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Abstract. In the last few years, much progress has been made in the
research field of lightweight hash-functions. Due to the fact, that most
conventional hash-functions are too expensive in terms of energy con-
sumption and bad performance, hash-functions have been developed,
which are meant to be used on resource-constrained devices. In this pa-
per, we present and compare two promising hash-functions, PHOTON
and Quark, in terms of design, security and performance.
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1 Introduction

The Internet of Things (IoT) is one of the most promising research fields. In
Germany for example, the government supports the research with the initiative
IKT2020. The idea of the IoT is the overall presence of the internet in things of
the everyday life. Today, internet connected devices like smart phones, tablets,
smart tv’s and multi media applications in cars are quite normal. But the vision
of the IoT is the distribution of so called smart objects in every sector of the
every day life. An common example is a fridge noticing the missing milk and
ordering it via internet. The applications that manage these communication
flows are often called IoT applications. In these applications, resource constrained
devices (“things” or smart objects) with internet access are used to communicate
with each other and servers. The most common examples in the literature are
RFID tags and systems-on-chip. The RFID technology was the basis for the
identification of objects in processes and therefore has a leading role in the
development of the vision IoT. But other technologies could be used as well. For
all of them, the devices should encrypt their messages and ensure their integrity.
If two flash lights would be communicating and an attacker could change a
message, a traffic desaster could be the result. Another example could be a
fridge buying too much milk. Every use case has other security requirements. A
common requirement to every use case is based on the resource restriction of the
IoT devices. Therefore, securing communication between the devices needs new
cryptographic primitives that satisfy the following explicit requirements: The
algorithm and implementation should ...



1. be very efficient due to the resource restriction of the devices.
2. achieve an adequate security level for different use cases.
3. not be vulnerable to known attacks.

The machine-to-machine communication comprises server-to-server, server-to-
device and device-to-device communication. For the latter, the range of cryp-
tographic primitives is enhanced with so-called lightweight cryptography. These
resource constrained devices only allow a small number of gates, a limited en-
ergy consumption and a decreased number of cycles for computing values with
the primitives. Therefore, the existing primitives are not usable. For encryp-
tion, lightweight stream and block ciphers were introduced in the last years and
for message authentication codes, pseudorandom generators and key derivation
functions, lightweight hash functions have been developed. In this paper, we
present the hash functions PHOTON [18] and Quark [3]. Those two both are
based on some kind of Sponge function [9] and are quite performant. In compar-
ison to many other hash algorithms this two are not based on a standard (non
lightweight) hash algorithm. As the highest security level is not always applica-
ble and sometimes necessary for IoT applications, several instances of the two
hash functions exist to meet different use cases.

1.1 Related work

Our work focuses on two lightweight hash functions that are compared to each
other and set in context to related ciphers and hashes. Papers and works in the
same area are those of Poschmann [23] and Balasch et al. [7].
Poschmann [23] did his research in lightweight cryptography in 2009. His focus
was on the PRESENT [12] cipher. PRESENT is a block cipher and therefore
out of our scope. But it influenced the development of lightweight ciphers and
hashes. Balasch et al. [7] did a quantitative comparison of several lightweight
hash functions in their paper. We refer to their work in section 6 where we com-
pare the two ciphers to others. Instead of a quantitative comparison like Balasch
et al. [7] did or a complete overview over the area of lightweight cryptography
comparable to the dissertation of Poschmann [23], our work summarizes other
papers and gives an overview of the state of the art in lightweight hash functions
with a special focus on the hash functions Photon and Quark. These two func-
tions are rather new, not completely analysed and a very interesting approach
in this area. Additionally, they are very similar in use cases, construction and
general tendencies. Therefore it is straightforward to compare them and find out
the differences. Our goal was not to compare two completely different hash func-
tions. We also distinguish them from others in section 6 with help of statistics
and other papers.
The work of Anandakumar et al. [1] was not directly taken into account in this
work but belongs to interesting works for further reading.

