
Towards Effective Security Assurance for
Incremental Software Development
The Case of Zen Cart Application

Azmat Ali
Fraunhofer SIT

Darmstadt, Germany
azmat.ali@sit.fraunhofer.de

Lotfi Ben Othmane
Fraunhofer SIT

Darmstadt, Germany
lotfi.ben.othmane@sit.fraunhofer.de

Abstract—Incremental software development methods, such
as Scrum embrace code changes to meet changing customer
requirements. However, changing the code of a given software
invalidates the security assurance of the software. Thus, each
new version of a given software requires a new full security
assessment. This paper investigates the impact of incremental
development of software on their security assurances using the
e-commerce software Zen Cart as a case study. It also describes
a prototype we are developing to design security assurance cases
and trace the impact of code changes on the security assurance
of the given software. A security assurance case shows how a
claim, such as ”The system is acceptably secure” is supported
by objective evidence.

Index Terms—agile, security assurance case, software security.

I. INTRODUCTION

Agile software development methods, such as Scrum are
widely used to incrementally and iteratively develop software.
The iterative nature of these methods supports frequent code
changes in order to meet changing customer requirements. The
common approaches for software security assurance (ensuring
that the software fulfills its security requirements) focus on
ensuring that the security properties are enforced for a given
version of software. They have a significant cost associated
with their use in time and resources [1], [2].

Security assurance enables developing coherent objective
argumentation that supports claiming that a software mitigates
its security risks [3]. The evolution of software in terms of
frequent code changes in successive iterations could make
the implemented security measures and defined security tests
ineffective or incomplete for subsequent iterations of the
software. Thus, identifying the impacts of code changes on
the security of the software is critical to the maintenance of
security assurance of the given software[3].

We explore in this paper how code changes impact security
assurance in the context of Zen Cart.1 Zen Cart is a PHP-
based (Web-based) e-commerce open source software. First,
we analyzed the vulnerabilities of Zen Cart reported in the
NVD database.2. Then, we interviewed the security lead of

1http://www.zen-cart.com/
2https://nvd.nist.gov/

Zen Cart to learn the applied techniques for addressing security
assurance in the context of incremental software development.

In previous work we proposed the use of security assurance
cases as a representation of the security of the software
and the maintenance of the cases according to the code
changes [4], [3]. A security assurance case presents arguments
showing how a top-level claim (e.g., ”The system is acceptably
secure.”) is supported by objective evidence [5]. We describe
in this paper the Eclipse plug-in that we are developing to
design security assurance cases and to trace the impact of
code changes on the assurance cases.

The paper is organized as follows. Section II discusses
related work. Section III gives an overview of Zen Cart and
describes the analysis of Zen Cart vulnerabilities, the threat
modeling, and the penetration testing that we performed.
Section IV provides the results of the interview we had
with the security lead of the Zen Cart. Section V describes
the prototype that we are developing for designing security
assurance cases and tracing code changes to the artifacts of
security cases of the given software. Section VI concludes the
paper.

II. RELATED WORK

Change Impact Analysis (CIA) determines the effects of
software changes [7]. There has been extensive work on CIA
from software behavior perspective [8]. For example, Xiaoxia
et al. [9] developed Chianti, a change impact analysis tool
for Java. The tool analyzes two versions of an application and
decomposes their differences into a set of atomic changes.
Then, it identifies the impacts of changes in terms of affected
tests; it identifies execution behavior that may have been
modified by the changes.

Traceability and dependency analysis have effectively sup-
ported software impact analysis for software behavior. How-
ever, as software grow in size and complexity, their depend-
ency webs of information extend beyond software engineers’
abilities to comprehend. Bohner et al. [10] examined extending
software change impact analysis to incorporate interoperability
and dependency relationships for addressing distributed ap-

Figure 1. UML Collaboration diagram for Zen Cart [6]

plications and explored 3D visualization techniques for more
effective navigation of software changes.

