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Abstract. In this paper we compare two popular block ciphers named
PRESENT and Scalable Encryption Algorithm (SEA). We give a short
introduction into PRESENT and SEA, their function and the different
kind of possible implementations. For comparing these two block ciphers,
we focus on security, code size, number of Gate Equivalent (GE), energy
consumption, and throughput. We also compare both algorithms with
the most popular block cipher Advanced Encryption Algorithm (AES)
as well as two stream ciphers Trivium and Grain.
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1 Introduction

The interconnection of embedded computer devices like RFID within the exist-
ing Internet infrastructure well known by Internet of Things (IoT) is currently
one of the major topics in modern IT. IoT is expected to offer more connectivity
for devices, services, and systems. There is a need to secure the communication
that cannot be satisfied with state of the art cryptography like AES because
these devices are often very small and have limited power and energy resources.
Both cipher algorithms (PRESENT/SEA) focus on these constraints and will
be compared in more detail within this paper. PRESENT was designed with
hardware performance in mind, whereby SEA’s design goal was a good software
performance. There is a lot of work that compares block ciphers or stream ci-
phers among each other. In this paper we will mainly focus on the comparison of
PRESENT and SEA and then compare them with the stream ciphers Trivium
and Grain in the comparision section.

Our comparison focuses on security, code size, number of Gate Equivalent
(GE), energy consumption, and throughput. Block ciphers are classified by it-
erated block ciphers transforming fixed-sized blocks of plain-text into fixed-sized
blocks of ciphertext. The input text is processed in multiple rounds of the same
structure. In general, round keys are derived from a key which influences the re-
sult of each round. In Block Ciphers the coherence of plain-text and ciphertext
should be as complex as possible this was specified by Claude Shannon in the



paper Communication Theory of Secrecy Systems [1] published in 1949. Shan-
non defined two properties, confusion and diffusion, that should be fulfilled by
a cipher. Confusion means that each character of the ciphertext should depend
on several parts of the key. Diffusion means that if we change a character of the
plaintext, then several characters of the ciphertext should change. [1]

2 Related Work

There is a growing number of low-cost cryptography and a number of papers
dealing with their comparison. The Paper from [2] Compact Implementation and
Performance Evaluation of Block Ciphers in ATtiny Devices [3] tries to build a
uniform comparision platform by using the ATMEL ATtiny45. ® [3] implement
12 block ciphers including AES, DESL, HEIGHT, IDEA, KASUMI, KATAN,
KLEIN, mCrypton, NOEKEON, PRESENT, SEA and TEA on that platform
and published the source code as open source. This should serve as a better
comparision platform for the future. There is also work done that compares
not only block ciphers among each other. [3] covers block ciphers and stream
ciphers. For the comparison, they focus on key bits, block bits, cycles per block,
throughput at 100 kHz and the area in gate eqivalents the algorithm needs
for implementation. They split the algorithms they compared into two groups,
hardware and software oriented ciphers. [4] focued mainly on stream ciphers in
their work Hardware results for selected stream cipher candidates|[4].

3 PRESENT

PRESENT is a lightweight block cipher introduced in 2007 by Orange Labs,
Ruhr University Bochum and the Technical University of Denmark. [5] Present
is designed to met the constraints of IoT specified above. [5] focused on security
and hardware efficiency when designing the algorithm. The block size is 64-
bit and the key size is either 80-bit or 128-bit. The most compact hardware
implementation of PRESENT needs 1570 (GE) (Assumed 32-bit XOR = 80
GE, 32-bit arithmetic ADD = 148 GE, 192-bit FF = 1344 GE and SHIFT =
0 GE) [5] and is therefore competitive with today’s leading compact stream
ciphers, which need 1300-2600 GE according to [4].

