
A Unified Approach to Identifying and Healing
Vulnerabilities in x86 Machine Code

Kirill Kononenko
Secure Software Engineering Group

EC SPRIDE / TU Darmstadt
Mornewegstraße 30

64293 Darmstadt
kirill.kononenko@ec-spride.de

ABSTRACT
The security of software systems is threatened by a wide range of
attack vectors, such as buffer overflows, insecure information
flow, and side channels, which can leak private information, e.g.,
by monitoring a program’s execution time. Even if programmers
manage to avoid such vulnerabilities in a program’s source code
or bytecode, new vulnerabilities can arise as compilers generate
machine code from those representations.

We propose a virtual execution environment for x86 machine
code that combines information from compositional, static, and
dynamic program analysis to identify vulnerabilities and timing
channels, and uses code transformations to prevent those from
being exploited. To achieve an appropriate level of performance
as well as combine analysis results, our approach stores summary
information in the form of conditional rules that can be shared
among analyses.

Categories and Subject Descriptors
D.4.6 [Programming Languages]: Security and Protection –
access controls, invasive software, security kernels, verification.

General Terms
Design, Performance, Security, Verification.

Keywords
Cryptography, cyber security, cloud computing, timing channels.

1. INTRODUCTION
In modern software systems, vulnerabilities can arise from many
sources. They may occur through incorrect or compromised
source code or though compromised tools in the programmer’s
tool chain, such as compilers or runtime libraries. An antivirus
program can detect such vulnerabilities only if they match a
known signature. If programs generate executable code at
runtime, vulnerabilities in such code will be missed. They can be
discovered only while the application is running. Another kind of
vulnerability relates to timing channels. A timing channel
declassifies some part of classified information for another
process by modulating its own use of system resources. To solve
this kind of problem, we introduce a virtual execution
environment that disassembles code and performs a security
analysis.

The Vx32 [1] virtual extension environment is an application-

level virtual machine implemented as an ordinary user-mode
library and designed to run the native x86 code. Applications can
link with and use Vx32 in order to create a safe OS-independent
execution environment in which to run mistrusted plug-ins or
other extensions written in any language that complies with the
x86 code. The machine code for Vx32 is compiled with the GNU
Compiler Collection for a special architecture, which is based on
x86. First, it is parsed and compiled to an intermediate form. This
intermediate form represents a sound approximation of the
program behavior and can easily be optimized. Although it cannot
express the class of computable functions, it is suitable for
domain-specific optimizations. This intermediate form represents
variants of deterministic behavior of programs. Simplifying this
intermediate representation and use of equivalent transformations
allows us to optimize for a specific domain. Algorithms for these
transformations are described in a special programming language.

2. Approach and Uniqueness
Our analysis is based on the IFDS/IDE framework [2]. Elements
in the analysis are theorems in Primal logic [3]. For this fragment
of logic we have formulated an efficient algorithm of derivability
based on that of Gurevich-Neeman [3]. If information from any
classified function propagates towards any function that may
declassify this information, this indicates a potential leak of this
information. A deterministic pass and a non-deterministic pass of
abstract interpretation allow us to perform dynamic verification
efficiently in the most commonly used cases.

We represent the task of dynamic binary translation as a problem
of analysis of streams of information at run-time in a specific area
of code. A deterministic pass optimizes all paths of execution of
the program. We then use a non-deterministic pass that represents
the program properties as a stochastic process. As a practical
instance of this problem, Figure 1 shows an example of accesses
to variables that appear in code; on a primary level (compilation
time), this requires that the detection of a target as well as the
tracking of that target (with a certain level of security and
stability) takes place on a secondary level at runtime.

For example, the non-deterministic part of the optimization
collects statistics, such as the number of times each block was
executed, branch frequencies, and information of past program
behavior that can be used for better optimization. These statistics
are used for improved value speculation, branch prediction, and
static method lookup. Furthermore, the algorithm chooses
between concurrent variants of optimization and finds the most
beneficial variant. Finally, the goal is achieved in another thread
by a computation of the expected results of these concurrent
optimizations without distortion of the operating system. Figure 1
shows an example of both a static and a dynamic trace on a lattice

Copyright is held by the author/owner(s).
MobiCom’12, August 22–26, 2012, Istanbul, Turkey.
ACM 978-1-4503-1159-5/12/08.

for analysis of live variables. Each element of the lattice has a
specific intensity of accesses to variables.

Figure 2 shows the architecture of an extension of Vx32. The
passes are performed in parallel, on different cores, for example.
The non-deterministic pass is performed on good test samples,
which an expert found very representative, as well as with
sampling during execution of the program.