Common approaches for software security assurance focus
on ensuring that the security properties are enforced during
the initial system development. They have a significant cost
associated with their use in time and resources [1]. There
has been extensive investigation of the impact of changes
on the security of software at design levels, such as the
secure software evolution project [11]. Jurjens et al. [1], for
example, proposed extending UML models with security an-
notations, which they named, UMLSec. They investigated the
security analysis of UMLSec models by means of a change-
specific notation allowing multiple evolution paths and sound
algorithms supporting the incremental verification process of
evolving models. Also, Raschke et al.[12] proposed an agile
security evaluation method for the Common Criteria standard.
The method allows the management of changing requirements
and provides feedback regarding software security.

Othmane et al. [3] proposed integrating security reassurance
into the agile software development processes to ensure the
security of the developed software increment in each itera-
tion. They, further demonstrated the use of the technique to
iteratively develop security features that fulfill their security
requirements [4]. The process helps, for example, to identify
customer change requests that conflict with the security re-
quirements of the iteration.

This work extends our earlier work [4], [3] by analyzing
the impacts of incremental secure software development for
an existing open source software, Zen Cart. It also describe
the prototype we are developing to implement the solution we
provided in [4], [3].

III. OVERVIEW OF THE SECURITY OF ZEN CART

This section describes the analysis of the Zen Cart vul-
nerabilities that were reported in the National Vulnerability

Database (NVD)3, and the threat modeling that we performed
using the available collaboration diagram of Zen Cart.

A. Overview of the application

Figure 1 shows the collaboration diagram of Zen Cart [13].
Zen Cart can be used to setup customized online shopping
stores. A customer uses the application to choose among
different products, order the selected products, pay the order,
and get an invoice. Zen Cart manages the full process, from
maintaining the products catalogue to the delivery of the pur-
chased products to the customers. The application validates the
payments so the vendor can ship the orders to the customers’
addresses.

Zen Cart is a PHP-Based open source. It uses MySQL
database for data storage and runs on most of the Web servers
that support PHP. A typical deployment requires isolating
the Web application and the database (including the database
management system) through a firewall. The application must
communicate with the payment gateways through HTTPS
protocol. The customers also access the application using the
HTTPS protocol.

We used PHP Pear module4 to extract the XML Metadata
Interchange (XMI) representation (A standard format for ex-
changing data between sofwtare development tools.) from the
Zen Cart source code. Then we used ArgoUML [14] to extract
the class diagram from the the XMI data. We obtained a big
set of unrelated classes that we couldn’t use further to derive
a higher-level diagram such as a component diagram.

B. Analysis of Known Zen Cart vulnerabilities

Code changes, in Zen Cart, are managed through github, a
version control system. The first version of Zen Cart was in-
secure: the team received constantly vulnerability reports from

3https://nvd.nist.gov/
4https://pear.php.net/

2

Table I
ZEN CART VULNERABILITIES REPORTED IN NVD.

No Vulnerability type Level Total Versions CVSS

1. SQL Injections Code 07 1.1.2d to 1.3.8a 5.1 to 7.5
2. Cross-site scripting Code 07 1.3.5 to 1.5.1 (ja) 2.6 to 6.8
3. Data Validation Design 04 Note 3 5.8
4. Authentication Issues Design 03 1.3.7, 1.3.8, 1.3.8a and earlier 6.8 to 8.5
5. Information Leak/Disclosure Design 03 1.2.6 and earlier, Note 3 2.6 to 7.5
6. Path Traversal Design(2),

Code(1)
03 1.3.0.2, 1.3.8 and 1.3.8a 6.8 to 7.5

7. Input Validation Design 02 1.3.0.2, 1.3.8 and 1.3.8a 5.0
8. Code Injection Design 02 1.3.0.2 and earlier 5.1
9. Permissions Design 01 1.1.0 to 1.2.6d 10.0
10. Cross-site request forgery Code 01 1.3.9h 5.8
11. Code Code 01 1.1.4 7.5
12. Unknown Unknown 01 1.2.7 and earlier 10.0

Notes:
1: CVSS stands for Common Vulnerability Scoring System.
2: Ja means Zen Cart Japanese version.
3: Zen Cart versions are not specified by NVD for the specified vulnerabilities.

Table II
THREAT MODELLING RESULTS FOR ZEN CART.