Related (lightweight) hash functions Related to PHOTON and Quark are
other hashes that can be divided into different categories. We can distinguish



between lightweight and standard hash algorithms. Very common and important,
but not in the range of lightweight hash functions, is the family of the secure
hash algorithms (SHA). Today, SHA-1, SHA-2 and SHA-3 are used. Unmodified,
they need far too much resources for devices in the Internet of Things. Therefore,
lightweight hash algorithms were introduced. The family of lightweight hash
functions comprises:

1. new hash functions that may use existing construction schemes and that
are designed especially for IoT use cases (e.g. Spongent [11], Armadillo [6],
Spritz [24] and SQUASH [26]),

2. existing hash functions that are modified to become more lightweight (e.g.
Reduced Keccak [20] that is the lightweight variant of the Keccak hash al-
gorithm, better known as SHA-3.)

3. and existing (lightweight) ciphers that are transformed to hash functions
(Poschmann [23] explains in the sections 6.5 and 6.6 the functionality of
DM- and H-PRESENT that are hash algorithms based on the lightweight
block cipher PRESENT.).

The referred hash functions are only a part of the recent research and listed as
examples for related algorithms.

Related (lightweight) ciphers In general, the range of lightweight ciphers
is very broad. The eStream Project [5] found three lightweight stream ciphers:
Grain, MICKEY and Trivium. Grain and the block cipher KATAN [17] influ-
enced the hash function Quark [3]. Other block ciphers that belong to related
ciphers are PRESENT [12], the Cube [8] block cipher family and SEA [27].

1.2 Security features of hash functions

In the design of cryptographic hash functions it is crucial to avoid so called
collisions [25]. This means that two input values are mapped to the same hash
value. These collisions are used within attacks to the applications of the hash
function. Therefore, a hash function should be collision resistant [13]. Two other
requirements to hash functions are preimage and second preimage resistance. If a
hash function is a one way function, it should meet the features second preimage
and preimage resistance. A collision resistant function owns the three properties.

Collision resistance: In order to be collision resistant, it must be hard to find any
two inputs x and x’ for a certain hash function such that the function outputs the
same value: h(x) = h(x′) for x 6= x′. Hard means in that case that there is not
a more efficient way then just brute forcing. Anyway, because it is not possible
to find a message with an equal hash value as a given message, this weakness is
not as easy to exploit as weaknesses in the second preimage resistance.

Second preimage resistance: A hash function is 2nd preimage resistant if it is not



efficiently possible3 to find a collision (x, x’) for given input x with h(x) = h(x′).
This is important because if an hash function is not second preimage resistant,
then it is possible to find another message with the same hash value which has
been signed using the hash function. Therefore an attacker could attach the sig-
nature to the other message and has a valid signature for the other message.

Preimage resistance: It should be infeasible to find an x to a given y, such
that h(x) = y. The preimage resistance is also called “onewayness”. This means
an attacker is not able to invert the function. If it is possible to invert a hash
function, then the function is neither collision nor second preimage resistant.
Forging would be quite easy in this case.

1.3 Attacks against hash functions

In this subsection general attacks against hash functions are explained. The
applicability to the hash functions PHOTON and Quark is checked later in
Sections 4.3 and 5.3.

Birthday attack The birthday attack [14] is based on the theory of the birthday
paradox. The attacker tries to find a collision for a k-bit hash function by gen-

erating 2k/2 messages. The possibility to find a collision is k ≥ 1+
√

1+(8ln(2))∗2n
2

(see Buchmann [13] at pp. 193). The probability to find in these 2k/2 messages a
collision is more than 50%. This shows that the security level of a hash function
depends on its output length.

Cube attacks and testers Cube attacks [2] are applicable to block ciphers,
stream ciphers and hash functions. They are a high order differential cryptanal-
ysis techniques. In this attack the secret variables of the underlying algebraic
structure are extracted by solving a system of polynomial equations. Cube at-
tacks were successfully applied to polynomials of dn secret variables.

Side channel attacks Side Channel attacks are directed against an implemen-
tation of a cryptographic primitive. Therefore, such attacks cannot be completely
avoided in the design of a hash algorithm because even if they were considered in
the design process, the implementation can still be vulnerable to these attacks.
Therefore, it is necessary to check a hardware implementation to see if this im-
plementation with mechanisms to prevent side channel attacks is still usable for
IoT use cases.

