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Abstract. This paper examines different encryption algorithms, which
are specifically used for mobile and embedded systems on the Internet
of Things(IoT). For this the Block ciphers TEA and LED will be in-
troduced and examined with regards to their security. Afterwards they
will be compared to each other and the advantages and disadvantages
presented. The main focus is set on the performance and the security of
the algorithms.
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1 Introduction

1.1 Introduction

Through the technical progress the internet has increasingly moving into our
daily lives. The increasingly smaller and cheaper expectant electronic control
and communication components were installed in particular in recent years, in-
creasingly in things of daily life. This trend is called Internet of Things (Iot).
Typical fields of application are for example home automation, Security technol-
ogy in the private or business environment as well as the supporting usage in the
industry [30]. Because of the very high price sensitivity in this environment the
focus is set on the efficiency of the used programs and algorithms. Requires an
optimized algorithm for example just the half on computing time and memory,
it is accordingly possible to use cheaper hardware. Extrapolated to the produced
number of units a considerable amount can be saved or the IoT technology can
be built-in accordingly cheaper things. Due to the growing integration of tech-
nology in the daily life and inevitably into the highly personal sphere, the claim
of confidentiality and security on the collected data and the networked devices is
increasing. Against this background particularly efficient algorithms have been
developed, which are partly specially adapted to the used hardware. In this pa-
per 3 block ciphers which are suitable to use on weak devices will be presented,
compared and illuminated based on previously introduced attack methods of
known vulnerabilities. Further the performance from the algorithm is set forth



and compared with a standard process.

The paper is structured as follows: Section 2 gives a short overview about
further papers which handle with similar topics as this paper. In section 3 some
attack procedures on block ciphers are explained. In Sections 4 and 5, the block
encryption method TEA and LED will be presented and highlights their char-
acteristics. These encryption methods have been chosen for the analysis of this
paper because they are light weighted and performant but also because they are
really used and they have been successfully attacked (TEA see 5.6). LED is very
useful in implementations with minimal hardware and therefore particularly in
terms of interesting for the RFID sector. Also possible vulnerabilities of the pre-
viously introduced attack methods are presented. In Section 6 the block ciphers
are compared with each other under performance and efficiency points as well
as with AES aspects. For better alignment this paper contains compare values
of the block encryption method KATAN. Section 7 gives a short conclusion. For
better alignment this paper contains compare values of the block encryption
method KATAN.

1.2 Mathematical notations

This paper uses the following mathematical operators:

Integer addition: The addition of two integer numbers modulo 2nis written
down as x� y. Where x, y ∈ Z2n .The value of n results from the context.

Exclusive or (xor): x⊕ y

Bitwise Shift: The logical shift from x to y bits is written down as x << y
(to left). The logical shift from x to y to right is written down as x >> y.

2 Related Work

Due to the notoriety grades of TEA and LED there exist many papers which
also deal with these algorithms from different points of view. First to call are the
papers which generally deal with these encryption methods. They each illustrate
one of the algorithms and concentrate on certain properties in different detail
degrees. For the Tiny Encryption Algorithm (TEA) the following papers are
cited as examples: ”TEA, a Tiny Encryption Algorithm”[24], ”Tiny Encryption
Algorithm (TEA)”[2] and ”The Tiny Encryption Algorithm (TEA)”[29]
The second relevant group are the papers which have a special focus on the
lightness and therefore the suitability of the algorithms in very small, computa-
tionally weak and cheaper Hardware. Here are specially the papers: ”Design and
Implementation of Low Power Hardware Encryption for Low Cost Secure RFID
Using TEA”[14] and ”Hardware Implementation of a TEA-Based Lightweight
Encryption for RFID Security” [15] to call.
The last group are the papers which consider the algorithms under the security
aspects and describe vulnerabilities and possible attacks. These include inter alia



the following: ”Related-key rectangle attack on 36 rounds of the XTEA block
cipher”[18] and ”Meet-in-the-Middle Attacks on Reduced-Round XTEA”[22].

