
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Automated API Property Inference Techniques
Martin P. Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and Tristan Ratchford

Abstract—Frameworks and libraries offer reusable and customizable functionality through Application Programming Interfaces
(APIs). Correctly using large and sophisticated APIs can represent a challenge due to hidden assumptions and requirements.
Numerous approaches have been developed to infer properties of APIs, intended to guide their use by developers. With each
approach come new definitions of API properties, new techniques for inferring these properties, and new ways to assess their
correctness and usefulness. This paper provides a comprehensive survey of over a decade of research on automated property
inference for APIs. Our survey provides a synthesis of this complex technical field along different dimensions of analysis:
properties inferred, mining techniques, and empirical results. In particular, we derive a classification and organization of over
60 techniques into five different categories based on the type of API property inferred: unordered usage patterns, sequential
usage patterns, behavioral specifications, migration mappings, and general information.

Index Terms—API Property, Programming Rules, Specifications, Protocols, Interface, Data Mining, Pattern Mining, API
Evolution, API Usage Pattern.

�

1 INTRODUCTION

Large-scale software reuse is often achieved through
the use of frameworks and libraries, whose function-
ality is exported through Application Programming
Interfaces (APIs). Although using an API can be as
simple as calling a function, in practice it is often
much more difficult; The flexibility offered by large
APIs translates into sophisticated interface structures
that must be accessed by combining interface ele-
ments into usage patterns, and taking into account con-
straints and specialized knowledge about the behav-
ior of the API [1]. In brief, correctly using large and
sophisticated APIs can represent a challenge due to
hidden assumptions and requirements. To compound
the problem, knowledge necessary to properly use an
API may not be completely or clearly documented.

In the last decade, numerous techniques have been
developed by the research community to automat-
ically infer undocumented properties of APIs. For
example, techniques have been developed to infer
common function call sequences (and detect incor-
rect sequences), or to identify valid migration paths
between different versions of an API. The general
goal of these approaches is to discover useful, but
latent, information that can help developers use APIs
effectively and correctly. Despite this unifying goal,
most approaches have been developed in relative
isolation, and differ in the exact nature of properties

• M.P. Robillard, D. Kawrykow, and T. Ratchford are with the School of
Computer Science, McGill University, Montréal, QC, Canada.
E-mail: see http://www.cs.mcgill.ca/∼martin

• E. Bodden is with the Secure Software Engineering Group, Technische
Universität Darmstadt, Darmstadt, Germany.

• M. Mezini is with the Software Technology Group, Technische Uni-
versität Darmstadt, Darmstadt, Germany.

inferred, the input data required, and the underlying
mining technology used.

To consolidate this growing field, this paper surveys
over 60 techniques developed in ten years of research
and development on API analysis techniques. Our
survey offers a synthesis of API property inference
techniques in the form of a set of dimensions by
which one can compare and understand the various
techniques. This conceptual framework enables us to
make original observations than can only be derived
from an in-depth comparison of groups of approaches
along different dimensions.

Scope of the Survey

We surveyed techniques to support the automated
inference of API properties. We define an API to be
the interface to a reusable software entity used by multiple
clients outside the developing organization, and that can
be distributed separately from environment code. Over the
years, a large number of research projects have tar-
geted the derivation of knowledge from programs. We
restrict ourselves to techniques that focus on inferring
properties for the public interfaces of components.
Hence, we exclude from consideration work that re-
ports results at the level of private implementation
structures (such as errors in the use of program oper-
ators [2] or invariants on local variables [3]).

By automated analyses, we consider any analysis
that derives, without significant manual intervention,
general properties of the API that can influence subse-
quent software development of the API’s clients. As
such, we exclude work on API component searching
and browsing techniques (which are context-specific),
code-example retrieval techniques [4], [5] (which are
also context-specific), design recovery (which is of
interest to API developers, not users), and work on

Digital Object Indentifier 10.1109/TSE.2012.63 0098-5589/12/$31.00 © 2012 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

software metrics (which, although applicable to APIs,
is not specific to reusable components).

Finally, since one of the goals of our survey is
to synthesize existing knowledge about the practical
application of API inference techniques, we restrict
our coverage to work that describes implemented
techniques that have been applied to existing APIs.
Hence, work on the theoretical foundations of some
of the analyses presented (e.g., theoretical work on
invariant detection [6]) falls outside the scope of the
survey.

We catalogued the techniques described in this
survey by conducting a methodical review of all
papers published between the years 2000 and 2010
in an initial list of 12 publication venues, which led
to the eventual identification of over 60 techniques
presented in over 20 different venues. The details of
the survey protocol are reported in the Appendix.

2 DIMENSIONS OF ANALYSIS

The most critical distinction between the works sur-
veyed concerns the nature of the property inferred.
By property, we mean any objectively verifiable fact
about an API or its use in practice. We found that
the data structure forming the output of proposed
property inference techniques was usually not defined
formally, and was often directly tied to the infer-
ence approach. The lack of standardized formalism
for describing API properties creates important chal-
lenges when comparing approaches. We mitigate this
problem by proposing a classification for properties,
following a model inspired from Dwyer et al. [7].

General Categorization Framework

First, the inference can be of unordered API usage
patterns that describe which API elements ought to
be used together without considering the order of
usage. The largest number of approaches, however,
take order into account and provides more detailed
knowledge about the correct use of an API in the form
of sequential usage patterns. Other approaches produce
behavioral specifications that attempt to describe the
behavior of the API under specific conditions and,
in particular, conditions that lead to erroneous state.
The main distinction between the last two categories
concerns whether an approach focuses on the pro-
gramming pattern (sequential usage patterns) or the
resultant state of the program (behavioral specifica-
tion). Yet other approaches infer various types of mi-
gration mappings between API elements (for example,
equivalent API elements in different versions of an
API). Finally, a number of approaches infer general
information that consists of more idiosyncratic prop-
erties of the API. Because of the importance of this
dimension, we organize our synthesis along the line
of properties inferred.

Additional Terminology

We observe a lack of uniformity in terminology and
definitions for the properties inferred by various ap-
proaches. Properties inferred are referred to as, in
turn, properties, rules, specifications, patterns, proto-
cols, etc. In many cases these terms are adorned with
various adjectives such as call-usage, usage, temporal,
sequential, etc. We observe little consistency in the
use of specific terms to the extent that, for example,
rules, patterns, or specifications can refer to the same
or different concepts.

To provide a consistent use of terminology through-
out the survey, we define the terms pattern, rule,
protocol, and specification as follows.

We consider a pattern to be a common way to use
an API. Patterns are typically observed from the data,
as opposed to being formally specified by a developer.

A rule is a required way to use the API, as asserted
by a developer or analyst. Typically, violating a rule
can lead to faults in software that uses the API. Pat-
terns and rules are related in that rules will naturally
induce patterns. Alternatively, patterns observed by
a tool or developer could be recognized as rules. A
number of publications also refer to the inference
of API usage protocols. We consider that a protocol
represents a set of rules associated with a specific
component or API.

Specification is another commonly-used term in the
literature on API property inference. Often we find
that authors use this term to refer to rules, as defined
above. In contrast, we will use the term specification to
refer to a stronger property than just API usage rules.
In this survey, we will use specification to denote rules
that also encode information about the behavior of a
program when an API is used. For example, while
a rule could state that function open must be called
before read, a specification might state that calling
read without a preceding open causes an exception.
We note that the distinction between a rule and a
specification can be subtle in the case where the
consequence of violating a rule is clear.

Structure of the Survey

We follow a parallel structure within Sections 3–7.
Each section opens with an overview (§1) that pro-
vides a description of the general type of property
inferred. It then discusses different sub-categories
along with the classes of approaches that fall into
those categories. This section is supported by a ta-
ble of all the techniques reviewed, in chronological
order. The nature of the information presented in the
table varies slightly between sections, to best describe
the most important commonalities and variations be-
tween different types of approaches. The tables are
indexed by author-date references, and include the
name of the tool developed (if available). For ease
of reference, all authors or tools mentioned in tables

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

are also highlighted in bold the first time they are
mentioned within a paragraph. For readability, we
only cite a reviewed technique the first time it appears
within a section.

The initial overview is followed by an in-depth
discussion of the mining or analysis techniques used
to infer the respective type of properties (§2). This
subsection does not follow a chronological order, but
instead groups approaches by taking into account
their commonalities in terms of mining algorithms,
which form our second major dimension of anal-
ysis. Subsection 3 summarizes the main empirical
results reported for each group of techniques, our
third main dimension of analysis. In this subsection
we do not systematically report on the evaluation
of each technique. Because different research reports
describe widely different evaluation styles and levels
of thoroughness, we instead identify the results that
can inform the selection, application, or advancement
of property inference techniques.

Within each subsection, we discuss each approach
along a number of minor dimensions. First, different
techniques also vary in their stated end goal. A num-
ber of techniques were developed to provide general
help or additional documentation to developers trying
to understand an API. In other cases, the properties
inferred were intended to be directly provided as
input to checkers (static or dynamic) with the pur-
pose of detecting violations or ensuring conformance
to specifications. Finally, other approaches targeted
specific tasks, such as helping developers migrate
client code to a new version of an API, or improving
the API’s documentation. We can also distinguish
techniques based on the type of input data they
require, or even specific attributes of the input data
(such as the definition of a code fragment, or context,
see Section 3). When relevant, the main table in each
section also includes a classification of the approaches
along these minor dimensions.

3 UNORDERED USAGE PATTERNS

A basic type of property that can be expressed about
an API is that of an unordered usage pattern. Conceptu-
ally, usage patterns describe typical or common ways
to use an API (i.e., to access its elements).

3.1 Overview
Unordered usage patterns describe references to a set
of API elements (classes, functions, etc.) observed to
co-occur with a certain frequency within a popula-
tion of usage contexts (a lexically-defined snippet of
client code, such as a function). For this reason most
approaches that infer unordered usage patterns use
a form of frequent itemset mining (see Section 3.2).
As an example, for an I/O API it may be possible to
detect the usage pattern {open, close}, which indicates
that whenever client code calls an API method open,

it also calls close, and vice versa. Being unordered,
this pattern does not encode any information about
whether open should be called before or after close.

Goal
Table 1 gives an overview of the inference techniques
for unordered usage patterns that we surveyed. A first
important distinction concerns the goal they pursue.
We distinguish between three different goals: Docu-
mentation and understanding of usage patterns, de-
tection of violations to usage patterns (bug detection),
and recommendation of API elements.

Michail was the first to explore the use of associ-
ation rule mining to detect reuse patterns between a
client and its library or framework [8], [9]. Michail’s
idea, implemented in a tool called CodeWeb, was to
help developers understand how to reuse classes in
a framework by indicating relationships such as “if
a class subclasses class C, it should also call methods
of class D”. Michail detects these relations by mining
client code that uses the API of interest. This prelim-
inary work seeded the idea of using association rule
mining of software engineering artifacts, but the ab-
sence of a more specific goal for the approach means
that it also provides few guidelines for applying the
technique to specific tasks. Subsequent techniques all
focus on a more specific goal.

Unordered usage patterns can also be used to detect
bugs. For example, if an approach determines that
API methods open and close should be called within
the same function, then the presence of an unmatched
open method is evidence of a potential bug. Li and
Zhou use association rule mining in PR-Miner, a tool
to automatically detect unordered usage patterns [10].
Once identified, these patterns are considered rules
and used to find violations. The assumption is that
rule violations can uncover bugs. DynaMine [11]
shares the same goal. It infers usage patterns by
mining the change history of an API’s clients. The idea
behind DynaMine is to identify erroneous patterns to
avoid committing them in the future. The properties
inferred by DynaMine are pairwise association rules
for methods inserted in a single source file revision.
Rules are then checked by instrumenting and execut-
ing the client’s source code. A third approach that
focuses on bug detection is the one of Monperrus
et al. [14]. They collect statistics about type-usages. A
type-usage is simply the list of methods called on a
variable of a given type in a given client method.
They then use this information to detect other client
methods that may need to call the missing method.
Their idea is implemented in a tool called DMMC
(Detector of Missing Method Calls).

Along with the emergence of recommender systems
for software engineering [15], techniques have been
proposed to recommend API elements that may be
useful in a programming task. Such recommendations
are typically produced by detecting unordered usage

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

TABLE 1: Works Surveyed: Unordered Usage Patterns

Work Tool Goal Input Context Mining

Michail 1999–2000 [8], [9] CodeWeb Doc. & Understand. Client Code Class Association Rule
Li & Zhou 2005 [10] PR-Miner Bug Detection Client Code Function Association Rule
Livshits & Zimmermann 2005 [11] DynaMine Bug Detection Change History File Association Rule
Bruch et al. 2006 [12] FrUit Recommendations Client Code Class Association Rule
Bruch et al. 2009 [13] ICCS Recommendations Client Code Variable Association Rule/Similarity
Monperrus et al. 2010 [14] DMMC Bug Detection Client Code Variable Statistical

patterns. FrUiT (Framework Understanding Tool) [12]
is a tool to help developers learn how to use a frame-
work by providing them with context-sensitive frame-
work reuse rules, mined from existing code exam-
ples. FrUiT’s underlying principles are a refinement
over Michail’s ideas with additional engineering en-
abling the tool to offer specific recommendations to
a developer involved in a change task directly from
within the IDE. For example, if a user instantiates an
IWizardPage, FrUiT would recommend making a
call to elements like addPage(). Bruch et al. present
an intelligent code completion system (ICCS) [13] to
rank the methods proposed by an auto-completion
system on the basis of programming patterns syn-
thesized from code examples. The key idea of the
work is, given a client method in which a number
of API methods have been called on a variable, to
find other client methods where similar methods have
been called on a variable of the same type, and to
recommend method calls missing within the query
context, in order of popularity.

Input
Inferring unordered usage patterns works by analyz-
ing client source code. For example, to infer usage
patterns for the Java concurrency API, an approach
would look at a large corpus of code snippets that
use this API. A corpus can have different origins, but
typically consists of open-source projects. For this pur-
pose, so-called self-hosted projects (open-source projects
that use their own public APIs) are particularly useful
because the code examples are segments of produc-
tion code generally from the same organization that
produced the APIs. For example, Bruch et al. (2006
and 2009) and Monperrus et al. use the Eclipse
Platform as a self-hosted corpus. DynaMine is the
only different approach. Instead of relying on a corpus
of client source code, it requires the change history of
the client code. This history is composed of a stream
of change sets stored in a revision control system. Dy-
naMine translates the usage pattern mining problem
into an itemset mining problem by representing a set
of methods committed together into a single file as an
itemset.

Context
Unordered usage patterns involve a containment re-
lation. If we want to declare that methods open and
close always occur together, we must specify the

context in which they co-occur. The notion of context
maps directly to that of an itemset for the purpose
of data mining. For example, if the context for an
approach is the function, an itemset consists of all
the references to API elements within client functions.
Hence, if a client program consists of two functions
that call API functions a and b, and b and c, respec-
tively, this program would constitute a corpus with
two itemsets, {a,b} and {b,c}.

We distinguish four different types of contexts,
in increasing order of granularity: file, class, func-
tion, and variable. The class context aggregates all
references to API elements within any member of
the class (and similarly for the file). Items mined
by CodeWeb are aggregated at the class level. For
example, if any function or method defined in a class
A calls a function f , the class as a whole is considered
to call the function. Bruch et al. also mine class
contexts in FrUiT. This level of granularity is well-
adapted to their purpose (framework documentation
and recommendations for framework extensions, re-
spectively), but the coarse granularity also means that
the approach is noisy. Section 3.2 discusses this aspect
in more detail. To deal with noise and to provide
better explanations for mined patterns, approaches
that work at the class level further annotate elements
in itemsets with information indicating how the ele-
ment is meant to be used by clients of the API (e.g.,
extending a class vs. calling one of its methods). With
DynaMine, Zimmermann and Livshits mine changes
at the file level because they only consider files that
were actually changed in a given client within some
time window. Mining at a finer granularity would
likely result in very few patterns.

The function context aggregates all references
within a function. For example, PR-Miner parses
functions in C source code to store, as items, iden-
tifiers representing functions called, types used, and
global variables accessed.

The variable context aggregates all methods called
on an object-type variable within a client method.
For example, if client method mc declares a variable
buffer of type Buffer, an itemset will consist of all
the methods of Buffer called on buffer within mc.
ICCS and DMMC are two recent approaches working
on object-oriented source code that produce itemsets
for variable contexts.

Context granularity has a critical impact on the na-
ture of the data set available for mining. Mining broad

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

contexts (class or file) generates fewer but larger items
sets. In contrast, mining narrow contexts (function or
variable) generates more, but smaller, itemsets. The
advantage offered by variable-level contexts is that
this approach curtails the amount of spurious results
(statistically-inferred patterns that do not represent a
meaningful association). The tradeoff is that the ap-
proach is unable to detect usage patterns that involve
collaboration between objects of different types.

