Public-Key Encryption with Non-interactive Opening and its
Applications

Contributors Inc.

ECRYPT MAYA WG1

Abstract. We reconsider proof soundness for public-key encryption with non-interactive open-
ing (PKENO) proposing new definitions that are stronger than those considered so far. We give
a taxonomy of all definitions and demonstrate them to be satisfiable. Moreover, we show that
PKENO is equivalent to another primitive: robust non-interactive threshold public-key encryp-
tion (TPKE). Using this result, we construct an efficient PKENO scheme that does not make
use of pairings.

Keywords: public-key encryption, non-interactive proofs, random oracle model, standard
model.

1 Introduction

Public-key encryption allows a receiver Bob to generate a pair of private and a public keys
(skp, pkp). Using pkp, anyone can encrypt messages that can only be decrypted by Bob
thanks to the knowledge of skp. The primitive public-key encryption with non-interactive
opening (PKENO) allows Bob to prove to a verifier Alice what the result of decrypting a
given ciphertext C' produced under pkp is. By using PKENO, Bob can do so convincingly
and without interaction. More precisely, Bob runs a proving algorithm Prove on inputs its
secret key skp and the intended ciphertext C, thereby generating a proof 7. On the other
hand, Alice runs a verification algorithm Ver on inputs Bob’s public key pkg, ciphertext C,
a plaintext m, and an opening proof 7. The verification algorithm outputs 1 if C' was indeed
an encryption of m, and 0 otherwise. An interesting feature of PKENO is that Bob can
also convince Alice of the fact that a given ciphertext C is inwvalid, i.e. it is rejected by the
decryption algorithm.

PKENO turns out to be a useful primitive for protocol design, as we illustrate with the
following examples.

SECURE MESSAGE TRANSMISSION WITH PKENO. One of the classical ways to realize secure
message transmission with non-repudiation in a public-key setting is to let the sender encrypt
the message and then sign the ciphertext, i.e. the so-called encrypt-then-sign paradigm [?]
in which the resulting message is of the form Sign(sks, Enc(pk,, pks||m)) with sk, being the
signing key of the sender and pk, the encryption key of the receiver. If the sender uses some
IND-CCA2 secure PKE scheme the receiver will only be able to provide a non-repudiable
proof for the origin of the received ciphertext, i.e. the sender’s signature. Replacing PKE
with PKENO would lead to the additional ability of the receiver to prove the origin for the
decrypted message. Interestingly, this is equivalent to using the sign-then-encrypt paradigm
[?] where the message is first signed and then encrypted together with the signature us-
ing some IND-CCA2 secure PKE scheme. Moreover, using PKENO in the encrypt-then-sign
construction would additionally provide non-repudiable proof of the destination through the
corresponding soundness proof of the PKENO scheme.

PKENO IN DISTRIBUTED KEY GENERATION. The idea behind distributed key generation
(DKG) in [?], which improves upon [?], is to let users agree on a public key pk such that
the corresponding secret key sk is distributed amongst the users Uy, ..., U, in form of secret
shares s1, ..., s,. In these protocols sk has usually the form f(sky,...,sk;,) for some function
f and individual secrets sk; chosen by U;. During the protocol execution each U; must securely
transmit a share ss; of sk; accompanied with the corresponding signature o; to all other users.
The verifiability of the process allows each receiver U; to check whether some received share
ss; from U; is valid or not. If not this user can complain against the sender U; by publicizing
(ssj,0;). In this context PKENO offers an alternative realization, i.e. instead of signing the
share ss; and securely transmitting it together with the signature o; to the users it would
suffice for each sender to transmit authenticated PKENO-based encryption of ss;. In this way
any receiver U; can complain about U; by presenting the decrypted share ss; together with
the PKENO proof for the valid decryption.

PKENO AND COMMITMENT SCHEMES. PKENO implies a computationally secure commit-
ment scheme in which a (possibly malicious) sender generates (sk,pk). In order to commit
the sender simply computes the PKENO ciphertext C' = Enc(pk, m). The decommitment is
given by (m,) where m = Prove(sk, C). The computational hiding property follows from the
semantic security whereas the computational binding property relies on the computational
proof soundness of the secure PKENO scheme.

GROUP SIGNATURES. The most common way to achieve anonymity in group signatures is the
following: a member first produces a (non-anonymous) signature which he then encrypts
under the opener’s public key while adding a proof of well-formedness. If the encrypted
message contains information to identify the signer then a group signature is easily opened
by decrypting the ciphertext it contains.

In the security model for dynamic group signatures by Bellare et al. [?], the opening
authority is required to give a proof that it traced the correct user. Using PKENO rather
than plain encryption enables the opener to do so. In the game defining anonymity of group
signatures, an adversary is provided an opening oracle which opens a signature of the adver-
sary’s choice and outputs a proof of correctness of opening. IND-CCPA (Definition 1) of the
employed PKENO scheme (together with simulation-sound zero knowledge of the proof of
well-formedness) guarantees that an adversary cannot distinguish signatures of two different
users.

Non-frameability, another security notion in [?], states that even a collusion comprising
the issuer (who enrolls members with the group) and the opener cannot produce a proof that
a signature opens to a user who did not produce it. Note that non-frameability does not rely
on the security of the PKENO scheme but rather on that of the underlying signatures: it
is required that the message decrypted by the opener can only have been generated by the
accused user.

1.1 Owur Contributions

DirricurTy OF BUILDING PKENO. [?] showed that a PKENO can be built out of any
Identity-Based Encryption (IBE) scheme. However IBE is a very restricted cryptographic
functionality, so it is interesting to see whether PKENO can be realized without resorting to all
the functionalities provided by IBE (such as key extraction). In [?] the authors mentioned that
PKENO can be also based upon a seemingly weaker primitive, called public-key encryption
with witness-recovering decryption (PKEWR) [?]. In a PKEWR scheme, the receiver — Bob is

able to recover the random coins 7 used to encrypt a ciphertext C'. Damgard et al. proposed
to use the r as the proof, and verification proceeds by re-encrypting C’' = Enc(pkp,m;r) and
checking whether C' = C’, accepting/rejecting the proof accordingly. However, this approach
can only be guaranteed to be sound for wvalid ciphertexts, i.e. ciphertexts that have been
output by the encryption algorithm. But, in particular invalid ciphertexts do not fall into
this set. As a consequence, as it was also stated elsewhere in [?], for invalid ciphertexts the
concept “the coins used to construct C” might be a not well defined concept. Indeed, we show
in Section 7?7 how the straightforward construction of PKENO out of PKEWE fails to provide
security. This then motivates the search for new generic/concrete constructions for PKENO.