3 Attacks

In this section different types of attacks on block ciphers will be shortly de-
scribed. These attacks play a more or less important role for the in this paper
handled ciphers and will be taken up again in the security section. The attacks
are: brute-force, linear cryptanalysis, algebraic cryptanalysis, differential crypt-
analysis, related-key attacks, meet-in-the-middle attacks, side-channel attacks
and combinations of these methods.

Brute-force. A brute-force attack tests systematically all possible keys on the
cypher text. It is assumed that the attacker dont have any prior knowledge about
the keys that are more probably than other keys. This type of attack is often
from minor importance because it is uneconomical to decrypt the cypher text
with all possible keys. The complexity of a brute-force attack act as reference
for other attacks.
Linear cryptanalysis This attack requires a known-plaintext attacker ahead,
i.e. the attacker knows the relative cipher text to a certain plaintext. The idea
of the attack is to find linear equations for parts or. single operations of the
cypher. The equations try to determine plain text bits, cipher text bits and key
bits pairs with a better probability than 1

2 . For these attacks it is an important
performance factor how many plaintext ciphertext pairs are needed.
Algebraic cryptanalysis This attack has the same objective as the linear
cryptanalysis, but instead of only linear equations also polynomial equations
of any degree can be used. An often problem in this context is there is no exact
complexity and because of that it is necessary to use other metrics like runtime
on a specific test environment.
Differential cryptanalysis. The differential cryptanalysis is a chosen-plaintext
attack, i.e. the attacker can encrypt a chosen plaintext. To accomplish the at-
tack pairs (∆X,∆Y ) are compared, whereby ∆X and ∆Y are in each case the
difference (e.g. XOR) of two values, e.g. the difference of two inputs and outputs
of the algorithm. Goal of this analysis is to classify certain keys more likely.
Related-key attack. At a related-key attack it is assumed that the attacker
knows not only the cipher text of the originally keys K but also the decryption
with key K ′ which are derived from K i.e. K ′ = f(K).
Meet-in-the-middle attacks (MITM). MITM attacks assume at least one
known pair of plain- and cipher text (known- or. Chosen-plaintext). At the first
step the attacker tries to filter keys i.e. the key space is limited. At the second
step the right key is searched using brute-force or another attack. More details
about this attack technique can be found for example in Takanori Isobe and
Kyoki Shibutanii[13].
Side-channel attacks. A side-channel attack doesnt attack the algorithm itself
but the physical implementation. The attacker tries for example of the duration
or the power consumption of certain operations to infer information. Also the



attacker can try to specifically tilt bits for example due to manipulate the applied
voltage.

4 LED

Light Encryption Device is a symmetric block cipher which was published from
Guo et al.[11] in 2011. The cipher is lightweight and can efficiently be imple-
mented in hardware. Because of these properties the authors suggest that LED
is basically suitable for encryption and decryption in the IoT area. A concrete
use case is the secure storage and transmission of RFID tags.

4.1 Encryption

LED uses a block size of 64 bits. The key length is 64 bit (LED-64) or 128 bit
(LED-128). Even key length between 64 bit and 128 bit are basically possible
for example 80 bit. In this case the remaining bits will be padded with the prefix
of the key (padding). We call the actual bytes of the blocks to be encrypted
as a State. The state and the keys will be written down as a (4 × 4) matrix.
The matrix entries of the state and key are respectively 4 bit blocks (Nibble)
and represents elements of the body F24 . With a key length of 128 bit, there
are accordingly 2 matrices, each with 64 bit. A round consists of 4 sub-steps:
AddConstants, SubCells, ShiftRows and MixColumnsSerial. The number of
rounds are 32 (LED-64) or 48 (LED-128). Below each sub-step of a round will
be described.

AddConstants. At the beginning of each round the operation AddConstants
is performed. For this purpose, the State with the following matrix is added
bitwise using XOR: 

0 (rc5||rc4||rc3) 0 0
1 (rc2||rc1||rc0) 0 0
2 (rc5||rc4||rc3) 0 0
3 (rc2||rc1||rc0) 0 0


The bit vector (rc5, rc4, rc3, rc2, rc1, rc0) is initialized with 0 before the first
round. Before each addition the matrix on the last round is taken, the bit vector
is shifted by one positon to the left and rc0 is set to rc5 ⊕ rc4 ⊕ 1.
SubCells. In this step every Nibble of the state will be replaced by another
(Sbox). The Sbox was borrowed by the block cypher PRESENT [3].

