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Abstract—A software product line (SPL) encodes a potentially large

variety of software products as variants of some common code base. Up

until now, re-using traditional static analyses for SPLs was virtually

intractable, as it required programmers to generate and analyze all

products individually.

In this work, however, we show how an important class of existing

inter-procedural static analyses can be transparently lifted to SPLs.

Without requiring programmers to change a single line of code, our

approach SPL

LIFT

automatically converts any analysis formulated for

traditional programs within the popular IFDS framework for inter-

procedural, finite, distributive, subset problems to an SPL-aware analysis

formulated in the IDE framework, a well-known extension to IFDS.

Using a full implementation based on Soot, CIDE and JavaBDD, we

show that with SPL

LIFT

one can reuse IFDS-based analyses without

changing a single line of code. Through experiments using three static

analyses applied to four Java-based product lines, we were able to

show that our approach produces correct results and outperforms the

traditional approach by several orders of magnitude.

I. INTRODUCTION

A Software Product Line (SPL) describes a set of software products
as variations of a common code base. Variations, so-called features,
are typically expressed through compiler directives such as the
well-known #ifdef from the C pre-processor or other means of
conditional compilation. Figure 1a shows a minimal example product
line that assigns values through different methods. Figure 1b shows
the product obtained by applying to the product line a pre-processor
with the configuration ¬F ^G^¬H , i.e., a product with feature G
enabled and features F and H disabled. Software product lines have
become quite popular in certain application domains, for instance
for the development of games and other applications for mobile
devices. This is due to the tight resource restrictions of those devices:
depending on the hardware capabilities of a certain mobile device,
it may be advisable or not to include certain features in a software
product for that device, or to include a variant of a given feature.

Static program analyses are a powerful tool to find bugs in program
code [1]–[3] or to conduct static optimizations [4], and it is therefore
highly desirable to apply static analyses also to software product lines.
With existing approaches, though, it is often prohibitively expensive
to reuse existing static analyses. The problem is that traditional static
analyses cannot be directly applied to software product lines. Instead
they have to be applied to pre-processed programs such as the one
from Figure 1b. But for an SPL with n optional, independent features,
there are 2n possible products, which therefore demands thousands of
analysis runs even for small product lines. This exponential blowup is
particularly annoying because many of those analysis runs will have
large overlaps for different feature combinations. It therefore seems
quite beneficial to share analysis information wherever possible.

In this work we introduce SPLLIFT, a simple but very effective
approach to re-using existing static program analyses without an
exponential blowup. SPLLIFT allows programmers to transparently

void main() {
i n t x = secret();
i n t y = 0;
# i f d e f F

x = 0;
# e n d i f

# i f d e f G
y = foo(x);

# e n d i f

print(y);
}

i n t foo( i n t p) {
# i f d e f H

p = 0;
# e n d i f

re turn p;
}

(a) Example SPL

void main() {
i n t x = secret();
i n t y = 0;
y = foo(x);
print(y);

}

i n t foo( i n t p) {
re turn p;

}

(b) Product for ¬F ^G ^ ¬H

Fig. 1: Example product line: secret is printed if F and H are disabled
but G is enabled

lift an important class of existing static analyses to software product
lines. Our approach is fully inter-procedural. It works for any analysis
formulated for traditional programs within Reps, Horwitz and Sagiv’s
popular IFDS [5] framework for inter-procedural, finite, distributive,
subset problems. In the past, IFDS has been used to express a
variety of analysis problems such as secure information flow [1],
typestate [2], [3], alias sets [6], specification inference [7], and shape
analysis [8], [9]. SPLLIFT automatically converts any such analysis
to a feature-sensitive analysis that operates on the entire product
line in one single pass. The converted analysis is formulated in
the IDE framework [10] for inter-procedural distributed environment
problems, an extension to IFDS. In cases in which the original
analysis reports that a data-flow fact d may hold at a given statement
s, the resulting converted analysis reports a feature constraint under
which d may hold at s. As an example, consider again Figure 1.
Imagine that we are conducting a taint analysis [1], determining
whether information can flow from secret to print. In the
traditional approach we would generate and analyze all 23 = 8
possible products individually, eventually discovering that the product
from Figure 1b may indeed leak the secret. SPLLIFT instead analyzes
the product line from Figure 1a in a single pass, informing us that
secret may leak for the configuration ¬F ^G^¬H (cf. Fig. 1b).

But a reduced analysis time is not the only advantage of a
feature-sensitive static analysis. In the area of software product lines,
conditional-compilation constructs may add much complexity to the
code, and can yield subtle and unusual programming mistakes [11],



[12]. As an example, a plain Java program will not compile if it
uses a potentially undefined local variable. In a Java-based software
product line, any pre-processor would accept such a program; the
programming problem would only manifest later, when the pre-
processed program is compiled. When the mistake is discovered, it
is laborsome to map the resulting plain-Java error message back to
the original product line. Analyzing the product line directly, as in
SPLLIFT, circumvents this problem.

To obtain meaningful results, SPLLIFT further takes feature models
into account. A feature model defines a Boolean constraint that
describes the set of all feature combinations that a user intends
to generate, the SPL’s valid configurations (or valid products). For
instance, if we were to evaluate the SPL from Figure 1a under the
constraint F $ G (stating that the user intends to generate only
products for which both F and G are either enabled or disabled),
SPLLIFT would detect that the secret information cannot leak after
all, as it holds that: (¬F ^ G ^ ¬H) ^ (F $ G) = false.
Considering a feature model complicates the analysis, which may
cause one to expect an increase in analysis cost. Fortunately, our
experimental results show that this, in fact, is not usually the case.
SPLLIFT can gain speed by exploiting the model, terminating the
analysis for constraint-violating program paths early. This balances
out the expected slowdown in many cases.

