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Safe and Practical Decoupling of Aspects with Join Point Interfaces

Eric Bodden, Technische Universität Darmstadt
Éric Tanter, University of Chile
Milton Inostroza, University of Chile

In current aspect-oriented systems, aspects usually carry, through their pointcuts, explicit references to
the base code. Those references are fragile and give up important software engineering properties such as
modular reasoning and independent evolution of aspects and base code. In this work, we introduce a novel
abstraction called Join Point Interfaces, which, by design, supports modular reasoning and independent evo-
lution by decoupling aspects from base code and by providing a modular type-checking algorithm. Join point
interfaces can be used both with implicit announcement through pointcuts, and with explicit announce-
ment, using closure join points. Join point interfaces further offer polymorphic dispatch on join points, with
an advice-dispatch semantics akin to multi-methods. In this work, we show how our proposal solves a large
number of problems observed in previous related approaches. We have implemented join point interfaces as
an open-source extension to AspectJ. A first study on existing aspect-oriented programs supports our initial
design in general, but also highlights some limitations, which we then address by introducing parametric
polymorphism and a more permissive quantification mechanism. As a result, join point interfaces are a safe
and practical way of decoupling aspects.

Categories and Subject Descriptors: D.2.3 [Software Engineering]: Coding Tools and Techniques; D.3.3
[Programming Languages]: Language Constructs and Features

General Terms: Design, Languages

Additional Key Words and Phrases: aspect-oriented programming, modularity, typing, interfaces, implicit
announcement, explicit announcement, join point polymorphism, advice dispatch

1. INTRODUCTION
“Modular reasoning means being able to make decisions about a module while look-
ing only at its implementation, its interface and the interfaces of modules referenced
in its implementation or interface. For example, the type-correctness of a method
can be judged by looking at its implementation, its signature (i.e. interface), and the
types (i.e. interfaces) of any other code called by the method.” [Kiczales and Mezini
2005]

While Aspect-Oriented Programming (AOP) [Filman et al. 2005] aids in obtaining
localized implementations of crosscutting concerns, its impact on modular reasoning
is not that positive. Indeed, the emblematic mechanism of AOP is pointcuts and ad-
vice, where pointcuts are predicates that denote join points in the execution of a pro-
gram where advice are executed. With such an implicit-invocation mechanism, it is
not usually possible to reason about an aspect or an advised module in isolation. As
we show in Figure 1a, an aspect contains direct textual references to the base code
via its pointcuts—with detrimental effects. These dependencies make programs frag-
ile, they hinder aspect evolution and reuse. Changes in the base code can unwittingly
render aspects ineffective or cause spurious advice applications. Conversely, a change
in a pointcut definition may cause parts of the base program to be advised without
notice, breaking some implicit assumptions. The fact that independent evolution is
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Fig. 1: Dependencies in traditional AOP and with join point interfaces.

compromised is particularly worrying considering that programming aspects requires
a higher level of expertise, and is hence likely to be done by specialized programmers.
Therefore, to be widely adopted, AOP is in great need of mechanisms to support sepa-
rate development in a well-defined manner.

The above issues have been identified early on [Gudmundson and Kiczales 2001]
and have triggered a rich discussion in the community [Kiczales and Mezini 2005;
Steimann 2006]. In particular, several proposals have been developed to enhance the
potential for modular reasoning by introducing a notion of interface between aspects
and advised code (e.g. [Gudmundson and Kiczales 2001; Aldrich 2005; Sullivan et al.
2010; Steimann et al. 2010]). However, as we show in this work, while those proposals
do enhance the situation over traditional AOP, none of these proposals manages to
fully support independent evolution through modular type checking, mostly because
the interfaces are not expressive enough. This is especially troublesome because the
existence of a concrete modular type checker is generally considered the first solid
evidence of modular reasoning.

The main contribution of this paper is to enable fully modular type checking for
aspects through join point interfaces (JPIs), which are type-based contracts between
aspects and advised code (Figure 1b). JPIs support a programming methodology where
aspects only specify the types of join points they advise, but do not comprise any point-
cuts. It is the responsibility of the programmer maintaining the advised code to specify,
through an exhibits clause, which join points her code exposes, and of which type those
join points are. In addition to implicit announcement through pointcuts that quantify
over join points, JPIs are integrated with Closure Join Points [Bodden 2011] a mecha-
nism for explicit event announcement.

Aspects and advised code can be developed and evolved independently. Conversely to
previous work [Aldrich 2005; Sullivan et al. 2010; Steimann et al. 2010], JPIs do allow
for strict separate compilation thanks to modular type checking. When programmers
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in charge of advised code compile their module, they need to include JPI definitions
but no aspect code. Likewise, when aspect experts compile their aspects, they only in-
clude the join point interface definitions but no base code. This is similar to what Java
interfaces offer to support independent evolution of object-oriented code. The static
semantics of JPIs gives the strong guarantee that programmers can always safely
compose aspects and advised modules, even when they were separately developed and
compiled.

In addition, join point interfaces support a notion of subtyping, which helps in struc-
turing and managing the complexity of the space of events-of-interest to aspects. Sub-
typing of JPIs supports join point polymorphism and advice overriding. We introduce a
novel semantics of advice dispatch that avoids the pitfalls of other approaches, inspired
by the well-established multiple-dispatch semantics [Clifton et al. 2000].

After a first thorough evaluation of JPIs on a corpus of AspectJ projects, we identi-
fied two major limitations of our approach, which led us to extend our design in two
directions. First, we noticed that join point interfaces comprising return and excep-
tion types can easily become too specific to allow for flexible quantification through
pointcuts, causing code duplication on the side of the aspect. To mitigate the problem,
we introduce generic JPIs, using type parameters. As we show, these type parameters
yield a solution that is both type safe and flexible. Second, we observed that JPIs are
not well-suited for aspects that are highly crosscutting, such as profiling or data race
detection, because they require programmers to define corresponding exhibits clauses
in each advised classes. To mitigate this problem, we introduce a mechanism called
global pointcuts, which makes it possible to balance the design trade-off between un-
restricted quantification as in AspectJ and per-class exhibits clauses. A revisited eval-
uation validates the practical interest of these extensions.

Our project’s web page contains a detailed documentation of our language extension,
download links to our implementation (as open source), as well as all subject programs
used for our case studies: http://bodden.de/jpi/

This paper presents the following original contributions:

— the design of join point interfaces, a novel mechanism for decoupling aspect defini-
tions from base code, implemented as an extension of AspectJ;

— a detailed explanation of why join point interfaces are the first abstraction to allow
for modular type checking in combination with implicit announcement;

— a novel semantics for advice dispatch in presence of join point polymorphism, based
on multiple dispatch;

— the design and implementation of generic JPIs, to improve on flexibility while retain-
ing type safety;

— the design and implementation of a controlled global pointcut mechanism, which can
be used to support highly-crosscutting aspects;

— an extensive case study of existing aspect-oriented projects that is used to justify and
assess our design decisions.

The notion of JPIs was first presented in the New Ideas track of ESEC/FSE [Inos-
troza et al. 2011]. This work is the result of the development and maturation of that
idea; syntax and semantics have evolved, and both implementation and evaluation are
completely new, as are the ideas of generic JPIs and global pointcuts.

Outline. The remainder of this paper is structured as follows. We next introduce join
point interfaces through a running example. Section 3 explains our type system and
the dynamic semantics in full generality. We discuss our implementation in Section 4,
and present a first evaluation of join point interfaces in Section 5. As this evaluation
shows, the core version of join point interfaces is provides type safety but lacks flexibil-
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1 class ShoppingSession { ...
2 void checkOut(Item item, float price, int amount, Customer cus){
3 cart.add(item, amount); //fill shopping cart
4 cus.charge(price); //charge customer
5 totalValue += price; //increase total value of session
6 }
7 }
8 aspect Discount {
9 pointcut checkingOut(float price, Customer cus):

10 execution(⇤ ShoppingSession.checkOut(..)) && args(⇤, price, ⇤, cus);
11

12 void around(float price, Customer cus):
13 checkingOut(price, cus) {
14 double factor = cus.hasBirthday()? 0.95 : 1;
15 proceed(price⇤factor, cus);
16 }
17 }

Listing 1: Shopping session with discount aspect

ity. In Sections 6 and 7, we thus explain how generic JPIs and global pointcuts restore
this flexibility. We discuss related work in Section 8 and conclude in Section 9.

2. A FIRST TOUR OF JOIN POINT INTERFACES
We begin by defining an introductory example in plain AspectJ [Laddad 2003], which
we will then improve using join point interfaces. We assume an e-commerce system,
in which a customer can check out a product by either buying or renting the product.
A business rule states that, on his/her birthday, the customer is given a 5% discount
when checking out a product. We will be adding further rules later.

Listing 1 shows an implementation of the example where the business rule is defined
as an aspect in plain AspectJ. The around advice in lines 12–16 applies the discount by
reducing the item price to 95% of the original price when proceeding on the customer’s
birthday. Note how brittle the AspectJ implementation is with respect to changes in
the base code. Most changes to the signature of the checkOut method, such as renaming
the method or modifying its parameter declarations, will cause the BirthdayDiscount
aspect to lose its effect. The root cause of this problem is that the aspect, through its
pointcut definition in lines 9–10, makes explicit references to named entities of the
base code—here to the checkOut method.

2.1. Defining Join Point Interfaces
For this example, programmers could use the following join point interface definition
to successfully decouple the aspect definition from the advised base code:

jpi void CheckingOut(float price, Customer cus);

In our core language design, join point interfaces are, except for the jpi keyword, syn-
tactically equivalent to method signatures. This is for a good reason: methods are de-
signed to be modular units of code that can be type-checked in a modular way, and we
wish to inherit this property for join point interfaces. The method signature chosen for
a join point interface typically coincides with the signature chosen for the advice that
handles the appropriate join point (see Line 12 in Listing 1).
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It is important to note that join point interface signatures are assumed to be com-
plete with respect to the checked exceptions they define. The above JPI definition de-
clares no exception, which gives both the aspect and the base code the guarantee that
the respective other side of the interface cannot throw any checked exceptions at join
points of this type. We will come back on the details in Section 3, and as we discuss in
Section 8, our system is the first to correctly handle exceptions in that manner.

