A comparison of block ciphers SIMON, SPECK,
and KATAN

Andreas Bossert!, Steven Cooper!, and Alexander Wiesmaier® 23

1 TU Darmstadt
2 AGT International
3 Hochschule Darmstadt

Abstract. In this paper we present 3 block cipher algorithms Simon,
Speck and KATAN. Each of them gets a short introduction of their func-
tions and recommended field of use. We also compare these 3 block ci-
phers with each other and with the state of the art algorithm the Ad-
vanced Encryption Standard (AES) to see how efficient and fast they
are to be able to conclude what algorithm is the best for which specific
application.

Keywords: Internet of things (IoT); lightweight block ciphers; SIMON; SPECK;
KATAN

1 Introduction

In modern IT The Internet of Things(IoT) is one of the most recent top-
ics. More and more devices get functions to go online interconnect with each
other and send and receive data. And it is very important to be sure that these
connections are secure but also efficient. The state of the art block cipher AES
cannot be used for these low-end devices such as RFID tags or sensor networks
because they are often very small, have less computing power or have to be very
power saving. So we have very constrained environments. Our 3 block ciphers
(SIMON,SPECK and KATAN) had been developed to fulfill these constraints.
KATAN and SIMON have been optimized for performance on hardware devices
and SPECK for performance in software. At the comparison section we will see
how good they fulfill these goals. The focus is on the comparison of SIMON,
SPECK and KATAN and the compare with AES.

We organize this paper as follows: In Section 2 we have a short overview of
further related works which also concerned about our 3 algorithms. Section 3,
4 and 5 presents SIMON, SPECK and KATAN. How they work, the different
variants and possible attacks against them. In Section 6 we have the comparison
of the algorithms and our conclusion.

2 Related Work

Our work focuses on three Block ciphers that are compared to each other and
set in context to AES and known attacks on them. Papers which handle similar
content are [1], [2], [3] and [4].

In the area of SIMON and SPECK there exist two similar papers ”The SI-
MON and SPECK Families of Lightweight Block Ciphers” [1] and ”SIMON and
SPECK: Block Ciphers for the Internet of Things” [2]. The papers explains how
the algorithm works, it contains many performance comparisons on constrained
platforms and it describes many security aspects. A few of the comparisons were
used in this paper too.

The only paper which compares KATAN with other lightweight block ciphers
is the paper from the designers of KATAN [3]. It explains what are the difference
between KATAN and several existing block ciphers and compares them. The
paper [4] handles among other about different attacks on KATAN and compares
them with each other. Furthermore does it explain how KATAN is designed and
explains a new algebraic attack which is better than any other known algebraic
attacks. We use these results in our own comparison of the block ciphers and
the attacks on them and create a paper where it is all in one.

3 Simon and Speck

Simon and Speck is a family of lightweight block ciphers publicly released by
the National Security Agency (NSA) in June 2013. [1] Simon and Speck comes
with ten distinct block ciphers with differing block and key sizes. The most
existing block ciphers were designed to perform well on a single platform and
were not meant to provide high performance across a range of devices. The
aim of Simon and Speck was to fill the need for secure, flexible, and analyzable
lightweight block ciphers. Each offers excellent performance on hardware and
software platforms, is flexible enough to admit a variety of implementations on
a given platform, and is amenable to analysis using existing techniques. Both
perform very well across the full spectrum of lightweight applications, but Si-
mon has been optimized for performance in hardware implementations, while
its sister algorithm, Speck, has been optimized for software implementations.
The reason why the algorithms work so well on each platform is that both are
very simple constructed. So it is very easy to find efficient implementations. For
algorithms such as AES it required longer time of research to find near-optimal
implementations.

The Simon block cipher with an n-bit word (and hence a 2n-bit block) is
denoted Simon2n, where n is required to be 16, 24, 32, 48, or 64. Simon2n
with an m-word (mn-bit) key will be referred to as Simon2n/mn. For example,
Simon64/128 refers to the version of Simon acting on 64-bit plaintext blocks and
using a 128-bit key. The notation for the different variants of Speck is entirely
analogous to that used for Simon.