We have fully implemented SPLLIFT within a self-written IDE
solver on top of the program-analysis framework Soot [13], extending
this solver to product lines and connecting Soot to CIDE, the Colored
IDE [14], an Eclipse [15] extension for writing and maintaining Java-
based software product lines. Using our solution, existing IFDS-based
analyses are automatically converted to feature-sensitive versions
without changing a single line of code.

We used SPLLIFT to lift three standard inter-procedural static
program analyses, and then applied them to four existing CIDE-
based product lines, on which, due to the exponential blowup, the
traditional analysis approach takes hours if not years to compute.
Our experiments show that SPLLIFT produces correct results, and
outperforms the traditional approach by several orders of magnitude.

At http://bodden.de/spllift/ we make available our full implemen-
tation as open source, along with all data and scripts to reproduce
our empirical results. To summarize, this paper presents the following
original contributions:

• a mechanism for automatically and transparently converting any
IFDS-based static program analysis to an IDE-based analysis
over software product lines,

• a full open-source implementation for Java, and
• a set of experiments showing that our approach yields correct

results and outperforms the traditional approach by several
orders of magnitude.

The remainder of this paper is structured as follows. In Sec-
tion II, we introduce the IFDS and IDE frameworks, along with
their strengths and limitations. Section III contains the core of this
paper; here we explain the automated lifting of IFDS-based analyses
to software product lines. Section IV explains how we take into
account the product line’s feature model. In Section V we discuss
our implementation, while we present our experimental setup and
results in Section VI. The work presented in this paper bases itself
on previous work presented at the 2012 ACM SIGPLAN Workshop
on Programming Languages and Analysis for Security [16]. In
Section VII we explain the differences to this paper along with
the differences to other related work. Section VIII presents our
conclusions.

II. THE IFDS FRAMEWORK

Our approach builds on top of the so-called IFDS framework
by Reps, Horwitz and Sagiv [5]. This framework defines a general
solution strategy for the inter-procedural, flow-sensitive, and fully
context-sensitive analysis of finite distributive subset problems. In
this section we present the general concepts behind this framework
and illustrate them by an example.

A. Overview of the IFDS Framework

The major idea of the IFDS framework is to reduce any
program-analysis problem formulated in this framework to a pure
graph-reachability problem. Based on the program’s inter-procedural
control-flow graph, the IFDS algorithm builds a so-called “exploded
super graph”, in which a node (s, d) is reachable from a selected start
node (s0, 0) if and only if the data-flow fact d holds at statement s.
In this setting a “fact” may mean any logical statement that a static
analysis can decide, such as “variable x may carry a secret value” or
“variables x and y may alias.” To achieve this goal, the framework
encodes data-flow functions as nodes and edges.

Figure 2 shows how to represent compositions of typical gen and
kill functions as they are often used in static analysis. The nodes at
the top represent facts before the given statement s, the nodes at the
bottom represent facts after s. The identity function id maps each
data-flow fact before a statement onto itself. In IFDS, the unique
special value 0, represents a tautology, i.e., a fact that always holds.
It is therefore an invariant that two nodes representing 0 at different
statements will always be connected. This 0 value is used to generate
data-flow facts unconditionally. The flow function ↵ generates the
data-flow fact a, and at the same time kills the data-flow fact b (as
there is no edge from b to b). Function �, on the other hand kills a,
generates b and leaves all other values (such as c) untouched.

•0

•
0

•x

•x

•
p

•p

non-locally-
separable
flow function

The unconditional kill-and-gen functions above
can be used to model analysis problems that are
locally separable, i.e., in which a data-flow fact
does not depend on the previous values of other
facts. Such problems include the computation of
reaching definitions or live variables. Many inter-
esting analysis problems are not locally separable,
however, for instance the taint analysis from our
example in the introduction. For instance, the func-
tion representation to the right could be chosen to
model an assignment p=x. Here, x has the same value as before the
assignment, modeled by the arrow from x to x, and p obtains x’s
value, modeled by the arrow from x to p. If p previously held a
secret value, then it will only continue doing so if x holds a secret
value, too. This is modeled by a missing arrow from p to p.

It is important to note that data-flow facts are by no means
limited to simple values such as the local variables in our example.
Much more sophisticated abstractions exist, in which facts can, for
instance, model aliasing through sets of access paths [1] or even the

id: �S.S ↵: �S.{a} �: �S.(S � {a}) [ {b}
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•a

•b

•
b
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•
0

•a

•a

•b

•
b

•0

•
0

•a

•a

•b

•
b

•c

•c

Fig. 2: Function representation in IFDS, reproduced from [5]
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abstract typestate of combinations of multiple objects [3]. The IFDS
framework itself, however, is oblivious to the concrete abstraction
being used; the abstraction is a free parameter to the framework.

B. Different classes of flow functions

Users implement IFDS-based analyses by providing four classes
of flow functions that can be denoted as:

• normal: modeling flow through a statement that is neither a call
nor a return (incl. non-branching, unconditionally branching and
conditionally branching statements),

• call: modeling flow from a call site to a possible callee,
• return: modeling flow from a possible callee back to a return

site, i.e., a control-flow successor of the original method-call
site, and

• call-to-return: modeling intra-procedural flow from just before
a call site directly to a given return site.