2.2. Advising JPIs
The following piece of code shows how programmers would advise join points defined
by a join point interface:

aspect Discount {
void around CheckingOut(float price, Customer c) {

double factor = c.hasBirthday()? 0.95 : 1;
proceed(price⇤factor, c);

}
}

Crucially, advices in our approach only refer to join point types, not to pointcuts. Be-
cause of this, advices are completely decoupled from the code they advise; their de-
pendencies are defined just in terms of a JPI declaration. As shown in the example,
similar to AspectJ, an advice can use the formal parameters of a JPI to obtain context
information exposed at join points. As we will explain in Section 3, we impose strict
typing constraints on argument and return types. In plain AspectJ, this is not the case.
In particular, an AspectJ can use Object in the return-type position as a wildcard that
just denotes “any type”. In addition, AspectJ uses unsafe co-variant typing through
this, target and args pointcuts (more on this in Section 4).

2.3. Implicit Announcement with Pointcuts
Programmers have two different ways to raise join points declared through join
point interfaces, through implicit and through explicit announcement. We first ex-
plain implicit announcement, in which join points are raised automatically at cer-
tain program events captured by AspectJ pointcuts. In our running example, the class
ShoppingSession can raise the appropriate CheckingOut join points as follows:

class ShoppingSession {
exhibits void CheckingOut(float price, Customer c):

execution(⇤ checkOut(..)) && args(⇤, price, ⇤, c);
...

}

In this piece of code, the programmer raises join points implicitly, through an exhibits
clause. Programmers will usually use this construct whenever wishing to concisely
expose multiple join points from the same class. Within our JPI language, a pointcut
attached to an exhibits clause only matches join points that originate from a code frag-
ment lexically contained within the declaring class. This is to avoid an overly complex
semantics with respect to subclassing, as previously observed by others [Steimann
et al. 2010]. As for advice, our type system checks that the necessary constraints are
satisfied such that weave-time and runtime errors are avoided (details in Section 3).
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1 class ShoppingSession {
2 void checkingOut(final Item item, float price, int amount, Customer cus) {
3 totalValue = exhibit CheckingOut(float alteredPrice, Customer c) {
4 sc.add(item, amount);
5 cus.charge(alteredPrice);
6 return totalAmount + alteredPrice;
7 } (price,cus);
8 }
9 }

Listing 2: Example from Figure 1 with closure join points

2.4. Explicit Announcement with Closure Join Points
Pointcuts suffer from the fragile pointcut problem [Gybels and Brichau 2003; Stoerzer
and Graf 2005]: when software evolves, the patterns of a pointcut can accidentally miss
join points or match unintended ones, resulting in surprising and unintended behav-
ior. With join point interfaces, even when using implicit announcement, this problem
is much less severe because the scope of quantification is restricted: pointcuts can
only match join points within the same class, and hence programmers can easily see
how a pointcut affects a given class. Nevertheless, we offer programmers a language
construct for explicit announcement as well, which allows programmers to explicitly
mark expressions, statements or sequences to be advised by aspects. Explicitly an-
nounced join points are useful whenever pointcuts are either not expressive enough,
too awkward, or too concrete to conveniently describe exactly which part of the execu-
tion should be advised. For instance, Steimann et al. [2010] recently showed that out
of 484 advices in an aspect-oriented version of BerkelyDB [2010], 218 applied to some
statements in the middle of a method. Single statements may be hard to select with-
out explicit join points, yielding bloated and fragile pointcuts. Sequences of statements
need to be extracted into a method so that they can be advised using pointcuts.

We support explicit announcement through a language construct called closure join
points, a mechanism that allows programmers to explicitly mark any Java expression
or sequence of statement as “to be advised”. Closure join points are explicit join points
that resemble labeled, instantly called closures, i.e., anonymous inner functions with
access to their declaring lexical scope. Closure join points were first proposed indepen-
dently of JPIs [Bodden 2011]; this work integrates both approaches.

Listing 2 shows the shopping-session example from Listing 1 adopted to the pro-
posed syntax. Instead of using a pointcut in an exhibits clause, the programmer ex-
poses a sequence of statements (lines 4–6) using a closure join point of the CheckingOut
JPI. Section 3 gives the syntax and semantics of closure join points. For a further dis-
cussion of our design and implementation of closure join points we refer the interested
reader to Bodden [2011]. Finally, note that an advice is oblivious to the fact whether
join points are announced implicitly or explicitly; only their types matter.

2.5. Join Point Polymorphism
Join points raised explicitly through closure join points can only provide a single join
point interface, the one specified in the closure’s header. In the case of implicit in-
vocation, however, JPIs are assigned to join points through pointcuts, and different
pointcuts can overlap, i.e., match common join points. As we have seen, a class defines
the pointcuts that expose certain join points in its execution, following a given JPI. For
instance, in our running example, class ShoppingSession defines a pointcut that gives
the type CheckingOut to all join points that are executions of the checkOut method. Be-
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CheckingOut

Buying Renting

Fig. 2: Inheritance between Join Point Interfaces

1 jpi void Renting(float price, int amount, Customer c) extends CheckingOut(price, c);
2

3 aspect Discount {
4 void around CheckingOut(float price, Customer cus) { /⇤ as before ⇤/ }
5 void around Renting(float price, int amt, Customer cus) {
6 double factor = (amt > 5) ? 0.85 : 1;
7 proceed(price⇤factor, amt, cus);
8 }
9 }

Listing 3: Advice overriding

cause a join point can be matched by several pointcuts, a join point can have multiple
types. For instance, an execution of checkOut can be seen as a CheckingOut join point,
and could additionally be seen as a LoggableEvent join point (a JPI whose definition is
left to the imagination of the reader).

Join point interfaces abstract from join points through types. In the same way that
object interfaces in languages like Java support a flexible form of subtype polymor-
phism, JPIs enable polymorphic join points. A join point can be seen as providing mul-
tiple JPIs, and advice dispatch at that join point can take advantage of this polymor-
phism, increasing the potential for advice reuse. Like interfaces in Java, JPIs support
subtyping. Consider two subtypes of CheckingOut, Buying and Renting (Figure 2), and
the following business rule: the customer gets a 15% discount when renting at least 5
products of the same kind; this promotion is not compatible with the birthday discount.

Listing 3 shows an implementation of this additional rule using sub typing on JPIs.
First, we declare the JPI Renting as extending CheckingOut. The semantics of this sub
typing relationship implies that any join point of type Renting is also a join point of
type CheckingOut. The extends clause defines how arguments are passed to super join
points, similar to primary constructors in Scala [Odersky et al. 2008]. In the example,
the first and third arguments of Renting join points become the first respectively second
argument when this join point is seen through the CheckingOut interface.

This effect can be seen in the aspect Discount, which now declares two advices. The
first one is the same as in the previous example. In general, it applies to all CheckingOut
join points, and if this advice was the only advice in the aspect, then it would indeed
execute also for join points of type Renting. In the example, however, the aspect defines
a second advice specifically for Renting. In this case, an overriding semantics applies:
the more specific advice overrides the first advice for all join points that are of type
Renting. As a result, the first advice only executes for join points of other subtypes
of CheckingOut, i.e., for CheckingOut itself, or for Buying. Section 3.3 describes advice
dispatch in full detail.

3. CORE SEMANTICS OF JPIS
We begin this section by describing the syntax of JPIs, designed as an extension to
AspectJ (Section 3.1). Join point interfaces allow for modular reasoning about aspect-
oriented programs by precisely mediating the dependencies between aspects and base
code (recall Figure 1b). The most fundamental contribution of JPIs therefore lies in the
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TypeDecl ::= . . . | JPITypeDecl

JPITypeDecl ::= “jpi” JPISig [JPIExt] “;”
JPISig ::= Type ID “(” [ParamList] “)” [ThrowsList]
JPIExt ::= “extends” “(” [ArgList] “)”
ClassMember ::= . . . | ExhibitDecl

AspectMember ::= . . . | ExhibitDecl

ExhibitDecl ::= “exhibits” Type Name “(” [ParamList] “)” [ThrowsList] “:” PointcutExpr

AdviceDecl ::= . . . | JPIAdviceDecl

JPIAdviceDecl ::= [Modifiers] [Type] AdviceKind ID “(” [ParamList] “)” [ThrowsList] Block

Expr ::= . . . | ClosureJoinpoint

StmtExpr ::= . . . | ClosureJoinpoint

ClosureJoinpoint ::= “exhibit” ID “(” [ParamList] “)” Block “(” [ArgList] “)” | “exhibit” ID Block

Fig. 3: Syntactic extension for Join Point Interfaces (AspectJ syntax is shown in gray)

static type system that supports modular checking: we informally describe it in Sec-
tion 3.2. Our proposal of JPIs also innovates over previous work in the way it supports
join point polymorphism. The dynamic semantics of JPIs is described in Section 3.3.

3.1. Syntax
Figure 3 presents our syntactic extension to AspectJ to support join point interfaces
and closure join points.

Type declarations, which normally include classes, interfaces and aspects, are ex-
tended with a new category for JPI declarations. A jpi declaration specifies the full
signature of a join point interface: the return type at the join points, the name of the
join point interface, its arguments, and optionally, the checked exception types that
may be thrown. A join point interface declaration can also specify a super interface,
using extends. In that case the name of the extended JPI is given, and the arguments
of the super interface are bound to the arguments of the declared JPI.

Classes and aspects can have a new kind of member declaration, for specifying the
join point interfaces that are exhibited. An exhibits declaration specifies a join point
interface signature and the associated pointcut expression that denotes the exhibited
join points.

Further, our extension allows advices to be bound to JPIs. Opposed to normal ad-
vices, instead of directly referring to a pointcut expression, such advices instead re-
fer to a join point interface. The information about return type, argument types and
checked exception types that the JPI specifies becomes part of the advice signature.