3.1 Algorithm Specifications

PRESENT is a classical substitution permutation network (SPN) consisting of
31 rounds. At first 32 round keys are generated. The first 31 rounds consits of
an XOR operation to introduce a round key K; for 1 < ¢ < 32, where Kss is
used for post-whitening. Post-whitening obfuscates the structure of the linear
bitwise permutation and the non-linear substitution layer of round 31. Each of
the 31 rounds exists of three operations. First the current round key is applied

3 http://www.atmel.com/devices/attiny45.aspx



to the block being encrypted. Then an S-Box is performed that holds Shannon’s
property of confusion.[5] Confusion means that each character of the ciphertext
should depend on several parts of the key. The last step of each round is a
permutation. We will now explain the operations in more detail. Figs. 1 and 2
give an illustrative presentation.

generateRoundKeys ()

for i=1 to 31 do
addRoundKey (STATE, K;)
sBoxLayer (STATE)
plLayer (STATE)

end for

addRoundKey (STATE, 32)

Fig. 1: A top-level algorithmic pseudocode of PRESENT (derived from [5])

------------------------------
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ciphertext

Fig.2: A top-level algorithmic flowdiagramm of PRESENT (derived from [5])

— addRoundKey

The round key K; = Ki; ... K} for 1 <i < 32 is applied to the 64-bit block
be3 - .- bg for 0 < j < 63 by a bitwise exclusive OR.

b = b @K, iec{l,...,32}, j€{0,...,63} (1)
— sBoxLayer

PRESENT uses a 4-bit to 4-bit non-linear S-Box. Therefore the current block
is considered as a sixteen 4-bit word w15 . . . wo where w; = bg.i43||b4.i+2||ba-i+1||ba. i
for 0 <4 < 15. The S-Box itself looks as follows

x_ |0[1[2[3T4[5]6 [7 [8[9 [A[B]C[D[E[F
S[x] |C|5[6[B[9]0[A[D[3[E[F[8 [4 |7

—
\V]




— pLayer
e In the bit permutation layer the bit ¢ is moved to bit position P(i).
P(i)=i-16 mod 63 i€ {0,...,63} (2)
— Key schedule

PRESENT can be used with either 80- or 128-bit keys. We will focus on the
80-bit key generation. For more information on the 128-bit version, see [5].
The 80-bit key K, is represented as krg...kg. At round ¢ the 64 bit round key
K; = Kgs...Kq consists of the 64 leftmost bits of the current key K.

Ki = K63...K0 = k79.../{316 (3)

The update routine consists of three parts. First the key register is rotated
by 61 bit positions to the left. Then the left most four bits are passed through
the S-Box. The last step is an XOR between the least significant bits of the
round counter and the bits kig...k15 of the key.

1.[/{}79...]?0} = [k‘ls...kok‘ﬁgklg]
2.[krokrskrrkre] = S[krokrgkrrkze) (4)
3~[k19k18k17k16k15} = [k19k18k17k16k15] @ roundcounter

The update algorithm for the 120-bit version of PRESENT works almost the
same. It takes the leftmost 64-bit into consideration and it has two active
S-Boxes in the update routine. For more details see the appendix of the
original paper[5].

3.2 Security Analysis

Although it is possible to implement PRESENT both in software and hard-
ware the latter is advised since the major goal for PRESENT when designing it
was hardware performance. This aspect is elaborated later. Applications using
PRESENT are unlikely to require the encryption of large amounts of data, since
the devices it is designed for have low resources.

Two analysis techniques for cryptographic algorithms are differential and
linear cryptanalysis. To prove the resistance of PRESENT to those attacks [5]
provided a lower bound to the number of so-called active S-boxes in a differential
characteristic. This can be captured by the following theorem, proven in [5].

Theorem 1 Any five-round differential characteristic of PRESENT has
a minimum of 10 active S-boxes

[5] made four observations to prove the resistance to differential attacks of
PRESENT.



— The input bits to an S-Box come from 4 distinct S-Boxes of the same
group.

— The input bits to a group of four S-boxes come from 16 different
S-Boxes.

— The four output bits from a particular S-Box enter four distinct S-
boxes, each of which belongs to a distinct group of S-boxes in the
subsequent round.