Our extension environment is useful for real-time embedded
operating systems and virtual machine runtimes such as the
Dalvik and .NET Micro frameworks. In fact, we found that a mid-
level intermediate form is not required, as we can represent all
properties of the bytecode with executable machine code. This
executable machine code can then be parsed and optimized into
another version.

There are a few limitations that we consider insignificant. For
example, the program is compiled through the use of the GNU
Compiler Collection or a compatible compiler. Other significant
limitations include the restriction of self-patching and a finite
control-flow graph. In addition, any non-deterministic behavior
indicates viruses and introduces additional difficulties in
debugging of software.

3. RESULTS AND CONTRIBUTIONS
Detection of memory leaks, CHROOT vulnerability, and Trojans
is done using the rules of authorization in Primal logic. Detection
of stack overflow is done with transformation of the prologue of
the function. Additionally, an enhanced Vx32 version makes the
code more deterministic from the point of view of the behavior of
flags of instructions, accesses of memory, and synchronization of
threads.

Instructions that may contain potential timing-channels can be
detected statically. For this we use annotations of instructions that
classify or declassify information. The weight of a leak is equal to
the size of information declassified by the leak.

Timing channels can be fixed with register allocation. Below are
the equations used in the optimization of register allocation. The
exact solution can be found through the use of a third-party
library. Registers are organized in such a way as to minimize the
entropy of the timing channel.

𝑣 𝑖, 1 𝑥 1 + 𝑣 𝑖, 2 𝑥 2 + � + 𝑣 𝑖,𝑚 𝑥 𝑚 � 𝑅 𝑖 , i ∈ 1,… ,𝑁 .

min 𝑥 𝑗 𝑓 𝑗!
!!! .

Each equation describes the elements of the lattice from figure 1.

R(i) is the number of available registers for the instruction with an
ordinal number i, f(j) is a random variable, x(i) are binary values,
N is a cardinal number of instructions, and m is a cardinal number
of variables. Tensor V consists of elements v(i, j) and is a result of
live variable analysis and dead-code elimination.

Vx32 solves these equations with the help of an external utility (a
theorem prover). By default we use an approximate solution,
which finds a solution in a linear time.

The use of this model for just-in-time compilation yields a
significant increase in performance of bytecode execution. For
example, use of this model for analysis of MS-CIL and Ruby
improves performance of execution of applications in
benchmarks.

The results of our research may be useful for the development of
just-in-time compilers, interpreters, and compilers with a mixed
execution mode of programs for virtual machines such as CLI,
Java, Python, Perl, Ruby, LLVM, and Parrot. Further research
directions might include the fields of dynamic compilation and
dynamic verification. For example, there is the possibility of
creating new domain-specific register allocation and code
generation algorithms. These algorithms can then be optimized for
applications in various domains, for example, in compression and
security of binary code.

4. ACKNOWLEDGMENTS
This work was supported by the German Federal Ministry of
Education and Research (BMBF) in EC SPRIDE and by the Horst
Görtz Foundation and the Hessian LOEWE excellence initiative
in CASED.

5. REFERENCES
[1] Vx32 // http://pdos.csail.mit.edu/~baford/vm/.
[2] Mooly Sagiv, Thomas Reps, and Susan Horwitz. 1996.

Precise interprocedural dataflow analysis with applications to
constant propagation. Theor. Comput. Sci. 167, 1-2 (October
1996), 131-170. DOI=
http://dx.doi.org/10.1016/0304-3975(96)00072-2.

[3] Distributed Knowledge Authorization Language //
http://dkal.codeplex.com.

a(1, 1) a(1, 14)
λ(1) λ(1) λ(1) λ(1) λ(1) λ(1) λ(1) λ(1) λ(1) λ(1) λ(1) λ(1) λ(1) λ(1)

a(2, 2) a(2, 11)
λ(2) λ(2) λ(2) λ(2) λ(2) λ(2) λ(2) λ(2) λ(2) λ(2) λ(2) λ(2)

a(3, 3) a(3, 10) a(3, 11) a(3, 14)
λ(3) λ(3) λ(3) λ(3) λ(3) λ(3) λ(3) λ(3) λ(3) λ(3) λ(3) λ(3)

a(4, 4) a(4, 11) a(4, 14)
λ(4) λ(4) λ(4) λ(4) λ(4) λ(4) λ(4) λ(4) λ(4)

a(5, 1) a(5, 4) a(5, 6) a(5, 9) a(5, 10) a(5, 11)
λ(5) λ(5) λ(5) λ(5) λ(5) λ(5) λ(5) λ(5) λ(5) λ(5)

Figure 1 a. Example of a static trace

Figure 1 b. Example of a dynamic trace

Figure 2. Architecture of extension of Vx32

GNU Compiler
Collection

Operating system

Program

Vx32

Deterministic
pass

Non-deterministic
pass

Tensor

Generation of machine
code

Execution

thread1 thread2

