
Technical Report
Nr. TUD-CS-2012-0013
January 17th, 2012

Authors
Eric Bodden (EC SPRIDE, CASED)

On the Expressiveness of Parameterized Finite-state
Runtime Monitors

On the Expressiveness of
Parameterized Finite-state Runtime Monitors?

Eric Bodden
bodden@acm.org

Secure Software Engineering Group
European Center for Security and Privacy by Design

Technische Universität Darmstadt

Abstract. Many contemporary runtime-verification tools instrument a
program under test with finite-state runtime monitors that can be pa-
rameterized through variable-to-object bindings. Often, such tools pro-
vide a specification formalism that is some form of syntactic extension
to an aspect-oriented programming language. The tools then transform
monitor specifications into aspects that bind the monitors’ parameters
through pointcuts.
In this work we show that the availability of certain, well-selected point-
cuts and the variable bindings that these pointcuts expose can greatly
enhance the expressive power of finite-state monitoring formalisms, often
going clearly beyond the expressiveness of regular languages. Formally,
this e↵ect can be explained by a correspondence between finite-state ma-
chines and Weak Monadic Second-Order Logic (MSO). For this logic it
is known that it can exactly express the regular languages when com-
bined with a successor relation over string positions—adding other rela-
tions may increase its expressiveness. In the conceptual framework of this
logic, such adjunct relations correspond directly to primitive pointcuts
in the underlying aspect language.

1 Introduction

In the past, researchers have developed many tools to generate runtime monitors
from high-level specifications. Many of these tools [1–5] generate monitors in
the form of so-called aspects in the programming language AspectJ [6]. Using
AspectJ, a runtime monitor can use pointcuts to define which types of events to
process and pieces of advice to define which action should be taken at each type
of event.

All monitoring tools mentioned above generate monitors from a high-level
specification written in some formal specification language, such as linear tem-
poral logic, regular expressions, or context-free grammars. The expressiveness of
these formalisms has been extensively studied and is nowadays taught in many

? This work was supported by the German Federal Ministry of Education and Research
(BMBF) within EC SPRIDE and by the Hessian LOEWE excellence initiative within
CASED.

undergraduate classes on language theory. In this work, however, we show that
the expressiveness of the monitoring formalism may increase when combined
with pointcuts that match certain, well-defined patterns of the execution trace,
or expose certain, well-defined context information.

In particular, this paper presents the following original contributions:

– We show that a “startup” pointcut allows tracematches [1] to express prece-
dence properties, making them equally expressive as the extended-regular-
expression (ERE) plugin of JavaMOP [3].

– We show that a “shutdown” pointcut allows both JavaMOP’s ERE plugin
and tracematches to monitor bounded liveness properties.

– We show that a “cflowdepth” pointcut allows finite-state monitoring tools
such as tracematches to express patterns of matching method entry and exit,
although such patterns typically require a stack or counter for recognition
and therefore normally cannot be expressed by finite-state systems.

– We present a “let” pointcut that allows programmers to expose arbitrary
context information. As we show, runtime monitors can use this context
information to project the execution trace onto ground traces which are
then easier to recognize.

Further, we show how a well-known correspondence between finite-state ma-
chines and Weak Monadic Second-Order Logic (MSO) can be used to reason
about the e↵ect of adding pointcuts. For this logic is is known that it can ex-
actly express the regular languages when combined with a successor relation
over string positions. Adding other relations, on the other hand, may increase
its expressiveness. Adding pointcuts to a finite-state monitoring language can be
formalized by adding corresponding adjunct predicates to MSO. While a formal
treatment of the pointcuts that we propose here goes beyond the scope of this
paper, we expect this correspondence to yield interesting results in future work.

The remainder of this paper is organized as follows. In Section 2 we explain
the correspondence between finite-state machines and Weak Monadic Second-
Order Logic (MSO). In Section 3 we show the e↵ect of adding new primitive,
parameter-less pointcuts to a monitoring language. Section 4 lifts these results
to pointcuts with parameters. We discuss related work in Section 5 and conclude
in Section 6.

2 Monadic second-order logic

In first-order logic, formulas can quantify over primitive values. First-order logic
over words is exactly as expressive as future-time linear temporal logic (LTL),
i.e., can be used to describe any regular language whose recognition does not
require modulo counting. (One language that does require such counting, and is
not expressible in LTL is the language (a a)⇤ of all words of even length.)

