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ABSTRACT 
The security of software systems is threatened by a wide range of 
attack vectors, such as buffer overflows, insecure information 
flow, and side channels, which can leak private information, e.g., 
by monitoring a program’s execution time. Even if programmers 
manage to avoid such vulnerabilities in a program’s source code 
or bytecode, new vulnerabilities can arise as compilers generate 
machine code from those representations. 

We propose a virtual execution environment for x86 machine 
code that combines information from compositional, static, and 
dynamic program analysis to identify vulnerabilities and timing 
channels, and uses code transformations to prevent those from 
being exploited. To achieve an appropriate level of performance 
as well as combine analysis results, our approach stores summary 
information in the form of conditional rules that can be shared 
among analyses. 

Categories and Subject Descriptors 
D.4.6 [Programming Languages]: Security and Protection – 
access controls, invasive software, security kernels, verification. 

General Terms 
Design, Performance, Security, Verification. 

Keywords 
Cryptography, cyber security, cloud computing, timing channels. 

1. INTRODUCTION 
In modern software systems, vulnerabilities can arise from many 
sources. They may occur through incorrect or compromised 
source code or though compromised tools in the programmer’s 
tool chain, such as compilers or runtime libraries. An antivirus 
program can detect such vulnerabilities only if they match a 
known signature. If programs generate executable code at 
runtime, vulnerabilities in such code will be missed. They can be 
discovered only while the application is running. Another kind of 
vulnerability relates to timing channels. A timing channel 
declassifies some part of classified information for another 
process by modulating its own use of system resources. To solve 
this kind of problem, we introduce a virtual execution 
environment that disassembles code and performs a security 
analysis. 

The Vx32 [1] virtual extension environment is an application-

level virtual machine implemented as an ordinary user-mode 
library and designed to run the native x86 code. Applications can 
link with and use Vx32 in order to create a safe OS-independent 
execution environment in which to run mistrusted plug-ins or 
other extensions written in any language that complies with the 
x86 code. The machine code for Vx32 is compiled with the GNU 
Compiler Collection for a special architecture, which is based on 
x86. First, it is parsed and compiled to an intermediate form. This 
intermediate form represents a sound approximation of the 
program behavior and can easily be optimized. Although it cannot 
express the class of computable functions, it is suitable for 
domain-specific optimizations. This intermediate form represents 
variants of deterministic behavior of programs. Simplifying this 
intermediate representation and use of equivalent transformations 
allows us to optimize for a specific domain. Algorithms for these 
transformations are described in a special programming language. 

2. Approach and Uniqueness 
Our analysis is based on the IFDS/IDE framework [2]. Elements 
in the analysis are theorems in Primal logic [3]. For this fragment 
of logic we have formulated an efficient algorithm of derivability 
based on that of Gurevich-Neeman [3]. If information from any 
classified function propagates towards any function that may 
declassify this information, this indicates a potential leak of this 
information. A deterministic pass and a non-deterministic pass of 
abstract interpretation allow us to perform dynamic verification 
efficiently in the most commonly used cases. 

We represent the task of dynamic binary translation as a problem 
of analysis of streams of information at run-time in a specific area 
of code. A deterministic pass optimizes all paths of execution of 
the program. We then use a non-deterministic pass that represents 
the program properties as a stochastic process. As a practical 
instance of this problem, Figure 1 shows an example of accesses 
to variables that appear in code; on a primary level (compilation 
time), this requires that the detection of a target as well as the 
tracking of that target (with a certain level of security and 
stability) takes place on a secondary level at runtime. 

For example, the non-deterministic part of the optimization 
collects statistics, such as the number of times each block was 
executed, branch frequencies, and information of past program 
behavior that can be used for better optimization. These statistics 
are used for improved value speculation, branch prediction, and 
static method lookup. Furthermore, the algorithm chooses 
between concurrent variants of optimization and finds the most 
beneficial variant. Finally, the goal is achieved in another thread 
by a computation of the expected results of these concurrent 
optimizations without distortion of the operating system. Figure 1 
shows an example of both a static and a dynamic trace on a lattice 
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for analysis of live variables. Each element of the lattice has a 
specific intensity of accesses to variables. 

 

 

      
 

Figure 2 shows the architecture of an extension of Vx32. The 
passes are performed in parallel, on different cores, for example. 
The non-deterministic pass is performed on good test samples, 
which an expert found very representative, as well as with 
sampling during execution of the program. 

Our extension environment is useful for real-time embedded 
operating systems and virtual machine runtimes such as the 
Dalvik and .NET Micro frameworks. In fact, we found that a mid-
level intermediate form is not required, as we can represent all 
properties of the bytecode with executable machine code. This 
executable machine code can then be parsed and optimized into 
another version. 

There are a few limitations that we consider insignificant. For 
example, the program is compiled through the use of the GNU 
Compiler Collection or a compatible compiler. Other significant 
limitations include the restriction of self-patching and a finite 
control-flow graph. In addition, any non-deterministic behavior 
indicates viruses and introduces additional difficulties in 
debugging of software. 

3. RESULTS AND CONTRIBUTIONS 
Detection of memory leaks, CHROOT vulnerability, and Trojans 
is done using the rules of authorization in Primal logic. Detection 
of stack overflow is done with transformation of the prologue of 
the function. Additionally, an enhanced Vx32 version makes the 
code more deterministic from the point of view of the behavior of 
flags of instructions, accesses of memory, and synchronization of 
threads. 

Instructions that may contain potential timing-channels can be 
detected statically. For this we use annotations of instructions that 
classify or declassify information. The weight of a leak is equal to 
the size of information declassified by the leak. 

Timing channels can be fixed with register allocation. Below are 
the equations used in the optimization of register allocation. The 
exact solution can be found through the use of a third-party 
library. Registers are organized in such a way as to minimize the 
entropy of the timing channel. 

𝑣 𝑖, 1   𝑥 1 + 𝑣 𝑖, 2   𝑥 2 + � + 𝑣 𝑖,𝑚   𝑥 𝑚 �  𝑅 𝑖 , i ∈ 1,… ,𝑁 . 

min 𝑥 𝑗 𝑓 𝑗!
!!! . 

Each equation describes the elements of the lattice from figure 1. 

R(i) is the number of available registers for the instruction with an 
ordinal number i, f( j) is a random variable, x(i) are binary values, 
N is a cardinal number of instructions, and m is a cardinal number 
of variables. Tensor V consists of elements v(i, j) and is a result of 
live variable analysis and dead-code elimination. 

Vx32 solves these equations with the help of an external utility (a 
theorem prover). By default we use an approximate solution, 
which finds a solution in a linear time. 

The use of this model for just-in-time compilation yields a 
significant increase in performance of bytecode execution. For 
example, use of this model for analysis of MS-CIL and Ruby 
improves performance of execution of applications in 
benchmarks. 

The results of our research may be useful for the development of 
just-in-time compilers, interpreters, and compilers with a mixed 
execution mode of programs for virtual machines such as CLI, 
Java, Python, Perl, Ruby, LLVM, and Parrot. Further research 
directions might include the fields of dynamic compilation and 
dynamic verification. For example, there is the possibility of 
creating new domain-specific register allocation and code 
generation algorithms. These algorithms can then be optimized for 
applications in various domains, for example, in compression and 
security of binary code. 
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Figure 1 a. Example of a static trace 

Figure 1 b. Example of a dynamic trace 

Figure 2. Architecture of extension of Vx32 

GNU Compiler 
Collection

Operating system

Program

Vx32

Deterministic 
pass

Non-deterministic 
pass

Tensor

Generation of machine 
code

Execution

thread1 thread2