Slide (resynchronisation) attacks Slide attacks are directed against the key
schedule of the algorithm. The number of cycles is therefore irrelevant and does
not provide a higher security against this kind of attack. Related to the slide

3 All possible methods are not much better than just brute forcing.



attacks are slide resynchronisation attacks. Kuccuk et al. [21] found a slide resyn-
chronisation attack against Grain in 2006.

2 Constraints

In the IoT, different devices communicate with each other. The authors tend to
use RFID chips as example for IoT devices. Most of the RFID chips contain less
than 10000 gates, of which only 2000 are meant to be used for security purposes.
Moreover, the maximum CPU load of such a chip is around 100 kHz. Due to
that fact, most of the common hash algorithms like SHA-3 are not applicable.
Researches have been done to develop hash functions, that are suitable to run
on the given system requirements.
The two hash algorithms investigated in this paper both manage to run with
low resources load, but have some issues in terms of security and throughput.
In cipher design, a tradeoff between cost and security is necessary. The authors
suggest that due to the non-criticality of the data transmitted by a single RFID
chip. The complete mass of all RFID chips’s data is critical. Therefore, the data
transmitted to other chips or servers should not be transmitted in clear. But a
small cipher with a reduced security is still secure enough because attacker must
compromise the hashed data of all RFIDs. This is still with the presented hash
functions a rather difficult challenge.
Typically in IoT scenarios, the availability might be more important than the
confidentiality. But this depends on the use case.

3 Construction scheme of PHOTON and Quark

The central component in the design of a hash function is the construction
method. For Quark and PHOTON, sponge construction introduced by Bertoni
et al. [9] was preferred to the classical Merkle Damgard construction.

3.1 Merkle-Damgȧrd construction

The Merkle-Damgȧrd Construction Scheme is used to build hash functions [15].
A compression function f(x) is transformed into a secure hash function. In detail,
the input message is divided into n Blocks of length l. The last block is then
filled with padding bits. The blocks are enumerated with x1 to xn. The hash
function is now constructed with hi = f(hi−1||xi). h0 is a special case which is
filled with zeros. The amount of zeros is defined through the output size of the
hash function. hn can then be used as final hash-value.

3.2 Sponge construction

The sponge construction offers a new way of building a hash function based on
a fixed permutation. Usual arguments to prefer sponges include:



1. Sponge relies on a single unkeyed permutation.
2. The sponge construction is in-differentiable from a random oracle (see Sec-

tion 5.3 ).
3. Sponge function are able to generate Message Authentication Codes.
4. The method is very flexible because the parameters offer a wide range. De-

veloping a new instance of a hash algorithm can be done by changing the
parameters only.

The sponge construction is for example also used in Keccak and Spritz [24].

Fig. 1. Sponge Construction, adapted from Fig. 1 of [3]

The Sponge construction has the following parameters:

1. The width b=r+c defines the block size used for the permutation P. This
block size is the sum of the rate r and the capacity c:
(a) The rate r is the block length used in the algorithm. It is the length of

one message part mx (x ∈ N).
(b) The capacity c directly influences the security level of the hash function.

It is the part of the previous permutation that is used for the next one.
2. The output length n is in other construction methods the main parameter

for the security level.

The message m = {m0,m1,m2,m3} is used in the example of figure 1 for
the hash creation. In this example a 4-block message is used. The Permutation
P is applied to the different parts of m.

4 PHOTON

4.1 General information

PHOTON is a lightweight hash function developed by Guo et al. [18] and is
mostly meant to be used in RFID applications. Most of the implementations are
hardware based, nevertheless it is possible to implement PHOTON in software.
PHOTON is not very performant for big amounts of data because the bitrate is
chosen to be very small in order to minimize the memory used.



4.2 Design

Guo et al. assume that due to the fact that RFID tags are not protecting objects
of high value, tag-based applications do not require such high security primitives
like they are required in other applications. A security level of an 64-/80-Bit out-
put should be appropriate for the use in RFID tags because of the fact that the
data to be protected is not that valueable for an attacker. In order to do serious
damage, the attacker normally needs to break the cryptosystem within a very
short period of time. If the attack takes to much time, most of the information
are outdated.