Second-order logic is an extension to first-order logic that further allows for
the quantification over relations of primitive values. In the following we will con-
sider monadic second-order logic (MSO), in which all quantified relations must

2

be monadic, i.e., must represent sets of primitive values. In 1960, Büchi, Elgot,
and Trakhtenbrot independently showed that a certain class of monadic second-
order formulas is exactly as expressive as the regular languages. Their proof is
constructive: from every finite-state machine accepting a regular language L one
can construct an MSO formula whose models are exactly all elements of this
language. The same also holds the other way around, but we will not require
the other direction (from logic to finite-state machines) in this paper. In this
section we briefly introduce monadic second-order logic and sketch the original
equivalence proof.

Monadic second-order logic over words over a finite alphabet ⌃ uses formulas
constructed of the following elements:

Position variables x, y, z . . . denoting positions in a finite input string that is
itself an element of ⌃⇤,

Constant positions min and max, denoting the first and last position in the
string,

Quantified set variables X,Y, Z . . . denoting finite sets of positions,
Quantifiers 9 and 8 over position and set variables,
Boolean connectives ^,_,¬, . . .

Any MSO logic can be enhanced with additional adjunct relationships. As we
will see later in this paper, the exact selection of adjunct relationships is a
crucial factor of the logic’s expressiveness. To obtain a logic that is exactly
as expressive as regular languages, one needs to provide exactly the following
adjunct relationships:

Successor relationship S(x, y) over positions, and
Label relationships La for every a 2 ⌃. For example, the predicate La(x)

describes that the symbol at the x-th position of the input string is an a.

Note that, because we restrict ourselves to monadic logic all polyadic relations
(n-ary for n > 1) must be fixed and pre-defined. In other words, one may only
quantify over monadic relations, not polyadic relations.

Example 1. The following MSO formula expresses the language (⌃⌃) · (⌃⌃)⇤

of all non-empty words of even length:

9X(X(min) ^ ¬X(max) ^ 8y8z(S(y, z) ! (X(y) $ ¬X(z))))

The formula demands that there exists a set of positions X, containing the first
position of the string but not the last, and that the set contains every second
position: if z is a successor of y then y is in X, i.e., X(y) holds, if and only if
¬X(z).

One can visualize the relationship between the input word and the quantified
set X as shown in Figure 1. In the figure, every position that is a member of X
is checked (X).

3

input word e v e n l e n g t h
X X X X X X

Fig. 1: Input word “evenlength” and quantified set X

Expressing finite-state machines through MSO formulas

As Büchi [7], Elgot [8] and Trakhtenbrot [9] independently showed, one can
express every finite-state machine as an MSO formula that only uses the adjunct
relationships S(x, y) and La that we mentioned above. Because of the authors’
last names, this is frequently called the “BET theorem.” For every state s of the
finite-state machine one quantifies over a fresh set Xs of positions.

Let M = (Q,⌃, 0,�, F) be a finite-state machine with Q = {0, .., n}. Then
we define the formula �M as:

9X0 . . . 9Xn :

X0(min)

^8x8y(S(x, y) !
_

(i,a,j)2�

Xi(x) ^ La(x) ^Xj(y))

^
_

(i,a,j)2�,j2F

Xi(max) ^ La(max)

The BET theorem shows that for every w 2 ⌃⇤:

w 2 L(M) , w |= �M,

In other words, a finite-state machine accepts w exactly if w (and the label
relations that it induces) satisfy �M.

Example 2. For example, consider the finite-state machine in Figure 2a. Accord-
ing to the BET theorem, the following formula is equivalent to this finite-state
machine:

9X09X19X2 : X0(min) ^ 8x8y
�

(X0(x) ^ Linit(x) ^X1(y)) _
(X0(x) ^ Luse(x) ^X2(y)) _
(X1(x) ^ Linit(x) ^X1(x)) _
(X1(x) ^ Luse(x) ^X1(x))

�
^

X0(max) ^ Luse(max)

Note that the clause X0(max) ^Luse(max) denotes that we reach an accepting
state when, just before the end, being in state 0 and reading a “use.”