No Threat Category Threat Total
1. Spoofing Spoofing of Destination Data Store / Web Server 07
2. Information disclosure Weak Access Control for a Resource 03
3. Denial of Service Potential Excessive Resource Consumption for Web Service or Data Store / Web Server 04
4. Tampering Process Order / Order Entry Process Memory Tampered 03
5. Privilege escalation Elevation Using Impersonation 04
6. Spoofing Spoofing the Customer External Entity / Order Entry Process 02
7. Tampering Potential Lack of Input Validation for Order Entry 01
8. Repudiation Potential Data Repudiation by Order Entry 01
9. Information disclosure Data Flow Sniffing 01
10. Denial of Service Potential Process Crash or Stop for Order Entry 01
11. Denial of Service Data Flow Order data Is Potentially Interrupted 01
12. Privilege escalation Order Entry May be Subject to Elevation of Privilege Using Remote Code Execution 01
13. Privilege escalation Elevation by Changing the Execution Flow in Order Entry 01

security companies. The team fixes reported vulnerabilities
and includes the updates in the new versions of the software.
The users and developers are informed about released security
patches, so publicly known vulnerabilities will not affect them.

Discovered vulnerabilities in released Zen Cart versions are
published to the NVD and are given a Common Vulnerabilities
and Exposures (CVE) number. We identified 35 vulnerabilities
that were published between December 2004 and April 2015.
Table I gives a summary of the identified vulnerabilities
grouped by vulnerability type. We observe that many of repor-
ted vulnerabilities were of type SQL injection (7) or XSS (7)
and that about half of the reported vulnerabilities were design
flaws–the other half were code-level flows. We understand
that even the code-level vulnerabilities (XSS, CSRF, and SQL
injection) were addressed using design-level solutions.

The number of reported vulnerabilities decreased over time.
This would indicate an increased maturity of the security of
the software. The investigation of the sources of the recently
reported vulnerabilities revealed that they were discovered
because of the use of dynamic code analysis for PHP-based
applications, which is a recent development in code analysis

for PHP-based software–see [15] for details about the vulner-
abilities. Thus, the security of the software is getting mature
but with respect to known vulnerability types and known
techniques to identify them.

Initially, we believed that code chunks that fix a given
vulnerability may give us hints on the relation between code
changes and introduced vulnerabilities. Thus, we selected
2 versions of Zen Cart, V1.1.3 and V1.1.4 and analyzed
the SQL injection vulnerability in V1.1.3, which was mit-
igated in V1.1.4. We found that the vulnerability was in
includes/application.php file. Thus, the technique helps to
identify code-based vulnerabilities fixes, such as SQL injec-
tion.

We extended our investigation; we used Meld5 to compare
Zen Cart versions Zen-Cart-V1.1.0 and Zen-Cart-V1.1.4d and
to derive the differences between the two versions. As a
result we identified (1) new files added to V1.1.4d version,
(2) updates to existing files, and (3) files that have been
removed from the new version. We were able to relate only
3 vulnerabilities out of the 35 reported. The main challenge

5http://www.meldmerge.org/

3

we had is that most of the vulnerabilities were not specific
to identify related code changes. As a lesson, we believe
that given the quantity of changes, it is difficult to trace
manually with high confidence code changes to introduced
vulnerabilities.

C. Zen Cart threat model

We used Zen Cart collaboration diagram of Figure 1 and we
derived a threat model of the software using Microsoft Threat
modelling tool6. The threat modeling tool uses the STRIDE
method7 to generate the list of threats for the software. The
tool does not assume trust in the internal network. Table II
lists the threats to the software that the tool generates–they
are all of high priority. Table II shows a long list of abstract
threats.

The threat modeling techniques, such as STRIDE, assume
the architecture diagram is an abstraction of the the implemen-
ted software. In practice, the agile team use the diagrams to
explain and communicate. Instantiating the diagram would not
produce the developed software. For instance, Figure 1 does
not abstract Zen Cart code. In fact, Zen Cart team develops
a new architecture document for each version of the software
that it submits for PA-DSS certification. The DFD diagram that
would be used for the threat modeling does not correspond to
the code of the software. Thus, the identified threats are not
for the implemented software.