NON-INTERACTIVE THRESHOLD ENCRYPTION IMPLIES PKENO. Somewhat surprisingly, we
show that robust non-interactive threshold public-key encryption (TPKE) implies PKENO.
TPKE schemes distribute the ability to decrypt among several parties. The private decryption
key is shared among n servers such that at least t servers are needed for decryption. If
the combiner wishes to decrypt some ciphertext C, it sends C' to the decryption servers.
After receiving at least ¢ partial decryption shares from the servers, the combiner is able to
reconstruct the plaintext from these shares. A robust TPKE [?,?] provides the additional
property that whenever the decryption of valid ciphertexts fails, the combiner can sieve out
bad decryption shares and reveal the identity of the server having sent an invalid partial
decryption.

STRONGER SOUNDNESS DEFINITIONS. The main motivation for the introduction of PKENO
was protocol design: some player sends a message to Bob securely by encrypting it under his
public key. If Bob finds out (possibly at some later time) that the message is somehow “in-
valid”, he can convince other participants of this fact without getting back to the (eventually)
dishonest sender. Proof soundness ensures that Bob can do so convincingly; in particular, it
states that if a ciphertext C encrypts a message m, then Bob cannot make a proof for C
being an encryption of a different message m’. In the game that formally defines this security
notion, the challenger produces a pair public and secret key, hands it to the adversary, who
outputs a message of which he receives an encryption C'. The adversary wins if he outputs a

different message and makes a valid proof that this was the opening.

In real-world applications, the keys are usually chosen by the users themselves; which in
the case of proof soundness would be the adversary. It seems thus natural to let the adversary
choose the keys in the security experiment to reflect this fact. We define two stronger flavors
of proof soundness, where the first one is analogous to the original definition given by [?],
but letting the adversary choose his keys; the second one states that no adversary can find a
public key, a ciphertext and two messages and a proof of opening for each of them.

Note that the strengthening of proof soundness also makes sense for the other applications
given above; in particular for group signatures, the opener could choose his opening key
and add corresponding information to the public parameters. Strong proof soundness then
guarantees non-frameability even in this setting.

2 Preliminaries

In this section we review the definitions and tools required to present our results. We start
by fixing some notation.

2.1 Notation

If = is a string then |x| denotes its length, while if S is a set then |S| denotes its size. If k is a

natural number, then 1% denotes the string of k ones. If S is a set then s, ..., sy &£ 8 denotes
the operation of picking n elements s; of S independently and uniformly at random. We write
A(x,y,...) to indicate that A is an algorithm with inputs x,y,... and by z «— A(z,y,...) we
denote the operation of running .4 with inputs (x,y,...) and letting z be the output. We use
the abbreviation PPT to refer to a probabilistic polynomial-time algorithm [?].

2.2 Public Key Encryption Scheme with Non-interactive Opening
A PKENO scheme PKENO = (Gen, Enc, Dec, Prove, Ver) is a tuple of five PPT algorithms:

— Gen is a probabilistic algorithm taking as input a security parameter 1. It returns a public
key pk and a secret key sk. The public key includes the description of the set of plaintexts
M.

— Enc is a probabilistic algorithm taking as inputs a public key pk and a message m € M.
It returns a ciphertext C.

— Dec is a deterministic algorithm that takes as inputs a ciphertext C' and a secret key sk.
It returns a message m € My, or the special symbol L meaning that C' is invalid.

— Prove is a probabilistic algorithm taking as inputs a ciphertext C' and a secret key sk. It
returns a proof .

— Ver is a deterministic algorithm taking as inputs a public key pk, a ciphertext C, a plaintext
m and a proof 7. It returns a result res € {0,1} meaning accepted and rejected proof
respectively. In particular, 1 « Ver(pk, C, L,) must be interpreted as the verifier being
convinced that C is an invalid ciphertext.

Correctness requires that for an honestly generated key pair (pk, sk) < Gen(1¥) the following
holds:

— For all messages m € M, we have Pr [Dec(Enc(pk, m)) = m] =1
— For all ciphertexts C' we have

Pr[1 < Ver(pk, C, Dec(sk,C), Prove(sk,C))] =1 .

Security of PKENO is defined by indistinguishability under chosen-ciphertext and prove at-
tacks (IND-CCPA) and proof soundness [?,?]. We formally define both notions and propose
strengthened definitions for proof soundness.

Definition 1 (IND-CCPA security). Let us a consider the following game between a chal-
lenger and an adversary A:

Setup The challenger runs Gen(1¥) and gives pk to A.

Phase 1 The adversary issues queries of the form.:
a) decryption query to an oracle Dec(sk,-);
b) proof query to an oracle Prove(sk,).
These queries may be asked adaptively, that is, they may depend on the answers to previous
queries.

Challenge At some point, A outputs two equal-length messages mg,m1 € Mpy. The chal-
lenger chooses a random bit 3 and returns C* < Enc(pk,mg).

4

Phase 2 As Phase 1, except that neither decryption nor proof queries on C* are allowed.
Guess The adversary A outputs a guess 3’ € {0,1}. The adversary wins the game if 3 = 3.

Define A’s advantage as Advgf;,\(jg%A(lk) = |Pr[#’ = B8] — 1/2|. A scheme PKENO is called
indistinguishable against chosen-ciphertext and prove attacks (IND-CCPA secure) if for every
PPT adversary A, Advgf'EcNC%%A(-) is negligible.

Definition 2 (Proof Soundness). Consider the following game between a challenger and
an adversary A:

Stage 0 Gen(1%) outputs a pair of keys (pk, sk). Adversary A is given (pk, sk).
Stage 1 The adversary chooses a message m € Myy.
Stage 2 The challenger computes C' <+ Enc(pk, m) and gives it to A which returns (m',«').

A’s advantage is defined as the probability
Advgﬁgﬁf;i(lk) = Pr [1 « Ver(pk,C,m/,7") A m' #m] .
A scheme PKENO is proof sound if for every PPT adversary A its advantage is negligible.