The BET theorem is important to the remainder of this paper, because it
helps us explain some of our observations. In remainder of this paper we will

4

0start

1

2

init

use

init,use

(a) State machine for JavaMOP

sstart 0

1

2
startup

init

use

init, use

(b) State machine for Tracematches

Fig. 2: State machines for pattern “no use before init”

show that adding primitive pointcuts to a monitoring formalism may enhance
this formalism’s expressiveness. On the level of language theory and finite-state
machines, this added expressiveness may be hard to quantify. The BET theorem
allows us, though, to think in terms of formulae instead of languages or state
machines. In this model, pointcuts are just other adjunct n-ary predicates, sim-
ilar to the successor predicate from above. In the field of logics it is well known
that adding such predicates to MSO makes the logic more expressive. Reasoning
about pointcuts this way hence appears natural.

3 Adding pointcuts without parameters

In this section, we will discuss the e↵ect of adding two di↵erent pointcuts to a
monitoring logic: “startup” and “shutdown.” Both pointcuts take no parameters,
i.e., they expose no context information. Nevertheless, they manage to enhance a
formalism’s expressiveness through the well-defined position at which they occur
in the execution trace (startup at the beginning and shutdown at the end).

3.1 A “startup” predicate to turn su�x matching into full-string
matching

Two prominent examples of parameterized logics for runtime verification are Ex-
tended Regular Expressions (ERE), as implemented by the JavaMOP tool [3],
and tracematches [1], implemented as an extension to the AspectBench Com-
piler [10]. Both tools o↵er a similar abstract syntax: regular expressions are not
defined over ground symbols but over symbols that may have parameters. A
word is only accepted if it instantiates equal parameters with equal concrete
bindings. For instance, consider the following regular expression:

create(c, i) next(i)⇤ update(c)+ next(i)

This expression matches execution traces that violate the “FailSafeIter” prop-
erty [11]: after creating an iterator i for a collection c, possibly iterating a few

5

times, but then updating the underlying collection c, it is then an error to iterate
using i again. A runtime monitor generated from this regular expression would,
for concrete objects c1, c2, and i1, match the execution trace

create(c1, i1) update(c1) next(i1)

but it would not match the trace

create(c1, i1) update(c2) next(i1)

as this trace contains a conflicting binding, associating c both with c1 and c2.
Despite their similarities, tracematches and ERE from JavaMOP have a

quite di↵erent matching semantics. Tracematches use so-called su�x matching :
a tracematch whose regular expression defines the regular language L accepts a
word w if any su�x of w is in L. For instance, a tracematch with the regular
expression “b” would match the input “ab”, ignoring the initial prefix “a” of the
input. This is di↵erent from ERE, which uses full-string matching : JavaMOP
would not accept the input “ab” for the same regular expression “b.”

Returning to our correspondence to MSO, the tracematch semantics e↵ec-
tively demand that for all positions x it holds thatX0(x): the finite-state machine
always remains (also) in the initial state, so that it can start a match at any
point, irrespective of any prefix it may already have read.

This semantics of tracematches lead to the fact that it is impossible to express
precedence properties [12] such as “no use before init” as a tracematch. After
all, a tracematch for this property would have to accept the string w1 =“use”
(because it violates the property) but at the same time would have to reject the
string w2 =“init use” (because this sequence constitutes a valid use). Since w1

is a su�x of w2, no such tracematch can exist: any tracematch that accepts w1

would automatically also accept w2.
Using MSO we can easily conduct a formal proof to show this deficiency.

Assume there exists a tracematch tm accepting the string “use”. Because tm
accepts “use”, we know that the following is a sub-formula of tm’s MSO rep-
resentation: X0(max) ^ Luse(max). According to the tracematch semantics, we
have 8x : X0(x). Therefore, tm cannot possibly reject the trace “init use”: af-
ter reading the prefix “init”, X0(x) still holds, and therefore at this position,
X0(max) ^ Luse(max) will evaluate to “true”. ut

Adjunct predicates to the rescue. As we will show in the following, one can en-
hance the expressiveness of a monitoring logic such as tracematches by adjoining
additional primitive predicates that have certain well-defined properties. In the
particular case of precedence properties, the problem is that tracematches match
against every su�x of the input and therefore “forget” any prefix that probably
should have prevented a match.