Extended sponge functions The sponge function has been introduced by
Bertoni et al. [9] It offers a new way of building hash functions from a fixed
permutation, in which the internal state S is composed of a capacity of c bits
and a bitrate of r bits. The expected complexities of a hash function generated
using a sponge function are:

1. Collision: min{2n/2, 2c/2}
2. Second-preimage: min{2n, 2c/2}
3. Preimage: min{2n, 2c,max{2n−r, 2c/2}}

One big advantage of Sponge Functions is the fact that they can be used to
generate Message Authentication Codes. To minimize the memory used, the
sponge is created with a capacity equal to the output size of the hash. Moreover
very small bitrates are used in order to keep the costs of each iteration quite low.
Another point for choosing a small bitrate is that the information processed in
a standard RFID chip are normally very small, therefor even small bitrates do
not hurt the performance that much.

Table 1. Overview of PHOTON’s properties

PHOTON-
128/16/16

PHOTON-
160/36/36

PHOTON-
224/32/32

Energy consumption (mean) [µW ] 2,29/3,45 2,74/4,35 4,01/6,50
Gate equivalents [GE] 1122/1707 1396/2117 1736/2786
Implementation preference SW+HW
Security
Collision resistance 64 80 64
Preimage resistance 112 124 112

An AES-like internal permutation AES-like permutations are being chosen
because of the confidence in the design strategy of AES and AES based hash
algorithms. In each step, a fixed permutation is used. I comparison to AES, in
every application of the algorithm the same key is used. This is possible because
the purpose of PHOTON is not to cipher but to create a hash value, which needs



to be the same for every application of the algorithm. The SBoxes used are quite
similar to the ones of PRESENT. Each iteration constists of these four steps:

AddConstants The constants were chosen by Guo et. al. that each round
computation is different. In this step they also reduce the security in order to
archive better performance by modifying only the first column.

SubCells The size of the SBoxes was chosen even to avoid odd message block
sizes or even capacities (if also the amount of message blocks is odd). Remem-
ber, using the sponge function each time a message of the size of the bitrate is
squeezed out of or absorbed by the sponge in order to apply these permutations
on it. In order to do no unnecessary work, the message block size should devide
the sponge capacity in order to do no unnecessary rounds. In the end, Guo et al
use SBoxes of 4 or 8 bit.

ShiftRows Because of the fact that the chosen SBox got as many columns as
rows, each row is shifted by its row index to the left.

MixColumnsSerial The underlying matrix is a circulant matrix. The AES
MixColumnsSerial is not applicable in this case because the coefficients of these
matrices are very bad for smaller implementations. This issue is solved by updat-
ing only the last cell of the input vector with the matrix. After this, we rotate the
vector by one position towards the top. Therefore, the new MixColumnsSerial is
composed of d applications of our matrix on the input vector.

Fig. 2. Sponge construction in PHOTON, adapted from Fig. 1 of [18]



The PHOTON hash function family Every variant of the PHOTON hash-
algorithm is fully defined by the size of its hash output, which is between 64 ≤
n ≤ 256, its input and its in-/output bitrate r/r′. The input bitrate defines how
many bytes are absorbed by the sponge. After each absorption the permuation
steps are executed. After the whole message has been absorbed by the sponge,
it is squeezed out with the output bitrate. After each squeeze, the permutations
are applied, too.

Table 2. Overview of the PHOTON versions

Instance Input Output Hash
Rate Rate Size

PHOTON-80/20/16 16 20 80
PHOTON-128/16/16 16 16 128
PHOTON-160/36/36 36 6 160
PHOTON-224/32/32 32 32 224
PHOTON-256/32/32 32 32 256

4.3 Attacks

There are different attacks on PHOTON, but yet none of them managed to break
PHOTON. One point for the security of PHOTON is the usage of the extended
sponge function. Especially for low bitrates this adds a lot of security because
there are many round in which either clearcode is absorbed by the sponge or the
hash is squeezed of the sponge. In every round the permutation is applied and
therefor a lot of complexity is added.