Normal flow functions track simple intra-procedural flows. Call-
to-return functions track intra-procedural flows at call sites; they are
useful to propagate, for instance, information about local variables
that are not passed to a method call, as the call cannot possibly
change the value of those variables. Call functions map values from
the caller’s context to appropriate values in the callee’s context.
Return functions model the opposite flow, usually from return values
to variables that receive those values. Due to this setup, the analysis
of each method usually only processes information that is in scope
within that method.

C. Example: Taint analysis in IFDS

To encode the assignment of a secret value to a variable x we
generate a fact x. This fact would be killed to denote that x is assigned
a definitely non-secret value.

To illustrate this encoding, Figure 3 shows the exploded super
graph for our example client of the IFDS framework, the taint analysis
applied to the product from the running example (Figure 1b). The
analysis starts at the top-left node, which resembles the starting node
(s0, 0), s0 being the starting statement. According to the encoding
outlined above, the analysis “taints” the return value at the call to
secret() by generating the data-flow fact for the variable x that
holds this value. The analysis then tracks simple assignments to
local variables and method parameters as stated above. (For now,
let us ignore possible assignments through fields and arrays. We will
comment on those in Section V.) At the single call site in the example,
the call-to-return function keeps x alive, stating that it is still tainted
after the call if it was tainted earlier. At the same time, it kills y
because the call statement is assigning y a new value. (Note that at
this point y is already dead, due to the preceding assignment.) The
call function encodes the transfer of actual to formal parameters.
Since the only variable in scope within foo is p, the graph for
method foo has nodes for p but not for x nor y. In the example,
a taint violation is detected by observing the data flow marked with
the red/thick arrow: the node for y just before the print statement
is reachable in the graph, which means that a secret value, referred
to by y, may be printed.

D. The IDE Framework

Sagiv, Reps and Horwitz also developed a more general, more
expressive framework than IFDS, called inter-procedural distributive
environment transformers (IDE) [10]. As in IFDS, the IDE framework
models data flow through edges in an exploded super graph. In
addition to IFDS, however, IDE allows for the computation of
distributive functions along those edges: the label d of each node

in the exploded super graph maps to a value v from a second,
independent analysis domain, the so-called value domain V . The
flow functions thus transform environments {d 7! v} to other
environments {d0 7! v0}. Every IFDS problem can be encoded
as a special instance of the IDE framework using a binary domain
{>,?} where d 7! ? states that data-flow fact d holds at the current
statement, and d 7! > states that it does not hold [10]. But this binary
domain is the least expressive instance of a large set of possible value
domains. This we can exploit.

III. USING IDE TO LIFT IFDS-BASED ANALYSES TO SOFTWARE
PRODUCT LINES

The main idea of SPLLIFT is to leverage the gap in expressiveness
between IFDS and IDE. To lift IFDS-based data-flow analyses to a
feature-sensitive version for software product lines, we replace the
binary domain for encoding any IFDS problem as a special instance
of the IDE framework by a value domain that consists of feature
constraints. The lifting is based on the following principle:

Assume a statement s that is annotated with a feature
constraint F (i.e., #ifdef (F) s #endif). Then s should
have its usual data-flow effect if F holds, and should have
no effect if F does not hold.

This principle effectively talks about two different flow functions:
one function fF for the enabled case F , and one function f¬F for
the disabled case ¬F . The idea of SPLLIFT is to combine both flow
functions into one, fLIFT := fF _ f¬F , while using constraints to
track traversals of edges labeled with F and ¬F respectively. (The
labeling effectively occurs within IDE’s value domain V .) The above
definition depends on the two notions of a what a statement’s “usual
effect” should be and what it means to have “no effect”. The general
principle of disjoining two labeled flow functions fF and f¬F into
one applies to all flow functions in SPLLIFT. The two component
flow functions fF and f¬F differ, however, for the different classes
of flow functions that we described in Section II-B.

A. Intra-procedural flow functions

First we consider intra-procedural “normal” flow functions, which
exist for non-branching, unconditionally branching and conditionally
branching statements. Let us first discuss the most simple case of a
non-branching statement s. For the enabled case F , assume that the
statement’s original flow function is f(s). In Figure 4a we show on
the left the function fF , which we define as f(s)F , i.e., a copy of
f(s) in which all edges are labeled with F , the feature annotation
of s. In the figure, we show the edges as dashed because they
are conditionalized by this feature annotation. A label F effectively
denotes the function �c. c ^ F that will conjoin the incoming
constraint c with F when the edge is traversed. In the disabled
case ¬F , statement s is disabled because its feature annotation F
contradicts the current product’s feature selection. This means that
the statement simply does not change the intra-procedural data-flow
information at all (cf. the identity function in Figure 2). We hence
define f¬F as shown in the middle column: the identity function
labeled with ¬F . Once both functions have been labeled, we can
combine them into a single flow function as shown in the rightmost
column. This function fLIFT effectively represents both previous
functions at the same time, as a disjunction fF _f¬F . Edges such as
the one from 0 to 0, which are annotated with F in the one function
and with ¬F in the other, are implicitly annotated with true. In the
following we show such edges as (unconditional) solid black edges.
The intra-procedural call-to-return functions are treated exactly the
same way.
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int x = secret();

int y = 0;

y = foo(x);

print(y);

return p;

•
0

•x •y

•
0

•x •y

•
0

•x •y

•
0

•x •y

•
0

•p

•
0

•p

normal

normal

call-to-return

call

return

control-flow edge

data-flow edge

violating information flow

Fig. 3: Exploded super graph for the single example product from Figure 1b; main method shown on left-hand side, foo shown to the right

Enabled-case flow function fF Disabled-case flow function f¬F Lifted flow function fLIFT

(a) Normal flow function for non-branching statements, and call-to-return flow function for invoke statements
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(b) Normal flow function for unconditionally branching statements (goto, throw)
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(c) Normal flow function for conditionally branching statements ( if(p)goto)
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(d) Call flow function and return flow function
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Fig. 4: Lifting of different flow functions in SPLLIFT
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But how about intra-procedural flows through branching state-
ments? We conduct our analysis on the Jimple intermediate repre-
sentation, a three-address code, for which we need to distinguish
unconditional branches like throw e and goto l, from conditional
branches of the form if(p)goto l.