As a second attempt, we tried to extract the call graph
of the software to identify its attack surface. (A softwares
attack surface is the set of ways in which an adversary can
enter the system and potentially cause damage [16].) We
used PHP CallGraph8, RIPS (RIPS is a static code analysis
tool to automatically detect taint-style vulnerabilities in PHP
applications.),9 and doxygen10 to extract the call graph of Zen
Cart. In the 3 cases, the resulting call graph was very big due
to large number of functions present in Zen Cart. We did not
find a way, so far, to use them to identify the attack surface.

We note here that Zen Cart team members do not perform
threat modeling. They use instead the OWASP Top 10 list
as guideline of the vulnerabilities to address. In addition, the
software implements security mechanisms that implement the
PA-DSS compliance/security requirements.

D. Penetration testing of Zen Cart

We tested Zen Cart V1.5.4 manually with respect to the
Open Web Application Security Project (OWASP) [17] top
10 vulnerabilities for web applications. We tested manually
a set of security test cases using the Burp Suit11. We also
performed static code analysis for Zen Cart using RIPS. We
did not identify with high confidence existing vulnerabilities.
For instance, the version of RIPS (V0.55 latest version) that

6https://www.microsoft.com/en-us/download/details.aspx?id=49168
7STRIDE stands for Spoofing, Tampering, Repudiation, Information dis-

closure, Denial of Service, and privilege Escalation.
8http://phpcallgraph.sourceforge.net/
9http://rips-scanner.sourceforge.net/
10http://www.doxygen.com/
11https://portswigger.net/burp/

we used was too imprecise in terms of extracting function
call graph out of Zen Cart source code. Zen Cart source code
includes hundreds of functions while RIPS V0.55 does not
support source code that has more than one hundred functions.

IV. SECURE CODE CHANGE AT ZEN CART

We report in this section the results of an interview we
performed with Mr Ian Wilson, a lead developer at Zen Cart
on 25 March 2016. The interviewee is responsible for the
security aspects of the software. He has about 20 years of
experience in software development and more than 10 years
of experience with Zen Cart. The goal of the interview was
to provide a practical case of how a software organization
iteratively develop secure software.

We used the common approach for interview processing.
We prepared an interview protocol and interviewed our expert
for about 40 minutes. We transcribed the interview and coded
it. The results are below. We did not interview other experts
since we expected that we would not get more responses for
the questions we had.

Zen Cart is an e-commerce software. The development team
uses the Open Web Application Security Project (OWASP)
top 10 as a guideline for the severe threats; they do not
use any threat modeling tool. The application is developed
to be compliant with PA-DSS security requirements since
2007. The team uses skipfish12 and burp suite13 for testing
the application.

Changes that affect the security of the application are of
three categories: (1) security requirements changes, (2) code
changes, and (3) security mechanism changes. These changes
are not frequent. For instance, only one of the last 50 code
commits at the date of the interview was related to security.

(Change category 1) The Security Standards Council of the
Payment Card Industry (PCI) updates the PA-DSS security
requirements often to consider emerging threats. For each new
version of the standards, Zen Cart has to assess the compliance
of the application with all the security requirements. This
requires performing all the required tests and verifications.
This allows the customers to comply with the new standards.
Nevertheless, a compliance with the standards is valid, in
average, for one year, and to the maximum for two years.

(Change category 2) The team implements often new fea-
tures and fixes bugs. The team uses JIRA14 and fisheye15 to
trace the code changes. The developers discuss the impact
of each code change on the PA-DSS security requirements,
especially on the authorization mechanisms and run the au-
thorization tests. They also receive vulnerability reports from
security companies that they need to address. For example,
the team received in March 2016 a report about a set of XSS
vulnerabilities from trustwave [15].16 The team worked on

12http://code.google.com/p/skipfish/
13https://portswigger.net/burp/
14https://www.atlassian.com/software/jira/
15https://www.atlassian.com/software/fisheye
16The company developed a new tool and used it to test Zen Cart to prove

the efficacy of the tool.

4

individual fixes for vulnerabilities, which were not efficient.
Then they decided to change the architecture of the software
to use new data sanitization methods. The developers spent
about one month discussing the solution for the vulnerabilities
and solved them with only 200 lines of code.