Table 1. PRESENT Sbox.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2



ShiftRows. For i = 1, 2, 3, 4 each i-th is shifted cyclical i − 1 positions to the
left.
MixColumnsSerial. Each column vector v of the state is replaced with M · v.
To multiply the elements, the polynomial X4 +X + 1 is used.

M =


4 2 1 1
8 6 5 6
B E A 9
2 2 F B


After every step (4 rounds) and at the start of the encryption is also still the
operation addRoundKey performed. In addition to that the key is added to the
state by use of XOR. In the case of LED-128 the two keys switch after each step.
The name round key is misleading at this point because the key never changes.
An outline of the encryption process is shown in Fig. 1.

Fig. 1. LED encryption

4.2 Security

LED is very similar to AES with regard to the rounding operation. The round
number is comparatively set high with 32 (LED-64) or 48 (LED-128). AES-128
uses 10 rounds. However, should be noted that AES adds the round key each
round. LED uses the operation AddConstants instead. Therefore, one step (4
rounds) in LED is equivalent to 4 rounds single-key AES. This comparison is
drawn because the security for 4 rounds single-key AES was further explored
[21][6].

In the following, an overview of the attacks is given that exists on LED4 are
given. Vincent Grosso et al.[10] research algebraic attacks on LED. Evaluated
is the time needed for the key recovery with different number of key bits. At
full number of rounds, the key can be recovered in about 5 minutes5 when 16
of 64 key bits are unknown. Result for the case that more than 16 key bits are
unknown are not provided. It is also noted that the attack is only an advantage
over a brute-force attack brings if at least 9 key bits are unknown.

In the papers by Xinjie Zhao et al.[32] and Philipp Jovanovic et al.[16] alge-
braic attacks are combined with side-channel attacks. Both attacks require that
the same plain text can be encrypted with the same key twice. At the second

4 The given values refer to LED-64, if not otherwise specified.
5 A statement about the used test environment is not taken.



encryption in the 30 round after the operation SubCells it is attempted to pro-
duce an error in the first entry of the state so that at this entry is a random
value. Based on the difference of the outputs and the inverse rounds a system
of equations is formed with that the key space of 219 ∼ 225 or 26 ∼ 217 can be
reduced [16][32].

Takanori Isobe und Kyoji Shibutani[13] research MITM attack on lightweight
ciphers. It is about a chosen-plaintext attack with the objective to recover the
key. In the case LED-64 rounds are attacked where 28 plain-cipher-text pairs and
256 encryptions are needed. At LED-128 are 16 rounds at a time complexity of
2112 and a data complexity of 216 achieved.

Mendel et al.[19] describe differential attacks in the single- and related-key
context. Objective of the attack is the key-recovery. In the related-key attack
the authors succeed to attack in 16 rounds at 262.7 encryptions. However, the
attack also has with 262.7 a high data- and memory complexity. In the paper is
also an attack shown on LED-128 provided that K0 will guess (data complexity
264) the complete key K0||K1 at 296 encryptions can be recovered.

That in 2015 published paper by Ivica Nikoli et al.[21] attacks with a combi-
nation of MITM and differential crypto analysis the so far most rounds (without
side-channel) with 20 (LED-64) or 40 (LED-128).In contrast to the previously
noted attacks its objective is not the key-recovery. Instead at a successful attack
the attacker can distinguish a randomly permutation of the 2k possible permu-
tations of the used key (distinguish attack). This attack is less threatening than
a key recovery but on this basis with less complexity further attacks can be
accomplished. The results are as follows. In the case LED-6420 rounds at a time
complexity of 260.2 and a data complexity of 261.5 are attacked. For LED-128 are
10 rounds with 260.3 encryptions and a memory complexity of 260 affected.

A summary of the attacks is shown in table 2[21]. In addition to the com-
plexities, the attack conditions (single-key (SK), related-key (RK), chosen-key
(CK)), the number of attacked rounds and the effect of the attack (key-recovery
(KR), distinguisher (D)) listed.