Figure 4b shows how we lift flow functions for unconditional
branches labeled with a feature annotation F . If the throw or goto

statement is enabled, data flow only exists towards the nodes of the
branch target (the primed nodes in Figure 4b). Both edges within this
figure are assumed to be labeled with F . If the statement is disabled,
data flows only along the fall-through branch, as the branch does
not actually execute. Again we use the identity function in this case.
Just as before, the lifted flow function fLIFT is obtained through a
disjunction of both functions.

For conditional branches of the form if(p)goto l, the lifted flow
function is basically a combination of the cases for the unconditional
branch and the “normal data flow”, which models the case in which
the branch falls through. We show the respective case in Figure 4c.
The disabled case ¬F is handled just as for unconditional branches;
if a branch is disabled, it just falls through, no matter whether it is
conditional or not.

B. Inter-procedural flow functions

The call and return flow functions model inter-procedural control
flows caused by call and return statements. The general idea behind
modeling those functions is the same as in the intra-procedural case,
however this time we need to consider a different flow function for
the disabled case, i.e., when ¬F holds. Remember that a call flow
function leads from a call site to its callee, and a return flow function
from a return statement to just after the call site. Using the identity
function to model such situations would be incorrect: If we were to
use the identity function then this would propagate information from
the call site to the callee (respectively vice versa) although under
¬F the call (or return) never occurs. We must hence use the kill-
all function to model this situation, as shown in Figure 4d (middle
column). This function kills all data-flow facts, modeling that no flow
between call site and callee occurs if the invoke statement is disabled.

C. Computing reachability as a useful side effect

It is an interesting question to ask whether we should conditionalize
edges between 0 nodes. As explained earlier, in plain IFDS/IDE,
0 nodes are always connected, unconditionally. We decided for the
design shown in Figure 4 where edges between 0 nodes are in
fact conditionalized by feature annotations just as any other edges.
This has the advantage that, as a side effect, our analysis computes
reachability information: a constraint c that SPLLIFT computes for a
node (s, 0), i.e., an environment (s, {0 7! c}), tells the programmer
that s is reachable only in product configurations satisfying c.

D. Combining flow functions and initializing flows

As the analysis explores a path in the exploded super graph, we
combine all constraint annotations along the path using conjunction.
After all, all constraints on that path must hold for the flow to
be possible. At control-flow merge points we combine constraints
using disjunction, as we could have reached the program point along
different paths. We initialize the analysis with the constraint true at
the program’s start node (s0, 0), and with false at all other nodes.

E. Application to running example

In Figure 5, we show how our generic flow-function conversion
rules are applied to our specific running example of our inter-
procedural taint analysis, operating on our example product line from

Figure 1a. In the figure, the violating information flow leads to the
following constraint:

(true ^ ¬F ^G ^ ¬H ^G) _ (false ^ ¬G) = ¬F ^G ^ ¬H

Note that this is exactly the constraint that our introduction promised
our analysis would compute.

IV. CONSIDERING THE SPL’S FEATURE MODEL

In the introduction we already hinted at the fact that it is gen-
erally necessary to consider a product line’s feature model during
analysis. Without considering the feature model both the lifted and
the traditional feature-oblivious analysis may simply produce useless
information as the analysis would be unable to distinguish results for
valid configurations from those for invalid ones (cf. Section I).

A. Computing the feature-model constraint from the feature model

Feature models are usually given in the form of a graphical tree
representation with additional propositional constraints. As proposed
by Batory [17], we translate the model into a single propositional
constraint by creating a conjunction of: (i) a bi-implication between
every mandatory feature and its parent, (ii) an implication from every
optional feature to its parent, (iii) a bi-implication from the parent
of every OR group to the disjunction of the components of said
group; and (iv) a bi-implication from the parent of every exclusive-
OR group, E, to the conjunction of: the pair-wise mutual exclusion
of the components E and the disjunction of the components of E.

B. Taking advantage of the feature-model constraint

SPLLIFT uses the feature model as follows: for an edge label f and a
Boolean feature-model constraint m SPLLIFT implicitly assumes that
the edge is instead labeled with f^m. Our tool automatically reduces
contradictory constraints to false, which causes the IDE algorithm to
automatically terminate computations for paths that result in such a
contradictory constraint.

Due to the fact that the constraint m complicates the overall
constraint computation during the buildup of the exploded super
graph, one may expect slowdowns over a version of SPLLIFT that
ignores the feature model. However, our particular style of imple-
mentation allows for an early termination of the IDE algorithm.
As our experiments show, this often counterbalances the slowdown
effect. Consider again the example of Figure 5, and in this figure the
top-most node labeled with p. During our analysis, when we reach
this node, we will have computed the path constraint ¬F ^ G. In
combination with the feature model F $ G, already at this point
we obtain: ¬F ^ G ^ F $ G = false. But this means that any
further data flow along this path of the graph is actually infeasible.
We can hence terminate further analysis along this path early.