3.2 Mining Techniques
All unordered pattern mining approaches follow the
same general strategy:

1) Mine a corpus of software engineering artifacts
to create a data set that consists of itemsets,
where an itemset represents API elements used
within a usage context.

2) Apply a mining algorithm to discover frequent
itemsets and (in most cases) generate association
rules from these frequent itemsets.

3) Apply filtering heuristics to improve the quality
of the results.

The previous section described how the different
approaches mapped information contained in soft-
ware artifacts to itemsets. We now focus on the pattern
mining techniques employed on these itemsets and on
the heuristics used to improve the results.

Algorithms
All approaches described in this section use associa-
tion rule mining except the one of Monperrus et al.
Association rule mining (or ARM) is a data mining
technique that computes frequent subsets in a data
set and attempts to derive rules of the form A → C,
where A is the antecedent and C the consequent. Such
a rule stipulates that if a transaction (an individual
itemset in a data set) contains the antecedent, it is
likely to also contain the consequent. The standard
measures of rule quality are the support and confi-
dence. The support is the number of transactions in
the data set that contain A∪C. The confidence is the
conditional probability P (C ⊂ T | A ⊂ T), where T is
a transaction.

Most approaches use pre-existing ARM algorithms
to infer patterns. Michail (1999) does not specify
the mining algorithm or package used for his initial
exploration, so we can assume that a simple fre-
quent itemset mining algorithm is used. Given his
restriction to rules with only one antecedent and one
consequent, the algorithm is reduced to mining co-
occuring pairs of elements with a given support and
confidence. In his latter attempt (2000) to infer gener-
alized rules (where type subsumption is taken into
account), Michail references a specific data mining
algorithm [16]. Both DynaMine and ICCS integrate
the Apriori algorithm [17]. For FrUiT, Bruch et al., use
the Opus algorithm [18], selected for its low memory

requirements. PR-Miner uses the FPclose frequent
itemset mining algorithm [19], whose chief character-
istic is to mine only closed frequent itemsets, i.e., where
no sub-itemsets that are subsumed by larger itemsets
with the same support. The authors then use a novel
algorithm called ClosedRules to efficiently generate
closed association rules from the frequent itemsets
mined by FPclose.

For generating recommendations for code comple-
tion, Bruch et al. use two additional mining al-
gorithms in addition to ARM. The first is context-
independent and always reports the most frequent
methods called on a given type in their corpus. This
trivial mining algorithm is used as a baseline. Bruch
et al. further experiment with association rule mining,
and also develop a new mining algorithm inspired
from the idea of k-nearest neighbor (kNN) classifi-
cation. The basic idea of their new algorithm is to
find the code snippets most similar to the context for
which recommendations are desired, and to generate
recommendations based on the itemsets found in
these snippets.

Finally, Monperrus et al. do not use any standard
data mining algorithm as part of their approach.
Rather, for a given variable x of type T , they generate
the entire collection of usages of type T in a given
code corpus. From this collection, the authors com-
pute various metrics of similarity and dissimilarity
between a type usage and the rest of the collection.
The statistical approach used by Monperrus et al. is
reminiscent of a bug detection approach originally
proposed by Engler et al. in 2001 [2]. The approach of
Engler et al. embodies many of the ideas also found
in API property inference techniques, but falls outside
the scope of the survey as it targets the detection of
errors in source code, with an emphasis on the correct
use of variables (as exemplified by the analysis of for
null checks, or locking variables for concurrent use).
However, because of its seminal nature, we briefly
describe the technique here and refer to it in the
following sections.

In their work on bug detection, Engler et al. analyze
the use of various program elements (variables, func-
tions, etc.) and automatically discover programming
rules that are instances of a pre-defined set of rule
templates. Examples of rule templates include “do not
reference null pointer <p>” and “<a> must be paired
with ” [2], where <p>, <a>, and are slots
that can be filled by certain types of program elements
(a pointer, and two functions, resp.). The core of
Engler’s approach consists of checking all instances
of a rule and, in cases where violations are found, to
use a statistically-derived threshold to decide whether
the violations invalidate the rule or indicate a bug.

Rule Quality
The results of association rule mining are strongly in-
fluenced by the two rule quality thresholds: minimum

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

TABLE 2: ARM Rule Quality Thresholds

Work Tool Sup. Conf.

Michail 1999 [8] CodeWeb 3 0.25
Michail 2000 [9] CodeWeb 15 0.10
Li & Zhou 2005 [10] PR-Miner 15 0.90
Livshits & Zimmermann 2005 [11] DynaMine Floating
Bruch et al. 2006 [12] FrUit 10 0.50
Bruch et al. 2009 [13] ICCS 5 0.70

support and confidence. Table 2 summarizes the min-
imum support and confidence values selected. These
numbers can only be roughly compared because their
impact on the results will also be determined by
the nature of the data set and the filtering rules
in place. However, even at a superficial level they
indicate different design philosophies for detecting
usage patterns. Michail’s thresholds are very low,
indicating a desire to find as many rules as possible.
In contrast, PR-Miner works with strict thresholds, a
sensible choice given the application to bug detection.
For DynaMine the authors do not use minimum
thresholds, but report patterns ranked by decreasing
confidence.

Filtering Heuristics

All ARM-based approaches report numerous spuri-
ous rules. Spurious rules represent co-occurrences of
references to API elements that are found in the data
but that do not correspond to sensible or useful usage
patterns. The standard strategy to reduce the noise
in detected usage patterns is to hand-craft filtering
heuristics based on knowledge about the approach or
the domain.

Michail, Livshits & Zimmermann, and Bruch et
al. (2006) employ filtering heuristics to improve the
results. For example, Michail removes patterns stat-
ing, for example, that a class that calls a library
function on type A must also instantiate this type. For
DynaMine, Livshits and Zimmermann introduce a
pattern filtering phase to “greatly reduce the running
time of the mining algorithm and significantly reduce
the amount of noise it produces” [11, p. 299]. The
filters are based on domain knowledge of software
repository mining. Examples of filters include ignor-
ing the first addition of a file to a revision control
system as part of a transaction. Finally, with FrUiT,
Bruch et al. also apply a number of filtering heuristics.
Some of their heuristics are general (such as their
removal of “overfitting” rules that add preconditions
with little or no gain in confidence), and some are
domain-specific, including the same as the example
given for Michail’s work, where obvious rules are
removed.

PR-Miner uses a slightly different approach and
prunes spurious results only after violations of a rule
(or pattern) are found. When a violation is found, PR-
Miner relaxes the constraint that API elements must

be used in the same client function, and looks for
API elements to complete the rule also in callees. For
instance, this technique would avoid falsely violating
the rule {open,close} within a function f if it finds
a call to open in f and the matching call to close in
a function called by f.

3.3 Empirical Findings

Techniques to infer unordered usage patterns were
some of the earliest attempts at API property infer-
ence, and their assessments were mostly exploratory,
consisting in the application of the technique to one
or a few selected systems, and a discussion of the
results [8], [9], [11]. Later works include evaluations
using cross-validation techniques [13], [14]. All tech-
niques described in this section were evaluated on a
small number of systems, so there exist practically no
results generalizable between target systems.

In his early work Michail applies his approach to
two C++ frameworks (ET++ and KDE). Although his
reliance on case studies to informally assess the ap-
proach limits the generalizability of the results, his ob-
servations capture important lessons. First, Michail’s
interests target the discovery of rules, and as such he
applies his approach with very low support and confi-
dence, observing that a filtering stage is necessary for
the approach to be feasible. In his case study of KDE,
Michail also observes that pattern violations (“detrac-
tors”) represent uncharacteristic reuse behavior that
may be worthwhile to detect, a goal pursued by most
following approaches.

Li and Zhou evaluate PR-Miner by applying it to
three C/C++ systems, reporting on the number and
size of rules discovered as a function of the support
threshold. More importantly, they also study the viola-
tions of patterns reported by the approach, and in this
way demonstrate the potential of association rules for
detecting bugs. The authors were able to identify 16
bugs in Linux, 6 in PostgreSQL, and 1 in the Apache
HTTP server by looking at the top 60 violations
detected. PR-miner is also the first (and one of the
few) approaches to consider rules with more than one
antecedent, and as such demonstrates the feasibility of
ARM to discover general usage patterns by removing
an important constraint. However, Li and Zhou also
note that a large number of the association rules are
false positives, even with pruning.

Livshits and Zimmermann evaluate DynaMine by
applying it to the change history of two Java systems.
They focus on the number and nature of patterns
detected over the entire change history of both sys-
tems. Although DynaMine manages to find a number
of usage patterns, this number remains modest. The
authors find only 56 patterns in the change history of
Eclipse and jEdit using their chosen confidence and
support thresholds, only 21 of which are observed to
occur at run-time. A casual observation of the patterns

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

reported also shows that the majority involves meth-
ods exhibiting a “natural duality”, such as begin-end,
suspend-resume, etc. The lesson from this evaluation
is that considering change transactions as itemsets
may yield too little data to find robust patterns.

Bruch’s et al.’s (2009) evaluation of their intelli-
gent code completion system involves a systematic
assessment of four different recommendation algo-
rithms for auto-completion using a cross-validation
design on data for clients of the SWT toolkit. Specif-
ically, the evaluation compares the recall and preci-
sion of recommendations produced with the default
Eclipse algorithm (alphabetical), the frequency algo-
rithm (most popular), association rule mining, and
their own kNN-inspired algorithm. The evaluation
shows that for their data set, their algorithm offers
the best overall performance (precision/recall tradeoff
calculated with F11), but that it only offers a perfor-
mance marginally superior to association rule mining.
However, both the kNN-inspired and association rule
techniques are shown as much superior to either
frequency or alphabetical-based recommendations.

Monperrus et al.’s evaluation of DMMC is also
conducted by applying the techniques to SWT, in this
case to detect missing method calls in SWT clients.
The approach is evaluated with a synthetic bench-
mark by artificially removing missing method calls
in client code snippets and using the approach to
recommend the missing call. The authors tested two
algorithms, one with a coverage, average precision,
and average recall of 0.80, 0.84, and 0.78, and one
with 0.67, 0.98, 0.66. Inspection of the results provides
the additional insight that although the approach can
recommend method calls with excellent performance,
it is much less obvious to know how exactly to use
the recommended method in that scenario: what argu-
ments to pass in, what to do with the return value, etc.
The techniques described in the next section expand
the definition of usage pattern to provide additional
information that can help answer these questions.

4 SEQUENTIAL USAGE PATTERNS

Sequential usage patterns differ from unordered pat-
terns in that they consider the order in which API
operations are invoked. For the sequence of method
calls close → open, an unordered approach would
not be able to detect any problem, while sequential
pattern mining would be able to alert the programmer
that open should precede close.

Most of the property inference approaches dis-
cussed in this paper fall into the category of sequential
pattern mining. This is not surprising: although un-
ordered patterns are useful, their detection is easy to
implement and mostly limited to variants of frequent-
itemset mining. The extension to sequential patterns

1. F1 = 2 · (precision · recall)/(precision + recall)

introduces many new and challenging research prob-
lems, such as how to store abstractions of sequences
efficiently, and how to infer useful patterns given
an observed sequence. As will become evident in
this section, there is a large degree of freedom in
answering those research questions.

4.1 Overview
Table 3 gives an overview of all surveyed sequen-
tial mining techniques in chronological order. For
sequential usage patterns, the notion of context no
longer lends itself to a clean parallel comparison in the
case of sequential pattern mining approaches due to
the variety and complexity of the mining algorithms
employed.

Goal
The motivation for mining sequential API patterns
can be expressed as four different goals: Mining spec-
ifications, detecting bugs, guiding navigation through
the API elements, and documenting the API. These
distinctions represent the perspective of the authors in
describing their technique, but in practice these goals
largely overlap. The most commonly stated goals are
API documentation and bug detection.

Techniques developed for API documentation try to
infer some high-level temporal patterns from program
code, under the assumption that this pattern will have
value as documentation. One of the oldest approaches
in this category is JIST by Alur et al. [24], which infers
finite-state patterns for Java APIs.

Techniques developed for bug detection typically
go one step further: they not only infer patterns,
but also use these patterns for anomaly detection.
As for unordered patterns, sequential patterns that
have high support but nevertheless get violated may
indicate bugs. For example, OCD by Gabel and
Su [60] is an efficient runtime tool for inferring and
checking simple temporal patterns using a sliding-
window technique that considers a limited sequence
of events.

Two tools, Prospector by Mandelin et al. [25]
and PARSEWEB by Thummalapenta and Xie [42]
were developed for the purpose of API navigation.
Given a user-selected API element, the tools suggest
useful ways to navigate the API from that element.
Prospector, for example, shows users how to create an
object of some target type given an object of another
type. Due to the nature of those queries, approaches
in this category rely more on data flow than control
flow. Nevertheless, they are sequential because they
suggest methods to be called in a specific order.

Many other papers describe a sequential pattern
mining technique without mentioning a specific goal.
In accordance with the terminology used in these
papers, we characterize this kind of work simply as
specification-mining techniques.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

TABLE 3: Works Surveyed: Sequential Usage Patterns (in chronological order)

Work Tool Goal Input Mined Patterns Representation

Ammons et al. 2002 [20] – Spec. Mining Traces, Human FSA FSA
Whaley et al. 2002 [21] – Bug Detection Client Code FSA FSA
Yang & Evans 2004 [22], [23] – Bug Detection Traces Multi-pattern Response Patterns
Alur et al. 2005 [24] JIST Documentation API Code FSA FSA
Mandelin et al. 2005 [25] Prospector API Navigation Client Code Special purpose Navigation Path
Salah et al. 2005 [26] Scenariographer Documentation Traces Reg. Expression Reg. Expression
Weimer & Necula 2005 [27] – Bug Detection Client Code Single-pattern Association Rule
Acharya et al. 2006, 2009 [28], [29] – Bug Detection Client Code FSA FSA
Dallmeier et al. 2006 [30] ADABU Documentation Running Cl. Code FSA FSA
Liu et al. 2006 [31], [32] ltRules Bug Finding Client Code, Human Multi-pattern BLAST [33] patterns
Lo & Khoo 2006 [34] SMArTIC Spec. Mining Traces, Human FSA FSA
Yang et al. 2006 [35] Perracotta Bug Detection Traces Multi-pattern Alternating Chains
Acharya et al. 2007 [36] – Documentation Client Code Multi-pattern Partial Order
Kagdi et al. 2007 [37] – Spec. Mining Client Code Single-pattern Association Rule
Quante & Koschke 2007 [38] – Spec. Mining Traces or Cl. Code FSA FSA
Ramanathan et al. 2007 [39], [40] Chronicler Spec. Mining Client Code Precondition Preconditions
Shoham et al. 2007 [41] – Spec. Mining Client Code FSA FSA
Thummalapenta & Xie 2007 [42] PARSEWEB API Navigation Client Code Special purpose Navigation Path
Wasylkowski et al. 2007 [43] JADET Bug Detection Client Code Single-pattern Association Rule
Walkinshaw et al. 2007/2008 [44], [45] StateChum Bug Detection Running Cl. Code FSA FSA
Gabel & Su 2008 [46] Javert Bug Detection Traces Multi-pattern Comb. of (ab∗c)+
Lorenzoli et al. [47] – Spec. Mining Traces FSA FSA with data constr.
Lo et al. 2008 [48] – Bug Detection Traces Multi-pattern Seq. Assoc. Rules
Sankaranarayanan et al. 2008 [49] Documentation Running Cl. Code Multi-pattern Datalog rules
Zhong et al. 2008 [50] Java Rule Finder Documentation API Code Special purpose Program Rule Graph
Gabel & Su 2009 [51] – Bug Detection Traces Single-pattern Instances of (ab∗c)+
Lo et al. 2009 [52] – Spec. Mining Traces Multi-pattern Quantif. Temp. Rules
Nguyen et al. 2009 [53] GrouMiner Documentation Client Code Special purpose Groum
Pradel & Gross 2009 [54], [55] – Bug Detection Traces FSA Probabilistic FSA
Thummalapenta & Xie 2009 [56] CAR-Miner Bug Detection Client Code Single-pattern Seq. Assoc. Rules
Thummalapenta & Xie 2009 [57] Alattin Bug Detection Client Code Single-pattern Association Rule
Wasylkowski & Zeller 2009 [58] Tikanga Bug Detection Client Code Precondition Operational Precond.
Zhong et al. 2009 [59] Doc2Spec Bug Detection Comments Single-pattern Instances of (ab∗c)+
Gabel & Su 2010 [60] OCD Bug Detection Running Cl. Code Single-pattern Instances of (ab)+
Gruska et al. 2010 [61] checkmycode.org Bug Detection Client Code Single-pattern Association Rule

We observe a chronological tendency regarding the
goal of the different approaches. Initially, many se-
quential inference techniques were primarily devel-
oped for the general goal of documentation and pro-
gram understanding. Lately, techniques increasingly
focus on bug finding. We surmise that the appeal of a
more focused research problem may have been paired
with an increased ability to instrument and test-run
programs.