Table 2. Attacks on LED[21]

Chiffre Attack Type Rounds Time Data Memory Ref

LED-64

(32 rounds)

MITM (SK) KR 8 256 28 211 [13]
Linear/Differential (CK/RK) KR 16 262.7 262.7 262.7 [19]

Linear/Differential (CK) D 15 216 – 216 [11]
MITM/Differential (CK) D 16 233.5 – 232 [21]
MITM/Differential (CK) D 20 260.2 – 261.5 [21]

LED-128

(48 round)

MITM (SK) KR 16 2112 216 219 [13]
Linear/Differential (CK/RK) KR 24 296 264 232 [19]
Linear/Differential (CK/RK) D 27 216 216 232 [11]

MITM/Differential (CK) D 32 233.5 – 232 [21]
MITM/Differential (CK) D 40 260.3 – 260 [21]



5 Tea family

5.1 Introduction TEA

The Tiny Encryption Algorithm (TEA) was developed with the objective to
design a high performance and mathematical not to complicated encryption
algorithm which in particular also for use on low-performing small computers
in the IoT environment is. The algorithms of the TEA-family are variants of
a Feistel Cipher and thus block ciphers. TEA encrypts 64 bit blocks which are
directly split into 32 bit blocks. The classical TEA algorithm uses a 128-bit
length key. TEA is a round based encryption method. The number of the used
rounds are variable but 32 Tea cycles are recommended. Due to the symmetrical
construction of the encryption algorithm (see point 5.3) is one cycle in TEA
equivalent to two Feistel rounds. [2]

The algorithm exceeds the performance of DES (see point 5.7) and can be
implemented in all programming languages. For many common programming
languages exist reference implementations which can be used with little effort.
With a strength of 32 cycles is the test implementation 60% faster than the
reference implementation with 56-Bit DES. The encryption strength of TEA
can be further increased by increasing the encryption cycle. [24]

5.2 ”The golden number”

To counter attacks which try to exploit the symmetric of the encryption rounds
it is a frequent practice by some encryption methods to include golden numbers
at each round. This has the effect that there are no bits which do not change in
sequential rounds. The classic golden number is defined as: [25]

1 +
√

5

2
(1)

TEA uses a derived constant from the golden number: [24]

(
√

5− 1)231 (2)

This constant initialized the variable delta and equates to a rounded integer:
[24]:

delta = 265443576910 = 9E3779B916 (3)

The mathematical definition of the constant should counter the suspicion that
it is not a random number but a conscious weakening of the algorithm installing
a backdoor. In cryptography it is for this reason a frequent practice not to use
hardcoded random chosen numbers but to generate them by a simple compre-
hensible mathematical operation.[25]



5.3 Encryption algorithm

As already described under 5.1TEA is a block-cipher encryption method which
can only encrypt 64 bit blocks. To encrypt the 64-bit block gets split in two 32 bit
blocks. One block named L (left) the other R (right). The blocks get interchanged
after each encryption round. The 128-bit key gets split in 4 sub keys and named
with K[0-3]. The first 32 bit are in key K[0], the second 32 bit are in key K[1] etc.
the encryption steps are shown in 2 and get formally introduced under section
5.5. For further details, you can also look into the mentioned sources. [2]

5.4 TEA encryption routine characteristics

The TEA encryption algorithm has the following characteristics:

- As usual for a Feistel cipher every round I has 2 inputs Left(i) and Right(i) from
the second round it is in each case the output of the opposite side from the round
before. In each case the variables will be initialised with one half of the block to
be encrypted.

- The in every round used key K[i] is a part of the 128 Bit long key K.
- The constant delta will be initialised with a golden number derived constant

and ensures that the partial keys generate different ciphers and have no relevant
cryptographic significance. (see section 5.2).

- The encryption algorithm dont use random numbers i.e. identical text by the
same key leads to the identical cipher.