Below, we strengthen the previous definition of proof soundness [?,?] by giving the adver-
sary full control over the choice of the public key.

Definition 3 (Strong Proof Soundness). Consider the following game between a chal-
lenger and an adversary A:

Stage 1 A(1%) outputs a public key pk and a message m € My,
Stage 2 The challenger computes C' «— Enc(pk,m) and gives it to A, which returns (m',=").

A’s advantage is defined as the probability

Advﬁﬁ?ﬁgﬁd(lk) :=Pr[1 — Ver(pk,C,m/,7') A m’ #m] .
A scheme PKENO 1is strongly proof sound if for every PPT adversary A its advantage is
negligible.

An alternative strong notion of proof soundness (with adversarially chosen keys) follows the
idea that for any ciphertext one can only find one valid message-proof pair. We call this the
committing property:

Definition 4 (Committing Property). A scheme PKENO is strongly committing if for
every adversary A, that on input 1% outputs (pk, C,m,n,m’, '), the following probability is
negligible:

AdV|S:>_|C,<OErﬁO7A(1k) :=Pr [1 < Ver(pk,C,m,m) N1« Ver(pk,C,m/,7") Am #m'] .

We show in Appendix A that strong proof soundness implies proof soundness and that the
committing property and strong soundness are somewhat incomparable. The following shows
that Definitions 3 and 4 are actually achievable—by a practical scheme.

Theorem 1. The “repaired scheme” in [?] is strongly proof-sound and strongly committing.

The proof is deferred to Appendix B where the mentioned scheme can also be found.

2.3 Robust Non-Interactive Threshold Public-Key Encryption

Non-interactive threshold public-key encryption schemes (TPKE), as formalized in [?], dis-
tributes the ability to decrypt among several parties. The private decryption key is shared
among n servers such that at least ¢ servers are needed for decryption. If the combiner wishes
to decrypt some ciphertext C, it sends C' to the decryption servers. After receiving at least t
partial decryption shares from the servers, the combiner is able to reconstruct the plaintext
from these shares. A robust TPKE [?,?] provides the additional property that whenever the
decryption of valid ciphertexts fails, the combiner can sieve out bad decryption shares and
reveal the identity of the server having sent an invalid partial decryption.

Syntax. We use the same syntax as Boneh-Boyen-Halevi [?] and Shoup-Gennaro [?] for
(robust) non-interactive threshold public key encryption (TPKE). Formally, such a robust
TPKE scheme TPKE = (Setup, Encrypt, ShareDecrypt, ShareVerify, Combine) consists of the
following algorithms:

Setup(n, t, 1>‘) takes as input a security parameter 1* and integers t,n € N (with 1 <t <mn)
denoting the number of decryption servers n and the decryption threshold ¢. It outputs a
triple (PK, VK, SK), where PK is the public key, SK = (SKjy,...,SK,,) is a vector of n
private key shares and VK = (VKjy,...,VK,) is the corresponding vector of verification
keys. Decryption server i is given the share (i,SK;) that allows to derive decryption shares
for any ciphertext. For each i € {1,...,n}, the verification key VK; is used to check the
validity of decryption shares generated using SK;.

Encrypt(PK, M) given a public key PK and a plaintext, this randomized algorithm outputs
a ciphertext C.

ShareDecrypt(PK, i, SK;,C) on input of a public key PK, a ciphertext C' and a private key
share (i,SK;), this (possibly randomized) algorithm outputs either a decryption share
wi = (i, fi;), or a special symbol (i, L).

ShareVerify(PK, VK;, C, ii;) takes as input PK, the verification key VK;, a ciphertext C' and a
purported decryption share p; = (i, fi;). It outputs either valid or invalid. In the former
case, p; is said to be a valid decryption share.

Combine(PK, VK, C,{u1,...,u}) given PK, VK, C and a set of ¢ valid decryption shares
{p1,..., 1}, this algorithm outputs a plaintext M or L.

It is required that the consistency of PK with VK be publicly checkable. Namely, for any
t-subset V' of VK, there must be an efficient algorithm allowing to make sure that V is a
valid set of verification keys w.r.t. PK.

CORRECTNESS. For any (PK, VK, SK) generated by Setup(n,t,1%), it is required that

1. for any ciphertext C, if y; = ShareDecrypt(PK, i, SK;, C'), where SK; is the it! private key
share in SK, then ShareVerify(PK, VK;, C, u;) = valid,;

2. if C is the output of Encrypt(PK, M) and S = {puq,...,u} is a set of decryption shares
such that p; = ShareDecrypt(PK,i,SK;, C) for ¢ distinct private key shares in SK, then
Combine(PK, VK, C,S) = M.

The security of TPKE schemes is defined via two properties. The first one is the usual
notion of chosen-ciphertext security for public key encryption while the other one is termed

consistency of decryptions.

CHOSEN-CIPHERTEXT SECURITY. Security against chosen-ciphertext attacks is defined by
the following game where the challenger is faced with a static adversary that decides which
servers it wants to corrupt upfront. Both parties take integers n,t and the security parameter
A as input.

Definition 5 (IND-TCCA security). Let us consider the following game between a chal-
lenger and an adversary A:

Initialization The adversary outputs a set S C {1,...,n} of t — 1 decryption servers that it
wishes to corrupt.

Setup The challenger runs Setup(n,t,1*) to obtain a triple (PK, VK,SK = (SK1,...,SK,)).
The adversary is given PK, VK and decryption shares (j,SK;) for indices j € S.

Query stage 1 The adversary A makes decryption queries (C,i), where i € {1,...,n}. The
challenger replies with p; = ShareDecrypt(PK, i, SK;, C).

Challenge The adversary outputs plaintexts My, My and obtains C* = Encrypt(PK, M;) for
a random bit b < {0,1} chosen by the challenger.

Query stage 2 The adversary A makes new decryption queries (C,1) under the natural re-
striction that C' # C*. The challenger responds as in stage 1.

Guess The adversary outputs b’ € {0,1} and wins if b’ = b.

Define A’s advantage as Adviﬁg[fﬁfj(lk) = |Pr[t) = b] — 1/2|. A scheme TPKE is called
indistinguishable against threshold-chosen-ciphertext attacks (IND-TCCA) if for every PPT

ind-tcca

adversary A, AdvTPKE’A(lk) is negligible.