(Change category 3) Sometimes, security mechanisms be-
come insecure and require redesign. For example, initially
Zen Cart stores the passwords using an empty file hashing
system. The mechanism was found later to be insecure. PHP
introduced in Version 5.5 a new password hashing function
that replaces the previous mechanism. The team updated Zen
Cart to use the new feature. However, the solution works
for PHP version 5.5 and subsequent version, but not for the
previous ones. Zen Cart team addressed the compatibility
problem by introducing a compatibility layer that allows to use
the PHP built-in function for PHP version 5.5 and subsequent
versions and a function that mic-mic the built-in (but probably
less performant one) for the older PHP versions.

Tests of security requirements are believed to be misleading.
Sometimes, the tests that the developers design do not cover all
the cases. For example, Zen Cart team performed successfully
the tests for the new password hashing mechanism discussed
above. When reviewing the code changes, the team discovered
that some old versions of the software limit the size of the
database field used to store the hashed password. This limit
makes the implemented new mechanism inefficient. Thus, Zent
Cart team members have limited confidence in the security
tests; they support that with manual review of the code.

Zen Cart application, as many open source software, does
not have architecture diagrams. These diagrams are believed
to become obsolete after few code changes. The Zen Cart
team writes a new architecture document for each version
of the application to be submitted for PA-DSS certification.
The analysis of the impacts of code changes on the security
requirements of the software are therefore assessed by the
developers who are familiar with the code. For them, it suffices
to analyze the trace of the code changes through JIRA and
fireeye, to know whether the change has an impact on the
security requirements or not. This seems to be error prone.

The main lesson learned from introducing security practices
to the development of Zen Cart is the value of security
architecture. Zen Cart team members have spent much time
identifying and fixing individual vulnerabilities, such as XSS
and SQL injections. This effort could have been much less if
the team focused in the early releases on designing a security
architecture for the application. Over the years, the inter-
viewee learned to never trust data that comes from external
sources, such as user input, data from third party software,
and environment variables. Therefore, all external data must
be systematically sanitized.

V. SECUREAGILE: A TOOL FOR TRACING THE IMPACT OF
CODE CHANGES ON SOFTWARE SECURITY

This section describes a prototype we are developing to
identify the impacts of code changes on the security of
software.

Matching Engine

Test type: XSS
Page:

Connection.php
Script: <...>

Test Scripts Burp Extender

Results

XML Scheme

Figure 2. Architecture of Penetration testing automation tool for Zen Cart

A. Automation of penetration testing

Initially, we used Selenium17 and JSoup18 libraries to de-
velop a small tool to automate few penetration tests (tests
for SQL and Cross Site Scripting (XSS) injections) that we
performed for Zen Cart V1.5.4 using Burp Suite. The test
cases that we performed require data entries as parameters
and are repetitive. Thus, we designed XML Scheme that
supports specifying these test cases. Listing 1 shows examples
of specifying SQL and XSS injections using the scheme. A
test case includes test type (XSS or SQL Injection), web page
to be tested and the script to be executed.

Listing 1. Example of test cases.
<test>

<TestType>
Cross Site Scripting

</TestType>
<Page>

index.php, demoadmin/index.php
</Page>
<Script>

<script>alert (’This is an
XSS Vulnerability’);</script
>

</Script>
</test>

<test>
<TestType>

SQL injection
</TestType>
<Page>

demoadmin/login.php

17http://www.seleniumhq.org/
18https://jsoup.org/

5

</Page>
<Script>

username = admin Password =
anything OR ’x’ = ’x’

</Script>
</test>

We also developed a tool, called Penetration Testing Engine
(PTE), that extracts for each test case specified in the given
XML file the test parameters and performs the test case
using these parameters. Figure 2 shows the architecture of
the penetrating testing automation tool. First, the tool reads
the test cases file. For each test cases, it calls the routine that
tests the vulnerability associated with the case and give it the
required parameters. The routine returns true/false as a result
which indicates whether the test was successful or not.

We experimented with the tool on Zen Cart V1.5.4 using
25 test cases. All the test cases failed.

