEA are
only 2'26 different equivalence classes with a key length of 128 Bit. In this case
there are only 2'26differentiated from each other cyphers by a given plaintext
T. For every cipher there are 4 each other equivalent keys Kj...K3 by which the
plaintext can be decrypted. The following example illustrates this:

Va,b € Zgs2 (15)
231 m23 =0 (16)

a @231 = ¢ B 80000000y, (17)



This means:
a B b = (a ® 800000004 ) B (b & 80000000},) (18)
In this way the round function of TEA can be manipulated:

F(M, K[j, k], deltali]) = F(M, (K[j] ® 80000000y, K [k] & 80000000y, deltali]))

(19)

Every 128 Bit key KOK3 has three equivalent keys in the form of:
(K[0], K[1], K[2] @ 80000000y, K[3] & 80000000y, (20)
(K[0] & 80000000y, K[1] & 80000000y, K[2], K[3]) (21)

(K[0] ©80000000,, K [1] 6800000004, K [2] & 800000005, K [3] 680000000, (22)

So that a 128 Bit key with the TEA encryption has only a key space of 126 Bit
ant thereby the security from a 126 Bit key. [38]

7.7 Performance

As described under section 7.1 the primary goal of developing TEA was to
achieve a high performance. In an exemplarily test under a Java environment
TEA was 18 times faster than the Java provided DES implementation. Further
tests have shown that TEA (128 Bit, 32 iterations) are 60% faster than 56 Bit
DES and 4 times faster than 168 Bit 3DES. Because for the following described
block versions Block TEA and XXREA it is explicitly recommended by the
authors to use larger data blocks a further performance increase is expected.[11]

7.8 Further development XTEA (eXtended TEA)

The XTEA (eXtended TEA) algorithm is a further development of TEA and
corrects et al. the under section 7.6 described vulnerability of the equivalent
keys. Like TEA works XTEA with 64 Bit blocks and a 128 Bit key length. Rec-
ommended are also 64 encryption rounds. [14] The improvements compared to
TEA were achieved due a more complex key management and a change of the
Shift, XOR and addition operations. [39] Due to the current state of research
even XTEA isn’t an encryption method without vulnerabilities. It exists de-
scriptions of successful attacks against XTEA due exploitation of a related key
vulnerability[14]. The XTEA algorithm was aware weakened due a partly signif-
icant decrease of the encryption cycles. It can however be assumed that due an
appropriate greater effort an attack is also applicable at the recommended 64
encryption rounds. These attacks are described inter alia in [40], [14] and [15].



7.9 Modification Block TEA

Block TEA was published simultaneously with XTEA and differs only slightly
technically from XTEA. In contrast to XTEA Block TEA don’t need a fixed
block size but it can also work with blocks of any size. This means that Block
TEA don’t need an operation mode to ensure confidentiality and authenticity.
Block TEA is applied directly to the entre message. Internally the round function
(see 7.3) is iteratively and cyclically applied to the entire message The used round
function is identical to XTEA. So that Block TEA has the same vulnerabilities
as XTEA. [15] [39]

7.10 Further development Corrected Block TEA (also referred as
XXTEA)

Corrected Block TEA or XXTEA is an in 1998 published further development
of Block TEA. As Block Tea it does not have a fixed block size and can be
applied to the entire message. The goal to develop XXTEA was to correct the
known vulnerabilities of Block TEA. For this some changes have been made
in the round function. The reference implementation of XXTEA Correction to
xtea is available at [41]. Also for XXTEA it already exists documented successful
attacks. The paper Cryptanalysis of XXTEA [42] describes a successful chosen
plaintext attack with 2°9 plain- ciphertext pairs.

8 PRESENT

PRESENT is a lightweight block cipher introduced in 2007 by Orange Labs,
Ruhr University Bochum and the Technical University of Denmark. [43] Present
is designed to met the constraints of IoT specified above. [43] focused on security
and hardware efficiency when designing the algorithm. The block size is 64-
bit and the key size is either 80-bit or 128-bit. The most compact hardware
implementation of PRESENT needs 1570 (GE) (Assumed 32-bit XOR = 80
GE, 32-bit arithmetic ADD = 148 GE, 192-bit FF = 1344 GE and SHIFT =
0 GE) [43] and is therefore competitive with today’s leading compact stream
ciphers, which need 1300-2600 GE according to [4].