Note that first we tried an even simpler solution: just replace
the start value true at the program’s start node by the feature-
model constraint m [16]. While this yields the same analysis results
eventually, we found that it wastes performance. The problem is
that the IDE algorithm spends most time constructing the graph and
internal summary functions, and spends only very little time actually
propagating values through the graph. Exchanging the start value
only leads to early termination in the propagation phase but not in
the costly construction phase. By conjoining the edge constraints with
m we terminate early in the construction phase already, saving the
algorithm from computing summary functions that, according to the
model, would carry contradictory Boolean constraints.
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int x = secret();

int y = 0;

[F ] x = 0;

[G] y = foo(x);

print(y);

[H] p = 0;

return p;
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G

G

control-flow edge

data-flow edge

conditional data-flow edge

violating information flow

true

false false

false

¬F ^G

¬F ^G ^ ¬H

Fig. 5: SPLLIFT as it is applied to the entire example product line of Figure 1a; an edge labeled with feature constraint C represents the
function �x. x ^ C. Constraints at nodes represent initial values (at the top) or intermediate results of the constraint computation.

V. IMPLEMENTATION WITH SOOT AND CIDE

We have implemented SPLLIFT based on the Soot program analysis
and transformation framework [13], the Colored Integrated Develop-
ment Environment (CIDE) [14] and the JavaBDD1 library. We have
implemented an IDE solver [10] in Soot that works directly on Soot’s
intermediate representation “Jimple”. Jimple is a three-address code
representation of Java programs that is particularly simple to analyze.
Jimple statements are never nested, and all control-flow constructs are
reduced to simple conditional and unconditional branches. Soot can
produce Jimple code from Java source code or bytecode, and compile
Jimple back into bytecode or into other intermediate representations.

To be able to actually parse software product lines, we used CIDE,
an extension of the Eclipse IDE [15]. In CIDE, software produce lines
are expressed as plain Java programs. This makes them comparatively
easy to parse: there are no explicit compiler directives such as #ifdef

that a parser would need to handle. Instead, code variations are
expressed by marking code fragments with different colors. Each
color is associated with a feature name. In result, every CIDE SPL is
also a valid Java program. CIDE forbids so-called “undisciplined”
annotations, i.e., enforces that users mark code regions that span
entire statements, members or classes. Previous research has shown
that undisciplined annotations do exist in real-world projects but that
they can often be eliminated by code expansion [18]. Figure 6 shows
our running example with the appropriately marked features in CIDE.

One performance critical aspect of our implementation is what data
structures we use to implement the feature constraints that SPLLIFT

tracks. After some initial experiments with a hand-written data
structure representing constraints in Disjunctive Normal Form, we
switched to an implementation based on Binary Decision Diagrams
(BDDs) [19], using JavaBDD. Reduced BDDs have the advantage

1JavaBDD website: http://javabdd.sourceforge.net/

Fig. 6: Example program in the Colored IDE (CIDE)

that they are compact and normalized, which allows us to easily detect
and exploit contradictions. The size of a BDD can heavily depend
on its variable ordering. In our case, because we did not perceive the
BDD operations to be a bottleneck, we just pick one ordering and
leave the search for an optimal ordering to future work.

Current Limitations

Our current implementation is not as sensitive to feature annota-
tions as it could be. This is mostly due to the fact that IFDS/IDE
requires the presence of a call graph, and currently we compute this
call graph without taking feature annotations into account. While we
follow call-graph edges in a feature sensitive fashion (as defined by
our call flow function), the feature-insensitive call graph is also used
to compute points-to sets. This precludes us from precisely handling
situations such as the following:

# i f d e f F
x = new ArrayList();

# e l s e

x = new LinkedList();
# e n d i f

x.add(o);
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Here, we would conservatively resolve the add-call to both
ArrayList.add and LinkedList.add, irrespective of whether F
is enabled. In other words, we would propagate the constraint true

along the respective call edges. This is sound but not maximally pre-
cise. Ideally, our points-to analysis should be feature sensitive as well,
propagating F to ArrayList.add and ¬F to LinkedList.add.
One could solve this problem by ignoring the pre-computed points-to
analysis and handling pointers as part of the IFDS abstraction, e.g.,
as done by Guarnieri et al. [1].

Due to our tool chain, our implementation is currently limited
to software product lines expressed with CIDE. Having said that,
there is nothing that precludes our approach from being applied to
product lines described in different ways. We are, in fact, currently
considering how SPLLIFT could be applied to C, using the TypeChef
parser [20]. The C pre-processor features #ifdef constructs that are
more expressive than the ones in CIDE, and the C language includes
more constructs for unstructured control flow than Java.

Last but not least, SPLLIFT is limited to analyses expressed in the
IFDS framework, which requires that the analyses must have flow
functions that are distributive over the merge operator (set union).
This is the case for many but not all analysis problems. In the future
we plan to investigate to what extent the same ideas are transferable
to more expressive static analysis frameworks, for instance weighted
pushdown systems [21].

VI. EXPERIMENTS

We used a set of extensive experiments to answer the following
research questions about our implementation:

• RQ1: Correctness Does SPLLIFT compute a sound result?
• RQ2: Efficiency How much efficiency do we gain over the

traditional feature-oblivious approach?
• RQ3: Feature Model What is the cost of using the feature

model?