3.1 Simon round function

The Simon2n encryption maps make use of the following operations on n-bit
words:

— bitwise XOR, &,
— bitwise AND, &, and
— left circular shift, S7 | by j bits.
The round functions for Simon 2n take as input an n-bit round key k, together

with two n-bit intermediate ciphertext words. The round function is the 2-stage
Feistel map

Ri(z,y) = (y @ f(x) Dk, x),

where f(z) = (S2&S%z) @ S%x and k is the round key. The inverse of the round
function, used for decryption, is

RN (@,y) = (y.2© f(y) D k).

Fig. 1. The Simon Round Function. Derived from [1]

Figure 1 shows the effect of the round function Ry, on the two words of sub
cipher (x;11, ;) at the i*" step of this process.

The round functions are composed some number of times which depends on

the block and key size. Parameters for all versions of Simon are specified in Table
1.

Table 1. SIMON parameters. Derived from [1]

block key |word key |const rounds
size 2n size mn|size n words m| seq T
32 64 16 4 20 32
48 72 24 3 20 36
96 4 z1 36
64 96 32 3 22 42
128 4 z3 44
96 96 48 2 22 52
144 3 z3 54
128 128 64 2 22 68
192 3 z3 69
256 4 24 72

3.2 Simon key schedules

The key schedule is needed to turn a key into a sequence of round keys. The
Simon key schedules employ a sequence of 1-bit round constants specifically
for the purpose of eliminating slide properties and circular shift symmetries.

The designers provide some cryptographic separation between different versions
of Simon having the same block size by defining five such sequences: zg, ..., z4.
Each of these sequences is defined in terms of one of the following period 31
sequences:

U = uguUsg... = 1111101000100101011000011100110...,
v = vgv1vs... = 1000111011111001001100001011010...,
w = wowiws... = 1000010010110011111000110111010....

The first two sequences are simply zp = v and z; = v. The other three, zo,
z3, and z4, have period 62 and are formed by computing the bitwise XOR of the
period 2 sequence t = tgtits... = 01010101... with u, v, and w, respectively:

29 = (22)0(22)1(22)2... = 1010111101110000001101001001100
0101000010001111110010110110011...,
z3 = (23)0(23)1(23)2... = 1101101110101100011001011110000
0010010001010011100110100001111...,
24 = (24)0(24)1(24)2... = 1101000111100110101101100010000
0010111000011001010010011101111...,

(1)

where (z;); is the j* bit of 2;.

The sequences u, v, and w can be generated as follows: Define 5 x 5 matrices U,
V, and W over GF(2) by

01000 01100 01000
00100 00100 00100
U=|10010(,V=1]10010] ,W= 10010
00001 00001 00001
10001 10000 10000

The 74, element of each sequence is then obtained by initializing a 5-bit linear
feedback shift register to 00001, stepping i times using the corresponding matrix,
and extracting the right-hand bit. Thus (u); = (0,0,0,0,1)U%(0,0,0,0,1)*.

Let c=2"—4 =0xff--- fc. For Simon2n with m key words (k;,—1, ..., k1, ko)
and constant sequence z;, round keys are generated by

CEB(Zj)i@ki@(l@sil)siski_kl, ifm=2

Kiym =S c® (z)i Dk ® (I ®S™)S3kit, ifm=3

CEB(Zj)iGBki@(I@S_l)(s_3ki+3@ki+1, ifm=4
for 0 <4 < T — m. In Figure 2 is the key schedules represented and which
version-dependent choice of constant sequence z; have to used is shown in Table
1. Note that yourself choose the first m key words which will used as the first

m round keys. They are loaded into the shift registers with kg on the right and
km—1 on the left. Only the next ones will be generated with key schedule.

c & (zJ)i _‘C\

c & (Zj)i —,_\

k
c & (Zj)i ea
A /_1\‘
&
h 4 h 4
e e
L WL

Fig. 2. The Simon two, three, and four-word key expansion. Derived from [1]

3.3 Speck round function

The Speck2n encryption maps make use of the following operations on n-bit
words:

— bitwise XOR, @,
— addition modulo 2", +,

— left and right circular shifts, S7 and S~ j , respectively, by j bits.