Input
Sequential patterns can be derived from a wide vari-
ety of inputs. We also distinguish inference techniques
by the input they require. The main difference is natu-
rally between dynamic and static approaches. Dynamic
approaches work on data collected from a running
program whereas static approaches work directly on
the artifacts related to the API of interest. Within these
broad categories there also exist important differences.

Dynamic approaches typically read a single exe-
cution trace as input. A tool can read the trace on-
line (while the program is executing) or off-line, by
first recording a trace as the program runs and then
reading the trace after the execution has terminated.
In Table 3, dynamic approaches (on-line or off-line)
are identified as requiring Traces as input. Some tech-
niques are not only on-line, they actually have to
run the source code because they heavily interact
with the running program (i.e., it is not sufficient

to have pre-collected traces). Such approaches are
recorded as requiring Running Client Code. Examples
include OCD and ADABU [30]. We further note that
two dynamic approaches are not fully automatic and
require additional input from a Human expert. This
is the case of the first specification mining approach
by Ammons et al. [20] and of SMArTIC by Lo and
Khoo [34].

Among the static approaches, we distinguish be-
tween the type of artifacts they target. A popular strat-
egy is to analyze source code that uses the API (Client
Code). This source code does not necessarily need to
be executable. Whaley et al. [21], for instance, infer
finite-state specifications through static code analy-
sis, by inferring possible call sequences by analyzing
only the program code. Another strategy, employed
for example by JIST and Java Rule Finder [50], is
to derive rules by analyzing the code of the API
itself. These approaches do not require the code of
client applications that use an API. Finally, techniques
can also use other artifacts besides source code. One
example is Doc2Spec by Zhong et al. [59], which
works on natural-language specifications extracted
from Javadoc comments.

Mined Patterns

We further distinguish sequential mining approaches
by the kind of patterns that they mine (see column

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

“Mined Patterns”). In the table, the column “Repre-
sentation” provides additional information about the
exact representation used.

Single Patterns: A significant number of approaches
mine instances of a single sequential pattern. Such
sequential patterns can consist simply of an ordered
pair of API elements (a, b), indicating that the usage
of element a should occur before b in a program’s
execution. The rule that a call to a particular method
b should typically follow a call to another method a is
frequently written as a ≺ b. This pattern is also known
as the Response pattern [7]. In the remainder of this
paper, we will call such patterns two-letter patterns.
Many approaches fall into this category, for instance
OCD, Alattin [57], and others [27], [43], [59], [61].
Other approaches go beyond two-letter patterns by
aggregating two-letter patterns into larger patterns,
such as in Perracotta [35]. For instance, from a ≺ b
and b ≺ c one may infer that a ≺ b ≺ c. Acharya
et al. construct partial orders from two-letter pat-
terns [36]. Kagdi et al. use sequential pattern mining
to find rules based on the order in which an API is
called within the context of a single method [37]. The
approach can infer, for instance, that if method a()

follows b() in one client method, then that method
should also call c(). Other approaches try to mine
larger patterns directly [51], [59]. One common pat-
tern of this category is the “resource usage pattern”,
which can be denoted by a regular expression (ab∗c)
where a resource is first created (a), then potentially
used many times (b∗) and finally discarded (c). When
discussing API properties we will often denote a se-
quential pattern by its equivalent regular expression.
However, we note that hardly any approach reports
patterns directly as regular expressions—most ap-
proaches report sequential patterns using some other
representation, for instance as a finite-state automa-
ton.

Multiple Patterns: A further class of approaches sup-
ports mining instances of several patterns at once.
Such patterns can be special regular expressions, such
as in Javert [46], or instances of special temporal
patterns such as Initialization, Finalization, Push-Pop
(two methods have to be called an equal number of
times), Strict Alternation, Function Pair and Adjoining
Function, such as in the work of Liu et al. [31], [32].
Interestingly, such patterns can form a partial order,
as some patterns imply others. For instance, Strict
Alternation implies Push-Pop. Yang and Evans propose
an approach that can find a best-matching pattern in
such cases [22], [23]. Sankaranarayanan et al. propose
an approach to infer Datalog rules from execution
traces [49]. Lo et al. present an approach that can mine
rules of arbitrary length [52].

Temporal Formulas: Other approaches are also based
on mining instances of certain patterns but de-

scribe these patterns using temporal formulas. CAR-
Miner [56], for instance, uses Boolean formulas, while
the approach by Lo et al. [48] uses a temporal logic.

Preconditions: The tools Chronicler by Ramanathan
et al. [39], [40] and Tikanga by Wasylkowski and
Zeller [58] mine patterns that must match before an
API element such as a function may be used. Typically
these patterns are sequences of method/function calls.
We refer to these patterns as “operational precondi-
tions”, a term coined by Wasylkowsky and Zeller [58].
It is also possible to infer simpler data-flow patterns
(e.g. that an argument may not be null [39]). Precon-
ditions of this nature can be expressed in CTL [58] or
other ad hoc formal languages [39], [40].

Finite-state Automata and Regular Expressions:
Many techniques mine API specifications by encoding
temporal order as finite-state automata (FSA) [20],
[21], [24], [27], [28], [29], [30], [34], [38], [41], [44],
[45], [46], [47], [51], [54], [55]. Some approaches opt
to label the finite-state automaton with additional
information, for example with predicates inferred
from invoking accessor methods. For instance, the
state obtained after creating an empty Vector may
be labeled with isEmpty() while the successor state
reachable through calling add(..) would be labeled
with ¬isEmpty(). ADABU makes such a distinction.
Pradel and Gross [54] label edges with the probabil-
ities of those edges being taken on the observed exe-
cutions, yielding a so-called probabilistic FSA (PFSA).
As Ammons et al. show, another option is to compute
such a PFSA first but to then convert it into a regular
FSA by removing the probabilities from the edges
while at the same time deleting entirely such edges
that are labeled with a probability below a certain
threshold.

We note that only one of the approaches we sur-
veyed, Scenariographer by Salah et al. [26], reports
patterns in the form of general regular expressions.

Special-Purpose Representations: The tools Prospec-
tor and PARSEWEB seek to support API navigation,
and for this purpose they use specialized represen-
tations. Prospector uses so-called “jungloids”; A jun-
gloid is an expression that allows a user to create
an object of one type given an object of another
type, for example an abstract syntax tree from a file
handle referring to a source-code file. A jungloid is an
ordered usage pattern because it can comprise several
function calls that need to be invoked in the given
order. Graph-based object usage models (Groums)
are another special-purpose property representation,
used in GrouMiner by Nguyen et al. [53]. Groums
associate events in a directed acyclic graph (DAG). In
contrast to finite-state automata, this graph can hold
special nodes to represent control structures, such
as loops and conditionals. Furthermore, edges not
only represent sequencing constraints, but also data

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

◦

◦

◦

◦
a b

b c

(a) Labeled edges

◦
b

◦
a

◦
c

(b) Labeled states

Fig. 1: Different automaton models

dependencies. Zhong et al.’s tool Java Rule Finder
(JRF) encodes temporal rules in a so-called Program
Rule Graph (PRG).

Other Considerations
A number of additional aspects must be considered
when defining and interpreting sequential API prop-
erties.

Edges vs. States: Many techniques mine API spec-
ifications by encoding temporal order as finite-state
automata (FSA). When doing so, one has the choice
of representing events such as method calls as either
states or edges. On the one hand, representing events
as edges has the advantage that the language accepted
by the resulting state machine is exactly the language
of allowed event sequences. On the other hand, in-
ference of a minimal finite-state machine with such
a layout is NP-hard [54]. It can therefore make sense
to represent events as states, because inferring such
automata has lower complexity. This representation
has the disadvantage, though, that every event is
only represented by one single state, even if multiple
paths lead to the same event, effectively making the
representation context-insensitive.

Figure 1 shows an example of attempting to infer
sequential patterns over two input sequences “ab” and
“bc”. In Figure 1a, edges are labeled with event names.
The automaton can hence keep both inputs apart.
Sequences such as “ac” are not part of the automaton’s
language. In Figure 1b this is different. Both b events
are identified by the same state. Moreover, according
to the traces, b can occur after a but also before c.
However, the fact that c can only follow b if this b
was not preceded by a gets lost, as both prefixes of b
are merged in this representation.

The example may make it appear that labeled edges
are superior to labeled states. However, the latter
representation can be constructed efficiently. Several
approaches opt for a state-centric representation, e.g.
the work by Pradel and Gross and by Whaley et al.
Nevertheless, it appears more common to represent
events by transitions [20], [24], [27], [28], [29], [30],
[34], [38], [41], [44], [45], [46], [47], [51].

Allowed vs. Forbidden Sequences: Another question
is whether an inferred finite-state machine should

represent the language of allowed event sequences
or rather the language of forbidden sequences. All of
the approaches we surveyed opted for the first choice:
edges in the finite-state machine represent calls that
are allowed. Unfortunately, since all of the presented
approaches are incomplete, one cannot automatically
infer from such a specification that missing edges
denote forbidden events: it may be the case that such
events are allowed but were not observed on the
traces used for learning. This incompleteness causes
the inferred specifications to have a potential for
yielding false positives when being directly applied
to automated bug finding. However, they nevertheless
have a high documentation value.

Multi-Object Properties: Most of the surveyed ap-
proaches infer patterns that represent sequencing con-
straints on a single API element, typically a single
reference type. There are some constraints, however,
that span multiple types in combination. For instance,
one may be interested in inferring that a socket’s
streams should only be used as long as the socket
itself has not been closed. We find that only seven
out of the 33 surveyed sequential mining techniques
can infer such “multi-object properties” [20], [35], [43],
[47], [53], [54], [58]. The reason for this is probably that
single-object approaches are much easier to design
and implement. Static multi-object approaches not
only have to solve the aliasing problem for individual
objects but also need to relate multiple objects with
each other [62], [63]. Dynamic approaches must use
expensive mappings to associate state with multiple
combinations of objects [64].

4.2 Mining Techniques

Mining sequential patterns requires more sophisti-
cated analyses than for unordered patterns. We also
observe a greater variety in the mining techniques
used. The wealth of ideas explored as part of the work
on sequential usage pattern inference escapes any ob-
vious categorization. Nevertheless, we can distinguish
between three general strategies for engineering a
solution: transforming the input data to use a third-
party tool as a black-box; using a transformational
approach involving various combinations of model
transformation, clustering, and filtering algorithms;
and performing pattern-matching against a prede-
fined set of templates. Naturally, a given approach
can combine elements from any of the three strategies.
We classify techniques according to their dominant
strategy.

Techniques Relying on Third-Party Tools

Techniques in this category use off-the-shelf learners
or verification tools in one way or another. Generally,
they also pre-process raw input data before providing
it to learners, and post-process the results.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

Some approaches use frequent-itemset mining, much
like the approaches described in Section 3, but include
temporal information in the definition of the elements
in the itemsets [43], [57], [58], [61]. For example,
Alattin generates association rules about conditions
that must occur before or after a specific API call.
JADET collects sets of API temporal properties ob-
served in client methods, e.g. {hasNext ≺ next, get ≺
set} from object-specific intra-procedural control-flow
graphs and provides those temporal properties to a
frequent-itemset miner.

Other approaches directly mine sequential patterns
by using closed frequent sequential pattern mining [28],
[37], [39], [48], [56]. This mining technique exhibits
a higher computational cost than unordered itemset
mining [65], but has the advantage of retaining useful
information like the frequency of an element in its
context, the order of the elements, or any context
information about the use of the elements. The higher
computational cost is compensated for by the time
saved in examining fewer false positives and covering
more valid cases. Also, more guidance about fixing
detected rule violations is provided, e.g. by giving
information about where to insert a missing call [65].
Most of these approaches [34], [37], [39], [48], [56] use
the BIDE algorithm [66] to find frequently occurring
subsequences of API calls made either on individual
objects or across all API calls within a method, or
to mine FSAs [28]. Ramanathan et al. use both un-
ordered frequent-itemset mining and sequential pat-
tern mining. The former is used to mine data-flow
predicates, the latter to mine control-flow predicates.
Similarly, Acharya et al. (2007) use an off-the-shelf
frequent closed partial-order algorithm to mine a string
database of API method call sequences.

Ammons et al. and Lo et al.’s SMarTic use the
sk-string FSA learner [67]. In Ammons et al.’s work
the sk-strings algorithm operates on “scenarios”—
subsequences of events from execution traces that
are related by data flow. The mined PFSA is post-
processed to remove parts with edges with low like-
lihood of being traversed. Better scalability and ac-
curacy is achieved by Lo et al. (2006) by performing
some filtering and clustering on the input traces and
by applying the learner to each cluster individually.
The resulting PFSAs are subsequently merged.

JIST employs a combination of predicate abstrac-
tion [68], partial information safety games [69], and
the L* learning algorithm [70]. Given an Java class in
Jimple format [71], and a set of abstraction predicates
that compare a class variable to a constant, a class with
only boolean (or enumerated) variables is produced
and the transformed class is rewritten to a symbolic
representation compatible with the input format of
the model checker NuSMV [72]. The JIST synthesizer
implements the L* learning algorithm via CTL model
checking queries on this symbolic representation us-
ing NuSMV. The synthesis is based on a two-player

game where Player 1 tries to find a safe sequence of
method calls and Player 2 tries to find a path through
a called method that raises an error. A safe interface
yields a winning strategy for Player 1.

Sankaranarayanan et al.’s [49] mines API specifica-
tions expressed as Datalog programs using Inductive
Logic Programming (ILP), a relational data mining
technique that seeks to learn Datalog programs given
some relational data, a target concept and background
knowledge about the structure of the target program.

Walkinshaw et al. present a semi-automated ap-
proach to inferring FSAs from dynamic execution
traces that builds on the QSM algorithm [73]. This
algorithm infers a finite-state automaton by succes-
sively merging states. To avoid over-generalization,
the algorithm poses membership queries to the end-
user whenever the resulting machine may otherwise
accept or reject too many sequences. The authors
extend the approach in a follow-up paper [45] to
enable users to restrict the behavior of the inferred
automaton through LTL formulas in order to reduce
the number of user queries. A model-checker is used
to determine intermediate automata that violate an
LTL specifications. The inference engine then uses
counter-examples to refine the automaton accordingly.

Transformational Approaches
A large number of approaches [21], [25], [30], [41],
[42], [52], [53], [54], [55] do not rely on any off-
the-shelf tools, but rather apply a series of custom
transformation, filtering, and clustering techniques on
data extracted by static and/or dynamic analysis.

The static technique by Whaley et al. uses inter-
procedural analysis and constant propagation to find
call sequences to methods that may establish con-
ditions of predicates that guard throw statements.
The underlying assumption is that programmers of
languages with explicit exception handling make use
of defensive programming: A component’s state is
encoded in state variables; state predicates are used
to guard calls to operations and cause exceptions to
be thrown if satisfied. These sequences are considered
illegal and their complement with regard to the set
of methods, the sequencing model of which is being
analyzed, forms a model of accepted transitions.

While only predicates with simple comparisons of
a field with null or constant integers are supported
by Whaley et al., Weimer and Necula’s approach also
considers multiple fields and inlines boolean methods.
Scenariographer follows a different path to mine
sequencing models for API calls. It tries to recognize
patterns among strings of symbols representing API
elements in dynamically recorded method invocation
sequences by using the Levenshtein edit-distance to
compute bounded canonical sequences, which are
subsequently combined and generalized into regular
expressions by detecting the longest common subse-
quence.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

Some approaches [38], [53], [54] use control-flow
analysis to either derive initial specification FSAs,
which are then processed in various ways [38], [53],
or group dynamic trace events [54]. Quante and
Koschke use object process graphs (OPGs)—a pro-
jection of an inter-procedural flow graph specific to
one object, very similar to JADET’s method models—
to represent actual behavior extracted statically or
dynamically from a program. Given OPGs for in-
stances of a component, that component’s protocol is
recovered by performing a set of transformations to
eliminate recursion and to merge OPGs into a DFA,
which is then minimized. The approach optionally
supports additional transformations depending on the
degree of the desired generalization.

Unlike the object usage representations of JADET
and Quante and Koschke, the graph-based object
usage models (Groums) used by GrouMiner captures
the interplay between multiple objects and include
control flow structures. The authors’ own subgraph
matching algorithm (PattExplorer) is based on an
observation similar to that of the Apriori association
rule mining algorithm: the subgraph of a frequent
(sub)graph must also be frequent. Thus PattExplorer
works by building larger candidate patterns from
smaller discovered patterns.

Pradel and Gross group dynamic events by their
caller method into “object collaborations”—sequences
of (o,m) pairs, where o is the receiver and m the
method signature. Collaborations are split into object
roles—unordered sets of methods called on the same
object. Next, techniques are applied to abstract over
irrelevant differences between collaborations, facilitat-
ing their clustering into patterns. Roles are projected
onto the most general type providing their methods;
objects that play the same role are merged into one
artificial object, and collaborations are split, such that
one collaboration only contains methods from the
same package. The resulting collaborations are clus-
tered into patterns whenever their objects have the
same roles, and patterns are filtered out if they have
many objects, or occur rarely in traces and method
bodies. Finally, collaboration patterns are mapped to
PFSA by mapping methods to states and connecting
them by an edge, if they are called consecutively.