A. RQ1: Correctness

To validate the correctness of our SPLLIFT implementation, we
need an oracle that can tell apart correct from incorrect results.
As an oracle, we implemented a second, simplistic analysis that is
also feature aware but not constraint based. This analysis essentially
corresponds to an inter-procedural version of the analysis A2 from
our earlier publication [22], and we therefore call the analysis A2 in
the remainder of this paper. A2 operates on the feature-annotated
control-flow graph just as SPLLIFT, however unlike SPLLIFT A2
is configuration-specific, i.e., evaluates the product line only with
respect to one concrete configuration c = {F1, . . . , Fn} at a time.
If a statement s is labeled with a feature F then A2 first checks
whether F 2 c to determine whether s is enabled. If it is, then
A2 propagates flow to s’s standard successors using the standard
IFDS flow function defined for s. If F 62 c then A2 uses the identity
function to propagate intra-procedural flows to fall-through successor
nodes only. The implementation of A2 is so simple that we consider
it as foolproof. We hence assume this A2 implementation as correct,
and can therefore use it as an oracle to cross-check the results of
SPLLIFT. Whenever A2 computes a fact r for some configuration
c, we fetch SPLLIFT’s computed feature constraint C for r (at the
same statement), and check that C allows for c. This ensures that
SPLLIFT is not overly restrictive. The other way around, we traverse
all of SPLLIFT’s results (r, c) for the given fixed c, and check that
the instance of A2 for c computed each such r as well (at the same
statement). This ensures that SPLLIFT is as precise as A2 , i.e., does not
report any false positives. Our cross-checks initially helped us to find

bugs in the implementation of SPLLIFT, but we quickly converged to
an implementation that does not violate any cross-checks any more.

B. RQ2: Efficiency

To evaluate the performance of our approach, we chose four
different product lines used in earlier work [22]. We apply to each
benchmark subject three different static analyses both emulating
the traditional approach (details below) and using SPLLIFT. Table I
summarizes some core data about these subjects. BerkeleyDB is a
feature-enriched database library. GPL is a small product line for
desktop applications, while Lampiro and MM08 are product lines for
J2ME applications. Because whole-program analyses require entry
points to start with, we programmed driver classes for three of
the benchmarks. For the J2ME SPLs, those methods call life-cycle
methods usually called by the J2ME framework. For BerkeleyDB,
our main class calls the main methods of all driver classes that are
shipped with the library. The driver classes are available for download
along with all other data and tools to reproduce the experiments.

The third column in Table I gives the total number of features
as mentioned in the feature model. The fourth column states the
number of features mentioned in feature annotations that are actually
reachable from our main classes. For Lampiro this number is sur-
prisingly low. Kästner reports that the current version of Lampiro
is unusual in the sense that it contains many dead features and
other anomalies, which may be the explanation of this effect [14,
pages 131–132]. Column five states the number of configurations
over those features, i.e., 2Features-reachable. The last column states the
number of such configurations that are valid w.r.t. the feature model.
For instance, for Lampiro the feature model ended up not constraining
the 4 combinations of the 2 reachable features. For BerkeleyDB, we
do not know the number of valid configurations. This is because
we compute this number as a side-effect of running the traditional
approach: for each possible configuration we first check whether it
is valid and, if it is, next apply the traditional analysis approach to
this configuration. But for BerkeleyDB, due to the 55 · 1010 possible
configurations, this process would take years to complete. For each
benchmark/analysis combination we define a cutoff time of ten hours,
which is why we cannot report the number of valid configurations
for BerkeleyDB.

As analysis clients we used three different generic IFDS-based
inter-procedural client analyses. Possible Types computes the possible
types for a value reference in the program. Such information can,
for instance, be used for virtual-method-call resolution [4]. We
track typing information through method boundaries. Field and array
assignments are treated with weak updates in a field-sensitive manner,
abstracting from receiver objects through their context-insensitive
points-to sets. Reaching Definitions is a reaching-definitions analysis
that computes variable definitions for their uses. To obtain inter-
procedural flows, we implement a variant that tracks definitions
through parameter and return-value assignments. Uninitialized Vari-
ables finds potentially uninitialized variables. This analysis “gener-
ates” variables where they are declared and “kills” them at their first
assignment. Again we track parameter and return-value assignments.
We provide the source code for all three clients (only approx.
550LOC) in our download package. We include the Java 1.7 runtime
libraries in our analysis.

To evaluate the efficiency of SPLLIFT against the actual traditional
approach, we would ideally want to use a pre-processor to generate
all possible products, and then apply the traditional analysis approach
to each resulting product, an approach which in our earlier work [22]
we called A1 . However, we quickly found that this approach is
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so intractable that it would even preclude us from finishing our
experiments in due time. This is because the traditional approach
would need to generate, parse and analyze every single product. A
prerequisite for each analysis is a call graph, whose computation
can easily take minutes on its own. Given the large number of
possible configurations, it would have taken us years to complete
the experiments. (Brabrand et al. [22] did not have this problem
because their intra-procedural analyses need no call graph and must
only consider up to 2k combinations where k is the maximal number
of features within a single method. For our four benchmark subjects
k is always  9.)

We hence decided to compare SPLLIFT not to A1 but instead to
our implementation of A2 , which only requires a single parsing step
and call-graph computation. A2 is thus naturally faster than A1 ,
and therefore any performance gain we can show with respect to
A2 would be even higher with respect to A1 . We found that even
with using A2 , some experiments would still take years to complete,
though, which is why we nevertheless use a cutoff-time of ten hours.

For our performance measurements we used a Linux machine
with kernel version 2.6.26-1 running on a Quad-Core AMD Opteron
Processor 8356 at 2.3GhZ and with 40GB RAM. As Java Virtual
Machine we used the Hotspot server VM in version 1.7.0 05,
configured to run with 32GB maximal heap space. To make our
results easier to reproduce, we configured Eclipse to run all analyses
without requiring a user interface. Our implementation is single-
threaded. JavaBDD was configured to use the BuDDy2 BDD package,
which implements BDD operations efficiently in native code.