Assume now, that we add a new primitive predicate startup, which only holds
at program startup time, i.e., at the first state of the execution trace. If such a
primitive predicate exists, then we can define a tracematch of the form

startup use

6

over the alphabet {startup, use, init}. Figure 2b shows the appropriate finite-state
machine for this tracematch. Because the symbol startup is known to occur only
once, at the beginning of the trace, it does not matter that the tracematch
automaton also always remains in the initial state (now s): the automaton can
enter state 0 only once, after reading the initial startup symbol. Hence, this
tracematch e↵ectively accepts the same traces as the ERE implementation of
JavaMOP with the extended regular expression “use.”

Returning to MSO, the adjunct predicate startup can be visualized as in
Figure 3: the predicate defines a singleton set of positions that only contains the
very first position.

Again we can use MSO to reason about the correctness of this construction.
Because “startup” occurs at the beginning of the trace, and only there, we obtain:

L
startup

(min) ^ (8x : x > min ! ¬L
startup

(x))

Using this formula, it is easy to show that the state machine from Figure 2b
accepts the trace “use” while rejecting the trace “init use.” We leave the formal
proof as an exercise to the reader.

A startup predicate can be implemented using di↵erent techniques. For lan-
guages such as Java, the predicate is actually relatively hard to define, since there
may be multiple ways to bootstrap a Java program. It is however easily possible
to capture the general case, in which a Java program is started by executing its
main method. The following AspectJ advice captures this event:

before(): execution(public static void main(String[])) {
//send startup event to monitor

}

3.2 A “shutdown” predicate to monitor bounded liveness properties

A liveness property is a property stating that some event a must happen at some
point in the future. The canonical example of a liveness property expressed in
linear temporal logic is F a, stating that a must happen “finally”, i.e., at some
point in time. Using runtime monitoring it is generally impossible to detect that
a program violates a liveness property: there can be no prefix of the execution
trace (the prefix monitored so far) after which the monitor can decide that a
will never happen in the future [13].

A bounded liveness property is a liveness property stating that amust happen
at some point in the future but before some other event b. For our purposes we
will only consider special bounded liveness properties where a must occur before

input word use use init
startup X

Fig. 3: Input word “use use init” and adjunct predicate startup

7

the program shuts down, i.e., before the end of the program run. To be able to
reason about the end of the program run, we hence define an adjunct predicate
shutdown which matches program shutdown, conversely to the startup predicate
from above.

Using the shutdown predicate, one can monitor violations of the property
“finally a” simply through the regular expression “shutdown” over the alpha-
bet {shutdown, a}: the monitor will signal a property violation if shutdown is
observed without having observed a before.

Note that monitoring such bounded liveness properties would be impossible
without a shutdown predicate, regardless of whether ERE from JavaMOP or
tracematches or any other monitoring logic is used. Without being notified of
program shutdown there would be no way to determine the end of the execution
trace online.

While implementing a shutdown predicate may be hard in C-like languages,
it is comparatively simple in Java. Java provides a mechanism called shutdown

hooks [14]. Such hooks are un-started threads that the virtual machine executes
automatically when the application shuts down, no matter how the shutdown
was initiated.1 A possible implementation of a shutdown predicate could hence
be implemented as follows:

Runtime.getRuntime().addShutdownHook(new Thread() {
public void run() { /⇤ send shutdown event to monitor ⇤/ }

});

Through a dummy method, the event can even be exposed as an AspectJ
pointcut:

Runtime.getRuntime().addShutdownHook(new Thread() {
public void run() { shutdown(); }

});

pointcut shutdown(): call(⇤ shutdown());

In the runtime verification tool J-LO [2] programmers define properties using
a special linear temporal logic that has finite-trace semantics. In this semantics,
a formula F a means that a must occur before shutdown. J-LO uses shutdown
hooks to implement the runtime verification of such formulas. This automatically
implies that J-LO’s monitoring logic can express properties that JavaMOP and
tracematches could not express if no shutdown predicate were added.