Differential/linear cryptanalysis The differential cryptanalysis analyses the
effects of changes in the plaintext to the ciphertext. As already mentioned, PHO-
TON’s internal primitives are AES-based and therefore the work done in the past
to break AES can be reused. By adapting the wire-trail strategy, we can easily
obtain a bound for the number of active Sboxes for four rounds. For any non-null
differential path, there will be at least (d+1)2 Sboxes active. Due to the fact that
the differential probability of PRESENT SBoxes4 is 2−2 (for AES it is 2−6), the

best differential path probability on four rounds is maximum 2−2·(d−1)
2

for s = 4
and 2−6·(d−1)

2

for s = 8. In case of PHOTON this does not work due to the fact
that PHOTON does not require any key material in the internal permutations.
Therefore it is not possible to leverage the key by attacking this permutations.

Rebound and super-sbox attacks The original rebound attack [22] has been
introduced recently and is currently the best known method to analyse AES-like

4 The SBoxes used by PHOTON are quite similar to the ones of PRESENT.



permutations, which do not depend on a certain secret. Currently, all versions
of PHOTON are quite safe against this kind of attack. The attacker can only
calculate the results for 8 rounds, more rounds can not be reached even with
more calculation power. The fact that in PHOTON no key is involved in the
internal permutations, impairs that there can not be any improvement of the
attack using a certain weakness of the secret key.

Cube testers and algebraic attacks Cube tester attacks have already been
applied to other hash algorithms like Trivium and MD6 [2]. This approach was
applied by Guo et al to PHOTON and was only able to recover 3 rounds of the
algorithm. In PHOTON there are two types of Sboxes being used, the ones of
AES and the ones of PRESENT. In case of P144, which is used in PHOTON-
128/16/16, around 9000 equations in around 3500 variables are need to be solved.
Compared that to AES, where 6400 equations in around 2500 variables need to
be solved, it is assumed that PHOTON is quite save against this kind of attack5.

Other cryptanalysis Recently the slide attack normally being used to attack
block cipher has been applied to attack sponge-like hash functions. This attack
tries to exploit the degree of self-similarity of a permutation. Due to the Add-
Constants operation (compare 4.2), all permutations are made different. Because
of that, it is impossible to perform the slide attack.

5 Quark

5.1 General information

One of the recently introduced lightweight hash function is Quark [3]. Instead
of a standard algorithm’s lighter version such as reduced Keccak [20], Quark is
a new scheme that uses components of the stream cipher Grain belonging to
the eStream Project [5] and the block cipher KATAN [17] for its core algorithm.
The developers of Quark wanted the whole design to be lightweight: the secu-
rity level, the construction and the core algorithm. This means that the security
level does not reach a value that would be sufficient for standard applications.
In this use case, the lower security level is sufficient, because only the aggre-
gated information of all sensor nodes (or something similar) is important and
should be protected. An attacker would have to decrypt all the information of
all nodes to get to a valuable result. Due to the mass of information to attack,
a lightweight cipher can prevent the decryption of all devices. The construction
and core algorithm are conformist to the hardware of chips. In summary, Aumas-
son et al. wanted to create a hash function that fulfils the security and hardware
requirements of RFID applications as example for an IoT device. An exception
is the new C-Quark [4] that offers a higher security level for non-lightweight
applications with the requirement of less gates that are used by the algorithm.

5 Remember that the value of the information protected by PHOTON is in general
much smaller than the value protected by AES.



5.2 Design and implementation

The central component in the design of a hash function is the construction
method. For Quark, sponge construction was preferred to the classical Merkle
Damgard construction that is explained in section 3.1. The general construction
scheme is introduced in section 3.2.

Sponge construction in Quark The construction scheme in Quark is the
same as in figure 1. The permutations of sponge consist in Quark of shift regis-
ters and boolean functions like proposed in Grain and KATAN [17]:

Feedback shift registers: Shift registers are chained flip-flops. They are known
as building block for stream ciphers. Feedback shift registers have additional
XOR registers for the feedback function. They can be implemented in hardware,
for example with field programmable gate arrays, or software.
A Quark permutation consists of two non-linear feedback shift registers (NFSR
or NLFSR) and one linear feedback shift register (LFSR). The one linear register
was introduced in KATAN for replacing a simple digital counter [17]. A LFSR is
a shift register with n flip flops. Because of its linearity, a pseudo random number
generator consisting only of LFSRs is predictable. The non-linear feedback shift
registers prevent the cipher from being attacked.