Closure join points can be used in any place in which an expression can be used. A
closure join point comprises the keyword exhibit, an identifier (the name of the JPI
used to type the exposed join point), and a block, plus optionally a list of formal and
actual arguments. If those lists are omitted, this is equivalent to specifying empty
lists. The block effectively defines a lambda expression, while the formal parameter
list defines its �-bound variables. Opposed to a regular lambda expression, however, a
closure join point must be followed by an actual parameter list: the closure is always
immediately called; it is not a first-class object.

Our language extension is backwards compatible with AspectJ, i.e.,any valid
AspectJ syntax is still valid in our language. This allows for a gradual migration of
AspectJ programs to join point interfaces. It would be simple, though, to include a
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“strict” mode that instructs the parser to disallow AspectJ’s regular pointcut and ad-
vice definitions.

3.2. Static Semantics
We next describe the JPI type system, a key contribution of this work. The type system
supports modular type checking of both aspects and classes; only knowledge of shared
JPI declarations is required to type check either side. This is similar to type checking
Java code based on the interfaces it relies upon.

We first discuss how JPIs are used to type check aspects. Then we turn to type
checking base code that exhibits certain JPIs. Finally, we discuss type checking JPIs
themselves, in particular considering JPI inheritance.

3.2.1. Type checking aspects. An aspect is type checked just like an AspectJ aspect, save
for its advices. There are two facets of type checking an advice: checking its signature
and checking its body. Type checking the signature of an advice is simple, but requires
care. Each advice declares an advised JPI in its signature; the signature must directly
correspond to the JPI declaration: both return and argument types must be exactly the
same as those of the JPI. The crucial requirement here is that the typing of all types in
the signature is invariant. To see why this is the case, assume that we allowed for the
following advice definition, which declares that it cannot just accept Customer objects
but instead objects of the super type Person:

void around CheckingOut(float price, Person p) {
double factor = p.hasBirthday()? 0.95 : 1;
//p = new Administrator();
proceed(price⇤factor, p);

}

The contra-variant argument definition would not raise any issues with this partic-
ular advice definition. The problem is, however, that nothing would prevent the ad-
vice from including the commented statement p = new Administrator(), assuming that
Administrator is a subtype of Person. If this statement were included, then the ad-
vice would invoke the original join point with an Administrator object. Assuming that
Administrator is not a subtype of Customer, this code breaks crucial assumptions on the
base-code side, usually manifested in the form of a ClassCastException. Conversely, if
we allowed for co-variant arguments then the original join point could pass arguments
to the advice that are of a type that the advice is not prepared to handle.

The opposite argument applies to return types. If we allowed for co-variant return
types, then calls to proceed could return objects of a type that the advice is not prepared
to handle. If we allowed for contra-variant return types, then the advice could return
objects of a type that the base code is not prepared to handle.

The essence of the problem observed here is that the advice signature (and our JPI
signature) is used to define both the join points intercepted by an advice, and the join
point that an advice can call through proceed. Both calls have exactly opposite variance
requirements, which means that the only sound typing must be invariant. In Section 5
we will see that in practice this can be too rigid; Section 6 will then explain how we
relax this requirement with parametric polymorphism through generic types, an idea
first proposed in the context of the StrongAspectJ language [De Fraine et al. 2008].

Checked exceptions also require some care. The advice must handle or declare to
throw all exception types declared by the JPI it advises. We analyze the advice body
to determine which types of exceptions the advice does or does not handle. The advice
must not declare any additional exception, as this could lead to uncaught checked
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exceptions on the side of the base code. It can, of course, declare fewer exceptions, or
declare additional exceptions (e.g. EOFException) provided they are subtypes of expected
exceptions (e.g. IOException) that are also declared.

The exceptions that are declared in the advice interface are typed invariantly with
respect to the JPI. This strict invariance requirement for exceptions is required for the
same reason as for return and argument types. Let us denote TS the checked exception
thrown at a join point shadow1, TI the exception type declared in the JPI, and TA

the type of checked exception thrown by the advice. If TS < TI
2, this means that the

context of the shadow is not prepared to handle TA if TS < TA <: TI . Conversely, if
TS > TI , the advice is not prepared to handle TS when invoking proceed. Therefore
TS = TI by necessity.

In our example, the JPI declaration for CheckingOut contains no checked exceptions.
This imposes the following restrictions and guarantees:

— The base code can rely on the fact that an advice handling CheckingOut cannot throw
any checked exceptions. The type system ensures that this is indeed the case.

— Likewise, an advice can rely on the fact that a join point of type CheckingOut cannot
throw checked exceptions when the advice invokes it through a call to proceed. The
type system forbid programmers from declaring join points that could throw any
checked exceptions to be of type CheckingOut .

If needed, the programmer can relax these restrictions by declaring checked exceptions
in the join point interface:

jpi void CheckingOut(float price, Customer cus) throws SQLException;

In this example, both the advised join point and the handling advice are allowed to
throw SQLExceptions, but must also take care to handle (or forward) the exceptions
appropriately.

Type checking the advice body is similar to type checking a method body, with the
additional constraint of considering calls to proceed. As it turns out, a join point in-
terface is identical to a method signature (except for the extends clause used for join
point subtyping). In fact, a JPI specifies the signature of proceed within the advice
body, thereby abstracting away from the specific join points that may be advised. This
is a fundamental asset of JPIs, and the key reason why interfaces for AOP ought to be
represented as method signatures (including return and exceptions types). JPIs fully
specify the behavior of advised join points, thereby allowing safe and modular static
checking of advice.

3.2.2. Type checking base code. On the other side of the contract is base code, which
can exhibit join points. The base code must also obey the contract specified by join
point interfaces. Part of this contract has to be fulfilled by the pointcut associated with
the exhibits clause used for implicit announcement: the pointcut has to bind all the
arguments in the signature, using pointcut designators such as this, target and args.
To comply with our invariant semantics, those pointcuts must match invariantly, i.e.,
a pointcut such as this(A) must only match join points with declared type A. As we will
explain in Section 4, this semantics is different from the one of AspectJ.

Because pointcuts do not account for return and exception types, our type system
checks these types at each join point shadow matched by the pointcut associated with

1A join point shadow is the source expression whose evaluation produces a given join point [Masuhara et al.
2003; Hilsdale and Hugunin 2004].
2We use <: for subtyping, and < for strict (i.e., non-reflexive) subtyping.
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the exhibits declaration. More precisely, the pointcut is matched against all join point
shadows in the lexical scope of the declaring class. Whenever the pointcut matches
a join point shadow, the type system checks that the return type of this shadow and
the JPI coincide. If the shadow has a different return type, our type checker raises an
error message stating that the selected join point shadow is incompatible with the JPI
in question. Similarly, the type system validates that the declared exceptions of the
shadow are the same as those of the JPIs; if they are not, the type checker raises an
error. Here again, type compatibility is invariant.

One may wonder why we raise an error message when pointcuts select incompatible
join point shadows and not simply restrict the matching process to exclude incom-
patible shadows instead. However, our chosen design is in line with AspectJ. In the
following example, AspectJ raises an error because the execution pointcut selects a
join point (in line 2), whose return type is incompatible with that of the around advice:

1 void around(): execution(int foo()) { ... }
2 int foo () { return 0; }

Our type checks at the join point shadows are the fundamental contribution of JPIs
from the point of view of type checking base code. Most previous approaches, such
as [Steimann et al. 2010], are not able to perform these checks modularly, simply be-
cause the specification of return and exception types are not part of their interfaces.
Those approaches have to defer type checks to weave time, or even worse, to runtime.
With JPIs, conformance can be checked statically and modularly, prior to weaving.

Type checking closure join points. Type checking closure join points follows the Java
static semantics for methods defined within inner classes. Code within a closure join
point has access to its parameters, to fields from the declaring class and to local vari-
ables declared as final. Access to non-final local variables is forbidden because, by
exposing a block of code to aspects in the form of a closure join point, aspects may
choose to execute the closure in a different thread, or may choose to not execute the
closure at all. In this case, write access to local variables may cause data races on
those variables or may leave their value undefined if the write is never actually exe-
cuted [Bodden 2011].

Other than that, we type check closure join points according to the same rules as
implicitly-announced join points. To keep the code as concise as possible, closure join
points do not define return and exception types; instead those are inferred from the
join point interface declaration they reference. Because of this, those parts of the clo-
sure join point’s signature are automatically invariant with respect to the referenced
join point interface. Arguments are deliberately not inferred. This is because we want
to allow users to give arguments within the closure join point their own local name, in-
dependent of what was specified in the JPI declaration and independent of the context
in which the closure join point is declared. This is in line with method definitions and
lexical scoping in Java. The independence from the closure join point’s declaring con-
text is important to distinguish the values of such variables that are declared in this
context from the potentially altered values that an advice may pass as the closure join
point’s arguments. (As we will explain in Section 8, previous approaches did not treat
this problem in a semantically sound manner.) For the types of those arguments, we
check that the declaration in the closure join point’s header obeys an invariant typing
semantics. Further, we check that the body of a closure join point only throws checked
exceptions of types that the referenced JPI declares, and conversely that the declar-
ing context of the closure join point is prepared to handle (or declares to forward) all
checked exceptions of these types.
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3.2.3. Type checking JPIs. Primarily to facilitate reuse on the side of the aspect side,
join point interfaces support a subtyping relationship. We employ type checking at the
level of JPIs to ensure that subtyping relationships do not break type soundness. As
we exemplified in Section 2, any JPI can declare to extend another JPI. During this
process, the sub-JPI can add context parameters; JPIs thus support breadth subtyping.
On the other hand, all arguments that do coincide have to be of the exact same type as
the respective arguments in the JPI super type; JPIs do not support depth subtyping.
This is due to the same reasons for which we use invariant argument typing in all
other situations. For example, the following code would raise a type error, even if B
were a subtype of A:

jpi void Base(A a);
jpi void Sub(B b) extends Base(b);

In addition, JPI subtypes must declare the same return type as their super-JPI, and
must declare the same exceptions to be thrown.