4 Adjunct predicates with parameters

There are other properties, which finite-state based parameterized runtime ver-
ification formalisms cannot usually express, due to the fact that their monitors
can only use a finite set of states. For instance, consider the property that a

1 Shutdown hooks are only not executed if an application is forced to quit, e.g. with
the command “kill -9.”

8

resource like a file handle should be closed in the same method invocation that
allocated the resource. To recognize matching method entries and exits in the
case of recursive method calls, one generally has to use a push-down automaton
or a counter—a finite number of states is insu�cient in general. In JavaMOP,
programmers can use the context-free grammar formalism to yield a push-down
automaton which is able to monitor the resource-allocation property. In trace-
matches, however, which are bound to finite-state machines, it is unclear how
such a monitor could be implemented.

However, also here adjunct predicates help to overcome this limitation of
tracematches. In previous work [15], Avgustinov et al. present the pointcut
cflowdepth(i,pc), which takes the following two parameters:

– i: an “out” parameter binding i to the number of enclosing joinpoints (in-
cluding the current one) that match pc, with

– pc: any pointcut.

Similarly, the pointcut cflowbelowdepth(i,pc) tests for strictly enclosing join-
points (excluding the current one).

For instance, consider the tracematch from Figure 4. This tracematch de-
fines two symbols beforefunc and afterfunc, which use the pointcut anyfunc
(defined elsewhere) to match before, respectively after the execution of any
method. In both symbols, cflowdepth(i, anyfunc()) binds i to the depth of
the current control flow (again with respect to any method). The symbols alloc
and release match on the allocation and release of any ResourceReference.
Those symbols use cflowbelowdepth(i, anyfunc()). The e↵ect of this point-
cut becomes clear when considering the tracematch pattern “beforefunc alloc

afterfunc”: the tracematch triggers when entering a method execution, allocat-
ing a resource and then exiting the same method execution without having seen
a matching release. Because we used cflowbelowdepth, the tracematch will only
trigger for such executions where the allocation occurred directly below the last
monitored beforefunc. The tracematch will therefore issue its error message
immediately when the innermost violating method execution finishes.

perthread tracematch(ResourceReference r, int i) {
sym beforefunc before : anyfunc() && cflowdepth(i, anyfunc());
sym afterfunc after : anyfunc() && cflowdepth(i, anyfunc());
sym alloc after : alloc (r) && cflowbelowdepth(i, anyfunc());
sym release after : release (r) && cflowbelowdepth(i, anyfunc());

beforefunc alloc afterfunc {
throw new RuntimeException(”Unmatched resource allocation!”);

}
}

Fig. 4: Tracematch monitoring unmatched resource allocations

9

Note that this adjunct predicate di↵ers from the former in that it binds
some of its arguments: it exposes a context value, the current stack depth, as a
variable binding. Because parameterized runtime monitoring systems associate
a di↵erent monitor with each variable binding, this allows a finite-state runtime
monitoring tool like tracematches to obtain an expressiveness beyond regular
languages. In Figure 5, we show how the cflowdepth pointcut enriches the pro-
gram’s execution trace: the new adjunct pointcut virtually adds a new dimension
to the trace, which can then be projected against.

In the above example, parameters are used to separate di↵erent matches from
each other: because each complete match refers to one and the same stack depth
i, this match refers to one stack frame only. We find that this is a recurring theme
in parameterized runtime monitoring formalisms: parameters exist to partition
the monitoring space into smaller units, which are then easier to reason about.
In some cases like the above, this may mean that the smaller unit may then
be described by a regular language, while the complete property is clearly not
regular.

4.1 A word on performance

In this work we have shown that one can enhance a formalism’s expressiveness
by adding certain well-chosen adjunct predicates. But what is the runtime cost
involved? Fortunately, previous work has shown that all predicates mentioned
above can be implemented with negligible runtime cost. In particular, computing
the truth value of any such predicate is in O(1), i.e., takes only constant time.
The most complex predicate we discussed is cflowdepth, and even this predicate
amounts to just updating a counter at those positions at which the associated
pointcut matches. Avgustinov et al. showed that such counters induce almost no
perceivable overhead [16].

The let-pointcut

As we just showed, the exposure of the correct variable bindings can mean the
di↵erence between being and not being able to monitor a given property in
practice. It is therefore crucial to have a means to expose context information for
the purpose of generating such variable bindings. Because an execution trace may
contain many di↵erent kinds of context information, the tracematch developers
proposed [15] a unified way to expose context information in general: the pointcut
“let(a,expr).” This pointcut expects two parameters:

– a: the variable to be bound by the pointcut, and

input trace beforefunc beforefunc beforefunc alloc afterfunc afterfunc afterfunc
cflowdepth 0 1 2 2 2 1 0

Fig. 5: E↵ect of cflowdepth pointcut.