8.1 Algorithm Specifications

PRESENT is a classical substitution permutation network (SPN) consisting of
31 rounds. At first 32 round keys are generated. The first 31 rounds consits of
an XOR operation to introduce a round key K; for 1 < i < 32, where K3s is
used for post-whitening. Post-whitening obfuscates the structure of the linear
bitwise permutation and the non-linear substitution layer of round 31. Each of
the 31 rounds exists of three operations. First the current round key is applied
to the block being encrypted. Then an S-Box is performed that holds Shannon’s
property of confusion.[43] Confusion means that each character of the ciphertext



should depend on several parts of the key. The last step of each round is a
permutation. We will now explain the operations in more detail. Figs. 9 and 10
give an illustrative presentation.

generateRoundKeys ()

for i=1 to 31 do
addRoundKey (STATE, K;)
sBoxLayer (STATE)
plLayer (STATE)

end for

addRoundKey (STATE, 32)

Fig.9: A top-level algorithmic pseudocode of PRESENT (derived from [43])

------------------------------

sBoxLayer

ciphertext

Fig. 10: A top-level algorithmic flowdiagramm of PRESENT (derived from [43])

sBoxLayer
(o] + @ T p— .®

plLayer

pLayer

addRoundKey

The round key K; = Kj;... K} for 1 < i < 32 is applied to the 64-bit block
bes ... bg for 0 < j < 63 by a bitwise exclusive OR.

by = b @ K; ie€{l,...,32}, j€{0,...,63} (23)
sBoxLayer
PRESENT uses a 4-bit to 4-bit non-linear S-Box. Therefore the current block is

considered as a sixteen 4-bit word w15 . . . wg where w; = bg.;j43||ba.iv2||baiv1]||ba. i
for 0 <7 < 15. The S-Box itself looks as follows

x_ |0[1[2[3T4[5]6 [7 [8[9 [A[B]C[D[E[F
S[x] |C[5]6[B[9]0[A[D[3[E[F[8 |4




— pLayer
e In the bit permutation layer the bit ¢ is moved to bit position P(i).
P(i)=1i-16 mod 63 i< {0,...,63} (24)
— Key schedule

PRESENT can be used with either 80- or 128-bit keys. We will focus on the
80-bit key generation. For more information on the 128-bit version, see [43].
The 80-bit key K, is represented as krg...kg. At round ¢ the 64 bit round key
K; = Kgs3...Kq consists of the 64 leftmost bits of the current key K.

Kz‘ = Kﬁg...KO = k7g...k‘16 (25)

The update routine consists of three parts. First the key register is rotated by
61 bit positions to the left. Then the left most four bits are passed through the
S-Box. The last step is an XOR between the least significant bits of the round
counter and the bits kqg...k15 of the key.

1.[k‘79.../€0] = [k‘lg...k}oksz;k}lg]
2.[krokrgkrrkre| = Slkrokrskrrkzs) (26)
3~[k19k18k17k16k15] = [k19k18k17k16/€15] @ roundcounter

The update algorithm for the 120-bit version of PRESENT works almost the
same. It takes the leftmost 64-bit into consideration and it has two active S-
Boxes in the update routine. For more details see the appendix of the original
paper[43].

8.2 Security Analysis

Although it is possible to implement PRESENT both in software and hard-
ware the latter is advised since the major goal for PRESENT when designing it
was hardware performance. This aspect is elaborated later. Applications using
PRESENT are unlikely to require the encryption of large amounts of data, since
the devices it is designed for have low resources.

Two analysis techniques for cryptographic algorithms are differential and
linear cryptanalysis. To prove the resistance of PRESENT to those attacks [43]
provided a lower bound to the number of so-called active S-boxes in a differential
characteristic. This can be captured by the following theorem, proven in [43].

Theorem 1 Any five-round differential characteristic of PRESENT has a min-
imum of 10 active S-boxes

[43] made four observations to prove the resistance to differential attacks of
PRESENT.



The input bits to an S-Box come from 4 distinct S-Boxes of the same group.
— The input bits to a group of four S-boxes come from 16 different S-Boxes.
The four output bits from a particular S-Box enter four distinct S-boxes, each
of which belongs to a distinct group of S-boxes in the subsequent round.
The output bits of S-boxes in distinct groups go to distinct S-boxes.

Taking theorem 1 into account, we note that any 25 rounds must have at
least 5 x 10 = 50 active S-Boxes. Advanced cryptanalysis techniques allow to
remove the outer rounds from a cipher to exploit the characteristic, but the au-
thors think that this is not enough to break up to 25 rounds.