3.3. Dynamic Semantics
The dynamic semantics of JPIs differ slightly from that of a traditional aspect lan-
guage. Briefly, the traditional model is as follows [Wand et al. 2004]: all aspects (point-
cuts and associated advices) are present in a global environment; at each evaluation
step, a join point representation is built and passed to all defined aspects; more pre-
cisely, the pointcuts of an aspect are given the join point in order to determine if the
associated advices should be executed or not.

With JPIs, aspects do not have pointcuts. They advise JPIs, and base code defines
the join points that are of these types, either using pointcuts (implicit announcement)
or using closure join points (explicit announcement). The global environment contains
aspects with their advices. With implicit announcement, conceptually, a join point rep-
resentation is passed only to the pointcuts defined in the current class, at each evalu-
ation step. If a pointcut matches, then the join point is tagged with the corresponding
JPIs. Then, the advices that advise one of the tagged JPIs are executed.

In presence of join point polymorphism and inheritance among JPIs, it is interest-
ing to ask which advice is executed. We write AT to denote an advice of aspect A that
advises JPI T ; we write jpT to denote a join point jp tagged with JPI T . The seman-
tics of advice dispatch closely mimics the semantics of message dispatch in multiple
dispatch languages like CLOS [Paepcke 1993] and MultiJava [Clifton et al. 2000]. In-
deed, an aspect with its multiple advices (each declared to advise a specific JPI) can
be seen as a generic function with its multiple methods. Once a join point jp is tagged
with interfaces T1, . . . , Tn we select, for each aspect A, all applicable advices. An advice
AS is applicable to jpT1,...,Tn if there exists an i such that Ti <: S. In order to support
overriding, among all applicable advices AS1 , . . . , ASk , we invoke only the most-specific
ones, defined as the ASj such that for all i, either Sj <: Si or Si ⌅: Sj .

Aspect-oriented programming, like any publish-subscribe mechanism, inherently
supports multiple reactions to a single event. This differs from multiple dispatch,
which requires exactly one method to execute. The difference manifests in two ways in
the semantics. First, if there are no applicable advice, then nothing happens; no advice
executes. In contrast, a multiple-dispatch language throws a message-not-understood
error if no applicable method can be found. Also, message dispatch requires that there
is a unique most-specific applicable method, otherwise an ambiguity error is raised3.
In our case, we execute all the most-specific applicable advices, in the precedence order

3In a statically-typed language like MultiJava, both cases can be ruled out by the type system.
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imposed by regular AspectJ when multiple advices of a same aspect match the same
join point [AspectJ Team 2003].

In the above, we have overlooked one specificity of AspectJ and most aspect lan-
guages: the fact that advices can be of different kinds—before, after, or around. The
advice overriding scheme we described is kind-specific: an advice may override an-
other advice only if it is of the same kind. (In Section 5, we will show cases where this
is useful.) For instance, consider an aspect that defines two advices AT1 and AT2 , with
T2 <: T1. If one is a before advice and the other is an after advice, both are executed
upon occurrence of a join point jpT2 . Conversely, if both are around advices, only the
most specific (AT2 ) executes, as explained above.

In practice, we found that advice overriding is not always desirable (see Sec-
tion 5.2.3). We support the possibility to declare an advice as final, meaning it will
always execute if applicable, regardless of whether there exists a more specific appli-
cable advices; in such a case, both execute, following the standard AspectJ composition
rules.

A fundamental asset of the dispatch semantics presented here is that it gives the
guarantee that a given advice executes at most once for any given join point. This is
in stark contrast with the semantics of join point types [Steimann et al. 2010], where
the same advice can surprisingly be executed several times for the same join point (we
come back to this in Section 8).

4. IMPLEMENTATION BASED ON ASPECTJ
With this paper we provide a full implementation of join point interfaces as an exten-
sion to the AspectBench Compiler (abc) [Avgustinov et al. 2005]. Our implementation
is maintained within abc’s own code base.4

The most interesting aspect of our implementation is how we assure the correct dis-
patch semantics for advices referring to JPIs. Remember that syntactically our advice
declarations do not at all refer to any pointcut. Instead they refer to a JPI declaration,
which in turn may be bound to pointcuts by one or more exhibits clauses. To allow for
maximal reuse of existing functionality in the abc compiler, we decided to implement
our dispatch semantics through a transformation that computes for each such advice
a single pointcut, based on the referenced JPI, its type hierarchy and the exhibits
clauses of those types. Let a be the advice to compute the pointcut for, as the set of
other advices in the same aspect and es the set of all exhibits clauses in the program.
Then we compute the pointcut for a as follows:

pc(a,as, es) = pc+(a.jpi, es) ^ ¬pc�(a,as, es)

pc+(jpi, es) =
_

e2es, e.jpi <: jpi

e.pc

pc�(a,as, es) =
_

a02as, a0@a

pc+(a0.jpi, es)

The equation5 for pc+ implements polymorphism: if a refers to a.jpi then a will match
not only on join points for a.jpi itself but also for all subtypes. The equation for pc�
implements advice overriding within the same aspect: if an advice a0 has the same
kind as a but refers to a more specific JPI type, then a0 overrides a, which means that a

4abc can be downloaded at: http://aspectbench.org/
5@ denotes kind-specific subtyping for advices: a0 @ a means that a0 and a are of the same kind and a0.jpi <
a.jpi.
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will not execute for the join points of this JPI. For advice that has been declared final,
pc� is simply skipped, so as to avoid overriding.

To implement the above equation, our implementation has to overcome a few tech-
nical obstacles. JPI declarations can rename formal arguments of their super types
in their extends clauses. Our implementation undoes this renaming in the back-end
by inlining pointcuts. Further, the pointcut pc�(a, as, es) is used under negation. This
raises an issue with argument-binding pointcuts, like this(a), because they cannot be
negated: if a pointcut does not match, there is no value that a could be bound to. Fortu-
nately, abc supports a way to close such pointcuts so that the variables do not appear
free any longer. This is done by rewriting a pointcut such as this(a) to (�a.this(a));
such a pointcut can be negated, and if a is of type A, the negation is equivalent to
!this(A), which yields the semantics we need.

4.1. Invariant Pointcut Designators
As noted in Section 3, we must ensure that join point interfaces are invariantly typed.
As it turns out, in AspectJ it is not straightforward to ensure invariant typing for
arguments. The problem is that the standard pointcuts this, target and args come
with a variant semantics. In the following AspectJ example, the pointcut matches the
call to foo, although the declared type of foo’s argument is Integer, not Number:

aspect A{
public static void main(String[] args){

foo(new Integer(2));
}

public static void foo(Integer a){}

void around(Number n): call(void ⇤(..)) && args(n) {
proceed(new Float(3)); // will raise a ClassCastException

}
}

As this example shows, the variant matching semantics of AspectJ is problem-
atic: while the advice is well-typed in AspectJ, the call to proceed will cause a
ClassCastException, as it calls foo with a Float argument.

One way to address this problem is to re-define the matching semantics of the this,
target and args pointcuts such that they match a join point only if the declared type at
the join point is exactly the same as the declared type used within the pointcut. This
design, however, would give up backward-compatibility with AspectJ. Since our overall
language design can be integrated as a fully backward-compatible extension, we opted
for another design, such that existing AspectJ applications can be easily migrated to
our language.

In our implementation, we support three additional invariant pointcuts, This, Target
and Args. These pointcuts come with an invariant matching semantics. For instance,
the pointcut Args(n) would not match in the example above, since n has type Number
but the argument value at the join point shadow has declared type Integer. Due to the
introduction of these novel pointcuts, the existing semantics of this, target and args
remains unchanged. When programmers use one of those pointcuts within an exhibits
clause, our compiler issues a warning, notifying the programmer that This, Target or
Args should be used instead, as otherwise type soundness is not guaranteed.
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4.2. Static Overloading
In addition to overriding, we also support static overloading of JPIs. For instance, one
could write the following definition:

jpi void CheckingOut(float price, Customer cus) throws SQLException;
jpi void CheckingOut(float price, int amt, Customer cus) throws SQLException;

Similar to overloaded methods in Java, overloading is resolved completely at com-
pile time. Overloaded JPI definitions are thus treated exactly as if they had different
names, as in:

jpi void CheckingOut1(float price, Customer cus) throws SQLException;
jpi void CheckingOut2(float price, int amt, Customer cus) throws SQLException;

Therefore, overloading is just a means to allow the programmer to document that two
JPIs are inherently related; it has no semantic impact.

4.3. Reuse of implementation for closure join points
Interestingly, our abc extension for join point interfaces extends and completely
reuses the original implementation for closure join points [Bodden 2011]. abc uses the
JastAdd [Ekman and Hedin 2007] compiler front-end, which allows for truly modular
language definition. That way, our JPI extension to abc can modularly define how the
extension for closure join points needs to be refined to match the correct syntax and
semantics that they require when used in combination with join point interfaces.

5. A FIRST EVALUATION OF JPIS
We first discuss the benefits of join point interfaces based on previous studies. Then we
report on a case study where we converted several AspectJ applications to use JPIs.
This study brings a number of interesting insights related to join point polymorphism.
Finally, we discuss the limitations revealed by this study, which motivated the exten-
sions to JPIs that we will describe in the following sections.

5.1. Benefits of Joint Point Interfaces
Join point interfaces establish a clear contract between base code and aspects, such
that separate development can be supported. This is in essence similar to cross-
cutting programming interfaces (XPIs [Sullivan et al. 2010]) and join point types
(JPTs [Steimann et al. 2010]), see Section 8. The benefits of XPIs and JPTs on mod-
ularity have been empirically demonstrated in previous editions of TOSEM [Sullivan
et al. 2010; Steimann et al. 2010].

Recently, Dyer et al. [2012] report on an exploratory study of the design impact
of different approaches to aspect interfaces. They consider the evolution of aspect-
oriented software using different approaches, namely plain AspectJ, annotation-style,
and quantified, typed events [Rajan and Leavens 2008]. While they do not consider
JPIs in their study, their key results support our design of join point interfaces:

— The use of inter-type declarations is prevalent. By integrating JPIs in AspectJ, we
inherit this mechanism for free.