B. Visual design of security assurance cases

A security assurance case [18] (known more succinctly
as a security case) uses a structured set of arguments and
a corresponding body of evidence to demonstrate that a
system satisfies specific claims with respect to its security
properties [19]. Weinstock et al. [5] presented how security
assurance cases are created using graphical Goal Structuring
Notation [20] which we use for our Eclipse plug-in.

A security case bears considerable resemblance to a legal
case, and demonstrates that security claims about a given
system are valid. Persuasive argumentation plays a major
role, but the credibility of the arguments and of the security
case itself ultimately rests on a foundation of evidence [19].
It allows to combine a range of complementary security
assessment techniques including code review, model verific-
ation, static analysis of code-level requirements (e.g. pre- and
post-conditions), static analysis of vulnerability signatures,
and penetration tests [19]]. Assurance cases summarize the
results of these assessments and show how the results are
related to security assurance claims. The security requirements
correspond to the claims and sub-claims and the results of the
assessment activities correspond to the evidences.

We developed a Security Assurance Case Plug-in (SACP)
as an Eclipse plug-in to design security assurance cases in
the Eclipse development environment. The plug-in uses the
Eclipse Modeling Framework (EMF) [21] and the Graphical
Modeling Framework (GMF) [22]. Figure 3 shows a sample
Security Assurance Case using the SAC plug-in.

The plug-in palette has 5 elements:
1) Goal: It is the top level security claim of the Security

Assurance Case.
2) Context: A set of information related to the scope of the

top-level claim.
3) Strategy: The logic for developing the arguments that

support the claim. Figure 3 shows an example of strategy:
a split of the claim into three sub-claims; the claim is
satisfied if the three sub-claims are satisfied.

4) Solution: It corresponds to the available evidence that
justifies that the related claim is satisfied.

5) Link: It connects 2 elements of the security assurance
case.

Figure 3 shows a simple security assurance case we spe-
cified for Zen Cart using SACP. The main claim of the security
case is that Zen Cart is acceptable secure (G1). This claim is
decomposed into 4 sub-claims: secure storage of cardholder
data (G2.1), sub-claim only authenticated users can access the
software (G2.2), the payment application activities are logged
(G2.3) and data are exchanged over secure public network
(G2.4). Sub-claims G2.1, G2.3, and G2.4 are not satisfied yet
and sub-claim G2.2 is satisfied.

Sub-claim G2.2 is also decomposed into 4 sub-claims. The
first sub-claim, use unique user-ID (G2.2.1), is satisfied by
the verification that the user-ID is generated using a secure
random-number generator. The second claim, secure transmis-
sion of passwords (G2.2.2) is satisfied by the verification that
passwords are sent through HTTPS connections. The thirst
sub-claim, authenticate each transaction (G2.2.3), is satisfied
by testing the code for CSRF vulnerability type and reviewing
the code to ensure the use of hidden keys for each transaction.
The last sub-claim, correct session management (G2.2.4), is
satisfied by reviewing the code to ensure correct management
of the sessions.

Software is aimed often to comply with security standards,
including corporate security requirements. For instance, the
Zen Cart team decided in 2007 to seek Payment Application
Data Security Standard (PA-DSS) certification [23]. The PA-
DSS certification is required by banks for software that use
Credit cards for payments. As future work we will investigate
the use SACP to specify the security requirements of stand-
ards, such as PA-DSS.

C. Visual mapping of user stories to the security artifacts

We developed a second Eclipse plug-in for visual mapping
of user stories to security artifacts, named User Story Security
Mapping Plug-in (USSMP). Figure 4 shows the specification
of a sample user story using USSMP. Each user story is
specified with a name, a responsible person, a set of security
requirements, a set of security tests and a status–e.g., new, in-
progress, and closed. The security requirements correspond to
claims in the security assurance cases and the security tests
correspond to evidences specified in the security case of the
given software. A change of the code related to a given user
story implies that the security requirements associated to the
user stories are potentially affected, they need to be reassessed.

The security tests associated with user stories correspond to
security tests specified in the penetrating testing XML file of
the given software–see Section V-A. The PTE matches the test
cases specified in the USSMP and performs the corresponding
tests.

Security assurance uses several assessment techniques be-
sides automated tests, such as code review. The plug-in should
be extended to support the other assessment techniques.