Table II shows our performance comparison between SPLLIFT and
A2 . In those experiments, both approaches make use of the feature
model. For convenience, the second column shows again the number
of valid configurations. The A2 analysis needs to be executed that
many times, once for each configuration. The third column shows the
time it takes Soot to construct a call graph and points-to sets for the
respective benchmark. This time is the same for SPLLIFT and A2 , as
both require a call graph as prerequisite.

As the table shows, SPLLIFT outperforms A2 clearly. While
SPLLIFT never takes more than about 12 minutes to terminate, A2
always takes significantly longer. In five cases (shown in gray), A2
even took longer than our cut-off time of ten hours. When this was
the case we estimated the rough time it would take A2 to terminate
if we had run it to completion. We computed this estimate by taking
the average of a run of A2 with all features enabled and with
no features enabled and then multiplying by the number of valid
configurations. (For BerkeleyDB we estimated the number of valid
configurations by extrapolating the results obtained within 10 hours.)
As this estimation has a relatively low confidence, we only report a
very coarse prognosis of days or years.

It is worthwhile noting that, while the absolute performance gain
certainly differs depending on the client analysis and chosen product
line, the gain is always substantial, and in particular the exponential
blowup that A2 suffers from cannot be observed with SPLLIFT.

Qualitative performance analysis: During our experiments, we
found a relatively high variance in the analysis times. As we found,
this is caused due to non-determinism in the order in which the
IDE solution is computed. As a fixed-point algorithm, IDE computes
the same result independently of iteration order, but some orders
may compute the result faster (computing fewer flow functions)
than others. The non-determinism is hard to avoid; it is caused by
hash-based data structures within Soot and our solver. We did find,

2BuDDy website: http://buddy.sf.net/

Features Configurations
Benchmark KLOC total reachable reachable valid

BerkeleyDB 84.0 56 39 55 · 1010 unknown
GPL 1.4 29 19 524,288 1,872

Lampiro 45.0 20 2 4 4
MM08 5.7 34 9 512 26

TABLE I: Key information about benchmarks used

however, that the analysis time taken strongly correlates with the
number of flow functions constructed in the exploded super-graph
(the correlation coefficient was above 0.99 in all cases). Moreover, in
all our benchmark setups, the A2 analysis for the “full configuration”,
in which all features are enabled, constructed almost as many edges
as SPLLIFT did on its unique run. While SPLLIFT deals with a much
more complex analysis domain, i.e., performs more work per edge,
our experimental results show that this additional cost is rather low.

C. RQ3: Feature Model

Regarding a product line’s feature model is crucial to any analysis
approach for software product lines, as otherwise the analysis would
be unable to distinguish results for valid configurations from those
for invalid ones, yielding analysis information that would be of little
use to clients.

Nevertheless it is an interesting question to ask how high is the
cost of regarding the feature model. Table III compares the running
time of SPLLIFT with the running time of an instance of SPLLIFT

where the feature model was explicitly ignored. As our results show,
there is usually no significant difference in analysis cost. Exceptions
are GPL with Possible Types and, to a lesser extent, MM08 with all
three analyses. In both cases, the cost of regarding the feature model
is clearly observable, albeit far from prohibitive. Apel et al. [23]
previously observed as well that regarding the feature model does
usually not add much cost during analysis.

Interestingly, those results are quite different from the ones we
obtained in our previous approach on intra-procedural analysis for
software product lines [22]. There we found that regarding the feature
model actually saved time. Our explanation for this difference in
results is that the intra-procedural analyses from our earlier work use
a different, bitset-based constraint representation. This representation
is likely less efficient than the BDD-based one in SPLLIFT, which
causes the baseline to be much higher. With a higher baseline, the
inclusion of the feature model can save more time, as the feature
model can help to keep analysis configurations small. With SPLLIFT

the baseline is quite low already. To illustrate this, we included in
Table III the average duration of all executed A2 analyses for the
respective setup. Since A2 is so simple, it is hard to imagine a feature-
sensitive analysis (which by its nature considers all configurations, not
just one as A2 ) that would complete in less time. As the comparison
with those values shows, the analysis time of SPLLIFT is often actually
quite close to this gold standard.

VII. RELATED WORK

The work presented in this paper extends an initial effort on
applying the IFDS and IDE analysis frameworks to SPLs [16].
In the earlier work, we only considered “normal” flow functions.
Here we significantly refine the technique and implementation. In
particular, to achieve soundness and improve performance, we now
consider feature model constraints. In our earlier work, we were
still speculating about what could be an efficient representation for
Boolean constraints. In this work we present a solution based on
BDDs that is highly efficient. In our eyes, BDDs are crucial to the
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Configurations Possible Types Reaching Definitions Uninitialized Variables
Benchmark valid Soot/CG SPLLIFT A2 SPLLIFT A2 SPLLIFT A2

BerkeleyDB unknown 7m33s 24s years 12m04s years 10m18s years
GPL 1,872 4m35s 42s 9h03m39s 8m48s days 7m09s days

Lampiro 4 1m52s 4s 13s 42s 3m30s 1m25s 3m09s
MM08 26 2m57s 3s 2m06s 59s 24m29s 2m13s 27m39s

TABLE II: Performance comparison of SPLLIFT over A2 ; values in gray show coarse estimates

Benchmark Feature Model Possible Types Reaching Definitions Uninitialized Variables
regarded 24s 12m04s 10m18s

BerkeleyDB ignored 23s 11m35s 10m47s
average A2 21s 9m35s 7m12s

regarded 42s 8m48s 7m09s
GPL ignored 18s 8m21s 7m29s

average A2 17s 7m31s 6m42s
regarded 4s 42s 1m25s

Lampiro ignored 4s 48s 1m13s
average A2 3s 42s 49s

regarded 3s 59s 2m13s
MM08 ignored 2s 45s 1m49s

average A2 2s 31s 1m37s

TABLE III: Performance impact of feature model on SPLLIFT. Values in gray show the average time of the A2 analysis. This number can
be seen as lower bound for any feature-sensitive analysis.

performance of SPLLIFT; we found that others do not scale nearly as
well for the Boolean operations we require. Finally, for the first time
we present empirical evidence of the benefits of our approach.