Whaley et al. and Dallmeier et al. use static
analysis to distinguish between state-preserving (in-
spectors) and state-modifying (mutators) methods of
a class, but use this information in different ways.
Whaley et al. do the classification individually per
each class field, and the methods are instrumented
to record their type. Training client programs are
then executed with the instrumented methods and
observed sequences of external state-modifying calls
are recorded with FSAs (one per field) as they oc-
cur. State-preserving method calls are not recorded
as nodes in the FSAs, but rather associated with
the states in the corresponding FSA. Dallmeier et

al. instrument mutators to call all inspectors before
and after their execution. As a result, the execution
of the program protocols transitions are of the kind
s1 mutator s2. In a further step, concrete values in
si are mapped to abstract domains, and the abstract
state machines of individual instances of a class are
merged into a state machine for that class. In follow-
up work, Dallmeier et al. even designed a novel tool,
TAUTOKO, that leverages test generation techniques
to cover unobserved program behavior and thereby
extend the inferred models with additional transi-
tions [74].

Shoham et al. use abstract interpretation with a
combined domain for aliasing (the heap abstraction)
and event sequences (history abstraction) to collect
summarized abstract API usage event traces for ob-
jects of a particular type. The history abstraction is
represented as automata. The analysis is parameter-
ized by a heap abstraction (flow-insensitive versus
flow-sensitive) and by a merge operator for the his-
tory abstraction (merge all traces reaching a program
point versus merge only traces that share a common
recent past). Automata clustering and unification are
exploited to reduce noise in the collected traces.

Lorenzoli et al. and Lo. et al. (2009) mine expressive
classes of specifications encoded in extended FSAs.
The GK-tail algorithm [47] produces FSAs annotated
with data constraints (called Extended FSAs, or EF-
SAs). The algorithm first merges traces that only differ
by their data values, abstracting from those values
through predicates (produced by Daikon [3]). Next, it
generates an EFSA by first embedding the input traces
through transitions and states, and then subsequently
merging states that fulfill some equivalence relation.
Lo et al. infer quantified binary temporal rules with
equality constraints (QBEC) by performing a set of
sophisticated custom processing steps on input traces
for inferring temporal properties and combines those
with frequent-itemset mining for the inference of sta-
tistically relevant qualified properties.

Prospector and PARSEWEB both infer
source→destination paths but use different approaches.
Prospector builds a signature graph to find legal
paths. Nodes in this graph are types and edges
represent ways of getting from one type to another,
e.g., via field accesses, method outputs, inheritance
relations, or downcasts. Legal downcasts for the
API are found by mining the API’s client code and
are used to enrich the signature graph with new
edges, resulting in what is called the jungloid graph.
Knowledge about legal downcasts is important, as
otherwise too many call chains that exist in practice
will be missed. PARSEWEB uses examples fetched
from the Google Code search engine to extract DAGs
that record the control flow between statements
that result in a transformation from one object type
to another (method invocation, constructor, casts).
Signatures of these methods are used to annotate

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

the DAG nodes as sources or targets. Subsequently,
frequent method invocation sequences (MISs) that
can transform an object of the source type to an
object of the destination type are extracted by
calculating the shortest path from a source node to a
destination node. The MISs are then clustered using
a custom clustering algorithm and are ranked based
on frequency (higher frequency means higher rank)
and length (shorter lengths mean higher rank).

Template-Based Techniques

Template-based techniques discover instances of a
fixed set of pattern templates. The rationale is that
the specifications of interesting properties follow a
few well-defined patterns [7]. Pattern matching has
its cost, which requires the size and the alphabet of
the specification patterns to be restricted. Hence, most
approaches target two-letter patterns.

Liu et al. (LtRules) [31], [32] instantiate rule tem-
plates by replacing symbolic function names in tem-
plates with concrete API function names and by feed-
ing the instantiated rules to the BLAST model checker
to filter invalid ones.

To find matching event pairs for the alternate pat-
tern, Perracotta uses a matrix M [n×n], where n is
the number of events in a dynamic trace, and M(i, j)
stores the current state of a state machine that rep-
resents the alternating pattern for the pair of events
(i, j). When an event x is read from the trace, both
the row and column corresponding to index(x) of M
are updated. At the end of the trace, the inferred
properties are those whose corresponding state ma-
chines are in accepting states. This core technique is
complemented with a set of heuristics to cope with
imperfect traces and to increase precision as well as a
chaining technique to combine two-letter alternating
patterns to alternating chains.

Gabel and Su (2009) improve the scalability of
pattern matching approaches to support the mining
of three-letter patterns of the form (ab∗c)+ by em-
ploying Binary Decision Diagram (BDDs). The BDD-
based algorithm is also used in their subsequent work
on Javert, which builds up arbitrary large temporal
specifications by chaining instances of a pre-defined
set of patterns. In their more recent work on on-
line inference, Gabel and Su (2010) use a sliding-
window queue approach over dynamic sequences of
API method calls during the program’s execution to
mine two-letter regular expressions.

Doc2Spec combines specification template instanti-
ation with the Named Entity Recognition (NER) NPL
technique to extract specifications from JavaDoc doc-
umentation. Using the JavaDoc method descriptions,
NER extracts action-resource code element pairs,
whereby actions are mapped to predefined cate-
gories: creation, manipulation, closure, lock and un-
lock, eventually using a synonym dictionary. Using

the class/interface information from the JavaDoc doc-
umentation, for each resource type, the set of action
categories is generated, including both those extracted
directly from that class’ methods and from its super-
classes. Each such group is rendered into an automata
based on predefined specification templates.

Zhong et al. (2008) propose the Java Rule Finder
(JRF) to mine instances of two-letter patterns from
source code of Java libraries. Patterns are of the form
a must (not) precede b, and instances of those patterns
are encoded in a so-called Program Rule Graph (PRG).
JRF only analyzes the code of the API at hand, it
requires no access to client code.

As a final example of the use of the pattern-
matching strategy, Acharya et al. (2006) statically an-
alyze an API’s client code to detect instantiations of a
set of manually-specified generic temporal properties
of abstract operations on the output of an API call,
e.g., checking the return value, or checking error code
variables.

4.3 Empirical Findings
Most of the techniques described in this section were
the object of empirical evaluation, but much variety
exists in the specific focus of the evaluation. Authors
sometimes evaluate the performance of the approach
as a whole, the impact of specific design decisions of
the approach, the meaningfulness of the results, or
any combinations of these factors. Given the number
of approaches discussed in this section, we provide
a general road map of the empirical evaluation con-
ducted and highlight noteworthy results.

Run-time Performance Evaluation
Roughly half of the surveyed papers report on the
performance of the respective approaches/tools [21], [24],
[30], [34], [35], [43], [46], [48], [51], [52], [54], [59], [60],
[61]. Most papers report performance numbers for se-
lected target systems to show that the technique is fast
enough to be of practical use [24], [30], [35], [51], [59],
[60], [61]. In other cases the authors try to empirically
[21], [34], [46], [54] or analytically [52] correlate the
size of the input data or features of the algorithm
to the time needed for mining or violation detection.
Lo et al. (2008) provide a noteworthy instance of
performance evaluation in that their experiments to
evaluate the scalability of the approach are performed
not only on synthetic data, but also on standard data
sets used as benchmarks for mining algorithms in the
data mining community.

Design Decision Assessment
Also about half of the works surveyed in this section
attempt to assess the contribution of distinct features of
the respective algorithms to the overall technique [20], [21],
[24], [27], [28], [34], [35], [46], [48], [51], [54], [56], [57],
[60], [61].

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

Most of them do so by finding evidence for the use-
fulness of certain components of their algorithms [20],
[24], [27], [28], [35], [39], [40], [51], [56], [57], [61]. For
example, Gruska et al. discuss examples of detected
anomalies to show that some issues can only be
found by a cross-project analysis. Ramanathan et al.
analyze the distribution of the size of the set of mined
properties to indicate that the inferred properties are
readable and understandable by developers. Lo et
al. (2009) indirectly justify the proposed algorithm’s
features by showing that a significant portion of the
rules integrated into Microsoft’s Static Driver Verifier
fall in the class of quantified temporal properties with
equality constraints.

Other authors implement several versions of their
algorithm with different feature sets [21], [34], [39],
[40], [47], [48], [51]. SMARTiC, for instance, is eval-
uated with different configurations to show how the
proposed techniques actually contribute to improving
accuracy, or to increase stability against erroneous
traces, and how they affect the scalability of the ap-
proach. Gabel and Su (2009) compare two versions of
their BDD-based algorithm, a precise and an approxi-
mate one, with an algorithm with explicit state track-
ing which corresponds to the algorithm proposed by
Yang et al. The latter is selected as a representative of
other approaches [2], [27], [35], [40]. The comparison
shows that the BDD-based algorithm outperforms the
explicit state tracking algorithm in terms of time and
space when mining 3-letter patterns. Walkinshaw et
al. compare the version of their tool that uses a model
checker as an automated oracle with the version based
on user queries only [44], and show that the number
of user queries can be significantly reduced.

Others empirically correlate thresholds or character-
istics related to certain features to observations about
the results such as the false positive ratio or scalability
[39], [40], [46], [54]. In particular, Lo et al. (2008)
show that their algorithm is statistically sound and
complete, i.e., (a) all mined rules are significant and
(b) all significant rules are mined, for some given
statistical significance threshold and assuming that
input traces are complete and representative.

Result Quality Evaluation
The quality of mined specifications is evaluated with
respect to their validity and their effectiveness in
serving the goal for which they are mined.

In a large number of papers [20], [21], [24], [25],
[27], [28], [30], [35], [36], [41], [42], [43], [46], [47],
[48], [51], [52], [53], [54], [60] the quality of the mined
API specifications is judged by discussing example
specifications and by manually inspecting the code.

The number of the examined specifications varies
greatly, but is generally only a fraction of the actually-
mined specifications. This selectivity leads to varying
degrees of threats to the generalizability of the find-
ings. For example, 4 out of 1100 generated models are

discussed by Dallmeier et al.. Only 4 specifications
mined for one particular function of the X11 API
are manually classified as real or false by Acharya
et al. (2007) A thorough validation of the mined
specifications is performed for Perracotta; all 142
mined properties that remain after several heuristics
are applied are evaluated.

A more objective way to judge the quality of the
mined specifications is by comparing them to speci-
fications that are explicitly documented. Ammons et
al. compare specifications mined for the X11 API with
those documented in a manual. Weimer and Necula
compare mined and documented specifications for
three selected classes of the Hibernate framework;
Lo et al. (2008) check the mined multi-event rules
for the JBoss transaction component against the JBoss
documentation. Yang et al. also compare one of the
specifications mined by Perracotta for JBoss with an
object interaction diagram from the J2EE (JTA) speci-
fication.

A different strategy to judge the quality of the
mined specifications is to rely on some stated prop-
erties of the specifications. For instance, Lo et al.
(2008) define several properties of temporal rules
mined by their approach, such as significance (defined
by support and confidence thresholds), monotonicity,
and redundancy to prune the search space. Pradel
and Gross, who mine specifications for JDK using
traces from 10 DaCapo benchmarks, consider as non-
accidental only those that are mined from traces of
more than one benchmark (35%). Gabel and Su (2008)
classify as real specifications only those sequences
whose events are connected by data flow.

Relatively few papers quantify the false posi-
tive/negative ratio for the mined specifications [28],
[39], [40], [59]. On the contrary, detected violations
are generally classified more precisely by quantifying
the false positive ratio [43], [36], [59], [57], [58], [59],
[61]. As with specifications, the judgment is often
based on code inspection. Thummalapenta and Xie
(2009) undertake an additional step and verify their
classification by submitting bug reports for the defects
found and reporting feedback from developers.

As also noticed by Lo et al. [75] and more recently
by Pradel et al. [76], manual judgment of the ef-
fectiveness of specification miners is subjective and
introduces threats to the validity of the evaluation.
Yet, very few papers describe an effort to avoid this
risk by automating (part of) the evaluation process.
These include work by Lo and Khoo, Lo et al. (2008),
and Quante and Koschke. To evaluate SMarTic, Lo
and Khoo use the evaluation technique proposed by
the same authors in previous work [75]: A given spec-
ification is used to construct clients that exercise the
specification to generate ”correct traces”. The latter
are used to mine an automaton that serves as the
reference against which to compare the automaton
mined by arbitrary traces in terms of precision, recall,

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

and co-simulation. In their work, Lo et al. (2008) run
the mined rules and buggy software through a model
checker, judging the quality of the mined rules by
their capability to discover the known bugs.

Among all approaches surveyed in this section,
only Prospector is evaluated in a user study to gain
insights in the actual effect of the approach on the
quality of the development process.

The evaluations surveyed often do not include an
empirical comparison to similar approaches. Such
a comparison is indeed not easy to perform. Ap-
proaches often address slightly different problems,
make different assumptions about the input data
and provide results in different formats. Also, exper-
iments are often performed on different data sets;
the criteria for classifying results is different and
often not described precisely. Finally, often competing
tools are not available for use in experiments. Hence,
when an empirical comparison is performed [24],
[25], [27], [34], [36], [48], [51], [56], [57], related ap-
proaches are generally simulated/re-implemented to
enable a comparison on the same data set. Weimer
and Necula, for instance, use three Hibernate classes,
for which specifications are available, to perform a
qualitative comparison of their tool against five other
approaches [2], [20], [21], [24] , which make different
assumptions and produce different kinds of specifica-
tions. CAR-miner is empirically compared to Weimer
and Necula’s technique. Quante and Koschke use the
evaluation technique by Lo and Khoo to perform an
automated comparative evaluation of several versions
of their technique against basic approaches to protocol
learning such as the k-tails learner [77] and the sk-
strings learner [67]. Unlike the previous approaches,
the results created by PARSEWEB are compared
against results directly obtained from Prospector and
Strathcona [4].

Reported Accuracy
The level of rigor employed in evaluating approaches
to inferring sequential usage patterns varies. Perhaps
not surprisingly, most of the time only results that
are at least indicative that some valid knowledge was
found in an enormous space of possibilities is re-
ported. There is, however, no convergence on metrics,
such as false positive rates, that assess the quality of
the properties inferred. Overall, when such metrics are
reported, the accuracy is low, especially for flagged
violations detected from mined specifications.

We observe that more accurate results are reported
for approaches that use transformational techniques.
For instance, Weimer and Necula report a much
lower false positive rate (0.08–0.13) of the detected
anomalies than approaches using off-the-shelf learn-
ers, whose false positive rates vary between 0.30
(Ammons et al.), 0.60 (Whaley et al.), 1.0 (JIST) and
between 0.51 and 0.93 among top-ten ranked anoma-
lies (JADET). Likewise, low precision is reported for

Tikanga (between 0.16 and 0.80 when inspecting the
top 25% of entries) and by Gruska et al. (only 0.22
for the top-ranked 25% of the detected anomalies).

As expected, the results of transformational ap-
proaches improve with increased precision of the
underlying analysis, as indicated by comparing the
false positive rate of Weimer and Necula’s tool with
JIST. Yet, the real value of the improvements can-
not be objectively appreciated without systematically
evaluating the performance/scalability cost eventu-
ally implied by the increased analysis precision.

Significant improvements seem possible for tech-
niques using off-the-shelf learners when clever filter-
ing and clustering is employed. This phenomenon is
illustrated by the comparison of the metrics for SMAr-
TiC and the approach by Ammons et al. (0.50 false
positives and 0.01 false negatives versus 0.80 false
positives and 0.50 false negatives) [34]. Also, looking
for specific kinds of specifications such as precondi-
tions [40], alternative patterns [56], [57], and condi-
tional specifications [28], seems to lower the noise. For
example, Ramanathan et al., Thummalapenta and
Xie (both Alattin and CAR-Miner) and Acharya et
al. (2009) report lower false positive rates for detected
anomalies than more general approaches

The accuracy of approaches using template-based
techniques is also low. For instance, Yang et al. report
that only roughly 40% of the properties inferred by
Perracotta are ”useful”. Likewise, for Javert, Gabel
and Su report a false positives rate of approximately
0.50, which they argue to be still low relative to
previous approaches. While Zhong et al. (2009) report
good precision and recall for the specifications mined
by Doc2Spec (at around 0.80), using them to find bugs
produces roughly 74% of false positives.

5 BEHAVIORAL SPECIFICATIONS

A number of approaches have been developed to infer
API properties that describe not how API elements
can be combined into usage patterns, but rather the
valid and invalid behavior of the API.

5.1 Overview
The two main points of distinction between the ap-
proaches surveyed concern the nature and complexity
of the specifications, and the goal of the approach.