DECRYPTION CONSISTENCY. Shoup and Gennaro define decryption consistency using a sim-
ilar game to the one above.

Definition 6 (Decryption Consistency). Let us consider the following game between a
challenger and an adversary A:

Initialization, Setup, and Query stage 1 Defined as in Definition 5.
Guess The adversary outputs a valid-looking ciphertext C' and two sets of decryption shares

S =A{ur,... ey, S"=Aul, ..., 1} of size t.
Define A’s advantage Adv?—eékcé’&(lk) as the probability that the following conditions hold:

1. All decryption shares in S and S’ are valid decryption shares w.r.t. the verification key
VK and the ciphertext C'.

2. S and S’ each contain decryption shares from t distinct servers.

3. Combine(PK, VK, C, S) # Combine(PK, VK, C, S").

A TPKE scheme is decryption consistent if for every PPT adversary A its advantage is
negligible.

In upcoming sections, we will consider somewhat stronger flavors of decryption consistency.
In the first one, we require the adversary’s advantage to remain negligible in a modified game
where the challenger reveals PK and all decryption shares SKq,...,SK,, in the setup phase.

Definition 7 (Decryption Consistency with Known Secret Keys). Let us consider
the following game between a challenger and an adversary A:

Setup The challenger runs Setup(n,t,1*) to obtain a triple (PK, VK,SK = (SK1,...,SK,))
and sends (PK, VK, SK) to the adversary A.

Output A generates a valid-looking ciphertext C and two distinct t-element sets S = {p1, ..., e}
and S" = {p}, ..., .} of decryption shares.

Define A’s advantage Advﬁigﬁéﬁn(lk) as the probability that the following conditions hold:

1. All decryption shares in S and S’ are valid decryption shares w.r.t. the verification key
VK and the ciphertext C.

2. S and S’ each contain decryption shares from t distinct servers.

3. Combine(PK, VK, C, S) # Combine(PK, VK, C, 5").

A TPKE scheme is decryption consistent with known secret keys if for every PPT adversary
A the advantage Adv%SifEﬁn(lk) is negligible.

We strengthen the definition in that we let the adversary choose the keys on its own.
Definition 8 (Strong Decryption Consistency). A TPKE scheme is strong decryption
consistent if for every PPT adversary A the advantage in a game that is similar to the above

one is negligible, except that A is allowed to generate consistent encryption/verification keys
(PK, VK) on her own without having to publish the vector of decryption shares SK.

3 Robust TPKE and PKENO Are Equivalent

3.1 Robust TPKE Implies PKENO

Let TPKE = (Setup, Encrypt, ShareDecrypt, ShareVerify, Combine) be a robust TPKE scheme
providing chosen-ciphertext security and strong decryption consistency. We can turn it into
a secure PKENO scheme PKENO = (Gen, Enc, Dec, Prove, Ver) as follows:

— Gen(1*) Choose arbitrary integers t,n € N such that 1 < ¢ < n and run Setup(n,t,1%)
to obtain (PK, VK = (VKy,...,VK,),SK = (SKi,...,SK,)). The key pair (sk,pk) for
PKENO is defined as pk = (PK,VK,n,t), sk = SK = (SKy,...,SK,,). The plaintext
(resp. ciphertext) space of PKENO is the plaintext (resp. ciphertext) space of TPKE.

— Enc(pk, M) To encrypt M under pk = (PK,SK,n,t), compute C' = Encrypt(PK, M).

— Dec(sk,C) To decrypt C, conduct the following steps:

1. Fori=1,...,t, compute u; = ShareDecrypt(PK, i, SK;, C).
2. If there exists j € {1,...,t} such that pu; = (j, L) return L.
3. Otherwise, given valid shares S = {u1,...,u}, return M = Combine(PK, VK, C, S).

— Prove(sk,C) To generate a proof for the ciphertext C, parse sk as (SKi,...,SK,) and do
the following.
1. For i =1,...,t, compute u; = ShareDecrypt(PK, i, SK;, C).
2. Return the set of decryption shares m = {p1,..., 1}

— Ver(pk,C, M,) parse pk as (PK, VK, n,t) and 7 as a set of shares {y1,...,u}.

1. Return 0 if 7 contains less than ¢ shares or if (VKji,...,VK;) is inconsistent with PK.

2. Return 0 if there exists j € {1,...,t} such that ShareVerify(PK, VK;, C, ;) = invalid.
Otherwise (i.e., if all shares are valid), return 1 if M = Combine(PK, VK, {p1, ..., u})
and 0 otherwise.

Remark 1. In the concrete constructions shown in Section 4.1, we set n =t = 1 for efficiency
reasons (so that the consistency check between PK and (VKi,...,VK;) becomes trivial at step
1 of the verification algorithm). We do so with the Shoup-Gennaro [?] and the Boneh-Boyen-
Halevi [?] TPKE schemes. See Section 4.

Theorem 2. Robust non-interactive TPKE implies PKENO.
The statement of the above theorem is implied by Lemmas 1 and 2.

Lemma 1. The above PKENO system provides IND-CCPA security if the underlying TPKE
scheme is IND-TCCA secure

Proof. Let A be an IND-CCPA adversary against PKENO. We show how it simply implies a
chosen-ciphertext adversary B against the underlying TPKE.

B starts by choosing S = {1,...,t — 1} as the set of decryption servers to corrupt
and obtains (PK, VK) as well as ((1,SK;),...,(t —1,SK;_1)) from her own challenger. The
PKENO adversary A is supplied with a public key pk = (PK, VK n,t) and starts mak-
ing decryption and proving queries. Whenever A queries a proof for some ciphertext C, B
is able to compute p; = ShareDecrypt(PK,i,SK;,C) for i« = 1,...,t — 1 since she knows
SK1i,...,SK¢_1. To obtain the missing decryption share, B queries her challenger to reveal
py = ShareDecrypt(PK, t,SKy, C'), which allows constructing a valid proof m = {p1,...,u} as
long as TPKE provides correctness. It is not hard to see that A’s decryption queries can be
dealt with exactly in the same way: instead of revealing the set {u1,..., ¢}, B returns the
output of Combine(PK, VK, C, {u1,...,ut}) -

At the challenge step, A outputs equal-length messages My, M that are transmitted to
B’s challenger. The latter replies with a challenge TPKE ciphertext C*, which B relays to A.
In the second stage, A is allowed to make further decryption/proof queries. Since these never
involve the challenge ciphertext C*, B is always able to answer them by invoking her own
challenger as in the first phase. The game ends with A outputting a bit b € {0,1}, which is
also B’s result. It is straightforward to observe that, if A is successful, so is B. O

Lemma 2. The PKENO scheme is sound (resp. strongly committing) if TPKE satisfies de-
cryption consistency with known secret keys (resp. strong decryption consistency).