Our work can also be seen as an extension to an approach by
Brabrand et al., who present a number of mechanisms to lift intra-
procedural data-flow analyses to SPLs by extending the analysis
abstraction with feature constraints [22]. Our approach, on the
other hand, lifts information and data-flow analyses to SPLs in
an inter-procedural fashion, using a different analysis framework,
and in particular requiring no extension of the analysis abstraction.
In SPLLIFT, the implementation of the IFDS flow functions can
remain unchanged. To the best of our knowledge SPLLIFT is the
first work that supports such transparent reuse of analyses. Another
crucial difference is our efficient encoding of the distributive Boolean
operations through BDDs in the IDE framework.

TypeChef [20], [24] is a parser and analysis engine for product
lines written in C. It can parse the entire Linux kernel, including
macros and #ifdef constructs (including undisciplined uses), and
performs data-flow analysis. Opposed to SPLLIFT, all analyses are
intra-procedural, though, and use a customized analysis domain, thus
not providing no support for reusing standard analyses in the way we
do. In the future we plan to integrate SPLLIFT with TypeChef.

Thüm et al. survey analysis strategies for SPLs [25], focusing on
parsing [20], type checking [23], [26], model checking [27], [28],
and verification [29]–[31]. The surveyed work does not include SPL
data-flow analysis approaches, but shares with our work the general
goal of checking properties of a SPL with reduced redundancy and
efficiency. Similar to SPLLIFT, a number of approaches covered by
the survey adopt a family-based analysis strategy, manipulating only
family artifacts such as code assets and feature model. Contrasting,
product-based strategies, such as the generate-and-analyze approach
we use as baseline, manipulate products and therefore might be
too expensive for product lines having a large number of products.
Product-based strategies, however, might be appealing because they
can simply reuse existing analyses, but this is also the case of the
specific family-based strategy proposed here.

In the testing context, Kim et al. use conventional inter-procedural
data-flow analysis to identify features that are reachable from a given

test case [32]. The test case is then only executed with the SPL
products that have these features, reducing the number of combina-
tions to test. They are able to use an off-the-shelf analysis because
they express part of the variability using conditional statements,
not conditional compilation or other feature tagging mechanisms.
This is similar to the technique of configuration lifting [29], which
converts compile time variability into runtime variability. In this paper
we propose a feature-sensitive analysis to obtain more precision.
By applying our family-based analysis followed by their product-
based testing one could maybe further reduce the effort to test a
SPL. Similar benefits might apply for other testing approaches based
on conventional analyses [33] or even feature-sensitive model level
analyses [34].

The idea of making dataflow analysis sensitive to statements that
may or may not be executed is related to path-sensitive dataflow
analysis. Such analyses compute different analysis information along
different execution paths aiming to improve precision by disregard-
ing spurious information from infeasible paths [35] or to optimize
frequently executed paths [36]. Earlier, disabling infeasible dead
statements has been exploited to improve the precision of constant
propagation [37] by essentially running a dead-code analysis capable
of tagging statements as executable or non-executable during constant
propagation analysis.

Predicated dataflow analysis [38] introduced the idea of using
propositional logic predicates over runtime values to derive so-called
optimistic dataflow values guarded by predicates. Such analyses are
capable of producing multiple analysis versions and keeping them
distinct during analysis. However, their predicates are over dynamic
state rather than SPL feature constraints for which everything is
statically decidable.

SPLLIFT can be applied to a number of contexts, but much
motivation comes from the concept of emergent interfaces [39].
These interfaces emerge on demand to give support for specific SPL
maintenance tasks and thus help developers understand and manage
dependencies between features. Such dependencies are generated by
feature-sensitive analyses such as the ones discussed here. In partic-
ular, the performance improvements we obtain with our approach are
very important to make emergent interfaces useful in practice.
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VIII. CONCLUSION

We have presented SPLLIFT, an approach and framework for
transparently lifting IFDS-based static analysis to software product
lines using the more expressive framework IDE. Using a set of
experiments we were able to show that this approach can outperform
the traditional feature-oblivious generate-and-analyze approach by
several orders of magnitude. In practice, SPLLIFT successfully avoids
the exponential blowup usually associated with product-line analysis.

This success appears to be due to the following reasons. SPLLIFT

piggybacks onto the user-defined IFDS-based analysis a layer of
Boolean feature constraints. The functions generating those Boolean
constraints are distributive and hence find a very efficient encoding
in the IDE framework. Moreover, we encode all Boolean constraints
using minimized binary decision diagrams (BDDs). The Boolean
operations we require are conjunction, disjunction, negation and “is
false”. The two latter operations are constant-time on minimized
BDDs. Conjunction and disjunction are, on average, efficient on
BDDs, too. The JavaBDD engine we use further memoizes the result
of all BDD operations, which speeds up repetitive operations to
constant time.

In the future we plan to apply SPLLIFT to C. Further, we will
investigate the performance impact of BDD variable orderings, and
to what extent a similar lifting approach can be applied also to static-
analysis frameworks that are more expressive than IFDS.
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