10

– expr: an expression whose return value will be assigned to a.

In the current implementation of the let pointcut, the expression can access
all static members and the variable thisJoinPoint, which AspectJ implicitly
declares.

For instance, consider the tracematch in Figure 6, which issues a runtime
error message just before a certain null-pointer access is going to occur. In this ex-
ample, the surrounding aspect first declares pointcuts fieldSet, fieldSetToNull
and fieldAccess to monitor (1) field assignments in general, (2) assignments
that assign null, and (3) reading field accesses. All pointcuts use the primitive
let pointcut to expose the field’s signature for matching. In addition, the second
pointcut uses let to further expose the current JoinPointStaticPart to ob-
tain debugging information. Exposing the fieldID helps the matching process to
project the execution trace onto a trace related to each field. This then makes it
quite easy to reason about each field in isolation: if a field is set to null (we mon-
itor fieldSetToNull), and then it is read from (we monitor fieldAccess), and
there is no intervening other assignment (we would have monitored fieldSet),
then we certainly read a null value at this point. The tracematch’s regular ex-
pression directly denotes this pattern. Note that, in this case, the parameter
jp is only exposed to obtain enhanced debug information: the tracematch can
print the source location of the assignment that wrote the null value. This can
easily be seen because only one symbol, the symbol fieldSetToNull, exposes
this value. This is di↵erent from the value fieldID which all symbols reference.
A complete match hence has to agree on the variable binding at all the events
matched by these symbols.

Connection to Monadic Second-order Logic

Such pointcuts that expose context values though variable bindings can be mod-
eled using monadic second-order logic (MSO). We remind the reader that MSO
is just as expressive as the regular languages when combined with monadic label
predicates La(x) and a single binary successor relation S(x, y). We can then eas-
ily model additional pointcuts as predicates, as follows. Pointcuts that expose
no context information are modeled as monadic (unary) predicates that only ac-
cept a position parameter as argument. For instance, shutdown(x) denotes that
a shutdown event occurred at string position x. Likewise, pointcuts that expose
n context values to the monitoring logic are modeled as (n+ 1)-ary predicates,
accepting one position argument and further n “variable arguments” that can
bind context information. That way, one can model the pointcut let(a,expr)
as let

expr

(x, a), where x is a variable denoting a string position and a a variable
exposing a context value.

That way, we can use MSO to denote the tracematch from Figure 6 as follows:

11

public aspect NullPointerCheck {

pointcut fieldSet(String fieldID): set(⇤ ⇤.⇤)
&& let(fieldID, thisJoinPoint.getSignature().toString().intern ());

pointcut fieldSetToNull(String fieldID, JoinPointStaticPart jp, Object arg):
fieldSet (fieldID ,arg) && let(jp, thisJoinPointStaticPart) && if(arg==null);

pointcut fieldAccess(String fieldID): get(⇤ ⇤.⇤) &&
let(fieldID , thisJoinPoint.getSignature().toString().intern ());

tracematch(String fieldID, JoinPointStaticPart jp) {
sym fieldSetToNull after: fieldSetToNull(fieldID ,jp ,⇤);
sym fieldSet after: fieldSet (fieldID);
sym fieldAccess before: fieldAccess(fieldID);

fieldSetToNull /⇤no fieldSet in between ⇤/ fieldAccess {
System.out.println(”About to read null! ”+
”Guilty assignment in line : +”jp.getSourceLocation()); }

}
}

Fig. 6: Tracematch monitoring certain null-pointer accesses

9X09X19X2 : X0(min) ^ 8x8y8f8j
�

(X0(x) ^ L
fieldSetToNull

(x, f, j) ^X1(y)) _
(X1(x) ^ L

fieldSet

(x, f) ^X2(y))
�

^
X1(max) ^ L

fieldAccess

(max, f)

Here, f denotes the fieldID, j denotes jp and the state with number 2 is a
“sink state”, which the automaton moves to when a fieldSet event is read.

5 Related Work

In the following, we discuss related work on parametric runtime monitoring.