‘ Xaip1 | | Xaj
."/._ --\‘. n
[g |
gk _ﬁ
Y
TN
v Il.f 5P \'|
K; S .\\-—_/.
‘__.l"r‘\
>
h 4 Y
‘ Xziv3 | | iz ‘

Fig. 3. Speck round function; (x2i+1 , X2;) denotes the sub-cipher after i steps of
encryption. Derived from [1]

For k € GF(2)", the key-dependent Speck2n round function is the map Ry:
GF(2)"x GF(2)™ — GF(2)"x GF(2)™ defined by

Ri(z,y) = (S "z +y) &k, SPyd (S ™z +y) @ k),

with rotation amounts o = 7 and = 2 if n = 16 (block size = 32) and
«a =8 and 5 = 3 otherwise.

The inverse of the round function, necessary for decryption, uses modular
subtraction instead of modular addition, and is given by

R (z,y) = (S*((z @ k) =S (z@y)). S (®y),

Parameters for all versions of Speck are specified in Table 2.
The Speck key schedules take a key and from it generate a sequence of T
key words kg, ..., kr—1, where T is the number of rounds. The effect of the single

Table 2. Speck parameters. Derived from [1]

block key |word key [rot rot rounds
size 2n size mn|size n words m| « f3 T
32 64 16 4 7T 2 22
48 72 24 3 8 3 22
96 4 23
64 96 32 3 8 3 26
128 4 27
96 96 48 2 8 3 28
144 3 29
128 128 64 2 8§ 3 32
192 3 33
256 4 34

round function Ry, is shown in Figure 3. Encryption is then the composition
Ry, ©...0 Ry, o Ry,, read from right to left.

Note that Speck can be realized as the composition of two Feistel-like maps with
respect to two different types of addition, namely,

(z,y) — (y, (S~ %z +y) & k)and(z,y) — (y, 5%z & y).

This decomposition is pictured in Figure 4.

Fig. 4. Speck round function decomposed into Feistel-like steps. Derived from [1]

3.4 Speck key schedules

The Speck key schedules use the own round function to generate round keys
k;. This is useful cause we don’t need to implement a new method. Let K be
a key for a Speck2n block cipher. We can write K = (l,,—2, ..., lo, ko), where
liyko € GF(2)™, for a value of m in 2, 3, 4. Sequences k; and [; are defined by

livm—1 = (ki +57%L;) @i

and
ki1 =Sk @ lipm1.

The value k; is the i*? round key, for 0 < i < T See Figure 5.

Fig. 5. Speck key expansion, where R; is the Speck round function with ¢ acting as
round key. Derived from [1]

3.5 Security Analysis

Simon and Speck attacks was studied in many articles since its publication in
2013. The most published attacks on Simon and Speck are of the reduced-round
variety. The goal of this sort of analysis is to determine the maximal number of
rounds that would be susceptible to a theoretical attack (i.e., anything better
than an exhaustive key search). A measure of security is the number of rounds
that have been attacked, as a percentage of the total. So far no published attack
makes it more than about 74% of the way through any version of Simon or Speck.
The best attacked rounds for all versions of Simon was with the improved linear
hull and differential attacks with dynamic key-guessing technique [5], [6] . The
best attacked rounds in Speck is with differential cryptanalysis and improved
differential cryptanalysis [7], [8]. The results are shown in table 3.

The content of the table 3 is simple: there are no attacks on any member of
the Simon or Speck families, and each block cipher maintains a healthy security
margin.