— Quantification failure due to the need to advise join points that cannot be denoted
using the pointcut language occurred on 5% of advised join point shadows. Explicit
announcement addresses these cases nicely.

— The lack of quantification support with quantified typed events was problematic be-
cause it required to keep track of design rules that affect all members of a given class
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(e.g. make all methods synchronized). Implicit announcement with exhibits clauses
supports these cases.

— Almost a fifth of changes to pointcuts was due to the fragile pointcut problem. Any
abstraction mechanism for denoting join points is immune to this issue.

— There were several instances where the fact that context information is restricted to
join point specific attributes (this, target, args) was problematic, yielding additional
complexity. Explicit-announcement approaches make it easy to expose arbitrary con-
text information.6

To evaluate the importance of a sound treatment of checked exceptions in aspect
interfaces, it is instructive to look at the lessons learned by Robillard and Murphy
in an effort to design robust programs with exceptions [Robillard and Murphy 2000].
They report that focusing on specifying and designing the exceptions from the very
early stages of development of a system is not enough; exception handling is a global
phenomenon that is difficult and costly to fully anticipate in the design phase. Thus,
inevitably, the exceptions that can be thrown from modules are bound to evolve over
time, as development progresses and this global phenomenon is better understood. The
support that JPIs provide to report exception conformance mismatch between aspects
and advised code in a modular fashion is therefore particularly necessary: as modules
change their exception interface, immediate and local feedback is crucial to decide if
these changes must be promoted to the actual contract between aspects and advised
code. This avoids errors before system integration time.

5.2. Join Point Polymorphism
To evaluate JPIs in practice, we have converted a set of existing AspectJ applications
from the corpus of Khatchadourian et al. [2009]. These rewritten projects are avail-
able online at our project’s web page. Then, to assess our semantics for join point
polymorphism, we have closely inspected a set of interesting subjects from this corpus:
AJHotDraw, an aspect-oriented version of JHotDraw, a drawing application; Glassbox,
a diagnosis tool for Java applications; SpaceWar, a space war game that uses aspects
to extend the game in various respects; and LawOfDemeter, a small set of aspects
checking the compliance to the Law of Demeter programming rules [Lieberherr et al.
1988].

The first three projects were selected because of their comparatively large size and
number of aspects. LawOfDemeter is a rather small project that showcases an inter-
esting use of pointcuts, as discussed further below.

We inspected the programs using both the AspectJ Development Tools [AJDT 2012]
and AspectMaps [Fabry et al. 2011]. These tools allowed us to easily identify which
advices advise which join point shadows. In particular, we focused on the shadows
that are advised by more than one advice, as this hints at potential for subtyping. We
also systematically investigated all pointcut expressions used in these projects and
looked for potential type hierarchies. Our investigation revealed several interesting
example hierarchies and clearly supports the usefulness of our semantics of join point
subtyping. We now discuss a few representative examples.

5.2.1. Subtyping Patterns. We identify two patterns that programmers use to “emulate”
subtyping with pointcuts.

LawOfDemeter contains the following pointcuts:

6Context-aware aspects [Tanter et al. 2006] are a general mechanism that supports arbitrary context infor-
mation with implicit announcement; a similar flexibility is found in AspectScript [Toledo et al. 2010].
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Stats

StartStats EndStats

StartTopLevel StartNested EndTopLevel EndNested

SNLaterOperation ResponseTraceOne ResponseTraceTwo ENLaterOperation

Fig. 4: A Potential Hierarchy of Join Point Interfaces in Glassbox.

pointcut MethodCallSite(): scope() && call(⇤ ⇤(..));
pointcut MethodCall(Object thiz, Object targt):

MethodCallSite() && this(thiz) && target(targt);
pointcut SelfCall(Object thiz, Object targt):

MethodCall(thiz,targt) && if(thiz == targt);

These pointcuts form an instance of a pattern that we call subtype by restriction.
MethodCall restricts the join points exposed by MethodCallSite to instance methods,
through additional this and target pointcuts. SelfCall restricts this set further by
identifying self calls using an additional if pointcut. A programmer could model this
join point type hierarchy with JPIs as follows:

1 jpi Object MethodCallSite();
2 jpi Object MethodCall(Object thiz, Object targt) extends MethodCallSite();
3 jpi Object SelfCall (Object thiz, Object targt) extends MethodCall(thiz, targt);

The example shows that it is useful to allow subtypes to expose more arguments than
their super types (a.k.a. breadth subtyping): MethodCall exposes thiz and targt, while
MethodCallSite exposes nothing at all.

SpaceWars includes various instances of the subtype by restriction pattern, but also
features instances of the dual pattern, super type by union. Consider the following:

pointcut syncPoint():
call(void Registry.register(..)) ||
call(void Registry.unregister(..)) ||
call(SpaceObject[] Registry.getObjects(..)) ||
call(Ship[] Registry.getShips(..));

pointcut unRegister(Registry registry):
target(registry) &&
(call(void register(..)) || call(void unregister(..)));

Here the pointcut unRegister matches a subset of the join points matched by syncPoint
because syncPoints includes additional join points by disjunction (set union). Here
also, the subtype induced by unRegister exposes an additional argument.

5.2.2. Depth of Subtyping Hierarchies. Glassbox proved to be a very interesting case
study in that it provides over 80 aspects, and more than 200 pointcut definitions, with
potential for non-trivial join point type hierarchies. Here, we only show one of the
most interesting examples in Figure 4. The figure shows a hierarchy formed by 11
pointcuts within the aspect ResponseTracer. We have added Stats as a root type that
the aspect does not contain explicitly, but which could be introduced to abstract the
common parts of the StartStats and EndStats pointcuts.
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5.2.3. Advice Overriding. Glassbox showcases the interest of being able to declare some
advice as final to avoid overriding.

An aspect in charge of system initialization advises the execution of TestCase ob-
ject constructors. Some test classes implement the InitializedTestCase interface (ITC
for short), and some implement the ExplicitlyInitializedTestCase interface (EITC for
short); some classes implement both (these interfaces are added via inter-type decla-
rations). More precisely, 5 classes implement only ITC, 5 classes EITC only, and 1 class
implements both. The aspect defines four before advices on these constructors, dis-
criminating between different categories using pointcuts. These pointcuts correspond
to four join point types T1 . . . T4, where T1 is a super type of the three others. Due to
overriding, the advice for T1 never executes since it is always overridden. The solution
would then be to refactor the program to move the advice for T1 in a separate aspect. A
simpler solution is to declare the advice for T1 as final, which guarantees that it will
not be overridden and therefore always execute.

5.2.4. Per-Kind Advice Overriding. AJHotDraw contains the following definitions:

pointcut commandExecuteCheck(AbstractCommand acommand) :
this(acommand)
&& execution(void AbstractCommand+.execute()) ..
&& !within(⇤..JavaDrawApp.⇤);

before(AbstractCommand acommand):
commandExecuteCheck(acommand) {..}

pointcut commandExecuteNotify(AbstractCommand acommand) :
commandExecuteCheck(acommand)
&& !within(org.jhotdraw.util.UndoCommand) ..
&& !within(org.jhotdraw.contrib.zoom.ZoomCommand);

after(AbstractCommand acommand):
commandExecuteNotify(acommand) {..}

This is another instance of the subtype by restriction pattern, with
commandExecuteNotify refining the pointcut commandExecuteCheck. This example
validates our semantics to consider advice kinds separately when resolving advice
overriding (Section 3.3). In the example, the first pointcut is advised with a before
advice, while the second is advised by an after advice. Assume now that we had
abstracted from those pointcuts using JPIs as in the following code:

before CheckingView(AbstractCommand acommand){..}
after NotifyingView(AbstractCommand acommand){..}

In this example, NotifyingView is a subtype of CheckingView. If we did not separate ad-
vices by advice kind when determining advice overriding then only the NotifyingView
would execute at a NotifyingView join point, leading to an altered semantics compared
to the original AspectJ program. Conversely, because we do separate advices by kind,
when encountering a NotifyingView join point, the CheckingView advice is executed be-
fore the join point and the NotifyingView afterward.

5.3. Limitations
The typing rules for JPIs currently enforce invariance on both return and exception
types of join point interfaces (Section 3.2). This is the simplest way to ensure sound-
ness, but can be too rigid in practice. If a pointcut matches a large number of shadows,
invariance forces us to define multiple JPIs (and advices) for the different types of
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shadows. In an application like AJHotDraw, in which most pointcuts are very spe-
cific anyway, this rigidity is less problematic than in applications that rely on wide-
matching pointcuts, such as LawOfDemeter. In AJHotDraw, we found that only 3 ad-
vices were concerned, and as a result the total number of advices in this project in-
creased from 49 to 77, almost twice a much. In LawOfDemeter the number of advices
was increased more than 10 times, going from 6 to 68! This observation strongly mo-
tivates the need for introducing more flexibility in the type system. In Section 6, we
introduce generic interfaces to address this issue.

On a related front, aspects that use wide-matching pointcuts, like in LawOfDeme-
ter, or dynamic analysis aspects like data race detectors and profilers, suffer from the
class-local quantification approach followed by JPIs and others [Steimann et al. 2010].
These aspects require modifying many (if not all) classes to add the corresponding
exhibits clauses. Since aspects are also extremely helpful in these application scenar-
ios, it seems necessary to make some pragmatic decision with respect to the scope of
quantification. We address this issue in Section 7 with a novel mechanism for con-
trolled global quantification.

6. GENERIC JOIN POINT INTERFACES
As revealed by the case study, JPIs easily cause code duplication in aspect definitions
when programmers implement highly-crosscutting aspects, such as monitoring, dy-
namic analysis, access control, exception handling, etc. The problem is that highly-
crosscutting aspects have pointcuts that match a large number of shadows that typ-
ically have unrelated types. AspectJ deals with this issue by abandoning soundness.
JPIs retain soundness, but at a cost: in the language design presented so far, program-
mers have to define different JPIs and advices for all the different shadow types. To
mitigate this problem, we introduce generic JPIs. A generic JPI is a JPI that includes
type parameters in its signature. Type parameters allow for the sound use of polymor-
phic advice. We first dive into a concrete example from the case study, then shows how
a generic JPI solves the problem. We then briefly discuss the semantics and imple-
mentation of generic JPIs, before reporting more precisely on their impact on our case
study.