Nature and Complexity of Inferred Specifications
One form of behavioral description is through con-
tracts, such as preconditions, postconditions, and
invariants defined over an abstract data type or
class [78]. A typical example of a precondition is that a
value passed as an argument to a function should not
be a null reference. We consider that design contracts
constitute a form of behavioral description of the API
in that they state something about the behavior of the
API if the contract is either met or (more typically) not

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

met. Houdini is a tool for inferring basic invariants,
preconditions, and postconditions about the methods
of a Java program [79]. Chronicler infers control-
and data-flow preconditions for functions in C/C++
function calls [39].

A richer form of behavioral description is that of
contracts to which an action is attached that describes
the consequence of accessing an API without respect-
ing the contract. For example, Axiom Meister infers
properties, called axioms, such as [80, p. 718]

requires key != null
otherwise ArgumentNullException

Taken to a further extent, properties concerned with
behavior in erroneous conditions can describe only
the preconditions that lead to exceptional behavior.
In particular, Buse and Weimer’s exception doc-
umentation reverse-engineering approach [81] pro-
duces for each method/exception-type pair a path
predicate that describes constraints on the values of the
method’s variables that will result in a control-flow
path ending in an exception of that type to be raised.
Specifically, Buse and Weimer’s approach infers, for a
given API method, (a) possible exception types that
might be thrown (directly or indirectly); b) predicates
over paths that might cause these exceptions to be
thrown; c) human-readable strings describing these
paths. Although in many cases variables in such path
predicates will correspond to private implementation
structures of the framework or library, the approach
also produces cases that describe conditions on pa-
rameters, which are relevant to API users.

Finally, descriptions of API behavior can take the
form of an elaborate formal language to express facts
about the behavior of the API. This approach is il-
lustrated by the work of Henkel and Diwan [82],
[83] who infer algebraic specifications [84], or equations
expressing truths about call sequences to the public
methods of classes. Essentially, an algebraic specifica-
tion consists of a series of public method calls to a
class, with symbolic variables storing the states of the
class and the returned values from those method calls.
For example, for a stack, one algebraic specification
might say that a call sequence x = new Stack();

x.pop(); will throw an exception. Another might say
that the overall state of x is unchanged after a call
chain x.push(y); x.pop();. These algebraic speci-
fications are similar to axioms and path predicates
in that they provide information about uses of the
API that will result in exceptional or erroneous be-
havior. This is different from the temporal properties
described in Section 4, which describe sequences of
operations with little focus on program state. The
approach of Ghezzi et al. [85], implemented in a
tool called SPY, also produces rules describing valid
transitions in a stateful model of the API’s behavior.
In their case the final specification is called intensional
behavior model.

Goal
The two main lines of arguments used to motivate
the work surveyed in this section are as follows. First,
manually-authored API documentation is incomplete
or wrong and should be complemented with the
output of automated techniques. We refer to this goal
as a general documentation goal. Second, practical use
of automated verification tools requires numerous
program annotations (such as preconditions) that are
too onerous and error-prone to produce manually, so
these annotations should be automatically generated.
Although annotations are also a form of documen-
tation, we refer to this goal as bug detection because
the ultimate use of the annotations is as input to
verification tools.

Three of the approaches we surveyed produced out-
put exclusively for documentation. Claiming that the
documentation of library classes is not always clear,
Henkel and Diwan’s goal is to complement natural-
language documentation with automatically-derived
formal specifications. Similarly, according to Ghezzi
et al., the output of SPY “may help understand what
the component does when no formal specification is
available” [85, p. 430]. The goal of Buse and Weimer’s
approach is to discover information about the poten-
tial causes of exceptions to better describe exception
clauses in API reference documentation. In all three
cases the approach is not used for automated bug
detection.

Although their general claimed goal is to produce
human-readable specifications, both Tillmann et al.
and Ramanathan et al. also use their inferred speci-
fications to detect bugs.

Finally, the goal of Houdini is to automatically
produce annotations for the ESC/Java static pro-
gram checker [86]. ESC/Java requires manually-
specified input in the form of annotations describ-
ing invariants/pre-/postconditions. It can then check
whether a program (or module) is consistent with
these annotations. The motivation for Houdini was to
partially automate the otherwise tedious and difficult
task of writing annotations for ESC/Java.

Ideally, specifications produced to help program-
mers program correctly should also be usable for
automated bug detection. Unfortunately we do not
observe that this is the case in practice. In the works
surveyed, there exists an inverse relation between
the complexity of the specification inferred and their
use in verification. In Table 4, only the authors of
approaches that produce the simplest types of spec-
ifications (contracts and their variants) report using
these for bug detection.

5.2 Analysis Techniques
Five of the six approaches surveyed in this section
infer properties through various analyses of the API
source code (or simply its interface). In this way they

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

TABLE 4: Works Surveyed: Behavioral Specifications

Work Tool Goal Property Input Analysis

Flanagan & Leino 2001 [79] Houdini Bug Detection Contract API Code Symbolic Exec.
Henkel & Diwan 2003–2007 [82], [83] – Documentation Spec. Language API Interface Dynamic
Tillmann et al. 2006 [80] Axiom Meister Doc. & Bug Detection Contract + Action API Code Symbolic Exec.
Ramanathan et al. 2007 [39] (see Table 3) Chronicler Doc. & Bug Detection Contract Client Code Static
Buse & Weimer 2008 [81] – Documentation Exception Path API Code Static & Symbolic Exec.
Ghezzi et al. 2009 [85] SPY Documentation Spec. Language API Interface Dynamic

contrast with most other approaches, which instead
mine artifacts that use the API.

We distinguish between two general strategies used
to generate behavioral specifications of APIs. With the
conjecture/refute strategy, the idea is to synthetically
generate a large number of potential specifications,
and then to use different analyses to refute, or inval-
idate, specifications unlikely to hold in practice. We
note that the conjecture/refute strategy is not unique
to behavioral specification inference, but was also
used by more general invariant detection techniques,
and in particular Daikon [3].

The second strategy is to systematically explore the
behavior of an API method or function by symbol-
ically executing it. Symbolic execution [87] attempts
to explore all possible execution paths, whereby each
path is characterized by a set of constraints on the
inputs (the method’s arguments and the initial state
of the heap) called the path condition. A path may
terminate normally or have an exceptional result.

Conjecture/Refute Strategy
Houdini, Henkel and Diwan’s approach, and SPY
follow the conjecture/refute strategy. To generate
conjectures, Houdini systematically generates a pre-
defined set of conjecture templates for all types and
routines declared in the target program. For example,
for a field f holding a reference type, the invariant f
!= null is conjectured. For a field of integral type, a
richer set of value-comparison invariants is generated
using six comparison operators (<, >, etc.), and a
set of expressions including all fields declared before
f, as well as interesting values such as 0, 1, etc. The
conjecture generation approach of Henkel and Diwan
and SPY is designed to systematically explore the state
space of the class for which specifications are gen-
erated. Their respective approaches therefore create
an instantiation transition for the class (a constructor
call), and then systematically construct a sequence of
invocations of increasing complexity on this instance.
There the two approaches diverge: while Henkel and
Diwan’s focuses on the detection of invalid sequences,
the goal of SPY is to model behavioral equivalence
of method-call sequences on objects and analytically
transform this model into a specification.

To invalidate the conjectured invariants, Houdini
simply adds all annotations to the target program and
invokes the ESC/Java checker. Refuted annotations
are removed and the process is repeated until a fixed

point is reached. In contrast, Henkel and Diwan’s
tool and SPY directly execute code corresponding to
the synthetically-generated transitions. In the case of
Henkel and Diwan’s tool, when executions result in
an exception, the corresponding sequence is flagged
as invalid.

Symbolic Execution Strategy
Axiom Meister and Buse and Weimer’s approach
both use symbolic execution to infer behavioral
knowledge about the target API element. Axiom Meis-
ter’s symbolic execution produces a set of path con-
ditions and resulting program state, which are then
transformed into the final specifications using a pro-
cess called observational abstraction. The idea is to con-
vert path conditions expressed using implementation-
specific constraints (e.g., on local variables) into state-
ments expressed only in terms of the class’s interface.
The use of symbolic execution by Buse and Weimer
is similar, with two notable exceptions. First, their
approach only identifies paths that result in an ex-
ception. Second, they do not abstract the constraints
into higher-level abstractions; Instead, they use a
heuristic process to translate the path condition into
more human-readable statements. For example, the
constraint x instanceof T becomes “x is a T” [81,
p. 276]

Other Strategy
Chronicler’s approach, described in Section 4.2, uses a
combination of mining and static analysis techniques
of client code. In this way it is different from the other
approaches described in this section, which only ana-
lyze the API code itself. However, in terms of the two
strategies described above, it is more closely related
to the symbolic execution strategy, given its use of
constraint propagation as an underlying technique to
infer preconditions.

5.3 Empirical Findings
Evaluations of behavioral specification inference ap-
proaches have focused on the feasibility and scal-
ability as well as the quality of the specifications
produced.

Feasibility and Scalability
The reports on the empirical assessment of Houdini,
Henkel and Diwan’s approach, and Axiom Meister

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

focus on the general feasibility of the tools using a few
small or medium-size API classes as input. Hence,
the reported results are mostly useful to provide a
general “feel” for how the tools operate. The main
lesson from the reported experience with Houdini
is that using a program checker to systematically
evaluate a large number of synthetically-generated
annotations is marginally scalable. For example, to
apply Houdini to a 36 000 LOC program requires
62 hours (or 6.2s/LOC) [79, p. 512]. Henkel and
Diwan’s approach requires time in the same order of
magnitude, with about 13.3–15.3s/LOC (depending
on optimization parameters).2 In contrast, the tools
based on symbolic execution show at least one order
of magnitude faster run-time performance, with Ax-
iom Meister requiring about 0.0035–0.4662s/LOC and
Buse and Weimer’s approach 0.0012–0.011s/LOC (de-
pending on the class or project tested).3 In a nutshell,
we see that conjecture/refute-based systems do not
quite meet the challenge of being able to complete
the analysis of a reasonably-sized system in the 12–16
hours between work days [79], while in the case of
the two approaches based on symbolic execution this
goal can be achieved.

Specification Quality
Henkel and Diwan also assess the quality of the alge-
braic specifications produced for 13 small classes (8 of
which created by the authors) by manually inspecting
the axioms produced and evaluating their correctness.
Overall the approach is found to produce directly-
usable correct axioms in 76–98% of the cases. For
example, for Java’s LinkedList class, the approach
produces 139 axioms, 24 of which are judged correct
but imperfect (too general or too specific), and one
of which is incorrect. Tillmann et al. also manually
assess the output of Axiom Meister, and also report
a very low number of false positives (four invalid
axioms over 88 axioms generated for six classes).
Ghezzi et al. compare their approach, SPY, with that
of Henkel and Diwan in terms of the correctness of the
specifications generated for a number of simple con-
tainer classes. They find that both approaches produce
no false specifications for their benchmarks, but that
Henkel and Diwan’s approach is unable to produce
specifications in 0–64% of test cases (depending on
the target API class), whereas SPY is able to generate
specifications in all cases. They conclude that SPY is
more generally applicable.

Buse and Weimer evaluate the quality of their
generated exception documentation by applying their
tool to 10 medium-sized open-source Java programs,

2. We estimated this value from the Hashtable class, using 578
uncommented non-blank LOC.

3. The run-time performance is a function of the limits imposed
on the symbolic execution, e.g., with respect to loop unrolling and
recursion. We use the numbers reported by the authors as indicative
of the configuration in which they expect the approach to be used.

and comparing the output of their tool with the ex-
ception documentation already present in the source
code of their target systems (a total of 951 documented
exceptions across all 10 systems). The authors find
that the generated exception documentation was the
same as or better than the existing documentation in
85% of cases where human readable documentation
was present, according to a manual assessment.

6 MIGRATION MAPPINGS

The techniques discussed in this section infer migra-
tion mappings to support updating clients of an API
when the API evolves with backward-incompatible
changes. Alternatively, mappings can also be inferred
between different, but equivalent, APIs.

6.1 Overview
Migration mappings link elements declared by one
API with corresponding elements in a different API,
or in a different version of the same API. Table 5 lists
approaches for inferring migration mappings.

Goal
The techniques surveyed in this section aim to dis-
cover a mapping (I, R,G), which consists of an initial
set I of elements in the current API version and
their replacements R in a different version. Optionally,
some optional migration guidelines G can be pro-
vided to give further instructions on how to replace
the references to elements in I with references to the
elements in R. Guidelines can take the form of code
examples or edit scripts (series of steps required to
update a client). Because the goal of all approaches
surveyed is the same, we do not have a column to
that effect in the table.

We note that techniques for inferring mappings
between API versions provide a solution to a spe-
cific subproblem of the general problem of inferring
knowledge from software evolution data. For exam-
ple, techniques have also been developed to discover
the origin of a section of code [88], or to infer transfor-
mation rules describing the evolution or refactoring of
an API [89]. These techniques fall outside the scope
of our survey as described in Section 1. A detailed
review of such approaches is available in a separate
publication [90].

Nature of Mined Mappings
We can roughly categorize migration mapping in-
ference techniques based on the cardinalities of the
mappings they infer.

The most basic mappings are those that correspond
to simple API refactorings, such as renaming API
elements or moving them to a different module.
Such minor changes have been shown to account for
roughly 85% of all changes breaking backwards com-
patibility in an API’s evolution [99]. These refactorings

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

TABLE 5: Works Surveyed: Migration Mappings

Work Tool Mappings Input Technique

Dig et al. 2006 [91] RefactoringCrawler Refactorings API Snapshots Sim. Metrics + Ref. Analysis
Xing & Stroulia 2007 [92] Diff-CatchUp Refactorings API Snapshots + Client Code Sim. Metrics + UMLDiff [93]
Schäfer et al. 2008 [94] – 1-to-1 Client Code Association Rules
Dagenais & Robillard 2008 [90], [95] SemDiff 1-to-1 Change History Conf. Metrics
Wu et al. 2010 [96] AURA 1-to-m, n-to-1 API Snapshots Sim. Metrics + Conf. Metrics
Zhong et al. 2010 [97] MAM m-to-n Client Code Sim. Metrics + ATGs
Nguyen et al. 2010 [98] LibSync Edit Scripts Client Code GROUMs + Frequent Itemsets

are discovered by API-refactoring-detection tools such
as Xing and Stroulia’s Diff-CatchUp [92] and Dig et
al.’s RefactoringCrawler [91].

Other techniques go beyond standard refactorings
by discovering more general mappings between API
elements. Dagenais and Robillard’s SemDiff [95]
and an approach by Schäfer et al. [94] discover
mappings for a single input API method (SemDiff)
or an input class, field, or method (Schäfer et al.).
Wu et al.’s AURA [96] furthers the state of the art
by detecting one-to-many and many-to-one method
mappings between versions of an API. Zhong et al.’s
MAM technique [97] detects one-to-one type map-
pings and many-to-many method mappings between
two equivalent versions of an API, where one version
is implemented in Java and the other one in C#.

Finally, some techniques also present some kind of
migration guidelines that illustrate how references to
the current element can be replaced by references to
its target element(s). Nguyen et al.’s LibSync [98] falls
in this category, by discovering so-called edit scripts.

6.2 Inference Techniques

Mapping inference techniques can be distinguished
by the general strategy they use to infer mappings, the
nature of the input to the technique, and their main
choice of algorithm for implementing the technique.
In the case of implementation design, we distinguish
between the use of custom heuristics vs. general data-
mining techniques.

General Strategy
Two main strategies are employed by mapping in-
ference techniques. A first strategy is to analyze on
pairwise textual similarity between elements in two
versions of an API. The intuition is that if two ele-
ments only vary slightly in their name, one might be
an evolved version of another. For example, openFile
in one version of the API might map to open_file in
a different version.

A second, and more complex, strategy assumes the
presence of two equivalent versions of a source code
context using two different versions of an API. For
simplicity we will refer to old and migrated code.
The intuition underlying this strategy is that if the
API usage context Co in the old version references a
set of API elements from the old API version, and

its equivalent usage context Cm within the migrated
version references some other set of elements from the
target API version, then the set difference between Cm

and Co will contain the mapping between elements of
the two versions of the API (along with some noise).
As a simplistic example, if a main method in one
version of a client program calls open and close and
a later version of main compiled with a new version
of the API calls open2 and close, then it is likely that
open2 replaces open. In this case the context is the
main method.

Most of the approaches we surveyed combine these
two strategies, but in very different ratios. Early refac-
toring detection approaches (RefactoringCrawler and
Diff-CatchUp) rely primarily on textual similarity to
generate a list of mappings. In contrast, SemDiff
relies almost exclusively on the second strategy, re-
verting to textual similarity analysis only to break ties
in ranked recommendations. The other approaches
combine textual similarity and the other strategy in
a more balanced way.

Input
From the perspective of the input to the mapping
analysis techniques, there are three categories of
approaches. Our categorization relies on the differ-
ence between considering all intermediate versions of
source code contained in a revision control system
(the change history), or only fully-built versions of a
software system (which we call a snapshot).