Table 3. Security of Simon and Speck derived from ”Simon and Speck: Block Ciphers
for the Internet of Things” [2] Table 1

size alg rounds ref
total attacked

32/64 Simon 32 23 (72%) [

Speck 22 14 (64%) [7]

48/72 Simon 36 24 (67%) [5]

Speck 22 14 (64%) [7]

48/96 Simon 36 25 (69%) 5]

Speck 23 15 (65%) [7]

64/96 Simon 42 30 (71%) [5]

Speck 26 18 (69%) [7]

64/128 Simon 44 31 (70%) [5]

Speck 27 19 (70%) [7]

96/96 Simon 52 37 (71%) [6],[5]

Speck 28 16 (57%) [7]

96/144 Simon 54 38 (70%) [5]

Speck 29 17 (59%) [7]

128/128 Simon 68 49 (72%) [6],[5]

Speck 32 17 (53%) [7]

128/192 Simon 69 51 (74%) [5]

Speck 33 18 (55%) [7],[8]

128/256 Simon 72 53 (74%) [5]
Speck 34 19 (56%)

4 KATAN

KATAN/KTANTAN is a family of hardware oriented block ciphers designed in 2009
by Chrstophe de Canniere, Orr Dunkelman, and Miroslav Knezevic [3]. In sum-
mary the family consists of six block ciphers. They are divided into two sets of
three KATAN block ciphers with 32, 48 or 64-bit block size and three KTANTAN
block ciphers with the same block size. They share the same 80-bit key size and
security level. The difference between KATAN and KTANTAN is that at KTANTAN the
key is burnt into the device and cannot be changed. Therefor KTANTAN are very
small block ciphers and more compact than KATAN and can only be used in cases

where the device is initialized with one key.

— KATAN32 has 802 GE and an encryption speed of 12.5 KBit/sec.

— KATAN48 has 927 GE and an encryption speed of 18.8 KBit/sec.

— KATAN64 has 1054 GE and an encryption speed of 25.1 KBit/sec.
— KTANTAN32 has 462 GE and an encryption speed of 12.5 KBit/sec.

— KTANTAN48, which is the recommend for RFID tags has 588 GE and an

encryption speed of 18.8 KBit/sec.
— KTANTAN64 has 688 GE and an encryption speed of 25.1 KBit/sec.

A comparison with some other ciphers is shown in Table 4.

Table 4. Comparison of Ciphers Designed for Low-End Environments (optimized for

size). Derived from[3].

Cipher Block Key Size Gates per Throughput! Logic

(bits) (bits) (GE) Memory Bit (Kb/s) Process
AES-128 128 128 3400 7.97 12.4 0.35n
AES-128 128 128 3100 5.8 0.08 0.13u
HIGHT 64 128 3048 N/A 188.25 0.25u
mCrypton 64 64 2420 5 492.3 0.13p
DES 64 56 2309° 12.19 44.4 0.18u
DESL 64 56 18482 12.19 44.4 0.18u
PRESENT-80 64 80 1570 6 200 0.18u
PRESENT-80 64 80 1000 N/A 11.4 0.35u
Grain 1 80 1294 7.25 100 0.13u
Trvivium 1 80 749 23 100* 0.35
KATAN32 32 80 802 6.25 12.5 0.13u
KATAN4S8 48 80 927 6.25 18.8 0.13u
KATANG64 64 80 1054 6.25 25.1 0.13u
KTANTAN32 32 80 462 6.25 12.5 0.13u
KTANTAN48 48 80 588 6.25 18.8 0.13u
KTANTANG4 64 80 688 6.25 25.1 0.13u

T
2
3
4

—A throughput is estimated for frequency of 100 KHz.
—Fully serialized implementation (the rest are only synthesized).
—This is a full-custom design using C2MOS dynamic logic.

—This throughput is projected, as the chip requires higher frequencies.

The specific design goals from the developers were as follows:[3]

— For an n-bit block size, no differential characteristic with probability greater
than 27" exists for 128 rounds (about half the number of rounds of the
cipher).