For a linear attack it would need about 284 known plaintext/ciphertext pairs
to break 31 rounds of PRESENT. Such an amount of data exceeds the available
text and is therefore not sufficient at these days. Structural attacks are well
suited to analyze AES-like ciphers. Such ciphers have word like structures where
one word is typically one byte. The bitwise design of PRESENT shall protect
against those attacks because the bitwise operations used in the cipher disrupt
the word-wise structure.

8.3 Attacks

The first attack on PRESENT is a statistical saturation attack and can be seen
as an example of partitioning cryptanalysis. It extracts information about the
key by observing non-uniform distributions in the ciphertext [44] and therefore
exploits the diffusion properties in block ciphers. It is possible to break up to 15
rounds of PRESENT using 235-¢ plaintext-ciphertext pairs. The principal attack
uses a weakness in the diffusion layer of PRESENT.

Nakahara et al. [45] present a linear algebraic cryptanalysis of reduced round
variants for PRESENT. They introduce a pure algebraic cryptanalysis of 5-
rounds within that experiment, they were able to recover half of the bits of
the key in less than three minutes using an ordinary desktop PC. The attack
complexity with respect to time, data (known plaintext), memory, key size for a
linear reduced-round attack of PRESENT can be found in Table 4 of [45].

Hernandez-Castro et al. [46] tested the strength of PRESENT’s key schedule
algorithm of both variants with 80 and 128 bit keys. They used a probabilistic
metaheuristic search for semi-equivalent keys, annihilators and entropy minima.
Surprisingly, the results show that the 128-bit key seems to be weaker than the
80-bit key. The entropy per byte was 4.006811 (80-bit) compared to 3.744336
(128-bit). The authors affiliated this effect with the theory that there is a reduced
number of global optima for the 80-bit version and multiple ones for the 128-bit
version [46].

8.4 Performance

As mentioned before PRESENT requires about 1570 GE when implemented
in hardware. In Table 10 a breakdown view of the single components for the



Table 10: List of GE needed for PRESENT implementation (derived from [43])

module GE % module GE %
data state 384.39 24.48 KS: key state 480.49 30.61
s-layer 448.45  28.57 KS: S-box 28.03 1.79
p-layer 0 0 KS: Rotation 0 0
counter: state 28.36 1.81 KS: counter-XOR  13.35 0.85
counter: combinatorial  12.35 0.79 key-XOR 170.84 10.88
other 3.67 0.23

Overall 1569.93 100

hardware implementation can be seen.[43] The most GE are needed to implement
the flip-flops for storing the key and the data state, followed by the S-layer and
the key XOR. The bit permutation can be implemented using simple wiring and
therefore needs no GE. There is a more detailed comparison later in the paper.

9 SEA

Most current block ciphers like AES are designed to only find a good tradeoff
between cost, security and performance. SEA on the other hand was designed
as a low-cost encryption algorithm running on very limited processing resources.
[47] defined the following design goals: low memory, small code size, and limited
instruction set. Additionally, they proposed the flexibility as an additional design
goal because many block ciphers are designed to run on one specific platform, or
processor size and perform very badly is run on a different platform or processor
size due to the inflexible design. SEA,, ; is parametric in text, key and processor
size.

9.1 Algorithm Specifications

One of the stated design goals is that SEA, ; should run on many different
platforms, but should behave similar. To achieve this goal, SEA,, ;, is parametric
in the following parameters:

n: plaintext size, key size

b: processor size

ny = 5p: number of words per Feistel round
n,: number of block cipher rounds

The only constraint is that: n has to be a multiple of 6b. For example for
an 8-bit processor there can be the following block ciphers: SEA4g g, SEAgs g,
SEAq44... [A7] suggested that the number of rounds is

3n

ne= 242 (4 1), (27)

This is further explained in section 9.2.



Basic operations SEA, ; only uses a limited number of elementary operations:
XOR, S-Box, word rotation, bit rotation and addition mod2®. They are defined
as follows

. XOR &:
@:ZQ% XZQ% —>Z2% xy = z=2Qy < z(1) =2() ®y(i) Ogigg—l
. S-box S:
S: 7y = Loy iz —x=8(x) & (28)
23; = (T3542 A T3i41) © T34,
Z3i41 = (T3i42 A 23i) @ T3i41,
oy (29)
T3i42 = (23, V x3i41) ® T3i42, 00 < 37 1
where A denotes bitwise AND and V denotes bitwise OR.
. Word rotation R:
R:7Zy — Zot :x—y=R(x) Y1 =2, 0<i<n,—2, (30)
yO = xnbfl
. Bit rotation r:
7 Ly — Ly =y =1(1) Sy = 3 > 1,
Y3i+1 = T3i41, (31)
n
Ysive = T3i+1 K 1, 0<i< gb -1

where <« denotes a left shift and >> a right shift.
. Addition mod2® M:

EH:ZQ%XZQ%%Zf:x7y—>z:w53y<:>zi:xiﬁﬂyi, 0<i<m,—1 (32)

SEA,, uses a simple Feistel round for encryption/decryption round as well
as for the key round. Figure 11a shows the encryption/decryption round. At the
beginning of each round the plaintext is split into two blocks L; and R; of ny
words. For encryption the left block L; is then rotated as describe in equation 30
and xored with the right block R; as follows using the basic operations introduced
earlier:

Liy1=R;



Li R;
|

R K,

A
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R-1

Lisq Ris1 KL KRis1
(a) Encryption/Decryption Round (b) Key Round

Fig. 11: SEA Rounds [47]

During decryption the left block L; is not rotated as during encryption,
instead after the xor the block is rotated using the inverse of the word rotation
as describe in equation 30 as follows:

Ry = R7! (Li D ’I"(S(Rl H Kz)))
Lit1 =R,
Figure 11b shows the key round. At the beginning the key is split into blocks

KL; and KR; of n, words. The left block K'L; is xored with the right block as
follows:

KR;+1 = KL; ® R(r(S(KR; B C4)))
KL;y1 =KR;
The key schedule is designed so that the key round is the same for encryption

as well as decryption. To accomplish this and allow different number of rounds,

after [ %] rounds the blocks K'L; and K R; are switch, which leads to reverse

the earlier key derivation and lead to the following key expansion:

Ko, K1 K np |, K22 1, . K1, Ko (33)

9.2 Security Analysis

To ensure resistance against linear and differential cryptanalysis, [47] propose
that the number of rounds should be n,. > BT”. They further show that to prevent



both structural attacks and outer rounds improvements of statistical attacks that
SEA is secure if the number of rounds is equal or greater than the number of
rounds needed for complete diffusion. For SEA, complete diffusion is achieved
after ny + L%J rounds. To propagate one active bit to all words it takes at most
np rounds. This part is done by the combination of the word rotation with the
S-box. The diffusion inside each block takes at most L%J rounds. Getting a more
conservative approach [47] propose doubling the number of rounds necessary for
complete diffusion. The total number of rounds is

%"H-(nﬁ ng). (34)

We are not aware of any known attack against SEA.

10 Comparison

Table 11 shows a comparison of Simon, Speck, AES, KATAN, LED, TEA, PRESENT
and SEA. SEA, SPECK and TEA were designed to be implemented in software
while SIMON, KATAN, LED and PRESENT were designed to be implemented in
hardware.

The speed of each cipher can depend on the amount of GE used in a hard-
ware implementations. We can see that SIMON is overall the best for hard-
ware implementations. It combines the best results in area, throughput, effi-
ciency(Throughput/GE) and is adjustable to the needed security level. KATAN
can be more efficiency and reach a higher throughput but therefore it needs more
area. In compare to KATAN, LED is more adjustable to the needed security level
with less throughput but in compare to SIMON, LED is worse in every result.
PRESENT needs nearly the same area as LED but reaches a higher throughput
so that it is more efficiency. AES has a very high throughput and because of
that a good efficiency but it needs to much area for the constraints in IoT. Even
SPECK which was designed to be used in software implementations has better
results than LED and PRESENT. We don’t found a representative hardware
implementation of TEA.

For software implementations Table 12 shows a comparison of PRESENT, KATAN,
SEA, TEA and AES implemented in software. Implementing PRESENT in soft-
ware is difficult because of the bitwise permutation that PRESENT uses. In
assemble, there is no instruction for this operation which leads to a large per-
formance decrease. As we can see AES is clearly the fastest one in software in
Table 12, but it also has the highest code size as well as energy consumption.
SEA and TEA have nearly the same results but TEA needs just the half of the
code-size than SEA. In Table 11 we can see that Speck have the best throughput
and has the lowest memory usage of all software implementations. For LED no
software implementations are known.