We distinguish between techniques that analyze
entire snapshots of the API, techniques that ana-
lyze client snapshots (or a combination of API and
client snapshots), and techniques that analyze an
API’s change history. The first category includes
RefactoringCrawler and AURA. The second category
includes Schäfer et al.’s approach, LibSync, and
Zhong et al.’s MAM. Diff-CatchUp is actually a hy-
brid approach because it uses primarily API snapshots
as input. However, if the results are not satisfactory,
client snapshots can be analyzed as well. SemDiff
constitutes its own category, since it does not analyze
API or client snapshots, but rather the change history
of the API.

Custom Heuristics
A sub-category of approaches that use custom heuris-
tics consists of RefactoringCrawler, Diff-CatchUp,

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

and MAM, which apply text similarity metrics to
the signatures of API elements. RefactoringCrawler
and DiffCatch-Up infer mappings between refactored
versions of an API, whereas MAM finds mappings
between APIs implemented for Java and C#.

After identifying the most similar API element
pairs by performing a syntactic comparison between
all API element pairs across the two API versions,
RefactoringCrawler validates each refactoring candi-
date (eo, em) by checking whether references to and
from the old element eo are similar to the references to
and from its candidate replacement element em. Due
to heavy use of similarity metrics, in cases where eo
is not simply refactored into a single other element
em, RefactoringCrawler will most likely not infer an
appropriate mapping for eo.

Diff-CatchUp uses mappings detected by UMLDiff,
an earlier refactoring-detection tool [93] that detects
refactorings through a hierarchical pairwise compari-
son of the programs’ packages, classes, methods, and
fields in program snapshots. If a user deems the
detected refactorings to be invalid, Diff-CatchUp can
analyze user-provided client code to identify addi-
tional one-to-one replacement candidates. Diff-Catch-
Up ranks candidate based on four similarity metrics
that assess the candidate’s name, inheritance relations,
references, and associations to other elements.

For an existing pair of projects PJ , PC that imple-
ment the same functionality in Java and C#, MAM
first aligns elements in PJ and PC using textual sim-
ilarity. It then builds and compares data dependency
graphs for each aligned client method pair (MJ ,MC).
Essentially, MAM finds a mapping if cohesive groups
of methods invoked within MJ and MC share similar
names and if all of their input and output variables
types were aligned in the previous step.

SemDiff does not relate API elements by the syn-
tactical similarity of their signatures. It rather iden-
tifies possible candidate replacements for a method
mo by analyzing the change history of a client of the
API that has already been migrated within a self-
hosted corpus. SemDiff makes the hypothesis that,
generally, calls to deleted methods will be replaced in
the same change set by one or more calls to methods
that provide a similar functionality. Having identified
such change sets, SemDiff then ranks all detected
replacements for mo with respect to a popularity-
based metric as well as name similarity, and presents
these as a ranked list to the user.

AURA is a hybrid approach that combines textual
similarity analysis of API element signatures similar
to that used by RefactoringCrawler with call de-
pendency similarity analysis. Unlike SemDiff, AURA
does not analyze call dependencies in the change
history but rather in two snapshots of the API. As
opposed to simply returning a ranking list of potential
replacements for a method, AURA takes steps to
identify likely co-replacements, or groups of methods

that replace a single target method. Once a main
replacement is identified, AURA finds potential co-
replacements by finding references that were fre-
quently co-inserted along with the main replacement.

General Data Mining
Schäfer et al.’s approach collects API element refer-
ences in the old version of clients, determines how
those element references were replaced in the new
versions of the clients, and populate a database with
all possible one-to-one usage replacement rules that
might be derived from these replacements. Associa-
tion rule mining is applied on the rule database and
high-quality rules are returned. The tool then uses text
similarity metric to filter out multiple rules with the
same antecedent.

LibSync represents API usages as directed acyclic
graphs called GROUMs that basically capture
reference- and inheritance-based usage of API
methods and types, as well as various control
structures and dataflow dependencies between them.
Essentially, given some mapping I → R, LibSync
first identifies GROUMs describing usages of the
elements in I in the old versions of client code, and
then computes edit scripts to describe how those
usages differ from the usages of the elements in R
in the new versions of its client code. GROUM-based
edit scripts for all mappings I → R are provided to
frequent itemset mining to generalize common edit
operations. This strategy is different from MAM,
which applies a custom similarly-based algorithm to
the graph-based representation of usage data rather
off-the-shelf frequent item set mining.

6.3 Empirical Findings
The work on migration mapping detection offers in-
teresting commonalities in the design of evaluation
studies. The results of the evaluation also exhibit
relatively good precision.

Study Design
A good amount of the work on the detection of migra-
tion mappings has been evaluated in comparison with
similar approaches. This kind of comparative work is
rare in the body of work on API property inference
mining. We can presume that the focused goal and
relatively uniform nature of the property inferred has
facilitated this development.

RefactoringCrawler, the approach by Schäfer et
al., and AURA use a common set of target APIs
as their subject systems (eclipse.ui, Struts, and JHot-
Draw). This uniformity facilitates mutual comparison.
RefactoringCrawler is a noteworthy baseline, because
all of the other approaches are compared directly or
indirectly against it. Wu et al. compare AURA against
Schäfer et al.’s approach on two of the three common
subject systems. SemDiff and RefactoringCrawler are

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 21

applied to two versions of the same API (Eclipse JDT
Core, versions 3.1 and 3.3). Wu et al. also replicate
SemDiff’s evaluation and compare AURA’s recom-
mendations against a subset of scenarios for which
SemDiff makes recommendations.

The other approaches use idiosyncratic bench-
marks. Zhong et al. evaluate MAM by running it
on 15 open-source projects for which both Java and
C# implementations were available; Nguyen et al.
evaluate the quality of LibSync’s edit scripts by run-
ning it on two snapshots taken from one development
branch of JBoss; Diff-CatchUp is evaluated by using
two small to medium-sized APIs ((HTMLUnit and
JFreeChart). The techniques are not compared against
any other.

Concerning the assessment of the quality of the
produced migration mappings, we also identify two
categories of work. Most of the work discussed in
this section employs manual inspection of the results
to evaluate their correctness. This evaluation is based
on the authors’ own knowledge, or on knowledge ob-
tained from relevant documentation. For instance, the
accuracy of MAM is assessed by manually evaluating
the first 30 mappings for each target system (in alpha-
betical order); its recall is measured by comparing cor-
rect mappings mined by it against those hand-coded
by the developers of Java2CSharp,4 an existing Java to
C# translation tool. RefactoringCrawler’s recommen-
dations are compared against a set of refactorings doc-
umented by the authors in the context of a previous
study using the same subject systems. Schäfer et al.
manually compare the mappings of their tool against
refactorings proposed by RefactoringCrawler.

A different strategy was developed to mitigate the
threat of investigator bias induced by the manual
assessment of mappings by the authors of an ap-
proach. For a number of approaches, the authors
detect API migration mappings for clients and verify
these mappings by either trying them out or by
comparing them with versions of the client code that
have actually been migrated by its original develop-
ers. This approach is illustrated by the evaluation of
SemDiff. Dagenais and Robillard take three clients
programs developed on Eclipse 3.1 (Mylyn, JBoss
IDE, jdt.debug.ui), recompile them against Eclipse
3.3, collect the number of missing references to API
methods, and use SemDiff to recommend mappings.
The correctness of SemDiff’s recommendations is de-
termined by assessing how the new versions of the
clients has actually been updated. Similarly, the qual-
ity of edit scripts produced by LibSync is evaluated
by checking whether they were also applied on an-
other development branch of JBoss. The advantage
of this approach is that the evidence for correctness
is strong. The disadvantage is that it can be difficult
to find migrated clients. This style of evaluation also

4. j2cstranslator.wiki.sourceforge.net

produces over-conservative results because even in
cases where many valid mappings could apply, the
migrated code will only implement one. In a slightly
different variant of this approach, Diff-CatchUp is
used to fix compilation errors that arise when test data
using the subject APIs (HTMLUnit and JFreeChart)
are recompiled against newer versions of those APIs.
This variant is weaker because compilable code may
not necessarily be correct.

Reported Results
Overall, the precision of mappings produced by the
approaches is very good. In contrast to sequential
pattern mining techniques (Section 4) that generate
many spurious rules, most migration mappings in-
ferred actually correspond to valid knowledge. This
performance can partially be explained by the nar-
rower focus of the problem solved.

RefactoringCrawler detects refactorings with 0.90-
1.0 precision and 0.86-1.0 recall according to the as-
sessment strategy outlined above.

The evaluations of the technique by Schäfer et al.
and Diff-CatchUp seeks to characterize the overall
precision rather than recall. The evaluation shows
that Diff-CatchUp’s recommendations for two sub-
ject systems are accurate in 93% and 77% of cases,
respectively. The approach by Schäfer et al. detects
rules with a precision of over 0.85. Schäfer et al. also
find that 25% of all correct rules are not induced by
refactorings, and that refactorings detected by their
technique do not fully overlap with those detected
by Dig et al. For two out of three common subject
systems, AURA detects about 50% more method re-
placement rules than Schäfer et al.’s technique, with
a precision of close to 0.95. According to Wu et al.,
AURA’s use of syntactic similarity between methods
allows it to detect rules not covered by Schäfer et al.’s
test data. Wu et al. also find that rules detected by
AURA and those detected by Schäfer et al. do not
fully overlap.

In total, SemDiff produces relevant recommenda-
tions for 33 out of 37 broken method calls in clients,
versus just 6 by RefactoringCrawler. Wu et al. repli-
cate SemDiff’s evaluation and compare AURA’s rec-
ommendations against those of SemDiff for 14 of the
37 broken method calls. On these 14 methods, SemDiff
produces recommendations with 1.0 precision, while
AURA’s is 0.92.

The correctness of the mapped relations produced
by MAM is 0.13 for one of the 15 subject projects,
and between 0.73 and 1.0 for the remaining projects.
The authors find that MAM detects over 70% of all
type and method mappings declared in Java2CSharp,
as well as 25 additional correct method mappings.

7 GENERAL INFORMATION
A number of approaches were designed to automati-
cally collect general API-related information that can

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 22

only loosely be defined as a property of the API.
For example, a number of approaches were de-

signed to collect API usage statistics [100], [101], [102],
[103]. Given a large enough corpus of usage contexts,
usage statistics can be considered to be a form of
general property that can inform, for example, the
presentation of API documentation [101].

Approaches have also been proposed to find API
elements related to a seed or query element [104],
[105]. The idea is to provide developers with insights
about API elements which may be related to elements
already of interest (the seed). The property inferred
in this case is a mapping es → {er1 , ..., ern} between
the seed es and its related elements. Although, in
practice, related elements are provided on-demand as
the result of a query, in principle it is also possible
to systematically pre-compute related sets for all API
elements. For this reason, we consider that such map-
pings are also a general property of the API. We note
that although sets of related API elements have the
same formal structure as sets of co-occurring elements
as described in Section 3, they are distinct in that they
do not necessarily represent usage patterns.

For all the approaches described in this section, the
goal remains general: to help improve API documen-
tation and guide developers using the API.

7.1 Overview
Because mining techniques used for the approaches
surveyed in this section are relatively simple and
closely tied to the approach in question, we discuss
the mining technique directly in the overview.

Popularity Statistics
One of the simplest ways to analyze an API’s usage
is to count the number of times its elements are
referenced in various contexts. Four tools illustrate
the potential of this approach by providing different
perspective on popularity statistics.

The PopCon Eclipse plug-in [102] takes as input
projects that use the API of interest and, for each
project, creates a database on the structural relation-
ships between client code and the API. Using the
analysis engine of the Strathcona example recommen-
dation tool [4], PopCon extracts four relationships:
inheritance, overriding, method calls, and field ref-
erences. These steps are the same as performed by
all other approaches that analyze client code (see
Section 3), except that instead of mining the database,
PopCon offers various views of usage statistics.

SpotWeb [100] refines the idea of popularity statis-
tics by attempting to detect popular and unpopu-
lar API elements (“hotspots” and “coldspots”, re-
spectively). The novelty of SpotWeb includes that it
automatically derives its corpus from examples re-
turned from a code search engine. SpotWeb parses
and analyzes the retrieved code examples to compute,

for each API element, properties called usage metrics.
Usage metrics are an elaborate form of popularity
metric. The computation of usage metrics takes into
account the various ways in which API elements can
be accessed in client code. For example, for a class,
the usage metric takes into account the number of
constructor-call sites and the number of times the class
is extended; for methods the metric takes into account
the number of times the method has been invoked,
overridden or implemented.

While SpotWeb explores new popularity metrics,
Jadeite [101] investigates new means of presentation
for API usage statistics. Essentially an enhanced ver-
sion of a JavaDoc-viewer, Jadeite provides a number
of features intended to facilitate the discovery of
information on how to start using an API. One of the
features provided is to display the names of API ele-
ments in a font size proportional to their popularity.
The underlying assumption is that this feature can
help developers quickly identify elements they may
need to start using the API. As opposed to the API
usage statistics computed by PopCon or SpotWeb,
Jadeite measures the popularity of API elements by
searching the web and counting the number of web-
pages mentioning that element.

Finally, Aktari [103] is a tool to help developers
select the best version of a library to use based on the
popularity of choices made by previous developers.
Aktari mines a corpus of projects and extracts infor-
mation about which versions are the most popular
and which libraries were most reverted to; these are
the two properties Aktari infers about an API. Aktari
works by analyzing a project’s configuration file for
dependent libraries (with version number).

Within-API Mappings
The four tools described above compute popularity
properties. In contrast, two approaches have been
proposed to calculate within-API mappings.

Saul et al. developed an algorithm called FRAN to
discover the API elements most related to an element
of interest e [105]. The approach is motivated by
the assumption that developers often need to find
related API functions when using an API. To issue
recommendations, the approach analyzes a call graph
of source code that uses the API and computes relat-
edness using formulas inspired from the web search
community, and in particular Kleinberg’s Hypertext
Induced Topic Selection (HITS) algorithm [106]. In
essence, FRAN determines a base set of functions
in the same layer (or relative call-graph depth) as
the query function e, then analyses the call-graph
topology around e to calculate a score of “author-
ity” defined by the probability that a programmer
randomly exploring the code would visit a particular
function given its dependency graph, and then returns
a user-specified number of top authorities. In terms
of input, the approach does not specifically require

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 23

TABLE 6: Works Surveyed: Other Approaches

Work Tool Goal Input Property

Holmes & Walker 2007 [102] PopCon Doc. & Understand. Client Code Popularity
Saul et al. 2007 [105] FRAN Doc. & Understand API/Client Code Related elements
Thummalapenta & Xie 2008 [100] SpotWeb Doc. & Understand. Client Code Popularity
Stylos et al. 2009 [101] Jadeite Doc. & Understand. Web pages Popularity
Mileva et al. 2009 [103] Aktari Doc. & Understand. Client Projects Popularity
Long et al. 2009 [104] Altair Doc. & Understand. API Code Related elements

client applications, but assumes that API functions
of interest are called by the rest of the API, so the
approach indeed requires some sort of client code.
This is the same assumption made by SemDiff [90],
[95], for example (see Section 6).

Altair [104] works just like FRAN: it takes as input
an API function f and automatically proposes other
functions fi that are “related” to f , i.e., would be
added as “see-also” functions in f ’s documentation.
Altair computes relatedness by finding functions fi
that access the same primitive variables as f and that
use similar composite types as f (i.e., C structs and
records).

7.2 Empirical Findings

PopCon and Aktari were developed as proof of con-
cepts, and were not formally evaluated. Descriptions
of the tools include examples of applications to real
open-source systems, with illustrations of the type of
aggregated data and insights that can be obtained
with them. The Font Size feature of Jadeite [101] is as-
sessed as part of a small user study with seven student
participants. As the study shows, participants were
between two and three times faster at finding key
API classes when using Jadeite, compared to a control
group that used JavaDoc. In brief, the above projects
mostly focus on exploring different ways to provide
API usage information to developers. In contrast,
Thummalapenta and Xie assess the effectiveness of
their hotspot detection approach by comparing the
hotspot classes with benchmark classes, either ob-
tained from API documentation or from a comparable
approach developed by Viljamaa [107]. In the first
case they compare the hotspots detected in Log4j and
JUnit with the main classes described in tutorials for
these APIs, and indeed find that the main classes
detected by their approach are also the ones described
as “starting points” in the documentation. In the
second case the authors compare their results with
those of a case study of hotspots in JUnit conducted
by Viljamaa [107], but this comparison, focusing on
only one small system, provides few insights into the
effectiveness of the approach except to show that the
results are different.

Both the FRAN and Altair recommendation algo-
rithms are evaluated through benchmark-based ex-
periments. Specifically, the approaches are system-
atically applied and the results compared with an

independently-developed oracle. In both cases, the
performance of the approach is compared with dif-
ferent algorithms.