— For an n-bit block size, no linear approximation with bias greater than 2-"/2
exists for 128 rounds.

— No related-key key-recovery or slide attack with time complexity smaller
than 280 exists on the entire cipher.

— High enough algebraic degree for the equation describing half the cipher to
thwart any algebraic attack.

Also they rank the possible design targets as follows:[3]

— Minimize the size of the implementation.

— Keeping the critical path as short as possible.

— Increase the throughput of the implementation (as long as the increase in

the footprint is small).
— Decrease the power consumption of the implementation.

We concentrate on KATAN in this paper so KTANTAN is not examined in more
detail.

4.1 Round function and key schedule

We have three variants of the KATAN ciphers. KATAN32, KATAN48 and KATANG4. The
main difference between them is the block size and that KATAN48 executes the
nonlinear function twice and KATANG4 three times with the same round key per
round. For example, we use KATAN32 to describe the key schedule. The plaintext
(bit 0-31) is used to generate the ciphertext. For that it is loaded into two
registers Lj(bit 19-31) and Lo(bit 0-18) and L; and Ly are shifted to the left
(bit i is shifted to position i+i) each round. After that both registers get updated
each round with the following nonlinear functions f, and f; for 254 rounds.

fa(L1) = La[z1] @ Li[x2] & (La[zs] * La[z4]) & (La[z5] [R) @ kg
fo(L2) = La[y1] @ Laly2] © (Lalys] * Lalya]) @ (L2[ys] * L2[ys]) © ks

IR is an irregular update rule (which is only used if IR, = 1) shown in Table 6,
ko and k;, are two subkey bits. The bits for x; and y; for each variant are shown
in Table 5[3]. Afther the round the LSB of L; is the output of f, and the LSB
of Ly is the output of f,.

The key schedule for all variants of the KATAN family accepts a 80-bit key K with
the secret key Ky - K79 and the following mapping:

. K; for i =0...79 @)
") kimso @ ki1 = Pki_so D k13 Otherwise

The values of k, and k; for a round i are ko; and koi,;. And for that k, || kp =
k2 || koyi. Figure 6[3] shows a round of the KATAN family.

Table 5. Parameters of the KATAN family. Derived from [3].

Cipher |L1| |L2| X1 X2 T3 T4 s
KATAN32/KTANTAN32 13 19 127 8 5 3
KATAN48/KTANTAN48 19 29 181215 7 6
KATANG64/KTANTANG4 25 39 24152011 9

Cipher Y1 Y2 Y3 Y4 Ys Ye
KATAN32/KTANTAN32 18 7 1210 8 3
KATAN48/KTANTAN48 28 19 211315 6
KATANG4/KTANTANG4 38 23 332114 9

Table 6. Sequence of the irregular updates. 1 IR is used, 0 IR is not used. Derived
from [3].

Rounds 0-9 10-19 20-29 30-39 40-49 50-59
Irregular 1111111000 1101010101 1110110011 0010100100 0100011000 1111000010
Rounds 60-69 70-79 80-89 90-99 100-109 110-119

Irregular 0001010000 0111110011 1111010100 0101010011 0000110011 1011111011
Rounds 120-129 130-139 140-149 150-159 160-169 170-179
Irregular 1010010101 1010011100 1101100010 1110110111 1001011011 0101110010
Rounds 180-189 190-199 200-209 210-219 220-229 230-239
Irregular 0100110100 0111000100 1111010000 1110101100 0001011001 0000001101
Rounds 240-249 250-253

Irregular 1100000001 0010

IR

ke —;@%ﬁi /\;\)
]

—

Fig. 6. Outline of a round of the KATAN family. Derived from [3].