Proof. We first show that, if an adversary A defeats the soundness of PKENO in the sense
of definition 2, there exists an adversary B breaking the decryption consistency with known
secret keys in TPKE with the same advantage.

Namely, our adversary B obtains PK, VK and SK = (SKj,...,SK,,) from her challenger.
The weak soundness adversary A then receives pk = (PK, VK, n,t), sk = SK. In stage 1 of
the game, A chooses a plaintext m that B encrypts using the public key PK of TPKE. Upon
receiving the resulting ciphertext C' = Encrypt(PK, m), A attempts to produce a pair (m’, ")
such that Ver(pk,C,m’, ') = 1 and m’ # m. Since 7’ is a valid proof, it can necessarily be
parsed as a set {u],...,p;} of valid decryption shares. The correctness property of TPKE
implies that, since B knows SK = (SKj,...,SK,,), she must be able to generate another set
m = {p1,..., 1t} of decryption shares such that m = Combine(PK, VK, C, {p1,...,u}). It
comes that the sets m and 7’ are valid t-sets of decryption shares that break the decryption
consistency with known secret keys of TPKE.

Proving that the strong decryption consistency of TPKE implies the strong committing
property of PKENO is fairly straightforward: from a strong committingness adversary A, we

immediately obtain a strong decryption consistency adversary B that outputs whatever A
comes up with. O

3.2 PKENO Implies TPKE

Theorem 3 (Informal). PKENO implies robust non-interactive TPKE (by extending the
non-robust non-interactive TPKE construction of Dodis and Katz [?]).

4 PKENO Concrete Constructions

In this section we describe some concrete schemes obtained from the transformation in Sec-
tion 3.1.

4.1 PKENO without Pairings in the Random Oracle Model

This section shows that, in the random oracle model, the TPKE scheme of Shoup and Gennaro
(more precisely, the cryptosystem dubbed TDH2 in [?]) satisfies decryption consistency in the
statistical sense and thus gives rise to a strongly sound PKENO system. The scheme makes
use of a cyclic group G = (g) of prime order p and hash functions Hy : G — {0,1}}; Hy, Ho :
{0,1}! x G* — Z,, that are modeled as random oracles.

— Setup(n, t,1*) chooses z < Ly, G £ G and sets h = g®. The public key PK includes g, h, g,
the hash functions Hy, H, H> and the description of the plaintext space M,y = {0, 1
The vector of secret key shares is obtained as SK = (x1,...,x,), where x; = F(i) for
i=1,...,nand F[X] € Zy[X] is a random (¢ — 1)-degree polynomial such that F'(0) = z.
The verification key is defined to be VK = (hy,..., h,) = (¢*',...,¢g""). The consistency
of any t-subset V' C VK with PK can be verified by checking that h =[] jev hiAi'V, using
Lagrange coefficients A; y .

— Encrypt(PK, m) to encrypt a message m € {0, 1}l, the algorithm chooses 7, s & Ly, it sets
K = h" and computes

S

c=Ho(h")om, u=g", vy =¢°, u=g", w1 =g°, e1 = Hi(c,u,w1,u,w), fi =s+re;.

Let us notice that (wy, w1, f1) constitutes a non-interactive zero-knowledge proof of equal-
ity of discrete logarithms log, u = log; @ [?]. The ciphertext is C' = (c,u, 4, e1, f1).

— ShareDecrypt(PK, i, SK;, C) given C and the private key share SK; = x;, the algorithm first

checks whether e; = Hy(c,u,w, %, W), where wy = g/t /u®t, wy = g/t /uc. If this test is
not satisfied, it returns (i, L). Otherwise, it computes K; = u”, w; 2 = ¢*, W; 2 = u®,

with s; < Zy, and returns p; = (i, (K;, €2, fi2)), where
eio = Ho(K, w0, Wi 2), fi2 = si+ xieia.

Recall that (w; 2, W; 2, €; 2, fi 2) constitutes a non-interactive zero-knowledge proof of equal-
ity of discrete logarithms log, h = log,, K.

— ShareVerify(PK,VK;, C, ;) on input of PK, VK; = h; = ¢%, C = (c,u,u, ey, f1) and
wi = (i, f1;), where fi; = (Kj, €; 2, fi2), this algorithm performs the following tests:

10

Test 1: if e; = Hy(c,u,wy, @, W), where wy = ¢/ /u®', W, = g /u®
Test 2: if €2 = HQ(Ki,wi’Q,mi72), where Wi = gfi’z/h?’z, W; o = ufiﬁ/Kiem'

If these tests are both correct, it returns 1. If Test 1 fails, it outputs 1 iff j; =1. In any
other case, it outputs 0.

— Combine(PK, VK, C, S) parses S as {p1,...,u} and p; as (4, f1;) for each 4. If ji; = L for
i =1,...,t, it returns L (which indicates that C is invalid). Otherwise, it parses [i; as

(Ki,ei2, fi2) for each i and computes K = H]ES KZAlS

It finally returns the plaintext m = ¢ @ Hy(K).

using Lagrange coefficients A; s.

The IND-TCCA security of the scheme was proved in [?] under the Decision Diffie-Hellman
assumption. It is not hard to see that it also satisfies decryption consistency in the statistical
sense (although a weaker flavor of consistency was originally considered in [?]).

Theorem 4. The Shoup-Gennaro TPKE system satisfies strong decryption consistency in
the random oracle model.

Z1
P

Proof. Since the consistency of PK with any ¢-subset of VK = (g .,g"™) is publicly
verifiable, we assume that A does not come up with an inconsistent pair (PK,VK). Let
us consider the two sets S = {u1,...,} and S’ = {p), ..., u;} produced by A. We first
observe that we cannot have Combine(PK, VK, C,S) = L and Combine(PK, VK, C,S") # L
or vice versa. Indeed, since S and S’ both contain valid shares, it holds that either the
ciphertext C' = (¢, u, u,e1, f1) comprises an invalid proof (e, f1) (in which case verification
test 1 fails for all shares and Combine(PK, VK, C,S) = Combine(PK, VK, C,S") = 1) or all
shares p; = (i, 1) € S, pj = (4, fi;) € S" are such that fi; # L, i; # L. We are thus left with
the latter case L # Combine(PK, VK, C, S) # Combine(PK, VK, C,S") # L.