— The output bits of S-boxes in distinct groups go to distinct S-boxes.

Taking theorem 1 into account, we note that any 25 rounds must have at
least 5 x 10 = 50 active S-Boxes. Advanced cryptanalysis techniques allow to
remove the outer rounds from a cipher to exploit the characteristic, but the au-
thors think that this is not enough to break up to 25 rounds.

For a linear attack it would need about 284 known plaintext/ciphertext pairs
to break 31 rounds of PRESENT. Such an amount of data exceeds the available
text and is therefore not sufficient at these days. Structural attacks are well
suited to analyze AES-like ciphers. Such ciphers have word like structures where
one word is typically one byte. The bitwise design of PRESENT shall protect
against those attacks because the bitwise operations used in the cipher disrupt
the word-wise structure.

3.3 Attacks

The first attack on PRESENT is a statistical saturation attack and can be seen
as an example of partitioning cryptanalysis. It extracts information about the
key by observing non-uniform distributions in the ciphertext [6] and therefore
exploits the diffusion properties in block ciphers. It is possible to break up to 15
rounds of PRESENT using 23%6 plaintext-ciphertext pairs. The principal attack
uses a weakness in the diffusion layer of PRESENT.

Nakahara et al. [7] present a linear algebraic cryptanalysis of reduced round
variants for PRESENT. They introduce a pure algebraic cryptanalysis of 5-
rounds within that experiment, they were able to recover half of the bits of the
key in less than three minutes using an ordinary desktop PC. 7?7 The attack
complexity with respect to time, data (known plaintext), memory, key size for a
linear reduced-round attack of PRESENT can be found in Table 4 of [7].

Hernandez-Castro et al. [8] tested the strength of PRESENT’s key schedule
algorithm of both variants with 80 and 128 bit keys. They used a probabilistic
metaheuristic search for semi-equivalent keys, annihilators and entropy minima.
Surprisingly, the results show that the 128-bit key seems to be weaker than the
80-bit key. The entropy per byte was 4.006811 (80-bit) compared to 3.744336
(128-bit). The authors affiliated this effect with the theory that there is a reduced
number of global optima for the 80-bit version and multiple ones for the 128-bit
version [8].



Table 1: List of GE needed for PRESENT implementation (derived from [5])

module GE % module GE %
data state 384.39 24.48 KS: key state 480.49 30.61
s-layer 448.45  28.57 KS: S-box 28.03 1.79
p-layer 0 0 KS: Rotation 0 0
counter: state 28.36 1.81 KS: counter-XOR  13.35 0.85
counter: combinatorial  12.35 0.79 key-XOR 170.84 10.88
other 3.67 0.23

Overall 1569.93 100

3.4 Performance

As mentioned before PRESENT requires about 1570 GE when implemented
in hardware. In Table 1 a breakdown view of the single components for the
hardware implementation can be seen.[5] The most GE are needed to implement
the flip-flops for storing the key and the data state, followed by the S-layer and
the key XOR. The bit permutation can be implemented using simple wiring and
therefore needs no GE. There is a more detailed comparison later in the paper.

4 SEA

Most current block ciphers like AES are designed to only find a good tradeoff
between cost, security and performance. SEA on the other hand was designed
as a low-cost encryption algorithm running on very limited processing resources.
[9] defined the following design goals: low memory, small code size, and limited
instruction set. Additionally, they proposed the flexibility as an additional design
goal because many block ciphers are designed to run on one specific platform, or
processor size and perform very badly is run on a different platform or processor
size due to the inflexible design. SEA,, ; is parametric in text, key and processor
size.

4.1 Algorithm Specifications

One of the stated design goals is that SEA, ; should run on many different
platforms, but should behave similar. To achieve this goal, SEA,, 5 is parametric
in the following parameters:

— n: plaintext size, key size
— b: processor size
— np = 5 number of words per Feistel round

— n,.: number of block cipher rounds



The only constraint is that: n has to be a multiple of 6b. For example for
an 8-bit processor there can be the following block ciphers: SEA4g g, SEAgs s,
SEAisag... [9] suggested that the number of rounds is

ne= 2042t 5)) )

This is further explained in section 4.2.