6.1. Motivation
To illustrate the situation, let us consider the Check aspect defined in the LawOfDeme-
ter (LoD) project, which checks that an object only sends messages to a certain set of
closely related objects according to the Law of Demeter [Lieberherr et al. 1988]. Fig-
ure 5 shows an advice that registers the LoD violations within an aspect called Check.
The important thing to note in this aspect definition is the extreme quantification used
(call(⇤ ⇤(..))), which is typical of dynamic analysis aspects.

To migrate the Check aspect to use JPIs, conversely to what we suggested in Sec-
tion 5.2.1, we cannot use a single JPI like the following:

1 jpi Object MethodCall(Object thiz, Object targt);

The reason is that, in order to ensure type soundness, such a JPI could only match
join points where the actual types at the shadows are Object. As explained earlier,
co-variant matching of shadows is unsound. This means that we need to define one
JPI per possible combination of types for this, target and the return type! In the LoD
project, just handling the Check aspect for the examples included in the project required
us to write 21 JPIs:

1 jpi void MethodCall_1(TemporalQueue thiz, TemporalQueue targt);
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1 aspect Check {
2 private IdentityHashMap objectViolations = new IdentityHashMap();
3

4 public pointcut scope():
5 !within(lawOfDemeter..⇤) && !cflow(withincode(⇤ lawOfDemeter..⇤(..))) ;
6

7 pointcut methodCalls(Object thiz, Object targt) :
8 scope() && call(⇤ ⇤(..)) && this(thiz) && target(targt);
9

10 after(Object thiz,Object targt): methodCalls(thiz,targt) {
11 if (!ignoredTargets.containsKey(targt) &&
12 !Pertarget.aspectOf(thiz).contains(targt)) {
13 objectViolations.put(thisJoinPointStaticPart,
14 thisJoinPointStaticPart);
15 }
16 }
17 }

Fig. 5: LoD Check aspect (excerpt)

1 aspect Check {
2 void registerViolation(Object thiz, Object targt, JoinPoint.StaticPart jp) {
3 if (!ignoredTargets.containsKey(targt) &&

!Pertarget.aspectOf(thiz).contains(targt)) {
4 objectViolations.put(jp, jp);
5 }
6 }
7 // one advice per type combination...
8 after MethodCall_1(TemporalQueue thiz, TemporalQueue targt) {
9 this.registerViolation(thiz, targt, thisJoinPointStaticPart);

10 }
11 after MethodCall_2(TemporalQueue thiz, TQ_N targt) {
12 this.registerViolation(thiz, targt, thisJoinPointStaticPart);
13 }
14 after MethodCall_3(TemporalQueue thiz, TemporalQueue targt) {
15 this.registerViolation(thiz, targt, thisJoinPointStaticPart);
16 }
17 // etc.
18 }

Fig. 6: LoD Check aspect with (non-generic) JPIs

2 jpi int MethodCall_2(TemporalQueue thiz, TQ_N targt);
3 jpi PQ_Node MethodCall_3(TemporalQueue thiz, TemporalQueue targt);
4 //etc.

In addition to this tedious and fragile list of JPI definitions, the Check aspect it-
self has to contain one advice for each such JPI. As Figure 6 shows, all advice bodies
are exact copies (note that for after advice, the return type of the JPI is simply ig-
nored). While this approach is “correct” in that all expected join points are matched,
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1 aspect Check {
2 // ... registerViolation ...
3 <T, U> after MethodCall(T thiz, U targt){
4 this.registerViolation(thiz, targt, thisJoinPointStaticPart);
5 }
6 }

Fig. 7: LoD Check aspect with a generic JPI

and type soundness is preserved, it is highly cumbersome for programmers and, most
importantly, it does not scale. As soon as one wants to apply the LoD aspects to other
projects, more JPIs and advices have to be defined.

6.2. Defining and Using a Generic JPI
We therefore extended our syntax and type system to allow programmers to express a
whole range of possible type combination through a single generic JPI:

1 <R, A, B> jpi R MethodCall(A thiz, B targt);

This generic interface abstracts away the specific types involved. Now the programmer
can define a generic version of the Check aspect using a polymorphic advice (Figure 7).
Note that the specific type variables used in the JPI and the corresponding advice do
not need to match; they are independent abstract parameters.

Our support for generics includes type bounds as in Java. For instance, the following
JPI characterizes join points where an argument is of a subtype of Number:

1 <T extends Number> jpi void JP(T arg);

In such a case, an exhibits clause on the base code side must also be generic, and it
must use the same type bounds (if present). For instance:

1 class A {
2 <N extends Number> exhibits void JP(N n) : call(void ⇤(..)) && args(n);
3 // ...
4 }

Note that this is much more flexible than the same definition using Number directly
as the type of n. The invariant matching semantics means that only methods where
the argument is specifically of type Number would match. Using the type parameter N
makes it possible to match uniformly all join points where the argument is a subtype
of Number.

6.3. Static Semantics
Generic JPIs are a simple extension of JPIs with basic support for bounded polymor-
phism. We only support upper bounds for type variables (declared with extends), since
they are enough to handle the needs for polymorphism that we have observed in prac-
tice through the case study. We leave to future work the exploration of the other
features found in object-oriented languages with parametric polymorphism (lower
bounds, wild-cards, type constraints as in Scala, etc.).

The semantics of type checking in presence of parametric polymorphism is exactly
the same as that of Java with generics, more precisely as defined in Featherweight
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Generic Java [Igarashi et al. 2001]. A generic JPI is like a generic method signature.
A generic advice is type-checked just like a generic method, where proceed is given the
type of the JPI (modulo renaming of type variables). When checking base code, a type
at a shadow matches a type variable in the JPI if it is a subtype of the bound of that
variable. As explained above, this is where flexibility is gained, allowing generic JPIs
to be practical in the face of wide crosscutting. Note that soundness is not compromised
thanks to parametricity [Reynolds 1983]: only the bound of the type variable can be
directly relied upon.

6.4. Implementation
We introduce generic JPIs in our AspectJ extension by reusing the capabilities of
JastAdd to deal with Java 5 generics. This allows us to reuse all of the functional-
ity needed to use type variables in our language and only focus on specific changes in
the parser and in the static type system. Syntactically, to support generic advice, we
allow type variables to be declared and used in JPIs, advice signature, exhibits clauses
and pointcuts. Closure join points do not need type parameters, as they are actual in-
stances of join points, binding to the type parameters of the corresponding join point
interface.

6.5. Evaluation

AspectJ Non-generic JPI Generic JPI
LoD 6 68 6

AJHotDraw 49 77 49

Table I: Number of advices defined in each version

To assess the impact of generic JPI, we re-implemented the AJHotDraw-JPI and
LoD-JPI projects. As Table I shows, generic JPIs completely eliminate the problem
of repeated advice declarations in both projects. While the number of advice declara-
tions in the (non-generic) JPI version was considerably increased (more than 10x for
LoD), the version using generic JPIs presents the exact same number of advices. This
clearly validates the practical positive impact of extending JPIs to support parametric
polymorphism.

7. CONTROLLED GLOBAL QUANTIFICATION
As revealed by the case study from Section 5, if JPIs are used in combination with
highly-crosscutting aspects, developers may be forced to modify several (if not all) ex-
isting classes to introduce exhibit clauses. The problem is that such aspects use wide-
matching pointcuts to capture several join points within different classes. To overcome
this problem, we introduce global pointcuts, which can be attached directly to JPI
definitions. Aspect programmers can use global pointcuts for controlled global quan-
tification. The quantification is global, as it is evaluated over all classes in the system.
At the same time the quantification is controlled because classes and aspects have the
option to restrict or widen quantifications within themselves, or to seal themselves off
against any kind of global quantification. We first revisit the motivating example of
Section 6, then show how a global pointcut solves the problem. We then discuss the
semantics and the implementation of global pointcuts. Finally, we report the impact of
global pointcuts on our case study.
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1 import jpis.⇤;
2

3 public class TemporalQueue extends PriorityQueue
4 {
5 <R, T, I> exhibits R MethodCall(T thiz, I targt) :
6 call(R ⇤(..))
7 && This(thiz)
8 && Target(targt)
9 && !within(lawOfDemeter..⇤)

10 && !cflow(withincode(⇤ lawOfDemeter..⇤(..)));
11 ...
12 }
13

14 public class Repository extends Entity
15 {
16 <R, T, I> exhibits R MethodCall(T thiz, I targt) :
17 call(R ⇤(..))
18 && This(thiz)
19 && Target(targt)
20 && !within(lawOfDemeter..⇤)
21 && !cflow(withincode(⇤ lawOfDemeter..⇤(..)));
22 ...
23 }

Fig. 8: Base code advised by the generic JPI version of Check aspect

7.1. Motivation
Let us consider the situation that a programmer wishes to apply the generic JPI
version of the Check aspect (Section 6, Figure 7) to the following two arbitrarily cho-
sen classes TemporalQueue and Repository. First, the programmer would introduce the
exhibits clauses, as shown in Figure 8. We note that this approach is fragile and
does not scale: programmers must modify every single class to introduce the exhibits
clauses. Moreover, this redundancy is unnecessary, as in most cases all classes will
bind the same JPI to the same pointcut expression. In the migration of LoD to its
generic JPI version, this problem forced us to modify 21 of 23 classes to include the
corresponding exhibits clauses.

the clauses.