To evaluate FRAN, the authors apply it to 330
functions of an Apache project (the Apache Portability
Runtime, or APR) and calculate various sanity met-
rics, such as the number of functions returned. More
importantly, the authors analyze whether the func-
tions recommended as related to the seed function
correspond to the functions in the same module as the
query, based on a modular decomposition defined by
the project’s developers and specified in the documen-
tation. From this analysis they derive precision/recall
measures. The performance of FRAN is then com-
pared to two other algorithms, an association-rule
based approach (FRIAR) also developed by the au-
thors, and a topology analysis of software dependen-
cies algorithm originally proposed by Robillard [108],
[109] (even though this algorithm was not designed
to elicit programming patterns, and is only partially
re-implemented). The authors find that in the case of
APR, FRAN can provide recommendation sets that
match the modular decomposition with F1 values in
the range 0.03–0.5, depending on the query function.

For its evaluation of see-also recommendation, Al-
tair’s output is compared against the three approaches
mentioned above: Robillard’s Suade [108], FRAN, and
FRIAR [105]. Although the authors present detailed
results for a few selected queries, the evaluation does
not include project-wide precision/recall numbers.

The main insights that stem from the evaluation
of FRAN/FRIAR and Altair are that, as illustrated by
the case of the Apache Portable Runtime Library, a) API
analysis can recommend sets of related functions that
roughly map to the “natural” modular decomposition,
but b) the performance varies tremendously depend-
ing on the input seed, and c) there is little consistency
between approaches. Ultimately, one of the major
challenges for approaches that recommend “related”
functions is that in the general case, “relatedness”
remains subjective and context-sensitive.

8 CONCLUSIONS

This survey offers a systematic review of over 60
API property inference techniques along several di-
mensions: nature of the property inferred, goal of
the approach, mining technique, input data required,
chronology. Our classification and synthesis not only

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 24

provide a conceptual framework for describing and
comparing approaches, it also brings to light many
novel observations about the field.

First, we observe a lack of uniformity in termi-
nology and definitions for the properties inferred
by various approaches. In the literature, properties
inferred from APIs are referred to, almost interchange-
ably, as patterns, rules, specifications, or protocols. As
demonstrated by our review, there is also very little
uniformity in the definition of data structures for rep-
resenting properties inferred from APIs. All too often,
such properties are simply defined as the output of
an approach. Indeed, a close study of the properties
inferred by various approaches shows that it is very
difficult to decouple the definition of properties from
their generation technique and intended use. Even
the simplest types of properties, unordered usage pat-
terns and migration mappings, differ slightly between
techniques according to design and implementation
details. Even performance considerations can impact
the formalization of properties, such as the choice
of edges or nodes to represent events in finite-state
automata representations of sequential patterns.

With this survey, we hope to bring some order to
this complex field by proposing a simple terminology
for API properties and a basic conceptual framework
for comparing properties and the techniques that can
infer them. We found it very challenging to elaborate
a classification framework that would be at the same
time simple, conceptually coherent, and a good fit
for the variety of approaches surveyed. After many
trials and errors, we opted to work with the nature
of the property inferred as the dominant dimension.
This strategy works well: The approaches grouped
within a main category share many characteristics
besides the nature of the property inferred. We note
that, in particular, there exists a relation between the
type the property inferred, the nature of the input
data, and the mining techniques used to infer the
properties. That such relations would exist is per-
haps not surprising, but our review enables us to
document it more exactly. In particular, unordered
properties (Section 3), including mappings (Section 6),
are typically inferred from mining client data. When it
comes to inferring knowledge about order (Section 4),
dynamic approaches (or simulation) are most popular,
since flow-sensitive static analyses are still hard to
scale up to analyzing large programs. For behav-
ioral specifications (Section 5), symbolic execution and
some form of static program verification technique are
required.

No categorization is perfect and, inevitably, some
of the category definitions within our dimensions
of analysis lead to classifications that are not all
crisp. One particular challenge lies in the distinction
between sequential usage patterns and behavioral
specifications. In both cases a type of automaton
is inferred, and the distinction lies in whether the

approach focuses on the programming pattern (Sec-
tion 4) or the resultant state of the program (Section 5).
Another distinction is that sequential pattern mining
approaches are mostly data-mining-based whereas
behavioral specifications are derived from source code
analysis, but there again there are exceptions. Another
challenge consists in categorizing the few approaches
that cannot be strongly associated with any of the
first four types of properties. Within the “General
Information” category we notice two small but co-
hesive clusters of approaches. Nevertheless, because
development work in these areas is not as active as
in the other cases, we aggregate all remaining work
in a more generic category.

The survey also allows us to make hypotheses
about the engineering aspects most likely to have im-
pact on the results. For example, different techniques
to infer unordered usage patterns rely on very similar
data mining technology, and their performance is
usually determined through the careful configuration
of pre- and post-processing customizations, and in
particular in the choice of mining contexts and filter-
ing heuristics. In the case of sequential mining, much
more engineering goes directly into the inference pro-
cess. Similarly in the case of the work on behavioral
specification mining and migration mapping mining,
where we note important distinctions in the strategies
employed and their consequences.

Our survey also highlights interesting evolutionary
trends. For instance, Table 3 shows that in the early
days mining approaches for sequential patterns fo-
cused on finite-state machine models. Around 2007,
this situation changed, with a large number of ap-
proaches that focus on different kinds of representa-
tions, mostly simpler temporal rules or combinations
thereof. The goal of the techniques also seems to be
refined over the years, with more general goals in the
early years (Documentation, Specification Mining) fol-
lowed by a burst of work specifically on bug finding
in the last years. For unordered patterns the founda-
tional work also had an ill-defined goal, with subse-
quent work more focused. Interestingly for mappings
it is the nature of the problem that changed. The ear-
lier approaches focused on the narrower problem of
inferring refactorings, with later approaches tackling
the inference of more general migration mappings.

In closing, a careful study of property inference
techniques inevitably raises the question: what value
does knowledge about API properties provide? In-
tuitively, a valuable property should provide new
knowledge that can be acted upon by developers work-
ing with APIs. The criteria to infer new knowledge
implies a challenge: that of inferring non-obvious, or
surprising information. As illustrated by the seminal
work of Michail [8], many patterns automatically
mined from client code will be obvious to anyone
with a basic programming knowledge, and hence of
little value. To generate properties that can be acted

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 25

upon means not only to document properties in a
format fit for that purpose (e.g., machine-checkable for
bug detection approaches), but also with a sufficiently
high rate of true positives to be actually usable, either
by humans or by tools.

The basic way to assess the value of properties
is through empirical evaluation. Although most ap-
proaches we surveyed were the object of some form
of empirical evaluation, the thoroughness and style
of assessment varies greatly. In fact, we find the area
is lacking a systematic evaluation methodology. As
noted by Gabel and Su [46], “the very motivation
for the work, the lack of well documented specifi-
cations, makes validating the findings difficult and
subjective”. Even when documentation is available,
it is rarely expressed in a formal precise language,
and hence a matter of subjective interpretation. Em-
pirical comparisons to similar approaches are difficult,
partly because the tools rarely solve exactly the same
problem or produce directly comparable properties.
With this survey, we provide a foundation to orga-
nize and compare API property inference techniques,
which should facilitate the further development of
standardized evaluation techniques and artifacts.

APPENDIX

METHODOLOGY

We collected references based on a methodical re-
view of the literature. In a first phase we manually
reviewed the title and abstract of every single paper
published since the year 2000 (inclusive), in a number
of selected venues. The year 2000 was chosen to pro-
vide at least a comprehensive 10-year horizon on the
topic, and because we were not aware of any applied
work on API analysis prior to that date. We initially
reviewed the contents of the venues listed below. The
list includes the number of formally reviewed papers
(i.e., appearing in a table) found in each venue.

• The ACM/IEEE International Conference on Software
Engineering (ICSE): 14

• The ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE) and Joint
Meeting of the European Software Engineering Con-
ference and the The ACM SIGSOFT International Sym-
posium on the Foundations of Software Engineering
(ESEC/FSE): 10

• The ACM Transactions on Software Engineering and
Methodology: 1

• The IEEE Transactions on Software Engineering: 2
• The ACM SIGSOFT/SIGPLAN International Confer-

ence on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA): 1

• The European Conference on Object-Oriented Pro-
gramming (ECOOP): 3

• The IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE): 10

• The Working Conference on Reverse Engineering
(WCRE): 3

• The International Symposium on Software Testing and
Analysis (ISSTA): 4

• The ACM SIGACT-SIGPLAN Symposium on Princi-
ples of Programming Languages (POPL): 2

• The Automated Software Engineering: An Interna-
tional Journal (Springer): 0

We chose these venues to include mainstream publi-
cation venues in software engineering and venues we
knew had published work relevant to the survey. This
phase resulted in the identification of approximately
160 potentially relevant references.

In a second phase, each author individually re-
viewed a subset of the articles to assess its relevance,
categorize the type of properties inferred by the tech-
nique described in the paper, and study the list of ref-
erences to add additional relevant papers and review
them following an iterative process. This phase lead to
the identification of relevant publications in 13 addi-
tional venues. At this point we did not consider new
venues for methodical year-by-year review because all
new venues identified in the second phase were the
publication vehicle for a single relevant paper (except
in one case, with two relevant papers).

We then studied each paper in detail, removing
from the survey any paper that fell outside the scope
according to the definitions in Section 1.

ACKNOWLEDGMENTS

This work has been made possible by the gener-
ous support of the Alexander von Humboldt Foun-
dation, the German Federal Ministry of Education
and Research (BMBF) within EC SPRIDE and by the
Hessian LOEWE excellence initiative within CASED.
The authors are also grateful to Barthélémy Dagenais,
Michael Pradel and Thomas Zimmermann for their
valuable comments on this paper.

REFERENCES

[1] M. Robillard and R. DeLine, “A field study of API learning
obstacles,” Empirical Software Engineering, vol. 16, no. 6, pp.
703–732, 2011.

[2] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf,
“Bugs as deviant behavior: a general approach to inferring
errors in systems code,” in Proceedings of the 18th ACM
Symposium on Operating Systems Principles, 2001, pp. 57–72.

[3] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin,
“Dynamically discovering likely program invariants to sup-
port program evolution,” in Proceedings of the 21st ACM/IEEE
International Conference on Software Engineering, 1999, pp. 213–
224.

[4] R. Holmes, R. J. Walker, and G. C. Murphy, “Approximate
structural context matching: An approach to recommend
relevant examples,” IEEE Transactions on Software Engineering,
vol. 32, no. 12, pp. 952–970, 2006.

[5] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “MAPO: min-
ing and recommending API usage patterns,” Proceedings of
the 23rd European Conference on Object-Oriented Programming,
p. 318–343, 2009.

[6] N. Bjørner, A. Browne, and Z. Manna, “Automatic Genera-
tion of Invariants and Intermediate Assertions,” Theoretical
Computer Science, vol. 173, pp. 49–87, 1997.

[7] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns
in property specifications for finite-state verification,” in
Proceedings of the 21st ACM/IEEE International Conference on
Software Engineering, 1999, pp. 411–420.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 26

[8] A. Michail, “Data mining library reuse patterns in user-
selected applications,” in Proceedings of the 14th IEEE Inter-
national Conference on Automated Software Engineering, 1999,
pp. 24–33.

[9] ——, “Data mining library reuse patterns using generalized
association rules,” in Proceedings of the 22nd ACM/IEEE Inter-
national Conference on Software Engineering, 2000, pp. 167–176.

[10] Z. Li and Y. Zhou, “PR-Miner: automatically extracting im-
plicit programming rules and detecting violations in large
software code,” in Proceedings of the Joint Meeting of the 10th
European Software Engineering Conference and 13th ACM SIG-
SOFT International Symposium on the Foundations of Software
Engineering, 2005, pp. 306–315.

[11] B. Livshits and T. Zimmermann, “DynaMine: finding com-
mon error patterns by mining software revision histories,” in
Proceedings of the Joint Meeting of the 10th European Software
Engineering Conference and 13th ACM SIGSOFT International
Symposium on the Foundations of Software Engineering, 2005,
pp. 296–305.

[12] M. Bruch, T. Schäfer, and M. Mezini, “FrUiT: IDE support
for framework understanding,” in Proceedings of the 2006
OOPSLA Eclipse Technology eXchange, 2006, pp. 55–59.

[13] M. Bruch, M. Monperrus, and M. Mezini, “Learning from ex-
amples to improve code completion systems,” in Proceedings
of the Joint Meeting of the 7th European Software Engineering
Conference and 7th ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering, 2009, pp. 213–222.

[14] M. Monperrus, M. Bruch, and M. Mezini, “Detecting missing
method calls in Object-Oriented software,” in Proceedings of
the 24 European Conference on Object-Oriented Programming,
2010, pp. 2–25.

[15] M. P. Robillard, R. J. Walker, and T. Zimmermann, “Recom-
mendation systems for software engineering,” IEEE Software,
vol. 27, no. 4, pp. 80–86, 2010.

[16] R. Srikant and R. Agrawal, “Mining generalized association
rules,” in Proceedings of the 21st International Conference on Very
Large Data Bases. Morgan Kaufmann, 1995, pp. 407–419.

[17] R. Agrawal and R. Srikant, “Fast algorithms for mining
association rules in large databases,” in Proceedings of 20th
International Conference on Very Large Data Bases. Morgan
Kaufmann, 1994, pp. 487–499.

[18] G. I. Webb and S. Zhang, “Beyond association rules: Gen-
eralized rule discovery,” in In Knowledge Discovery and Data
Mining. Kluwer Academic Publishers, 2003.

[19] G. Grahne and J. Zhu, “Efficiently using prefix-trees in
mining frequent itemsets,” in Proceedings of the Workshop on
Frequent Itemset Mining Implementations, 2003.

[20] G. Ammons, R. Bodı́k, and J. R. Larus, “Mining specifi-
cations,” in Proceedings of the 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 2002, pp.
4–16.

[21] J. Whaley, M. C. Martin, and M. S. Lam, “Automatic extrac-
tion of object-oriented component interfaces,” in Proceedings
of the ACM International Symposium on Software Testing and
Analysis, 2002, pp. 218—228.

[22] J. Yang and D. Evans, “Automatically inferring temporal
properties for program evolution,” in Proceedings of the IEEE
International Symposium on Software Reliability Engineering,
2004, pp. 340–351.

[23] ——, “Dynamically inferring temporal properties,” in Pro-
ceedings of the 5th ACM SIGPLAN-SIGSOFT Workshop on
Program analysis for Software Tools and Engineering, 2004, pp.
23–28.

[24] R. Alur, P. Černý, P. Madhusudan, and W. Nam, “Synthesis
of interface specifications for Java classes,” in Proceedings of
the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2005, pp. 98–109.

[25] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman, “Jungloid
mining: helping to navigate the API jungle,” in Proceedings
of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2005, p. 48–61.

[26] M. Salah, T. Denton, S. Mancoridis, A. Shokoufandeh, and
F. I. Vokolos, “Scenariographer: a tool for reverse engineering
class usage scenarios from method invocation sequences,” in
Proceedings of the 21st IEEE International Conference on Software
Maintenance, 2005, pp. 155– 164.

[27] W. Weimer and G. C. Necula, “Mining temporal specifica-
tions for error detection,” in Proceedings of the 11th Interna-
tional Conference on Tools and Algorithms for the Construction
and Analysis of Systems, 2005, pp. 461–476.

[28] M. Acharya and T. Xie, “Mining API error-handling specifi-
cations from source code,” Proceedings of the 12th International
Conference on Fundamental Approaches to Software Engineering,
p. 370–384, 2009.

[29] M. Acharya, T. Xie, and J. Xu, “Mining interface specifications
for generating checkable robustness properties,” in Proceed-
ings of the 17th IEEE International Symposium on Software
Reliability Engineering, 2006, pp. 311–320.

[30] V. Dallmeier, C. Lindig, A. Wasylkowski, and A. Zeller,
“Mining object behavior with ADABU,” in Proceedings of the
2006 International Workshop on Dynamic Systems Analysis, 2006,
pp. 17–24.

[31] C. Liu, E. Ye, and D. J. Richardson, “LtRules: an automated
software library usage rule extraction tool,” in Proceedings
of the 28th ACM/IEEE International Conference on Software
Engineering, 2006, pp. 823–826.

[32] ——, “Software library usage pattern extraction using a
software model checker,” Proceedings of the 21st IEEE/ACM
International Conference on Automated Software Engineering,
2006.

[33] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre,
“Software verification with BLAST,” in Proceedings of the
10th international conference on Model checking software, ser.
SPIN’03. Berlin, Heidelberg: Springer-Verlag, 2003, pp.
235–239. [Online]. Available: http://portal.acm.org/citation.
cfm?id=1767111.1767128

[34] D. Lo and S. Khoo, “SMArTIC: towards building an accurate,
robust and scalable specification miner,” in Proceedings of the
14th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2006, pp. 265–275.

[35] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das, “Perra-
cotta: mining temporal API rules from imperfect traces,” in
Proceedings of the 28th ACM/IEEE International Conference on
Software Engineering, 2006, pp. 282–291.