4.2 Security Analysis

The first two mentioned design goals ensure that no differential-linear attack
or a boomerang attack exist for the entire cipher. Only one successful attack
is known at the moment. The attack on KTANTAN32 was presented by Andrey
Bogdanov and Christian Reichberger at Selected Areas in Cryptography 2010
[9]. The meet-in-the-middle attack can find the key with a time complexity of
279, The other variants of the KATAN family are not affected by this attack and
still secure. Mainly differential, meet-in-the-middle, algebraic and side channel
attacks have been executed on KATAN. First we look at 2 differential attacks.

The authors from [10] used a known chosen plaintext scenario with multiple
instances with the same key to attack KATAN. They get 16 differentials for 95
rounds which makes it possible to break 115 rounds of KATAN with a time and
data complexity of 232.

In [11] multiple KATAN instances with a difference in plaintext and key. The
attack breaks 120 rounds of KATAN with a time and data complexity of 23!

The third attack is a meet-in-the-middle-attack from [12]. They break 153
rounds from KATAN with a time and data complexity of 2785 and a memory
complexity of 276. So this is a more theoretical attack and not practicable with
the current technologies.

Another meet-in-the-middle-attack is from [13]. 174 rounds are broken with

a time complexity of 278-°, a memory complexity of 226-% and a data complexity
of 2276,

An algebraic attack is from [14]. The attack breaks 79 rounds with a time
complexity of 276 and a data complexity of 2°.

A little better is the algebraic attack from [4]. The attack breaks 80 rounds
with a time complexity of 272 and a data complexity of 27.

In Table 7 a comparison of the attacks is shown.

Table 7. Comparison of the attacks

attack method rounds time memory data
10] differential 115 2% — 2%
11] differential 120 28— 23

13] meet-in-the-middle 174 2785 226.6 9276
14] algebraic 79 275 — 9P

[
[:
[12] meet-in-the-middle 153 2785 276 2785
[
[
[4] algebraic 80 27 — 27

5 Comparison and Conclusion

5.1 Comparison

Table 8 shows a comparison of Simon, Speck, AES, KATAN and a few others. As we
can see Simon is the best in hardware size. It requires the least GE in all different
block/key size versions but KATAN has the better efficiency (Throughput/GE).
In software we can see that Speck has the best throughput and has the lowest
memory usage.

5.2 Conclusion

Our conclusion is that Simon and Speck are over all our recommended block
ciphers. The advantage from Simon and Speck is the simplicity and flexibility.
These two properties make it possible to implement the algorithms in different
ways. The algorithms can be very small to run on FPGA, microcontroller, and
microprocessor implementations, but can also achieve very high throughput on
all of these platforms.

If you don’t trust Simon and Speck because of the NSA background and the
aforementioned or other reasons, KATAN is a very good alternative for hardware
implementations and performs very near to Simon. KATAN can be very efficiency,
so if the area space is not very limited and a high throughput is needed KATAN
is the right alternative choice. Also you can choose between 3 variants of KATAN
depending on the needed security level.

Table 8. Performance comparisons. Hardware refers to an ASIC implementation, and
software to an implementation on an 8-bit micro- controller; clock speeds are 100 kHz
(hardware) and 16 MHz (software). The best performance for a given size is indicated
in red, the second best in blue. Derived from ”Simon and Speck: Block Ciphers for the
Internet of Things” [2] table 1.1 and [3]