5.1 Stolz and Huch

Stolz and Huch [17] present an approach to parametric runtime monitoring of
concurrent Haskell programs. The authors specify program properties using lin-
ear temporal logic formulae. Such formulae are generally evaluated over a propo-
sitional event trace: a formula refers to a finite set of named propositions and
any of the propositions can either hold or not hold at a given event. Stolz and

12

Huch implemented a runtime library that would generate a propositional event
trace at runtime and update a linear temporal logic formula according to the
monitored propositional values. The library reports a property violation when
the formula reduces to “false.” The formulas that Stolz and Huch allow for can
be parameterized by di↵erent values.

5.2 J-LO

We ourselves developed J-LO, the Java Logical Observer [2], a tool for runtime-
checking temporal assertions in Java programs. J-LO follows Stolz and Huch’s
approach in large parts, however the propositions in J-LO’s temporal-logic for-
mulae carry AspectJ pointcuts as propositions. The J-LO tool accepts linear
temporal logic formulae with AspectJ pointcuts as input, and generates plain As-
pectJ code by modifying an abstract syntax tree. J-LO extends the AspectBench
Compiler, which allows it to then subsequently weave the generated aspects into
a program under test. Pointcuts in J-LO specifications can be parameterized by
variable-to-object bindings.

5.3 Tracematches

Allan et al. [1] are the creators of tracematches. Tracematches share with J-
LO the idea of generating a low-level AspectJ-based runtime monitor from a
high-level specification that uses AspectJ pointcuts to denote events of interest,
however tracematches o↵er a much more sophisticated and e�cient implemen-
tation. Tracematches are implemented on top of the AspectBench Compiler [10]
(abc), which o↵ers implementations of all the pointcuts that we discussed in
this paper. The use of an extensible compiler such as abc makes it easy to add
further pointcuts as required.

5.4 Tracecuts

Walker and Viggers developed tracecuts [18], an approach that monitors pro-
grams with respect to a specification given as a context-free grammar over As-
pectJ pointcuts. Context-free grammars are strictly more expressive than the
finite-state patterns that, for instance, tracematches can express. However, in
this paper we showed that tracematches can express some important context-
free patterns when a “cflowdepth” pointcut is added.

5.5 JavaMOP

JavaMOP provides an extensible logic framework for specification formalisms [3].
Via logic plug-ins, one can easily add new logics into JavaMOP and then use
these logics within specifications. JavaMOP ships with several built-in speci-
fication formalisms, including extended regular expressions (ERE), past-time
and future-time linear temporal logic (PTLTL/FTLTL), and context-free gram-
mars. JavaMOP translates specifications into AspectJ aspects. Regardless of the

13

specification formalism that is used, all specifications can be parameterized by
variable-to-object bindings. one of the key contributions of the work on JavaMOP
is a set of general algorithms that allow for e�cient monitoring of parameterized
properties irrespective of the monitoring formalism at hand.

5.6 PQL

The Program Query Language [19] by Martin at al. resembles tracematches in
that it enables developers to specify properties of Java programs, where each
property may bind free variables to runtime heap objects. PQL supports a
richer specification language than tracematches: it uses stack automata rather
than finite state machines, which yields a language slightly more expressive than
context-free grammars.

5.7 PTQL

Goldsmith et al. [20] proposed PTQL, the Program Trace Query Language,
which provides an SQL-like language for querying properties of program traces
at runtime. The authors also provide “partiqle”, a compiler for this language.
The compiler instruments the program that is to be queried so that the program
notifies monitoring code about the appropriate events at runtime. The moni-
tor itself uses indexing trees to associate the monitor’s internal state with the
appropriate objects.

6 Conclusion

In this work we showed that the expressiveness of parametric runtime monitor-
ing formalisms can be increased by adding further, well-defined predicates, for
example by providing additional primitive AspectJ pointcuts. As we showed, in
some cases this increase in expressiveness can even go so far as to make such
languages monitorable by a finite-state runtime verification tool that are them-
selves clearly not regular languages. We explained this e↵ect by showing up a
correspondence between finite-state machines and monadic second-order logic.
In this logic, pointcuts can be seen as special predicates. Pointcuts that expose
context-values are polyadic predicates where one argument of the predicate refers
to the current position in the trace and the other arguments refer to the context
values that the pointcut exposes.