7.2. Defining and Using a Global JPI
We therefore extended our syntax and type system to allow programmers to introduce
globally defined templates for exhibits clauses, defined in the form of a global pointcut,
attached to a JPI:

<T, U, V> jpi T MethodCall(U thiz, V targt) :
call(T ⇤(..))
&& This(thiz)
&& Target(targt)
&& !within(lawOfDemeter..⇤)
&& !cflow(withincode(⇤ lawOfDemeter..⇤(..)));
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Those templates affect all existing classes. Global pointcuts use an inlining seman-
tics: by default, i.e., if a class (or aspect) states nothing about the JPI MethodCall, then
the class (or aspect) will automatically inherit an appropriate exhibits clause based
on the global pointcut definition. Such implicitly introduced exhibits clauses are then
treated exactly as if programmers had introduced them by hand. As we will next show,
though, those implicitly defined exhibits clauses are just templates that every class
(or aspect) can choose to refine.

7.3. Refining global pointcuts
The JPI MethodCall exposes every single method invocation to the Check aspect, which
in turn detects whether such calls violate the Law of Demeter or not. The Law of
Demeter states that classes should only access the public interface of other classes.
In particular, they should not invoke methods on objects referenced through another
class’ public fields. But now consider a case where we use the class Output to print some
messages to the standard output stream.

1 class Output {
2 public static void print(String message){
3 System.out.println("Message: " +message);
4 }
5

6 public static void print(float value){
7 System.out.println("Message: " +value);
8 }
9 ...

10 }

As can be seen, every call to System.out.println cause s the Check aspect to register
a violation of the law. But such violations are not interesting to us. A naïve attempt to
address this issue is to modify the global pointcut in the JPI, but this is fragile.

Instead, we propose a refinement mechanism that allows classes and aspects to con-
trol the way in which they are advised through global pointcuts: Whenever a class (or
aspect) does define an exhibits clause for a JPI that also comprises a global pointcut,
this exhibits clause overrides the one that would normally be implicitly inherited. At
this point, the programmer can use a special primitive pointcut global to refer to the
global pointcut, if needed.

1 class Output {
2

3 <T, U, V> exhibits T MethodCall(U thiz, V targt):
4 global(thiz,targt)
5 && !call(T java..⇤.⇤(..));
6 ...
7 }

Fig. 9: global pointcut designator

As an example, Figure 9 shows how the class Output can refine the global pointcut to
restrict matching within itself.
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7.4. Protecting from Global Quantification
When refining a global pointcut with an exhibits clause, programmers may provide no
pointcut at all. In that case, the class or aspect is sealed against the global pointcut of
the respective JPI. This approach to controlled global quantification is useful in that
it allows programmers to refine pointcuts for JPIs that they are aware of. But in a
code-evolution scenario, programmers may wish to protect classes and aspects from
being advised altogether, even as new global pointcuts are introduced. To this end, we
introduce a new modifier that allows programmers to mark those classes and aspects
in the form of sealed class Output {...}. Sealing a class or aspect completely disables
the effects of global pointcuts within this scope. Note, however, that even a sealed class
can still opt to expose join points selectively by using exhibits clauses or closure join
points.

7.5. Static Semantics
Global pointcuts are a simple extension of JPIs, also in terms of their semantics. Our
type checks enforce that the global pointcut designator is only used in exhibits clauses
that bind to a JPI declaring a global pointcut. The signature of the global pointcut is
defined through the signature of the JPI that defines this pointcut. Our type-checking
rules for classes, aspects and their exhibit clauses remain unchanged.

7.6. Implementation
We introduce global pointcuts to our implementation by modifying the parser, the
static type system and by introducing some AST rewrites. Syntactically, we allow
pointcut expression to be declared in JPIs. We further alter type checks to recognize
the new built-in pointcut designator called global in the scope of an exhibits clause,
and also allow exhibits clauses to be defined without any pointcut expression at all.

We then implement the correct runtime semantics for global pointcut by inlining
global pointcuts into every aspect and class, replacing occurrences of the global(..))
pointcut by the global pointcut definition. In case a class (or aspect) contains no refine-
ment for a JPI such as void JP() defining a global pointcut, then we treat it as if the
class (or aspect) actually defined an exhibits clause of the following form:

exhibit void JP(): global();

Figure 10 shows how our implementation treats such refinements through inlining
within our previous example.

1 class Output {
2

3 <T, U, V> exhibits T MethodCall(U thiz, V targt):
4 call(T ⇤(..))
5 && This(thiz)
6 && Target(targt)
7 && !within(lawOfDemeter..⇤)
8 && !cflow(withincode(⇤ lawOfDemeter..⇤(..)));
9 && !call(T java..⇤.⇤(..));

10 ...
11 }

Fig. 10: Inlined exhibits clause which use global
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7.7. Evaluation

Generic JPI version Global JPI version
LoD 130 0

AJHotDraw 46 46

Table II: Number of exhibits clauses defined in each version

To assess the impact of global pointcuts, we re-implemented the generic-JPI versions
of both AJHotDraw and LoD with global pointcuts. As Table II shows, global point-
cuts significantly decrease the amount of scattered exhibits clauses in projects such
as LoD, which implement highly-crosscutting aspects. While the number of exhibits
clauses in the (generic) JPI version of LoD was 130, the version using global JPIs in
fact goes without any exhibits clauses. For application such as AJHotDraw, however,
which comprise highly specific pointcuts, global quantification cannot help, as differ-
ent classes must expose different join point shadows for matching to the respective
aspects.

7.8. Discussion
There is a clear tension between global quantification and class-level exhibits clauses.
On the one hand, exhibits declarations at the class level demand more code anno-
tations but have the positive effect of allowing for truly local reasoning at the class
level. On the other hand, global pointcuts allow programmers to eliminate many code
annotations at the cost of losing the ability to reason about advising locally.

We believe—and our case study shows—that none of the two mechanisms is ideal
for every aspects; highly generic aspects do benefit from global quantification. Many of
them, like LoD, or more generally dynamic analyses, cause no harm, because they are
only observing the base code execution. For other aspects that are meant to directly
affect the base execution, global quantification may be the wrong choice. Our design
reflects our intent to be pragmatic and support both families of aspects. With our ap-
proach, programmers can make the choice of which mechanism to use, in a sound and
well-typed setting.

8. RELATED WORK
There is a very large body of work that is concerned with modularity issues raised
by the form of implicit invocation with implicit announcement provided by aspect-
oriented programming languages like AspectJ, starting with Gudmundson and Kicza-
les [Gudmundson and Kiczales 2001]. In the AOP literature, many proposals have been
formulated, some aiming at providing more abstract pointcut languages (e.g. [Gybels
and Brichau 2003]), and others—as we do here—introducing some kind of interface
between aspects and advised code. A detailed discussion of all these approaches is out-
side the scope of this paper, so we concentrate on the most salient and most related
proposals. A recent exhaustive treatment of this body of work and neighbor areas can
be found in [Steimann et al. 2010].

Aspect-aware interfaces. In their ICSE 2005 paper, Kiczales and Mezini argue that
when facing crosscutting concerns, programmers can regain modular reasoning by us-
ing AOP [Kiczales and Mezini 2005]. Doing so requires an extended notion of interfaces
for modules, called aspect-aware interfaces, that can only be determined once the com-
plete system configuration is known. While the argument points at the fact that AOP
provides a better modularization of crosscutting concerns than non-AOP approaches,
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it does not do anything to actually enable modular type checking and independent de-
velopment. Aspect-aware interfaces are the conceptual backbone of current AspectJ
compilers and tools, which resort to whole program analysis, and perform checks at
weave time.

Crosscutting interfaces. Sullivan et al. [Sullivan et al. 2010] formulated a
lightweight approach to alleviate coupling between aspects and advised code. Cross-
cutting interfaces, XPIs for short, are design rules that aim at establishing a contract
between aspects and base code by means of plain AspectJ. With the XPI approach, as-
pects advising the base code only define advices, no pointcuts. The pointcuts, in turn,
are defined in another aspect representing the XPI. Sullivan et al. argue that this ad-
ditional layer of indirection improves the system evolution because the resulting XPI is
a separate entity and hence can be agreed upon as a contract. The authors also show
how parts of such a contract can be checked automatically using static crosscutting
or contract-checking advices in the XPI aspect itself. However, without a language-
enforced mechanism, XPIs cannot provide any strong guarantees on modularity.

Open modules. In the same period, Aldrich formulated the first approach for
language-enforced modularity, Open Modules [Aldrich 2005]. Here, modules are prop-
erly encapsulated and protected from being advised from aspects. A module can then
open up itself by exposing certain join points, described through pointcuts that are
now part of the module’s interface. The advantage is that aspects now rely on point-
cuts for which the advised code is explicitly responsible. Aldrich formally proves that
this allows replacing an advised module with a functionally equivalent one (but with a
different implementation) without affecting the aspects that depend on it. Ongkingco
et al. have implemented a variant of Open Modules for AspectJ [Ongkingco et al. 2006].

Join point types. Join point types (JPTs) [Steimann et al. 2010] are a further (and the
most recent) step in the line of Open Modules. Also a language-enforced mechanism,
JPTs provide a higher level of abstraction than pointcuts: join point types, which can be
organized in a subtype hierarchy, provide a more natural way to deal with complexity,
just like interfaces in Java help classify object behaviors. Also, join point types open
opportunities for advice overriding.

At first sight, JPTs are very similar to JPIs, and were actually the starting point of
our work. The general idea of introducing a typed interface between base and aspects
with support for both implicit and explicit announcement is the same, but the realiza-
tion differs in a number of fundamental ways, which make JPIs both safe (while JPTs
are not), and more flexible than JPTs.

First, as an example, consider Listing 4, which corresponds to the birthday discount
example, implemented using JPT. As we can see, join point types do not resemble
method signatures; rather they are data structures with mutable fields (line 13). This
has a number of problems: most importantly, it makes advice and base code fragile,
as both depend on the actual name of a JPT field. On the side of the base code, this
dependency is even prohibitively strong: the example in Listing 4 only works because
the programmer has named the local variables price and c equal to those names used
in the join-point type definition. Our join point interfaces instead are like method sig-
natures, so name dependencies for context information are avoided; matching of argu-
ments happens purely by argument position, just like standard procedural abstraction.