Basic operations SEA,, ;, only uses a limited number of elementary operations:
XOR, S-Box, word rotation, bit rotation and addition mod2®. They are defined
as follows

1. XOR &
@ 7ExLE ST ay o=@y e (i) = (i) @ y(i) ogz’gg—l

2. S-box S:
S: 7y = Loy ix—x=8(x) & (6)

x3i = (T3i42 A Z3i+1) @ T34,

T3it1 = (T3i42 A Z3i) @ T3iq1,
2

Tgita = (T3; V T3i41) @ Taiqe, 0<i< 3~ 1

where A denotes bitwise AND and V denotes bitwise OR.
3. Word rotation R:

R:7Z3 = Loy cx —y=R(x) Syip1 =2, 0540 <np—2, ®)
Yo = Tpy—1
4. Bit rotation r:
7Ly = Loy cx =y =1r(x) Syzi = 3 > 1,
Y3i+1 = T3i+1, (9)

Ysito = 3i41 <K 1, 0S4 <

where << denotes a left shift and >> a right shift.
5. Addition mod2’ B:

M7 x73 +73 2,y —2=aBy e 2z =3By, 0<i<n,—1 (10)
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Fig.3: SEA Rounds [9]

SEA,; uses a simple Feistel round for encryption/decryption round as well
as for the key round. Figure 3a shows the encryption/decryption round. At the
beginning of each round the plaintext is split into two blocks L; and R; of n,
words. For encryption the left block L; is then rotated as describe in equation 8
and xored with the right block R; as follows using the basic operations introduced
earlier:

Rii1 = R(L;) ®r(S(R; BK;))
Liy1=R;

During decryption the left block L; is not rotated as during encryption,
instead after the xor the block is rotated using the inverse of the word rotation
as describe in equation 8 as follows:

Ri+1 = R_1 (LZ D T(S(RZ H Kl)))
Lit1=R;
Figure 3b shows the key round. At the beginning the key is split into blocks

KL; and KR; of n, words. The left block K L; is xored with the right block as
follows:

KRivi = KL; ® R(r(S(KR; B Ci)))
KLi11=KR;

The key schedule is designed so that the key round is the same for encryption
as well as decryption. To accomplish this and allow different number of rounds,



after [ %] rounds the blocks KL; and K R; are switch, which leads to reverse
the earlier key derivation and lead to the following key expansion:

K07K1"'7K|_"TTJ7KI_%J—17"'K17K0 (11)

4.2 Security Analysis

To ensure resistance against linear and differential cryptanalysis, [9] propose that
the number of rounds should be n, > ?jT”. They further show that to prevent
both structural attacks and outer rounds improvements of statistical attacks
that SEA is secure if the number of rounds is equal or greater than the number
of rounds needed for complete diffusion. For SEA, complete diffusion is achieved
after ny + L%J rounds. To propagate one active bit to all words it takes at most
np rounds. This part is done by the combination of the word rotation with the
S-box. The diffusion inside each block takes at most | %] rounds. Getting a more
conservative approach [9] propose doubling the number of rounds necessary for
complete diffusion. The total number of rounds is

Mot L)) (12)

We are not aware of any known attack against SEA.

5 Comparison and Conclusion

SEA and PRESENT share a similar design, but SEA was designed to be imple-
mented in software and PRESENT in hardware. SEA was already implemented
in hardware, but implementing PRESENT in software is difficult because of the
bitwise permutation that PRESENT uses. In assemble, there is no instruction
for this operation which leads to a large performance decrease. Table 2 shows
a comparison of PRESENT, SEA and AES. As we can see AES is clearly the
fastest one in software, but it also has the highest code size as well as energy
consumption.