Boolean Functions: The permutation p not only consists of shift registers but
also of the boolean functions f, g and h. They are combined with XORs to the
shift registers. The properties of the functions are: non-linearity, resilience, alge-
braic degree and density. An alternative would have been S-boxes like in AES.

In general, the construction has three phases: the initialization phase where
the m is changed so that it is a multiple of r, the absorbing phase where the
permutations are applied with the XORed part of the message m and the squeez-
ing phase where the output z is produced. The second and the third phase are
modelled in Fig. 5.2. In summary, for the output the state of Quark is updated
4b times.

Instances of Quark Quark has three standard instances: U-Quark, D-Quark
and S-Quark. Per instance, there are differences in the parameters and boolean
functions. In Table 3, the values of the parameters to the sponge construction
are stated for the different instances. The values are given in bits.

The last instance that was introduced is C-Quark. It is also called heavy
Quark [4]. C-Quark is used for multimedia systems-on-chip. These systems have
more ressources than RFID applications for example and therefore can reach a
higher security level.

The general phases of C-Quark are the same, but the sponge construction is
not used in its pure form. It is adapted for an authenticated encryption scheme
with associated data (AEAD). The first cipher that introduced AEAD is Spritz



Fig. 3. Sponge construction in Quark, adapted from Fig. 1 and 2 of [3]

Table 3. Overview of the instances of Quark

Instance Rate Capacity Width Rounds Digest

Quark r c b=r+c 4b n

U-Quark 8 128 136 544 136
D-Quark 16 160 176 704 176
S-Quark 32 224 256 1024 256

C-Quark 64 320 384 1536 384

[24]. AEAD is a duplex construction [10]. The duplex construction has the same
rate as the sponge construction. This means that the input blocks m and the
output blocks z in Fig. 5.2 are called by the authenticated encryption and sponge
construction in parallel. With this sort of a AEAD that is named by the Au-
masson et al. [4] as C-QuarkWrap it is possible to implement a hash function.
The implementation only has 2b rounds instead of the 4b rounds in the other
instances. The functions differ and the shift registers consist of 16 bits instead
of 10 bits.

Implementation in hardware The Quark instances are optimized for hard-
ware. There are three characteristics that support the lightweight hashing:

1. Feed forward values that would normally acquire a lot of memory are missing.
2. Shift registers that are easily implemented in hardware.



3. Space or time implementation trade-offs can be made.

Quark can be implemented in hardware two ways: as serial or parallel archi-
tecture. The serial architecture contains one permutation module and the three
functions with the shift once per cycle in a most compact design. The parallel
architecture makes it possible to have more permutation modules that can in-
crease the number of rounds computed per cycle.
Aumasson et al. [3] used for the performance analysis of the Quark instances a
generic way. They simulated a hardware implementation to measure the power
and ground distribution. With a frequency of 100kHz, two consecutive messages
with a length of 512b were processed with 2,5 µW. The peak volume was never
too high for restrained systems (27% of the mean value). For the statistical power
analysis, generated Value Change Dumps (VCD) were used. The number of gate
equivalents (GE) can be found in Table 4. They depend on the Quark instance
and influence the energy consumption and the evaluation speed. The different
security levels that Quark can reach also depend on the instance and will be
explained in the next section.

Table 4. Overview of Quark’s properties

U-Quark D-Quark S-Quark

Energy consumption (mean) [µW ] 2,44/4,07 3,1/4,76 4,35/8,39
Gate equivalents [GE] 1379/2392 1702/2819 2296/4640
Implementation preference HW HW HW

5.3 Attacks and security

Table 5. Security overview of the standard instances introduced by [3] and the ex-
tended version C-Quark [4].