5.5 Formal definition of the encryption

To clarify the functionality are hereinafter the encryption functions of the TEA
block cipher listed. Figure 2 shows the encryptions steps graphically. As intro-
duced in section 5.3 the respectively part of the used key is named K[0-3] and
the respectively part of the current block to be encrypted is named with Right(i)
or. Left(i). Delta[i] is a modification of the under section 5.2 introduced golden
number. As described delta is defined as follows:

delta = (
√

5− 1)231 = 265443576910 = 9E3779B916 (4)

One TEA round consists of two Feistel rounds and for that reason the control
variable i increases by 2 each round. The variable i indicates the Feistel rounds.
In one TEA round the following operations were executed:

delta[i] = (i+ 1)/2 ∗ delta (5)

Left[i+ 1] = Right[i] (6)

Right[i+ 1] = Left[i] � F (Right[i],K[0, 1], delta[i]) (7)



Left[i+ 2] = Right[i+ 1] (8)

Right[i+ 2] = Left[i+ 1] � F (Right[i+ 1],K[2, 3], delta[i]) (9)

F (M,K[j, k], delta[i]) = ((M << 4)�K[j])⊕(M�delta[i])⊕((M >> 5)�K[k])
(10)

Equation 6 and 7 form the first step of a TEA round (the first Feistel round).
The equations 8 and 9 close the TEA round (the second Feistel round). F()
referred the so called round function (equation 10) which contains the significant
steps of the cryptographically operations. The function is always the same but
get called with different parameters each Feistel round.

Fig. 2. Encryption steps TEA, Source: Based on [27]

5.6 Vulnerabilities of TEA

TEA has been handled in some crypto analysis and examined for vulnerabilities.
The current known vulnerabilities of the original TEA implementation are:



- Hash collisions used as hash functions: TEA wasnt developed for being used as a
hash function and does not meet the central condition of preimage resistance for
cryptographically hash functions. That means it is possible with comparatively
little effort to find to a given hash value Y an input value X its hash value after
using the hash function also maps to Y. Therefore, specifically collisions can be
calculated to a given hash value. [29] [26]

- Key cracking: Vulnerability for simple attempts of keys (brute force). In combi-
nation with a known plaintext-ciphertext pair the necessary iterations strongly
decrease and the efficiency of the attack strongly increase.[29]

- Equivalent keys: Because of a constructional vulnerability at the TEA encryption
algorithm every key to decrypt a cipher has 3 equivalent keys which can although
be used to decrypt the cipher. This means that the effective key space of a 128
Bit long key is reduced to 126 Bit.[29]

The following describes detailed and exemplarily the equivalent key vulnera-
bility of the TEA algorithm depended on [1] and derived the mathematical
backgrounds. If two different keys (K and K) in an encryption system with iden-
tical plaintext generate the identical cipher both keys K and K were called as
equivalent. Following equation express this:

EK(T ) = EK′(T ) (11)

Conversely that means that a with K encrypted cipher can be decrypted with
K:

DK′(EK(T )) = T (12)

At a good encryption system the claim should be that there are no equivalent
keys. The number of the equivalence classes of the ciphers are in this case 2k

whereby k is the key length in Bit. For TEA with a 128 Bit key length it should
be 2128 ≈ 3, 4 ∗ 1038different equivalence classes. Analysis show that in TEA are
only 2126 different equivalence classes with a key length of 128 Bit. In this case
there are only 2126differentiated from each other cyphers by a given plaintext
T. For every cipher there are 4 each other equivalent keys K0...K3 by which the
plaintext can be decrypted. The following example illustrates this:

∀a, b ∈ Z232 (13)

231 � 231 = 0 (14)

a� 231 = a� 80000000h (15)

This means:

a� b = (a⊕ 80000000h) � (b⊕ 80000000h) (16)

In this way the round function of TEA can be manipulated:

F (M,K[j, k], delta[i]) = F (M, (K[j]⊕ 80000000h,K[k]⊕ 80000000h, delta[i]))
(17)



Every 128 Bit key K0K3 has three equivalent keys in the form of:

(K[0],K[1],K[2]⊕ 80000000h,K[3]⊕ 80000000h (18)

(K[0]⊕ 80000000h,K[1]⊕ 80000000h,K[2],K[3]) (19)

(K[0]⊕80000000h,K[1]⊕80000000h,K[2]⊕80000000h,K[3]⊕80000000h) (20)

So that a 128 Bit key with the TEA encryption has only a key space of 126 Bit
ant thereby the security from a 126 Bit key. [1]