Then, it is easy to see that A can only break the statistical decryption consistency in the
event that one of the two t-sets S = {u1,..., ¢} and S” = {y}, ..., p;} contains an ill-formed
decryption share p; = (i, (K, €2, fi2)) (such that log,(K;) # log,(h;)) that nevertheless
happens to satisfy the verification test e; o = Ho(K;, g/i2 /hi"* uliz K ™?).

For any share (i, (K, e;2, fi2)) such that log, (K;) # log,(h;), let us consider random
oracle queries of the form Hy(K;, w; 2,W;2), for some (w; 2,W; 2) € G?2. For each such random
oracle query, there exists exactly one pair (e;2, fi2) € (Zp)2 such that w;o = gfiz /hfi’2
and W; o = u/t2/K;** (since log, (K;) # log,(h;)). Since Hj is a random oracle, its output
accidentally hits e; with probability 1/p. If gz, denotes the number of Hy-queries, the overall
probability that an invalid share passes the verification test is at most tqm, /p. O

The result of section 3.1 immediately implies that the Shoup-Gennaro TPKE scheme can
be turned into a strongly committing PKENO in the random oracle model.

Benoit: There is no need to explicitly include the long proof from
scratch and I commented it out in the .tex file. Likewise, is it OK
with you to replace the following theorem (that relates to PKENO)
with the above one?

David : Yes ! :-)

Theorem 5. The scheme above is strongly committing in the Random Oracle Model.

11

Proof. Assume towards contradiction that an PPT adversary outputs with non-negligible
probability a tuple (pk,C,m,m,m', 7’) such that Ver(pk,C,m,r) = Ver(pk,C,m/,7') = 1
and m # m’ holds. Note that both verifications rely on the same pk = (g,h,g) and C =
(c,u,u,eq, f1).

We can now distinguish between two cases: either m = L and m/ € {0,1}} or m,m’ €

{0,1}".
— Case 1: If one of the messages is m = L, claiming that the ciphertext C' is invalid, the first

verification test ep L Hy(c,u,w;,u,w;) must validate as false. However, for the second
message m’ € {0,1}! the same test must validate as true in order to pass the entire

verification. Since the check e ‘H 1(¢, u,wy, @, wy) solely depends on pk and C' and not
on the message, only one of both verifications can return '1’.

— Case 2: In the second case we have m,m’ € {0,1}, i.e., for both messages and their proofs
m, 7" all tests in the verification algorithm must be passed. Assume that C' is a proper
encryption of m, and m = (K, es, f2) is a corresponding valid proof. Thus, 7 includes
a valid NIZK that log,h = log, K. Now consider the verification for the same C,pk
but for a distinct message m’ # m and an arbitrary proof n’ = (K’ €}, f5). The final
test m’ = ¢ @® Ho(K') implies that K’ # K. But then, 7/ must contain a NIZK that
log, h = log, K ""and thus that log, K’ = log,, K which contradicts the soundness of the
equality of discrete logarithm protocol [?].

0

4.2 PKENO Based on the Decision Linear Assumption

Recently, Arita and Tsurudome [?] described an efficient way to thresholdize the decryption
algorithm of Kiltz’s tag-based encryption scheme [?] using bilinear maps to achieve robustness.
We point out that their scheme readily yields another PKENO with strong soundness. The
security proof of the resulting scheme is in the standard model. One of its advantages is that
it can be used in CCA2-anonymous group signatures that rely on linear encryption [?]. For
instance, it can be used to obtain simpler and more efficient proofs of correct opening in
Groth’s fully secure group signatures [?]: such a proof only consists of two group elements
and its verification only entails two pairing evaluations, which is significantly cheaper than
checking a pairing-based non-interactive witness indistinguishable proof as in [?].

— Setup(n,t,1*) Choose U,V & G, x,y & Zy and set X = ¢g*, Y = g¢Y. The public
key PK consists of g, h, U, V, X, Y, the description of a strongly secure one-time signature
Y = (G,S,V) and the description of the plaintext space My, = G. The vector SK of
private key shares is obtained as SK = ((z1,41), ..., (Zn,yn)), with z; = F1 (i), y; = Fa(7)
for all i € {1,...,n}, using random (¢t — 1)-degree polynomials F}[X]|, F5[X] € Z,[X]
subject to F1(0) = 27! and F5(0) = y~!. The vector of verification key then consists of
VK = ((v1,w1),..., (vn,wp)) = ((¢"+,9¥),...,(¢"",g¥")). Again, the consistency of PK
with any t-subset V' C VK is efficiently verifiable.

— Encrypt(PK, m) To encrypt a message m € G, the algorithm generates a one-time signature

key pair (SSK, SVK) « G(1%), chooses , s & Z, and computes the ciphertext as
C = (SVK,C1,Cs, D1, Do, E,0) = (SVK, X", Y*, (¢°V*U)", (¢°V¥V)*, m-g"",0) ,
where o = S(SSK, (C4, Cq, Dy, D5)).

12

— ShareDecrypt(PK,i,SK;,C) Given C = (SVK,Cy,Cs, Dy, D2, E,0) and the private key
share SK; = (x;,y;), the algorithm first checks whether V(SVK, o, (C1,Cs, D1, D)) = 1,
e(C1,¢°VRU) = e(X, Dy) and e(Ca, g°VKV) = e(Y, Dy). If these tests are not all satisfied,
it returns (i, L). Otherwise, it computes j; = (C7,Cy") and returns p; = (4, i;).

— ShareVerify (PK, VK;, C, ;) On input of PK, VK; = (v;, w;), C = (SVK, C1,Cy, D1, Dy, E, 0)
and p; = (4, f1;), where fi; = (K; 1, K;2), this algorithm performs the following tests:

Test 1: checks the validity of C' as ShareDecrypt does.
Test 2: checks whether e(K; 1, 9) = e(C1,v;) and e(K; 2, g) = e(Co, w;).