Instance c Collision 2nd preimage Preimage
resistance resistance resistance

Quark c 2c/2 2c/2 2c

U-Quark 128 264 264 2128

D-Quark 160 280 280 2160

S-Quark 224 2112 2112 2224

C-Quark 320 2160 2160 2320

Aumasson et al. [3] report the difference of the hash function’s digest to the
security level. The capacity c stands for the security level in the construction.
In Table 5 the security levels are listed. But these levels do not only show how
secure an algorithm is. Exact security analyses are necessary. For an overview,



we explain some attacks in this section. But this list only contains examples and
is not exhaustive.

Differentiating attacks Bertoni et al. [9] proved the sponge construction in-
differentiable from a random oracle. The concrete bound is the capacity c. The
(multi)collision resistance, (2nd) pre-image resistance, resistance against long-
message and herding attacks requires only the usage of random transformation
or permutation. These attacks are directed against the properties of the con-
struction that is called hermetic sponge strategy by Aumasson et al. [3].
They also applied two sorts of differential attacks on Quark: the simple trun-
cated differential attacks and conditional differential attacks. The results show
that the methods are unlikely to be successful in the full 4b-round permutation
of Quark.

Cube attacks and testers The cryptanalysis technique of cube attacks and
testers is explained in general in section 1.3. It is also tested on several ciphers
and hash functions:

1. The stream cipher Trivium [16] of the eStream project was broken by a cube
attack. The complete key of 673 initialization rounds was extracted in 219

bit operations.
2. Cube testers were applied to Grain-128.
3. Aumasson et al. [3] tested these two methods against Quark and found a

“comfortable security margin”, but a concrete comparison of the algorithms
in a security analysis is missing.

Slide resynchronisation and side channel attacks Slide resynchronisation
attacks were applied on block ciphers like Grain [21]. The same method for
hash functions is called slide distinguisher by Aumasson et al. [3]. This attack is
avoided because each round is dependent on a bit counting from a fixed value.
Thus, it is impossible to obtain two valid states.
The known algorithm of Quark is not protected against side channel attacks.
Protection by hiding and masking would increase the number of gates by three
times6.

6 Comparison

6.1 Design

The design of PHOTON and Quark is quite similar: they are both implemented
with the sponge construction scheme. Quark’s permutations are boolean func-
tions and shift registers influenced by KATAN and Grain. PHOTON implements
the SBoxes of the AES-cipher. Quark is only optimized for hardware, whereas
PHOTON can be applied to hardware and software equally.

6 See section 5.5 of Aumasson et al. [3].



6.2 Security and efficiency

Balasch et al. [7] compared several lightweight hashes in their paper. A part of
this comparison can be found in Tables 6 and 7. It is obvious that the com-
pared instances of Quark and PHOTON in Table 6, namely S-Quark compared
to PHOTON-256/32/32 and D-Quark to PHOTON-160/36/36, with a similar
security bound require almost the same size of state RAM. The other two hash
functions SPONGENT and reduced Keccak have increased values. PHOTON
needs twice the stack than the other implemented functions. The code size of

Table 6. Memory consumption [7]

Hash-Function digest size code size RAM [bytes]
[bits] [bytes] data state stack

S-Quark 256 1106 4 60 5
PHOTON-256/32/32 256 1244 4 68 10
SPONGENT-256/256/128 256 364 16 96 5
Keccak (r=144, c=256) 256 608 18 92 4

D-Quark 160 974 2 42 5
PHOTON-160/36/36 160 764 29 39 11
SPONGENT-160/160/80 160 598 10 60 6
Keccak (r=40, c=160) 160 752 5 45 3

S-Quark and PHOTON-256/32/32 is much higher, but the memory consump-
tion for data only a fourth or less than for SPONGENT-256/256/128 and Kec-
cak (r=144, c=256). In Table 7, you see that the cycle count of PHOTON-
256/32/32 is much more lower than S-Quark’s. The difference between D-Quark
and PHOTON-160/36/36 is relative small. Keccak is the winner in this topic
and SPONGENT needs even more cycles than Quark.