5.7 Performance

As described under section 5.1 the primary goal of developing TEA was to
achieve a high performance. In an exemplarily test under a Java environment
TEA was 18 times faster than the Java provided DES implementation. Further
tests have shown that TEA (128 Bit, 32 iterations) are 60% faster than 56 Bit
DES and 4 times faster than 168 Bit 3DES. Because for the following described
block versions Block TEA and XXREA it is explicitly recommended by the
authors to use larger data blocks a further performance increase is expected.[29]

5.8 Further development XTEA (eXtended TEA)

The XTEA (eXtended TEA) algorithm is a further development of TEA and
corrects et al. the under section 5.6 described vulnerability of the equivalent
keys. Like TEA works XTEA with 64 Bit blocks and a 128 Bit key length.
Recommended are also 64 encryption rounds. [18] The improvements compared
to TEA were achieved due a more complex key management and a change of
the Shift, XOR and addition operations. [28] Due to the current state of re-
search even XTEA isnt an encryption method without vulnerabilities. It exists
descriptions of successful attacks against XTEA due exploitation of a related
key vulnerability[18]. The XTEA algorithm was aware weakened due a partly
significant decrease of the encryption cycles. It can however be assumed that due
an appropriate greater effort an attack is also applicable at the recommended 64
encryption rounds. These attacks are described inter alia in [17], [18] and [22].

5.9 Modification Block TEA

Block TEA was published simultaneously with XTEA and differs only slightly
technically from XTEA. In contrast to XTEA Block TEA dont need a fixed block
size but it can also work with blocks of any size. This means that Block TEA
dont need an operation mode to ensure confidentiality and authenticity. Block
TEA is applied directly to the entre message. Internally the round function (see
5.3) is iteratively and cyclically applied to the entire message The used round
function is identical to XTEA. So that Block TEA has the same vulnerabilities
as XTEA. [22] [28]



5.10 Further development Corrected Block TEA (also referred as
XXTEA)

Corrected Block TEA or XXTEA is an in 1998 published further development
of Block TEA. As Block Tea it does not have a fixed block size and can be
applied to the entire message. The goal to develop XXTEA was to correct the
known vulnerabilities of Block TEA. For this some changes have been made
in the round function. The reference implementation of XXTEA Correction to
xtea is available at [23]. Also for XXTEA it already exists documented successful
attacks. The paper Cryptanalysis of XXTEA [31] describes a successful chosen
plaintext attack with 259 plain- ciphertext pairs.

6 Comparison of the algorithms

To compare the software and hardware implementation of the ciphers TEA and
LED the crypto system KATAN[4] (or KTANTAN) is listed too. The function
meadow of KATAN is strongly different to LED but for software implementa-
tions values of the same magnitude are expected. As for LED no software imple-
mentations are known, KATAN is used instead. Accordingly, we have found no
reprasentative hardware implementation of TEA and use also the cipher KATAN
instead. The block ciphers LED and KATAN are optimized for hardware while
TEA and the reference implementation AES are optimized for usage in software
implementations. By the development of KATAN and LED it was decided that
they are efficiently in hardware i.e. that they can be realized with few hardware
elements. Due the focus on the hardware implementation the algorithms KATAN
and LED have an appropriate worse efficiency in software implementations. Ta-
ble 3 shows software implementations of AES, TEA and KATAN. Striking is
the significantly higher (factor 10) power consumption of KATAN to AES and
TEA. The power consumption correlates with the number of the needed CPU
cycles for decryption and encryption. Overall TEA is worse than AES i.e. the
numbers of need CPU cycles, the power consumption and the throughput are
significantly better at AES than TEA. The values in the table should be noted
that the block size of AES is twice the size as TEA or LED and KATAN-64 and
for that the values in the columns (CPU-)cycles and power consumption have
accordingly to be normalized. Striking is the value 0 byte RAM at the TEA
implementation from Thomas Eisenbarth et al.[8]. Unfortunately the source has
no justification for that value. We assume that it was worked exclusively with
the CPU registers and these were not valued as memory (RAM).
Table 4 compares hardware implementations of KATAN, AES and LED. AES
needs a significantly larger number of gates but also have a performance advan-
tage to the compare algorithms. LED and KATAN use a similar number of gates.
The most compact implementation is possible with KTANTAN32. KATAN has
a significant performance advantage to LED, this advantage increases again with
increasing block sizes. An advantage of LED is that the key length is flexible
and can be adjusted to the desired security level.
Table 5 shows summarized different attacks on TEA and LED. There are on