The speed of each cipher can depend on the amount of GE used in a hard-
ware implementation. As shown in Table 3 PRESENT is faster than AES, but
it only uses a 80-bit key where as AES uses a 128-bit one. SEA in comparison to
AES is slower as shown in Table 4, but its main advantage is that it is scalable
and therefore can be adapted to run on many different platforms.

In Table 3 we compare PRESENT with AES and DES. AES needs about
3400 GE which is well above the amount available in RFID chips. But at the
same time, AES offers more security than necessary in a RFID-based application
needed. DES in comparison needs about 2309 GE for the hardware implementa-
tion. Trivium and Grain are two stream ciphers. Trivium needs about 65% more
space than PRESENT whereby Grain is quite small and needs 18% less. 128-bit
PRESENT algorithm is at about the same speed as the 80-bit version and needs



Table 2: Comparison of software implementations of ciphers.[2] [3] (At 4MHz).

Cipher Block Key Code RAM Cycles Cycles Throughput Energy
Size Size Size
[bits] [bits] [bytes] [bytes] [enc+key] [dec+key] [Kbps] [1J]
AES [2] 128 128 1659 33 4557 7015 - 19.2
AES [3] 128 128 2606 O 6637 7429 77.1 -
PRESENT [2] 64 80 1000 18 11342 13599 - 45.3
PRESENT][3] 64 80 936 O 10723 11239 23.7 -
SEA [2] 96 96 426 24 41604 40860 - 30.3
SEA [3] 96 96 2132 0 7408 9654 39.7 -

about 20 percent more space but therefore is more secure.

At 100 KHz PRESENT achieves a throughput of 200 Kbps while the stream
ciphers Trivium and Grain achieve only 100 Kbps, DES 44.4 Kbps, and AES
12.4 Kbps. The ciphers have different block and stream size which are shown in
Table 2.

Table 3: Block and stream cipher comparison [3]

Cipher Key Block  Cycles Throughput Logic Area
size  size per block at 100 KHz (Kbps)  process GE
Block Ciphers

PRESENT-80 80 32 32 200 0.18 pm 1570

AES-128 128 128 1032 12.4 0.35 pm 3400

DES 56 64 144 44.4 0.18 yum 2309
Stream Ciphers

Trivium 80 1 1 100 0.13 pm 2599

Grain 80 1 1 100 0.13 pum 1294

SEA was designed to be implemented in software with a reference imple-
mentation of 732 bytes [9]. It can also be implemented in hardware. Due to it’s
similarity to PRESENT it can be assumed that it would take around 2280 GE
[10]. Since SEA is parametric the number of gate equivalent for greater plaintext
size is higher as shown in Table 4. [11] implemented SEA on a FPGA. The re-
sults are shown in Table 4. Comparing SEA144 8 with AES-128 we can see that
AES is around 14 times faster than SEAq44 8, but it also requires 12 times the
amount of GE and 10 times the power of SEAj44 5.

The advantages of SEA are its simplicity, its scalability, and the ”on-the
fly” key derivation. Even though it was originally designed to be implemented



Table 4: Comparison of hardware implementations of ciphers[11].

Cipher Plaintext Word Rounds Clock Throughput GE  Total
& key size size Frequency Power

[bits] [bits] [MHz| [Mbps] (W]

SEA 96 8 93 250 258 4313 5102.64
SEA 126 7 117 250 269 4565 7216.96
SEA 144 8 135 250 267 6079 8201.22
AES 128 - 10 295 3840 73200 86000.00

in software a number of papers [11] [12] show that it can be implemented in

hardware as well with a very good performance.

Our comparison of PRESENT and SEA showed that PRESENT should only
be used as hardware implementation while SEA can either be used as software
or hardware implementation. Both ciphers have a similar design so they need
roughly the same amount of GE, but the performance of SEA increases if more
GE are used in the design. In comparison to AES, PRESENT is faster on a small
device with very limited resources as shown in Table 3.
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