If these tests are both correct, it returns 1. If Test 1 fails, it outputs 1 iff ji; =L1. In any
other case, it outputs 0.

— Combine(PK, VK, C, S) Parse S as {u1,...,u:} and u; as (i, f1;) for each 4. If ji; = L for
i=1,...,t return L (which indicates that C is invalid). Otherwise, parse fi; as (K; 1, K; 2)
for each i and compute K =[] je g(Kiq - K;)%s using Lagrange coefficients and finally
obtain m = E/K.

The above description makes use of a one-time signature as in the original CHK trans-
form [?]. We note that shorter ciphertexts can be obtained using a Waters-like hash function
as in the repaired scheme of [?].

Benoit: Wouldn’t it be better to describe the applications of PKENO
in the introduction?

Theorem 6. The above TPKE scheme satisfies strong decryption consistency.

Proof. The proof is quite similar to the proof of strong committingness for the repaired scheme
of [?], which is given in Appendix B. It almost immediately follows from the verifiability
properties of the bilinear map, which hold unconditionally. O

5 Conclusion

No conclusion for the time being.

A On the Notion of Proof Soundness

Georg: For the sake of consistent notation, I propose:

"(strong) proof soundness"

"a (strongly) proof-sound scheme" (with the dash)

"the scheme is (strongly) proof sound"

Any objections? Btw, I corrected some things in App. A (in particular
the statement of Proposition 2 should be correct now).

David: Agree

In this section, we compare the different notions of proof of soundness. In particular,
we show that strong proof soundness is strictly stronger than the original notion of proof
soundness, and that strong proof soundness and the committing property are incomparable.

13

Moreover, we compare the different notions of soundness in the KOSK model, where the
adversary has to prove knowledge of the secret key. Within this model, we can show that
the committing property is strictly stronger than strong soundness. We note that all our
proofs also preserve IND-CCPA security in the sense that, if the strongly proof sound scheme
has this property, then it is also stand-alone sound and still has this property. As for the
separation we show that, if there exists a strongly proof sound (strongly committing, resp.)
scheme which is also IND-CCPA, then there is an IND-CCPA scheme which is not strongly
committing (strongly proof sound, resp.) but still proof sound. It is also easy to see that the
case of adversarially chosen keys is strictly stronger, independently of the question whether
the PKENO scheme is IND-CCPA secure or not.

A.1 Soundness vs. Strong Soundness

We show with the following proposition that strong proof soundness is strictly stronger than
the notion of stand-alone soundness.

Proposition 1. Any strongly proof sound PKENO scheme is also proof sound. Vice versa,
there exists a proof sound PKENO scheme which is not strongly proof sound (assuming that
there exists a proof sound scheme at all).

Strong proof soundness implies the original soundness notion by letting the adversary run the
key generation algorithm and output the derived public key. As for the converse, take any
PKENO scheme and modify it such that the key generation algorithm appends a redundant
bit 0 to all public keys (such that this bit is ignored by the encryption algorithm). The
verification algorithm, too, ignores this bit —unless it is 1 in which case Ver accepts any
input. Then, for honestly generated keys (ending with a 0-bit) the modified scheme obviously
inherits stand-alone soundness, whereas the adversary can easily break our strong notion of
soundness by outputting a public key with a final 1-bit. Additionally, the modified scheme
preserves CCPA-security, correctness and completeness, because these properties are based
on genuine public keys with a 0-bit.

A.2 Soundness vs. Committing Property

The next proposition proves that the committing property is strictly stronger than the notion
of soundness.

Proposition 2. Any strongly committing PKENO scheme is also proof sound. Vice versa, if
a proof sound PKENO exists then there exists a scheme which is proof sound but not strongly
committing.

We omit the proof of this theorem, because it is analogous to the proof of Proposition 1.

A.3 Strong Soundness vs. Committing Property

The following proposition shows that strong proof soundness and the committing property
are incomparable. As in the previous proposition, the separations preserve the IND-CCPA
property.

Proposition 3. If there exists a PKENO scheme which is strongly proof sound, then there

exists a strongly proof sound PKENQO scheme which is not strongly committing, and vice
versa.

14

Proof. Assume we are given a PKENO scheme which is strongly proof sound. Modify the
scheme such that the encryption algorithm appends a redundant bit 0 to each ciphertext. The
new decryption algorithms ignores the appended 0-bit but rejects ciphertexts ending with ‘1°.
The new proof algorithm rejects all ciphertexts ending with a 1-bit and else runs the original
proof algorithm with the 0-bit omitted. The modified verification algorithm now accepts any
input (pk, C,m,) where the ciphertext C' ends with a 1-bit and otherwise operates as the
original verification algorithm (for the ciphertext with the final 0-bit chopped off).

The modified scheme satisfies strong proof soundness if the original scheme does. This
follows as the honestly generated ciphertext C' in the new scheme always carries a ‘0’ at
the end and the verifier thus works as in the original scheme. In contrast, for the committing
property, the adversary can easily generate ciphertexts C' with a final 1-bit, making the verifier
in the new scheme accept any message-proof pair. Furthermore, since the modified proof and
decryption algorithms reject any malformed ciphertext with ‘1’ and otherwise work as the
original counterparts, CCPA-security is preserved. So are correctness and completeness by
construction.

For the converse, assume we are given a strongly committing PKENO scheme. Change
the scheme as follows: the key generation algorithm now appends a redundant 0-bit to each
public key which the encryption algorithm ignores. The decryption algorithm and the proof
algorithm work as before. Only the verifier now immediately accepts any input (pk, C,m,)
where pk ends with a ‘1’ and where m = pk (independently of C' and 7). For pk ending with
‘1" and m # pk the verifier rejects. For well-formed public keys (with a 0-bit) the verifier
works as before.