Table 3. Comparison of the software implementations (at 4MHz)

Cipher Block Key Code RAM Cycles Cycles Throughput Energy
Size Size Size
[bits] [bits] [bytes] [bytes] [enc+key] [dec+key] [Kbps] [µJ]

AES [7] 128 128 1659 33 4557 7015 - 19.2
AES [8] 128 128 2606 224 6637 7429 77.1 -
TEA [7] 64 128 648 24 7408 7539 - 30.3
TEA [8] 64 128 1140 0 6271 6299 40.8 -
KATAN[7] 64 80 338 18 72063 88525 - 289.2

Table 4. Comparison of the hardware implementations[11] [4]

Cipher Key Block Cycles Throughput Structure Area
length size per Block at 100 KHz (Kbps) size GE

flexible keys

AES-128 [12] 128 128 0.08 0.13 3100
AES-128 [9] 128 128 1032 12.4 0.35 3400
AES-128 [20] 128 128 226 56.6 0.13 2400
KATAN32 80 32 12.5 0.13 802
KATAN48 80 48 18.8 0.13 927
KATAN64 80 64 255 25.1 0.13 1054
LED-64 64 64 1248 5.1 0.18 966
LED-80 80 64 1872 3.4 0.18 1040
LED-96 96 64 1872 3.4 0.18 1116
LED-128 128 64 1872 3.4 0.18 1265

fixed keys

KTANTAN32 80 32 12.5 0.13 462
KTANTAN48 80 48 18.8 0.13 588
KTANTAN64 80 64 255 25.1 0.13 688
LED-64 64 64 1280 5.13 0.18 688
LED-80 80 64 1872 3.4 0.18 695
LED-96 96 64 1872 3.42 0.18 700
LED-128 128 64 1872 3.42 0.18 726

the one hand attacks listed which attack so far the most rounds (apart of side
channel attacks) and on the other hand there is a MITM attack which can be
applied on LED and XTEA[13]. At XTEA the MITM attacks the so far most
rounds.

7 Conclusion

To conclude, it can be said that the background for what the algorithm is devel-
oped is very important. Focusing on the hardware implementation of LED and
KATAN reflects very clearly in the performance data. For the TEA family as
software algorithm there are no data regarding a hardware implementation. Due



Table 5. Attacks on (X)TEA and LED compared

Cipher Attack Type Rounds Time Data Memory Ref

LED-64

(32 rounds)
MITM (SK) KR 8 256 28 211 [13]

MITM/Differential (CK) D 20 260.2 – 261.5 [21]

LED-128

(48 rounds)
MITM (SK) KR 16 2112 216 219 [13]

MITM/Differential (CK) D 20 260.2 – 261.5 [21]

XTEA (64 rounds) MITM (SK) KR 29 2124 245 24 [13]

TEA (64 rounds) Linear KR 23 2119.64 264 – [5]

the obvious discrepancy in the requirements the unsuitability can be concluded.
Each of the researched algorithms has specific advantages and disadvantages. For
example, the implementation of KTANTAN32 is very compact and LED can be
adjusted to the security level. However, the first step by choosing an encryption
algorithm should always be the selection from algorithms which were developed
for the own environment. All research algorithms have specific vulnerabilities for
which already specific attacks exist. In each described attack the algorithms had
been aware weakened or other specific conditions (physical access on hardware
on specific points) had been created due the attack had been made possible. In
many cases this factors can be fully excluded by the type of implementation. In
this case there is no reason against a further usage of the researched algorithms.
However, it should be always used the newest version of the respective algorithm
because often with each new version vulnerabilities had been eliminated or the
efficiency increased. This is as the AES example shows partly also for new imple-
mentations of existing algorithms. It is important and useful to develop and use
different encryption algorithms for different use cases. Based on the current state
of technology there is no universal algorithm which can be fully recommended
for each use case.
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