6

Figure 3. A partial security assurance case for Zen Cart developed using our Security Assurance Case Plug-in (SACP).

Figure 4. User Story Security Mapping Plug-in (USSMP).

7

VI. CONCLUSION

Security assurance is believed to be challenging when
software is developed in successive iterations. We learned
from this study that three changes impact the security of
software: security requirements changes, code changes, and
security mechanism changes. We also learned that changes that
impact software security are rather not frequent but they are
time consuming. In addition, we found that agile development
team do not maintain up-to-date architecture diagram for their
software, which makes threat modeling using such diagrams
is useless.

This paper presents a tool we are developing to trace code
changes to security assurance artifacts. We believe that the
technique will help reducing the security reassessment of
software

Currently, we are addressing several aspects related to the
techniques we proposed. We are focusing now on automatic
architecture recovery of software from the source code and
automatic threat modeling of web applications. The results
of this research would allow extracting threat models of
software rather than deriving a list of threats from an obsolete
representation of the given software.

ACKNOWLEDGMENT

The authors thank Ian Wilson from Zen Cart for the
interview and information. They also thank Pritam Dash for
performing early set of security tests on Zen Cart.

REFERENCES

[1] J. Jürjens, L. Marchal, M. Ochoa, and H. Schmidt, “Incremental security
verification for evolving umlsec models,” in Proc. of the 7th European
Conference on Modelling Foundations and Applications, ECMFA’11,
(Birmingham, UK), pp. 52–68, 2011.

[2] H. Oueslati, M. M. Rahman, L. B. Othmane, I. Ghani, and A. F. B.
Arbain, “Evaluation of the challenges of developing secure software
using the agile approach,” International Journal of Secure Software
Engineering (IJSSE), vol. 7, 1 2016.

[3] L. Ben Othmane, P. Angin, H. Weffers, and B. Bhargava, “Extending
the agile development process to develop acceptably secure software,”
IEEE Transactions on Dependable and Secure Computing, vol. 11, no. 6,
pp. 497–509, 2014.

[4] L. Ben Othmane, P. Angin, and B. Bhargava, “Using assurance cases to
develop iteratively security features using scrum,” in Proc. of Ninth In-
ternational Conference onAvailability, Reliability and Security (ARES),
2014, (Fribourg, Switzerland), pp. 490–497, 2014.

[5] C. B. Weinstock, H. F. Lipson, and J. Goodenough, “Arguing security -
creating security assurance cases,” 2007.

[6] Z. C. Team, “Zen cart - implementation guide.” Available at https://
www.zen-cart.com/docs/implementation-guide-v153.pdf. Accessed on
October. 2015.

[7] R. S. Arnold, Software Change Impact Analysis. Los Alamitos, CA,
USA: IEEE Computer Society Press, 1996.

[8] S. Lehnert, “A taxonomy for software change impact analysis,” in Proc.
of the 12th International Workshop on Principles of Software Evolution
and the 7th Annual ERCIM Workshop on Software Evolution, IWPSE-
EVOL ’11, (Szeged, Hungary), pp. 41–50, Sep. 2011.

[9] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley, “Chianti: A tool for
change impact analysis of java programs,” in Proc. of the 19th Annual
ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications, (Vancouver, BC, Canada), pp. 432–448,
Oct. 2004.

[10] S. A. Bohner, “Extending software change impact analysis into cots
components,” in Proc. of the 27th Annual NASA Goddard/IEEE Software
Engineering Workshop, (Greenbelt, MD), pp. 175–182, 2002.

[11] “Security engineering for lifelong evolvable systems.” Available at
http://www.securechange.eu/content/project-overview. Accessed on Apr.
2016.

[12] W. Raschke, M. Zilli, P. Baumgartner, J. Loinig, C. Steger, and
C. Kreiner, “Supporting evolving security models for an agile security
evaluation,” in Proc. of the IEEE 1st Workshop on Evolving Security
and Privacy Requirements Engineering (ESPRE), (Karlskrona, Sweden),
pp. 31–36, Aug. 2014.

[13] “Zen cart the art of e-commerce.” Available at http://www.zen-cart.com/.
Accessed on Jan. 2016.