Second, mutation of JPT fields can yield incorrect or even undefined semantics. In
line 7, the code updates the variable totalAmount. The type checker for JPTs allows
those updates also in the case where totalAmount is a local variable. But this is un-
sound: any aspect advising CheckingOut join points may opt to execute the original join
point in another thread, thus causing a data race on the local variable totalAmount,
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1 class ShoppingSession {
2 void checkingOut(final Item item, float price, int amount, Customer cus) {
3 //assume price==100 && c.hasBirthday()
4 exhibit new CheckingOut(price, c) {
5 sc.add(item, amount); //then here price==95...
6 cus.charge(price);
7 totalAmount += amount;
8 }; //... and here price==100 again
9 }

10 }
11

12 aspect BonusProgram {
13 joinpointtype CheckingOut{ float price; Customer c; }
14 void around(CheckingOut jp) {
15 if(c.hasBirthday())
16 jp.price = 0.95 ⇤ jp.price;
17 proceed(jp);
18 }
19 }

Listing 4: Shopping example with join point types (JPTs)

breaking the important guarantee of Java and AspectJ programs that local variables
cannot cause data races. Or even worse, the aspect may choose not to proceed at all,
in which case the value of totalAmount may be totally undefined. Bodden’s earlier work
on closure join points discusses those issues in even further detail [Bodden 2011].

Third, join point types are unsound because they do not specify return and exception
types at join points. This means that both weave time and runtime errors can occur
whenever aspects and base code do not coincidentally agree on these types. JPIs make
these assumptions explicit and therefore ensure type safety.

Fourth, JPTs do not handle polymorphism properly. To briefly illustrate why, let
us consider that we introduce two subtypes of Buying from our example of Section 2:
BuyingBestSeller and BuyingEcoFriendly. With JPTs, whenever a book is bought that is
both a bestseller and an eco-friendly print, the same Discount advice for CheckingOut
is executed twice. This implies that any side effects of the advice (e.g. sending a noti-
fication email) are duplicated for a single book purchase. The reason is that JPTs do
not really support polymorphic join points: instead, in the case above, two separate
join point instances are generated, one of each type. Because both instances are sub-
types of CheckingOut, the advice executes twice. Note that we did find an occurrence
of this scenario in the case study; more precisely, in the Glassbox example described
in Section 5.2.3. For all classes that implement only one of the two interfaces ITC and
EITC—10 out of 11—the advice associated to T1, which initializes a factory object, is ex-
ecuted twice. Whenever a join point is of sibling join point types and there is an advice
associated to the common super type, the advice executes as many times as there are
siblings involved. The dispatch semantics of JPIs avoids this problem: a given advice
is guaranteed to execute at most once for any given join point (Section 3.3).

Fifth, Steimann’s proposal is not symmetric in that aspects cannot exhibit join points
on their own, to be advised by other aspects. The justification of this choice is to avoid
infinite loops due to aspects advising themselves. As explained by Tanter [2010], this
is however no solution. Avoiding infinite loops requires a dynamic semantic construct,
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like execution levels. As a matter of fact, infinite loops can happen with JPTs7. Our
proposal of join point interfaces is symmetric: aspects can exhibit join points. Integrat-
ing execution levels in AspectJ has already been done [Tanter et al. 2010] and would
be helpful for JPIs as well, although this is an orthogonal concern.

Finally, the two additions to our design that were directly motivated by the case
study, namely generic JPIs and global pointcuts, also contribute to making JPIs a
much more practical approach to aspect interfaces. JPTs do not support type variables
nor global quantification.

Ptolemy. Ptolemy [Rajan and Leavens 2008] supports explicit announcement of
events (an idea initially proposed by Hoffman and Eugster [Hoffman and Eugster
2007]). Events are defined with event types. Event types are similar to JPTs in the
sense that they are struct-like specifications; they include information about the
return type, but not about checked exceptions. Originally, Ptolemy did not support
event subtyping. It was recently extended with a form of subtyping, which allows for
depth subtyping in event types [Fernando et al. 2012]; this is possible only because
Ptolemy does not support the specification of alternative arguments to proceed, other-
wise depth subtyping would be unsound, as explained earlier in this paper. Further,
because Ptolemy only supports explicit announcement, emitted join points have a
single most specific type, simplifying advice dispatch. Ptolemy supports behavioral
contracts, called translucid contracts [Bagherzadeh et al. 2011], to specify and verify
control effects induced by event handlers. These verification techniques go beyond
more lightweight interfaces like Java interfaces and JPIs.

A major contribution of our work is to realize that the above proposals rely on insuf-
ficiently expressive interfaces to really allow separate development and modular type
checking. As mentioned above, the contribution of our work has already been reflected
in recent enhancements to the Ptolemy language.

EScala. EScala [Gasiunas et al. 2011] is an approach to modular event-driven pro-
gramming in Scala, which, like JPTs and JPIs, also combines implicit and explicit
events. EScala does not support around advice, so event definitions need not declare
return types; exception types are missing, but this reflects the design philosophy of
the Scala language. EScala treats both events and handlers as object members, sub-
ject to encapsulation and late binding. Aspects are scoped with respect to event owners
rather than event types.

Type soundness and aspects. Soundness issues with the type system of AspectJ were
first reported by Wand et al. [2004], although no solution was proposed. Jagadeesan
et al. [2006] formulate a sound approach in which an advice type may depend on
explicitly-declared type variables. Like in our approach, they use the same signature
for proceed and the corresponding advice, and therefore require invariance as well.
Some flexibility is regained because the type variables from the signatures can be in-
stantiated for each join point. Due to parametricity, it is difficult to express arbitrary
replacement advice.

MiniMAO1 [Clifton and Leavens 2006] and StrongAspectJ [De Fraine et al. 2008]
both consider different signatures for advice and proceed, thereby allowing more liberal
pointcut/advice bindings while maintaining soundness. StrongAspectJ is more flexible
in that it support signature ranges for pointcuts and type variables for generic ad-
vices. As recognized by the authors, however, the more expressive typing constructs of
StrongAspectJ result in quite complicated syntax forms.

7Examples available online: http://pleiad.cl/research/scope/levels/iiia-loops
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Aspectual Caml [Masuhara et al. 2005] is an aspect-oriented extension of OCaml.
An interesting feature of Aspectual Caml is that it uses type information to influence
matching, rather than for reporting type errors. More precisely, they infer the type
of pointcuts from the associated advices, and only match join points that are valid
according to these inferred types. It is unclear if the inference approach may be ported
to an object-oriented language with subtype polymorphism.

All the above approaches are formulated in a traditional pointcut-advice setting,
without relying on interfaces to uncouple base and aspect code. Our design of generic
JPIs basically follows the proposal of Jagadeesan et al. This choice is pragmatic: while
we have clear evidence of the interest of this approach for JPIs in our case study (Sec-
tion 6), we have not faced a single case where the extra flexibility of StrongAspectJ was
required. This may change in the future as we experiment with more programs. In any
case, it is unclear how to provide the extra flexibility of StrongAspectJ while retaining
a simple enough syntax. This is definitely an area where more study is needed.

Perspectives on quantification. While AspectJ allows global quantification (i.e. point-
cuts can match join points that occur anywhere), Open Modules and JPTs have very
different takes on quantification: should classes be aware of the join points they ex-
pose? With Open Modules, classes themselves do not declare their exposed join points;
it is the task of the module. The argument is that the maintainer of the module is
in charge of all the classes inside the module, and therefore, has sufficient knowledge
to maintain classes in sync with the pointcuts in the module interface. Steimann and
colleagues, on the other hand, argue for class-local exhibit clauses: each class is respon-
sible for what it exhibits. In JPTs, even nested classes are not affected by the exhibited
pointcuts of their enclosing classes. Our current proposal is actually half-way between
both standpoints. We do not extend Java with a new notion of modules (this is left for
future work), but we do support nested classes in the sense that the exhibited pointcut
of a class match join points in nested classes as well. This means that we can use class
nesting as a structuring module mechanism, and obtain module-local quantification.
Of course, this approach to modules is certainly not as well supported in Java as it
would be in other languages, such as Newspeak [Bracha et al. 2010], where modules
are objects, supported by a very flexible virtual class system.

In addition, in order to make it possible for AspectJ programmers that adopt JPIs to
balance the quantification design trade-off, we have introduced global pointcuts (Sec-
tion 7). This combination of local and global quantification, which preserves the possi-
bility for a given class to be sealed from unwanted advising, is in itself a novel answer
to the quantification design question.

9. CONCLUSION
Join point interfaces enable fully modular type checking of aspect-oriented programs
by establishing a clear contract between aspects and advised code. Like interfaces in
statically-typed object-oriented languages, JPIs support independent development in
a robust and sound manner. Key to this support is the specification of JPIs as method-
like signatures with return types and checked exception types. JPIs can be organized
in hierarchies to structure the space of join points in a flexible manner, enabling join
point polymorphism and dynamic advice dispatch. The use of type variables in JPI
definitions, along with support for controlled global quantification, allow for concise
definitions of JPIs with minimal programmer effort. We have implemented JPIs as
a publicly available AspectJ extension, and have rewritten several existing AspectJ
programs to take advantage of JPIs. This study supports our major design choices.

Table III summarize the main features of our language extension and the design
decisions that justify this language design. When defining the JPI mechanism, we al-
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Feature Purpose
Join point interfaces Decoupling aspects from base code
JPIs as method signatures Preserve procedural abstraction
Class-local pointcut matching Limit pointcut fragility
Closure join points Support explicit announcement
Invariant typing of arguments, return type
and checked exceptions Preserve type soundness
Invariant pointcuts
Join point polymorphism Support expressive modeling and handling of

events
Parametric polymorphism Enhance the flexibility of the type system
Controlled global pointcuts Support wide quantification

Table III: Summary of features and their purpose

ways opted for type safety over flexibility. As we explained earlier, in a first approach,
we opted for totally invariant typing, which is safe but sometimes too inflexible. Join
point polymorphism, parametric polymorphism and global pointcuts restore the nec-
essary flexibility without jeopardizing type soundness. As a result, we have designed a
language that has strong typing guarantees, allows for modular reasoning, minimizes
the amount of extra code required, and can accommodate a smooth transition path
from plain AspectJ.
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