The modified scheme is clearly not strongly proof sound. An adversary picks two distinct
messages m, m’ where m’ ends with ‘1’, and outputs m and pk = m/. Then, after receiving C it
outputs m’ and an empty proof 7’. By construction the verifier accepts (pk, C,m’, ') as valid.
Note also that the modified scheme preserves CCPA-security, correctness and completeness
(as the key generation algorithm never returns malformed public keys). Finally, note that
the scheme is still strongly committing because for public keys with a 1-bit appended the
adversary can only make the verifier accept a single message, and for well-formed public keys
this follows from the committing property of the original scheme. O

A.4 Strong Soundness vs. Committing Property in the KOSK Model

In the KOSK model [], however, where the adversary is required to additionally prove knowl-
edge of a valid secret key, we can show that the committing property is strictly stronger. For
simplicity, we model the KOSK by letting the adversary output the secret key as well. Note
that this is not a restriction because we could also extract the key using rewinding techniques,
or in the case that this is not possible, rely on the NIZKs due to Groth and Sahai [?]. More
formally, in the KOSK model we assume that the adversary (in either soundness notion)
in addition to pk also outputs sk such that sk, pk satisfy the correctness and completeness
requirements of PKENO schemes. We then have:

Proposition 4. In the KOSK model any strongly committing PKENQO scheme is also strongly
proof sound (but not vice versa).

Proof. Assume we have an adversary A breaking the strong proof soundness. Then we con-
struct an adversary B against the committing property as follows. Adversary B runs A to get
(pk, sk,m), then computes C' < Enc(pk,m) and hands the ciphertext to A who replies with

15

(m/, 7). Adversary B next computes m < Prove(sk, m) and outputs (pk, sk, C,m,m,m’, 7). By
this B perfectly simulates A’s game and thus succeeds with the same probability in the attack
against the committing property as A does in the attack against proof soundness (using the
fact that the secret key sk chosen by A obeys correctness and completeness).

The fact that the converse does not hold follows again from the separating example in
Proposition 3 which still works in the KOSK model. O

B Repaired scheme [?]

Let P = (Gy,Grp,p,e) the description of a bilinear group. Let H : {0,1}" — G; be the
hash function described as follows. On input of an integer n polynomially-bounded in k, the
randomized hash key generator chooses n + 1 random groups elements hy, ..., h, € G; and
returns h = (hg, h1,...,h,) as the hash function key. The hash function H : {0,1}" — Gf is
evaluated on a n-bit string t = (t1,...,t,) € {0,1}" as the product H(t) = ho [[}~, h}'. In
addition the scheme uses a collision-resistant hash function CR : Gy x {0,1}} — {0, 1}". Let
(E, D) be a a symmetric encryption scheme with keys’ space Gr. Galindo’s PKENO scheme [?]
is described in Figure 1.

Proof (of Theorem 1). We prove both claims of the theorem:

COMMITMENT PROPERTY. Assume there is an adversary outputting (pk,C,m,m,m’,7’)
such that Ver(pk,C,m,7) = 1 = Ver(pk,C,m’,7') and m # m’. We parse the output as
pk = (1*,P,E,D,CR,h,Y), C = (co,c1,c2) € G, Define t := CR(cg, ¢1). We distinguish two

cases:

L e(g,c2) # e(H(t), c1)
Since in this case, Ver only outputs 1 if m = L, this case cannot occur since m # m/'.

2. e(g,c0) =e(H(t),c1)
First, this means that there exists r s.t. ¢; = ¢" and ¢ = H(t)". Second, in this case, Ver
only outputs 1 if m #), we parse thus 7 as (d1,dz) and 7 as (d}, d). Moreover, since both
proofs pass verification, we have e(g,d1) =Y - e(H(t),d1) and e(g,d}) =Y - e(H(t),d}).
Letting Y = e(g, ¢)® for some unknown «, there exist s and s’ such that dy = ¢°, d; =
geH()*, dy = g%, d) = g*H(t)*.
In the verification of 7, the key K is computed as

K =e(c1,dy)/e(ca, do) = e(g", g"H(t)*)/e(H(t)", g°) = e(g",9%) -

For 7/, this computation analogously gives K’ = e(g¢",¢%) = K, which means D(K, c)
yields the same candidate message for both m and 7’. Since m # m’, at most one of the
verifications returns 1, which is a contradiction.

STRONG PROOF SOUNDNESS. Suppose there is an adversary A that wins the game in Defi-
nition 3. Let pk = (1*,P,E,D,CR, h,Y) and m € M, be its output in the first stage. Choose
r «— Zp and set ¢o = E(Y",m), c1 = ¢", co = H(t)" with t = CR(cp, ¢1) and send (co, ¢1,¢2)
to A.

Suppose A outputs (m/,) such that Ver(pk,C,m’,7') = 1 and m # m/. Since we have
e(g,c2) = e(H(t),c1), m’ must be different from |-—otherwise Ver outputs 0. Moreover,
7' = (d},d,) must satisfy e(g,d}) =Y - e(H(t),d,), which means that there exists s’ such
that d) = ¢*, d} = g*H(t)*, with a such that Y = e(g,¢)*. As in the first part of the

16

Gen(1%)

Enc(pk,
PG (iv$ m))
. T ZLp,;C1 g
Y0y -3 Yn — L K«—Y"eGr

ho + g%, ... hn « g""; Y < e(g,9)" co < E(K,m)
h «— (h();e,hn) t<—CR(Co,Cl) ; C2 H(t)r
pk — (1%,P,E,D,CR, 1, Y) output C' « (co, c1,¢2)
sk« (pk,a,y0,...,Yn)
output (pk, sk)
Prove(sk, C)
Dec(sk,Cé () parse C' as (co, c1,c2)
parse C' as (co,c1, 2 t — CR
t — CR(CO7C1) . (60761)

arse t as (to,...,tn
parse t as (to,...,tn) b (o)

t < yo+ > i, yits mod p

b yo+ > i—y yits mod p if ¢ £ ca
if e1 # c2 output 0
output L

else s & Zp
di = g% -H@#)"; dz2 — ¢°
output 7 «— (d17 dz)

else K «— e(c1,9%)
output m «— D(K, co)

Ver(pk,C, m,)
parse C as (co, c1,c2)
t «— CR(co, 1)
parse t as (to,...,tn)
ifm=1and 7w=10
if e(g,c2) = e(H(t),c1)
output 0
else output 1
iftr#£0
if e(g,c2) = e(H(t),c1) and
e(gdr) = Y - e(H(t), dn)
K «— e(c1,di)/e(ca,d2)
m' «— D(K,co)
if m’ = m output 1
else output 0
else output 0

Figure 1. Galindo scheme.

proof, the key K’ produced by Ver is e(g", g%), i.e., K/ = Y". By correctness of the symmetric
encryption, the candidate message in Ver is m, the message output in the first stage. This
contradicts the assumption that Ver outputs 1 on m’ # m. O

17