Table 11: Performance comparisons. Hardware refers to an ASIC implementa-
tion, and software to an implementation on an 8-bit micro- controller; clock
speeds are 100 kHz (hardware) and 16 MHz (software). The best performance
for a given size is indicated in red, the second best in blue. Numbers in brackets
are estimates. Derived from ”Simon and Speck: Block Ciphers for the Internet
of Things” [6] table 1.1 and [7]

hardware software
size name area throughput efficiency | flash SRAM throughput
(GE) (kbps) (bps/GE)|(bytes) (bytes) (kbps)

32/80 KATAN32| 802 12.5 16 - - -

48/80 KATAN48| 927 18.8 20 - - -

48/96 ~ SIMON | 763 15.0 20 196 0 589

SPECK | 884 12.0 14 134 0 943

64,/64 LED 966 5.1 5 - -

64/80 LED 1040 3.4 3 - - -
PRESENT|1030 124 12 [487] 0 96
KATANG4 | 1054 25.1 24 272 18 14

64/96 SIMON | 838 17.8 21 274 0 540

SPECK | 984 14.5 15 182 0 888

LED 1116 3.4 3 - - -
64/128 SIMON |1000 16.7 17 282 0 515
SPECK |1127 13.8 12 186 0 855

LED 1265 3.4 3 - - -
TEA - - - - 0 163.2
PRESENT|1339  12.1 9 (487]  [0] [96]
96/96  SIMON | 984 14.8 15 454 0 454
SPECK [1134 13.8 12 276 0 866
SEA 4313 103.2 24 - 0 158,8
128/128 SIMON |1317 229 17 732 0 342
SPECK [1396 12.1 9 396 0 768
AES 2400 56.6 24 943 33 445

Table 12: Comparison of software implementations of ciphers (at 4MHz).

Cipher Block Key Code RAM Cycles Cycles Throughput Energy
Size Size Size

[bits] [bits] [bytes] [bytes] [enc+key] [dec+key] [Kbps] [1J]

PRESENT [2] 64 80 1000 18 11342 13599 - 45.3
PRESENT[3] 64 80 936 0 10723 11239 23.7 -

KATAN[48] 64 80 338 18 72063 88525 - 289.2

SEA [2] 96 96 426 24 41604 40860 - 30.3
SEA [3] 96 96 2132 0 7408 9654 39.7 -

TEA [48] 64 128 648 24 7408 7539 - 30.3
TEA [49] 64 128 1140 0 6271 6299 40.8 -

AES [2] 128 128 1659 33 4557 7015 19.2

AES [3] 128 128 2606 0 6637 7429 77.1 -




11 Conclusion

It can be said that the background for what the algorithm is developed is very
important. Each of the researched algorithms has specific advantages and dis-
advantages. AES is the state of the art block cipher and achieved very good
results in hardware and software implementations if we are just looking at the
performance(efficiency) and security level but because of the constraints in ToT
other algorithms fit better.

PRESENT should only be used as hardware implementation, because the per-
formance in software is very bad. The advantages of SEA are its simplicity, its
scalability, and the ”"on-the fly” key derivation. Even though it was originally
designed to be implemented in software a number of papers [50] [51] show that
it can be implemented in hardware as well with a good performance. The results
of TEA are very similar to those of SEA. LED can be adjusted to the needed
security level but has a low throughput.

Our conclusion is that SIMON and SPECK are over all our recommended block
ciphers. The advantage from Simon and Speck is the simplicity and flexibility.
These two properties make it possible to implement the algorithms in different
ways. The algorithms can be very small to run on FPGA, microcontroller, and
microprocessor implementations, but can also achieve very high throughput on
all of these platforms.

If you don’t trust SIMON and SPECK because of the NSA background and the
aforementioned or other reasons, KATAN is a very good alternative for hardware
implementations and performs very near to SIMON. KATAN can be very effi-
ciency, so if the area space is not very limited and a high throughput is needed
KATAN is the right alternative choice. Also you can choose between 3 variants of
KATAN depending on the needed security level. If we are looking for a software
implementation alternative for SPECK we recommend TEA because it has lit-
tle higher throughput and less code size than SEA at a nearly similar energy
consumption and security level.
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12 Appendix

Table 13 shows summarized different attacks on TEA and LED. There are on
the one hand attacks listed which attack so far the most rounds (apart of side
channel attacks) and on the other hand there is a MITM attack which can be
applied on LED and XTEA[16]. At XTEA the MITM attacks the so far most

rounds.
Table 13

Cipher Attack Type Rounds Time Data Memory Ref
LED-64 MITM (SK) KR 8 276 98 21T [16]
(32 rounds)  ||MITM/Differential (CK) D 20 2002 96L5 (99
LED-128 MITM (SK) KR 16 212 216 209 ig]
(48 rounds)  ||MITM/Differential (CK) D 20 2002 2615 [29)
XTEA (64 rounds) MITM (SK) KR 29 20 2% 21 [ig]
TEA (64 rounds) Linear KR 23 2'96% o™ - [52]