hardware software
size name area throughput efficiency | flash SRAM throughput
(GE) (kbps) (kbps/GE)|(bytes) (bytes) (kbps)
32/80 KATAN32| 802 12.5 16 - - -
KATAN32| 846 25 30 - - -
KATAN32| 898 37.5 37 - - -
48/80 KATAN48| 927 18.8 20 - - -
KATANA48|1002 37.6 38 - - -
KATANA48|1080 56.4 61 - - -
48/96 SIMON | 763 15.0 20 196 0 589
SPECK | 884 12.0 14 134 0 943
EPCBC |1008 12.1 12 [365] 0 [93]
64/80 TWINE |1011 16.2 16 1304 414 472
PRESENT| 1030 124 12 [487] 0 96
PICCOLO| 1043 14.8 14 - - -
KATANG4 | 1054 25.1 24 272 18 14
KATANG64|1189 50.2 42 - - -
KATANG64 | 1269 75.3 59 - - -
KLEIN 1478 23.6 16 766 18 168
64/96 SIMON | 838 17.8 21 274 0 540
SPECK | 984 14.5 15 182 0 888
KLEIN 1528 19.1 13 [766] [18] [134]
64/128 SIMON |1000 16.7 17 282 0 515
SPECK |1127 13.8 12 186 0 855
PICCOLO| 1334 12.1 9 - - -
PRESENT| 1339 12.1 9 [487] [0] [96]
96/96 SIMON | 984 14.8 15 454 0 454
SPECK |1134 13.8 12 276 0 866
EPCBC |1333 12.1 9 [730] 0 [93]
128/128 SIMON |1317 22.9 17 732 0 342
SPECK |1396 12.1 9 396 0 768
AES 2400 56.6 24 943 33 445

References

10.

11.

12.

13.

14.

. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,

and Louis Wingers. The simon and speck families of lightweight block ciphers.
Cryptology ePrint Archive, Report 2013/404, 2013. http://eprint.iacr.org/.

Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. Simon and speck: Block ciphers for the internet of things.
Cryptology ePrint Archive, Report 2015/585, 2015. http://eprint.iacr.org/.
Christophe Canniere, Orr Dunkelman, and Miroslav Knezevié¢. Katan and ktantan
— a family of small and efficient hardware-oriented block ciphers. In Proceedings
of the 11th International Workshop on Cryptographic Hardware and Embedded
Systems, pages 272—288. Springer-Verlag, 2009.

Frank-Michael Quedenfeld. Modellbildung in der algebraischen kryptoanalyse.
2015.

Huaifeng Chen and Xiaoyun Wang. Improved linear hull attack on round-reduced
simon with dynamic key-guessing techniques. Cryptology ePrint Archive, Report
2015/666, 2015. http://eprint.iacr.org/.

Ning Wang, Xiaoyun Wang, Keting Jia, and Jingyuan Zhao. Differential attacks on
reduced simon versions with dynamic key-guessing techniques. Cryptology ePrint
Archive, Report 2014/448, 2014. http://eprint.iacr.org/.

I. Dinu. Improved differential cryptanalysis of round-reduced speck. In Selected
Areas in Cryptography, pages 147-164. Springer-Verlag, 2014.

S.Lucks F.Abed, E.List and J.Wenzel. Differential cryptanalysis of round-reduced
simon and speck. Fast Software Encryption, FSE 2014, LNCS. Springer, 2014.
Andrey Bogdanov and Christian Rechbergerv. A 3-subset meet-in-themiddle at-
tack: Cryptanalysis of the lightweight block cipher ktantan. In Selected Areas in
Cryptography, pages 229-240. Springer-Verlag, 2011.

Martin R. Albrecht and Gregor Leander. An all-in-one approach to differential
cryptanalysis for small block ciphers. In Selected Areas in Cryptography, pages
1-15. Springer-Verlag, 2013.

Willi Meier Simon Knellwolf and Mar “a Naya-Plasencia. Conditional differential
cryptanalysis of trivium and katan. In Selected Areas in Cryptography, pages 200—
212. Springer-Verlag, 2012.

Thomas Fuhr and Brice Minaud. Match box meet in the middle attack against
katan. In Fast Software Encryption, pages 61-81. Springer-Verlag, 2015.

Yu Sasaki Takanori Isobe and Jiageng Chen. Related-key boomerang attacks on
katan32/48/64. In Information Security and Privacy, pages 268-285. Springer-
Verlag, 2013.

Gregory V. Bard Nicolas Courtois Jorge Nakahara Jr. Pouyan Sepehrdad and
Bingsheng Zhang. Algebraic, aida/cube and side channel analysis of katan family of
block ciphers. In Progress in Cryptology - INDOCRYPT, pages 176-196. Springer-
Verlag, 2010.