Table 7. Performance Evaluation [7]

Hash-Function digest code cycle count (message length)
size size

[bits] [bytes] (8-byte) (50-byte) (100-byte) (500-byte)

S-Quark 256 1106 708 783 1 417 611 2 339 023 9 427023
PHOTON-256/32/32 256 1244 254 871 486 629 787 896 3 105 396
SPONGENT-256/256/128 256 364 1 542 923 3 856 916 6 170 900 25 454 100
Keccak (r=144, c=256) 256 608 90 824 181 466 37 221 1 313 291

D-Quark 160 974 631 871 1 516 685 2 570 035 10 996 835
PHOTON-160/36/36 160 764 620 921 1 655 364 2 793 265 11 999 914
SPONGENT-160/160/80 160 598 795 294 2 783 241 4 771 186 20 674 746
Keccak (r=40, c=160) 160 752 58 063 162 347 278 269 1 205 627



Guo et al. [19] published their research in 2011 concerning technology de-
pendence of lightweight hash functions. Their work shows that within imple-
mentation comparison, the instances of PHOTON and Quark clearly have the
best results for latency7 and area8 with increasing security level. In Table 1 and
Table 4, the mean energy consumption for two implementations with different
numbers of gates is compared. PHOTON requires a lesser number of gates and
therefore has a lesser mean energy consumption.
Altogether, the two functions offer good security bounds while being very ef-
ficient. For a memory constrained scenario, Quark and PHOTON should be
preferred to SPONGENT and Keccak with a tendency to use Quark. If the per-
formance of the hash function is important in a use case, PHOTON or Keccak
should be used.

Table 8. Dependence between Security and Area

Hash Collision Preimage Area
Function Bits Bits (GE)

DM-PRESENT-80 32 64 1600
DM-PRESENT-128 32 64 1886
PHOTON-80/20/16 40 64 865

PHOTON-128/16/16 64 112 1122
H-PRESENT-128 64 128 2330
U-Quark 64 128 1379
ARMADILLO2-B 64 128 4353
PHOTON-160/36/36 80 128 1396

D-Quark 80 160 1702
ARMADILLO2-C 80 160 5406
C-PRESENT-192 96 192 4600
PHOTON-224/32/32 112 192 1736
S-Quark 112 224 2296
PHOTON-256/32/32 128 224 2177
ARMADILLO2-E 128 256 8653

6.3 Critic to custom performance comparisons

The given performance analysis refers to the attributes energy consumption,
area (gate equivalents) and latency in cycles. Guo et al. [19] criticize current
cost statements in research papers. They have done two case studies with Quark
and CubeHash and an overall comparison that is partly shown in the table
89. Cryptographic engineers refer in a different way to the general three design

7 Compare with table 7.
8 See table 8.
9 The values are taken from the figure ’Technology dependence of existing lightweight

hash implementations’ of Guo et al. [19]



fields. The relation between algorithm specification and hardware architecture
is known, but the influences of silicon implementation are broadly ignored. Au-
masson et al. [3] only use a simulation to get the implementation measures.
A problem is the dependence of given attributes for efficiency measures to the
silicon implementation. The necessary area and power depend on the hardware.
Only latency is independent. Therefore, the given tables have a lower meaning
because the values are only tendencies. The authors propose a technology de-
pendent cost analysis.
Balasch et al. [7] implemented hash functions on ATMEL AVR ATtiny 8-bit mi-
cro controller. They discovered that RAM use and code sizes are sufficient low
for all algorithms. However, the sponge construction additionally allows a reduc-
tion of RAM use. Lightweight primitives have in general large cycle counts. This
means that the overall efficiency is generally low in this implementation context.
The peak power (energy consumption) is important to restrained systems, but
most of the time not mentioned.

7 Conclusion

The hash-algorithms Quark and PHOTON are quite similar to each other in
terms of performance and security. Neither of them has been broken yet and
they both offer sufficient security for the data processed by RFID chips for
example. One disadvantage of Quark in comparison to PHOTON is the lack of
optimization for software purposes. However, hardware implementations are in
general more efficient and preferred for the use in the Internet of Things. Quark
as well as PHOTON are much more performant compared to most of the other
hash-functions. They use a quite little amount of gates for their calculation. All
in all, PHOTON and Quark are lightweight hashes that have a balanced trade-off
between security and efficiency.
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