Using this conceptual framework, we were able to show that tracematches can
monitor precedence properties when enhanced with a “startup” predicate, that
parametric runtime monitoring tools in general can monitor bounded liveness
properties when enhanced with a “shutdown” predicate and that finite-state
monitors can use a “cflowdepth” predicate to monitor properties that require
matching method entries with their exits.

14

Acknowledgements Many of the insights of this paper arose from discussions with
the developers of tracematches, in particular Pavel Avgustinov, Julian Tibble
and Oege de Moor. Thanks a lot for the fruitful discussions and for developing
and maintaining tracematches in the first place! Much gratitude also goes to
the reviewers of the 2011 NASA Formal Methods Symposium, who provided
valuable feedback on an earlier version of this paper. This work was supported
by CASED (www.cased.de).

References

1. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding Trace Matching with
Free Variables to AspectJ. In: OOPSLA, ACM Press (October 2005) 345–364

2. Bodden, E.: J-LO - A tool for runtime-checking temporal assertions. Master’s
thesis, RWTH Aachen University (November 2005)

3. Chen, F., Roşu, G.: MOP: an e�cient and generic runtime verification framework.
In: OOPSLA, ACM Press (October 2007) 569–588

4. Maoz, S., Harel, D.: From multi-modal scenarios to code: compiling LSCs into
AspectJ. In: Symposium on the Foundations of Software Engineering (FSE), ACM
Press (November 2006) 219–230

5. Krüger, I.H., Lee, G., Meisinger, M.: Automating software architecture explo-
ration with M2Aspects. In: Workshop on Scenarios and state machines: models,
algorithms, and tools (SCESM), ACM Press (May 2006) 51–58

6. : The AspectJ home page (2003)
7. Büchi, J.R.: Weak second-order arithmetic and finite automata. Zeitschrift für

mathematische Logik und Grundlagen der Mathematik (6) (1960) 66–92
8. Elgot, C.C.: Decision problems of finite automata design and related arithmetics.

Trans. Amer. Math. Soc. (98) (1961) 21–51
9. Trakhtenbrot, B.A.: Finite automata and the logic of one-place predicates. Siberian

Math. J. (3) (1962) 103–131 English translation in: AMS Transl. 59 (1966) 2355.
10. Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, J., Lhoták, O.,

de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: abc: An extensible AspectJ
compiler. In: AOSD, ACM Press (March 2005) 87–98

11. Bodden, E., Hendren, L.J., Lhoták, O.: A staged static program analysis to im-
prove the performance of runtime monitoring. In: European Conference on Object-
Oriented Programming (ECOOP). Volume 4609 of LNCS., Springer (2007) 525–549

12. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications
for finite-state verification. In: International Conference on Software Engineering
(ICSE), ACM Press (May 1999) 411–420

13. Schneider, F.B.: Enforceable security policies. ACM Transactions on Information
and System Security (TISSEC) 3(1) (2000) 30–50

14. inc., O.: Design of the shutdown hooks api http://download.oracle.com/javase/
1.4.2/docs/guide/lang/hook-design.html.

15. Avgustinov, P., Tibble, J., Bodden, E., Lhoták, O., Hendren, L., de Moor, O.,
Ongkingco, N., Sittampalam, G.: E�cient trace monitoring. Technical Report
abc-2006-1, http://www.aspectbench.org/ (03 2006)

16. Avgustinov, P., Tibble, J., Bodden, E., Lhoták, O., Hendren, L., de Moor, O.,
Ongkingco, N., Sittampalam, G.: E�cient trace monitoring. Technical Report
abc-2006-1 (March 2006)

15

17. Stolz, V., Huch, F.: Runtime verification of concurrent haskell programs. Electronic
Notes in Theoretical Computer Science (ENTCS) 113 (January 2005) 201–216

18. Walker, R., Viggers, K.: Implementing protocols via declarative event patterns.
In: Symposium on the Foundations of Software Engineering (FSE), ACM Press
(October 2004) 159–169

19. Martin, M., Livshits, B., Lam, M.S.: Finding application errors using PQL: a
program query language. In: OOPSLA, ACM Press (October 2005) 365–383

20. Goldsmith, S., O’Callahan, R., Aiken, A.: Relational queries over program traces.
In: OOPSLA, ACM Press (October 2005) 385–402

16