[36] M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining API patterns
as partial orders from source code: from usage scenarios to
specifications,” in Proceedings of the 6th Joint Meeting of the Eu-
ropean Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, 2007, pp.
25–34.

[37] H. Kagdi, M. L. Collard, and J. I. Maletic, “An approach
to mining call-usage patterns with syntactic context,” in
Proceedings of the 22nd IEEE/ACM International Conference on
Automated Software Engineering, 2007, pp. 457–460.

[38] J. Quante and R. Koschke, “Dynamic protocol recovery,” in
Proceedings of the Working Conference on Reverse Engineering,
2007, pp. 219–228.

[39] M. K. Ramanathan, A. Grama, and S. Jagannathan, “Static
specification inference using predicate mining,” in Proceed-
ings of the 2007 ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2007, pp. 123–134.

[40] ——, “Path-sensitive inference of function precedence pro-
tocols,” in Proceedings of the 29th ACM/IEEE International
Conference on Software Engineering, 2007, pp. 240–250.

[41] S. Shoham, E. Yahav, S. Fink, and M. Pistoia, “Static speci-
fication mining using automata-based abstractions,” in Pro-
ceedings of the 2007 ACM International Symposium on Software
Testing and Analysis, 2007, pp. 174–184.

[42] S. Thummalapenta and T. Xie, “Parseweb: a programmer
assistant for reusing open source code on the web,” in
Proceedings of the 22nd IEEE/ACM International Conference on
Automated Software Engineering, 2007, p. 204–213.

[43] A. Wasylkowski, A. Zeller, and C. Lindig, “Detecting object
usage anomalies,” in Proceedings of the 6th Joint Meeting of the
European Software Engineering Conference and the ACM SIG-
SOFT International Symposium on the Foundations of Software
Engineering, 2007, pp. 35–44.

[44] N. Walkinshaw, K. Bogdanov, M. Holcombe, and S. Salahud-
din, “Reverse engineering state machines by interactive
grammar inference,” in Proceedings of the Working Conference
on Reverse Engineering, 2007, pp. 209–218.

[45] N. Walkinshaw and K. Bogdanov, “Inferring finite-state mod-
els with temporal constraints,” in Proceedings of the 23rd

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 27

IEEE/ACM International Conference on Automated Software En-
gineering, 2008, pp. 248–257.

[46] M. Gabel and Z. Su, “Javert: fully automatic mining of gen-
eral temporal properties from dynamic traces,” in Proceedings
of the 16th ACM SIGSOFT International Symposium on the
Foundations of Software Engineering, 2008, pp. 339–349.

[47] D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic genera-
tion of software behavioral models,” in Proceedings of the 30th
ACM/IEEE International Conference on Software Engineering,
2008, pp. 501–510.

[48] D. Lo, S. C. Khoo, and C. Liu, “Mining temporal rules for
software maintenance,” Journal of Software Maintenance and
Evolution: Research and Practice, vol. 20, no. 4, pp. 227–247,
2008.

[49] S. Sankaranarayanan, F. Ivanči, and A. Gupta, “Mining li-
brary specifications using inductive logic programming,” in
Proceedings of the 13th ACM/IEEE International Conference on
Software Engineering, 2008, pp. 131–140.

[50] H. Zhong, L. Zhang, and H. Mei, “Inferring specifications of
object oriented APIs from API source code,” in Proceedings of
the 15th Asia-Pacific Software Engineering Conference, 2008, pp.
221–228.

[51] M. Gabel and Z. Su, “Symbolic mining of temporal speci-
fications,” in Proceedings of the 30th ACM/IEEE International
Conference on Software Engineering, 2008, pp. 51–60.

[52] D. Lo, G. Ramalingam, V. P. Ranganath, and K. Vaswani,
“Mining quantified temporal rules: Formalism, algorithms,
and evaluation,” in Proceedings of the Working Conference on
Reverse Engineering, 2009, pp. 62–71.

[53] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi,
and T. N. Nguyen, “Graph-based mining of multiple object
usage patterns,” in Proceedings of the the 7th Joint Meeting of
the European Software Engineering conference and the ACM SIG-
SOFT Symposium on the Foundations of Software Engineering,
2009, pp. 383–392.

[54] M. Pradel and T. R. Gross, “Automatic generation of object
usage specifications from large method traces,” in Proceedings
of the 24th IEEE/ACM International Conference on Automated
Software Engineering, 2009, pp. 371––382.

[55] M. Pradel, “Dynamically inferring, refining, and checking
API usage protocols,” in Proceeding of the 24th ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages
and Applications—Companion Volume, 2009, pp. 773–774.

[56] S. Thummalapenta and T. Xie, “Mining exception-handling
rules as sequence association rules,” in Proceedings of the 31st
ACM/IEEE International Conference on Software Engineering,
2009, pp. 496–506.

[57] ——, “Alattin: Mining alternative patterns for detecting ne-
glected conditions,” in Proceedings of the 24th IEEE/ACM In-
ternational Conference on Automated Software Engineering, 2009,
p. 283–294.

[58] A. Wasylkowski and A. Zeller, “Mining temporal specifica-
tions from object usage,” in Proceedings of the 24th IEEE/ACM
International Conference on Automated Software Engineering,
2009, pp. 295–306.

[59] H. Zhong, L. Zhang, T. Xie, and H. Mei, “Inferring resource
specifications from natural language API documentation,” in
Proceedings of the 24th IEEE/ACM International Conference on
Automated Software Engineering, 2009, pp. 307–318.

[60] M. Gabel and Z. Su, “Online inference and enforcement of
temporal properties,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering, 2010, pp. 15–
24.

[61] N. Gruska, A. Wasylkowski, and A. Zeller, “Learning from
6,000 projects: Lightweight cross-project anomaly detection,”
in Proceedings of the 19th ACM International Symposium on
Software Testing and Analysis, 2010, pp. 119–130.

[62] N. A. Naeem and O. Lhoták, “Typestate-like analysis of
multiple interacting objects,” in Proceedings of the ACM In-
ternational Conference on Object-Oriented Programming Systems,
Languages and Applications, 2008, pp. 347–366.

[63] E. Bodden, P. Lam, and L. Hendren, “Partially evaluating
finite-state runtime monitors ahead of time,” ACM Transac-
tions on Programming Languages and Systems, 2012, to appear.

[64] C. Lee, F. Chen, and G. Roşu, “Mining parametric speci-
fications,” in Proceeding of the 33rd ACM/IEEE International
Conference on Software Engineering, 2011, pp. 591–600.

[65] H. Kagdi, M. L. Collard, and J. I. Maletic, “Comparing
approaches to mining source code for call-usage patterns,” in
Proceedings of the 4th International Workshop on Mining Software
Repositories, 2007.

[66] J. Wang and J. Han, “BIDE: Efficient mining of frequent closed
sequences,” in Proceedings of the 20th International Conference
on Data Engineering, 2004, pp. 79–90.

[67] A. V. Raman and J. D. Patrick, “The sk-strings method for
inferring PFSA,” in Proceedings of the Workshop on Automata
Induction, Grammatical Inference and Language Acquisition at the
14th International Conference on Machine Learning, 1997.

[68] P. Cousot and R. Cousot, “Abstract interpretation: A unified
lattice model for static analysis of programs by construction
or approximation of fixpoints,” in Proceedings of the 4th ACM
Symposium on the Principles of Programming Languages, 1977,
pp. 238–252.

[69] J. H. Reif, “Universal games of incomplete information,” in
Proceedings of the ACM Symposium on Theory of Computing,
1979, pp. 288–308.

[70] D. Angluin, “Learning regular sets from queries and coun-
terexamples,” Information and Computation/Information and
Control, vol. 75, pp. 87–106, 1987.

[71] R. Vallée-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam,
and V. Sundaresan, “Soot - a Java bytecode optimization
framework,” in Proceedings of the 1999 Conference of the Centre
for Advanced Studies on Collaborative Research, 1999, pp. 13–.

[72] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella, NuSMV
2: An OpenSource Tool for Symbolic Model Checking, 2002.

[73] P. Dupont, B. Lambeau, C. Damas, and A. van Lamsweerde,
“The QSM algorithm and its application to software behavior
model induction,” Applied Artificial Intelligence, vol. 22, no.
1&2, pp. 77–115, 2008.

[74] V. Dallmeier, N. Knopp, C. Mallon, S. Hack, and A. Zeller,
“Generating test cases for specification mining,” in Proceed-
ings of the ACM International Symposium on Software Testing
and Analysis, 2010, pp. 85–96.

[75] D. Lo and S.-C. Khoo, “QUARK: Empirical assessment of
automaton-based specification miners,” in Proceedings of the
13th Working Conference on Reverse Engineering, 2006, pp. 51–
60.

[76] M. Pradel, P. Bichsel, and T. R. Gross, “A framework for the
evaluation of specification miners based on finite state ma-
chines,” in Proceedings of the 26th IEEE International Conference
on Software Maintenance, 2010, pp. 1–10.

[77] A. W. Biermann and J. A. Feldman, “On the synthesis of
finite-state machines from samples of their behavior,” IEEE
Transactions on Computers, vol. 21, pp. 592–597, 1972.

[78] B. Meyer, “Applying ’Design by Contract’,” IEEE Computer,
vol. 25, pp. 40–51, 1992.

[79] C. Flanagan and K. R. M. Leino, “Houdini, an annotation
assistant for ESC/Java,” in Proceedings of the International
Symposium of Formal Methods Europe, 2001, pp. 500–517.

[80] N. Tillmann, F. Chen, and W. Schulte, “Discovering likely
method specifications,” Proceedings of the 8th International
Conference on Formal Engineering, p. 717–736, 2006.

[81] R. P. L. Buse and W. R. Weimer, “Automatic documentation
inference for exceptions,” in Proceedings of the ACM Inter-
national Symposium on Software Testing and Analysis, 2008, p.
273–282.

[82] J. Henkel and A. Diwan, “Discovering algebraic specifications
from Java classes,” Proceedings of the 17th European Conference
on Object-Oriented Programming, 2003.

[83] J. Henkel, C. Reichenbach, and A. Diwan, “Discovering doc-
umentation for Java container classes,” IEEE Transactions on
Software Engineering, vol. 33, no. 8, pp. 526—543, 2007.

[84] J. Guttag and J. Horning, “The algebraic specification of
abstract data types,” Acta informatica, vol. 10, no. 1, pp. 27–52,
1978.

[85] C. Ghezzi, A. Mocci, and M. Monga, “Synthesizing inten-
sional behavior models by graph transformation,” in 31st
ACM/IEEE International Conference on Software Engineering,
2009, pp. 430–440.

[86] K. R. M. Leino, J. B. Saxe, and R. Stata, “Checking Java
programs via guarded commands,” in Proceedings of the 13th
European Conference on Object-Oriented Programming, 1999, pp.
110–111.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 28

[87] J. C. King, “Symbolic execution and program testing,” Com-
munications of the ACM, vol. 19, pp. 385–394, July 1976.

[88] M. W. Godfrey and L. Zou, “Using origin analysis to detect
merging and splitting of source code entities,” IEEE Transac-
tions on Software Engineering, vol. 31, no. 2, pp. 166–181, 2005.

[89] M. Kim, D. Notkin, and D. Grossman, “Automatic inference
of structural changes for matching across program versions,”
in Proceedings of the 29th ACM/IEEE International Conference on
Software Engineering, 2007, pp. 333–343.

[90] B. Dagenais and M. P. Robillard, “Recommending adaptive
changes for framework evolution,” ACM Transactions of Soft-
ware Engineering and Methodology, vol. 20, no. 4, 2011.

[91] D. Dig, C. Comertoglu, D. Marinov, R. Johnson, and
D. Thomas, “Automated detection of refactorings in evolving
components,” in Proceedings of the 20th European Conference on
Object-Oriented Programming, 2006, pp. 404–428.

[92] Z. Xing and E. Stroulia, “API-evolution support with Diff-
CatchUp,” IEEE Transactions on Software Engineering, p.
818–836, 2007.

[93] ——, “Differencing logical UML models,” Automated Software
Engineering, vol. 14, no. 2, pp. 215–259, 2007.

[94] T. Schäfer, J. Jonas, and M. Mezini, “Mining framework usage
changes from instantiation code,” in Proceedings of the 30th
ACM/IEEE International Conference on Software Engineering,
2008, pp. 471–480.

[95] B. Dagenais and M. P. Robillard, “Recommending adaptive
changes for framework evolution,” in Proceedings of the 30th
ACM/IEEE International Conference on Software Engineering,
2008, p. 481–490.

[96] W. Wu, Y. G. Guéhéneuc, G. Antoniol, and M. Kim, “AURA:
a hybrid approach to identify framework evolution,” in
Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering, 2010, p. 325–334.

[97] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang,
“Mining API mapping for language migration,” in Proceed-
ings of the 32nd ACM/IEEE International Conference on Software
Engineering, 2010, pp. 195—204.

[98] H. Nguyen, T. Nguyen, G. Wilson Jr, A. Nguyen, M. Kim,
and T. Nguyen, “A graph-based approach to API usage
adaptation,” in Proceedings of the 25th ACM International Con-
ference on Object-Oriented Programming Systems, Languages and
Applications, 2010, pp. 302—321.

[99] D. Dig and R. Johnson, “How do APIs evolve? A story of
refactoring,” Journal of Software Maintenance and Evolution:
Research and Practice, vol. 18, no. 2, pp. 83–107, 2006.

[100] S. Thummalapenta and T. Xie, “SpotWeb: detecting frame-
work hotspots and coldspots via mining open source code
on the web,” in Proceedings of the 23rd IEEE/ACM International
Conference on Automated Software Engineering, 2008, p. 327–336.

[101] J. Stylos, A. Faulring, Z. Yang, and B. A. Myers, “Improving
API documentation using API usage information,” in Pro-
ceedings of the 2009 IEEE Symposium on Visual Languages and
Human-Centric Computing, 2009, pp. 119–126.

[102] R. Holmes and R. J. Walker, “Informing Eclipse API produc-
tion and consumption,” in Proceedings of the 2007 OOPSLA
Workshop: Eclipse Technology eXchange, 2007, pp. 70–74.

[103] Y. M. Mileva, V. Dallmeier, M. Burger, and A. Zeller, “Mining
trends of library usage,” in Proceedings of the Joint ERCIM
Workshop on Software Evolution and International Workshop on
Principles of Software Evolution, 2009, pp. 57–62.

[104] F. Long, X. Wang, and Y. Cai, “API hyperlinking via structural
overlap,” in Proceedings of the 7th Joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering, 2009, pp.
203–212.

[105] Z. M. Saul, V. Filkov, P. Devanbu, and C. Bird, “Recommend-
ing random walks,” in Proceedings of the 6th Joint Meeting of
the European Software Engineering Conference and the ACM SIG-
SOFT Symposium on the Foundations of Software Engineering,
2007, pp. 15–24.

[106] J. M. Kleinberg, “Authoritative sources in a hyperlinked
environment,” Journal of The ACM, vol. 46, pp. 604–632, 1999.

[107] J. Viljamaa, “Reverse engineering framework reuse inter-
faces,” in Proceedings of the Joint Meeting of the 9th European
Software Engineering Conference and 11th ACM SIGSOFT Inter-
national Symposium on the Foundations of Software Engineering,
2003, pp. 217–226.

[108] M. P. Robillard, “Automatic generation of suggestions for
program investigation,” in Proceedings of the Joint Meeting
of the 10th European Software Engineering Conference and 13th
ACM SIGSOFT International Symposium on the Foundations of
Software Engineering, 2005, pp. 11–20.

[109] ——, “Topology analysis of software dependencies,” ACM
Transactions on Software Engineering and Methodology, vol. 17,
no. 4, 2008.

Martin P. Robillard is an Associate Profes-
sor of Computer Science at McGill University.
He received his Ph.D. and M.Sc. in Com-
puter Science from the University of British
Columbia and a B.Eng. from École Polytech-
nique de Montréal.

Eric Bodden heads the Secure Software
Engineering Group at the European Cen-
ter for Security and Privacy by Design (EC
SPRIDE) in Darmstadt, Germany. Previously,
Eric was a Post-doctoral Researcher at the
Software Technology Group of the Technis-
che Universität Darmstadt. He pursued his
Ph.D. work with the Sable Research Group
at McGill University, under the supervision of
Laurie Hendren. His thesis was on evaluating
runtime monitors ahead of time.

David Kawrykow received his M.Sc. in Computer Science from
McGill University.

Mira Mezini is a professor of computer sci-
ence at Technische Universität Darmstadt,
Germany, where she heads the Software
Technology Lab. She received her Ph.D. in
Computer Science from the University of
Siegen, Germany and her Diploma in Com-
puter Science from University of Tirana, Al-
bania.

Tristan Ratchford is a software engineer
at the IBM T.J. Watson Research Center in
Cambridge, MA. He Received his BA in Eco-
nomics and Computer Science and his M.Sc
of Computer Science at McGill University.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