[14] A. Ramirez, P. Vanpeperstraete, A. Rueckert, K. Odutola, J. Bennett,
L. Tolke, and M. van der Wulp, “Argouml user manual a tutorial and
reference description.” Available at https://www.tjhsst.edu/∼rlatimer/
uml/argomanual-0.18.1.pdf,, 2003. Tech. rep., 2000–2009.

[15] Trustwave, “Twsl2016-006: Multiple xss vulnerab-
ilities reported for zen cart.” Available at https:
//www.trustwave.com/Resources/SpiderLabs-Blog/
TWSL2016-006--Multiple-XSS-Vulnerabilities-reported-for-Zen-Cart/.
March 25, 2016.

[16] P. K. Manadhata and J. M. Wing, “An attack surface metric,” IEEE
Transactions on Software Engineering, vol. 37, pp. 371–386, May 2011.

[17] “The open web application security project OWASP.” Available at https:
//www.owasp.org/. Accessed on Jan. 2016.

[18] J. L. Vivas, I. Agudo, and J. López, “A methodology for secur-
ity assurance-driven system development,” Requirements Engineering,
vol. 16, no. 1, pp. 55–73, 2010.

[19] H. Lipson and C. Weinstock, “Evidence of assurance: Laying the found-
ation for a credible security case.” Available at https://buildsecurityin.
us-cert.gov/bsi/articles/knowledge/assurance/973-BSI.htm, May 2008.

[20] T. Kelly and R. Weaver, “The goal structuring notation a safety argu-
ment notation,” Proc. Dependable Systems and Networks - Workshop on
Assurance Cases, July 2004.

[21] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. J. Grose,
Eclipse Modeling Framework: A Developer’s Guide. Addison Wesley,
2003.

[22] “Graphical modeling framework documentation.” Available at
http://wiki.eclipse.org/Graphical Modeling Framework/Documentation/
Index#GMF-Tooling .2F Generation Framework. Accessed on 4th
Nov. 2016.

[23] “Payment application data security standard–requirements and security
assessment procedures.” Available at https://www.pcisecuritystandards.
org/minisite/en/docs/PA-DSS v3.pf, Nov. 2013.

8

https://www.zen-cart.com/docs/implementation-guide-v153.pdf
https://www.zen-cart.com/docs/implementation-guide-v153.pdf
http://www.securechange.eu/content/project-overview
http://www.zen-cart.com/
https://www.tjhsst.edu/~rlatimer/uml/argomanual-0.18.1.pdf
https://www.tjhsst.edu/~rlatimer/uml/argomanual-0.18.1.pdf
https://www.trustwave.com/Resources/SpiderLabs-Blog/TWSL2016-006--Multiple-XSS-Vulnerabilities-reported-for-Zen-Cart/
https://www.trustwave.com/Resources/SpiderLabs-Blog/TWSL2016-006--Multiple-XSS-Vulnerabilities-reported-for-Zen-Cart/
https://www.trustwave.com/Resources/SpiderLabs-Blog/TWSL2016-006--Multiple-XSS-Vulnerabilities-reported-for-Zen-Cart/
https://www.owasp.org/
https://www.owasp.org/
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/assurance/973-BSI.htm
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/assurance/973-BSI.htm
http://wiki.eclipse.org/Graphical_Modeling_Framework/Documentation/Index#GMF-Tooling_.2F_Generation_Framework
http://wiki.eclipse.org/Graphical_Modeling_Framework/Documentation/Index#GMF-Tooling_.2F_Generation_Framework
https://www.pcisecuritystandards.org/minisite/en/docs/PA-DSS_v3.pf
https://www.pcisecuritystandards.org/minisite/en/docs/PA-DSS_v3.pf

	Introduction
	Related Work
	Overview of the Security of Zen Cart
	Overview of the application
	Analysis of Known Zen Cart vulnerabilities
	Zen Cart threat model
	Penetration testing of Zen Cart

	Secure code change at Zen Cart
	SecureAgile: A tool for tracing the impact of code changes on software security
	Automation of penetration testing
	Visual design of security assurance cases
	Visual mapping of user stories to the security artifacts

	Conclusion
	References

