
On lower bounds for Information Set Decoding over Fq

Robert Niebuhr1, Pierre-Louis Cayrel2, Stanislav Bulygin2, and Johannes Buchmann1

1 Technische Universität Darmstadt
Fachbereich Informatik

Kryptographie und Computeralgebra,
Hochschulstraße 10
64289 Darmstadt

Germany
{rniebuhr, buchmann}@cdc.informatik.tu-darmstadt.de

2 CASED – Center for Advanced Security Research Darmstadt,
Mornewegstrasse, 32

64293 Darmstadt
Germany

{pierre-louis.cayrel, stanislav.bulygin}@cased.de

Abstract. Code-based cryptosystems are promising candidates for post-quantum crypto-
graphy. The increasing number of cryptographic schemes that are based on codes over non-
binary fields Fq requires an analysis of their security. Information Set Decoding (ISD) is
one of the most important generic attacks against code-based cryptosystems. We give lower
bounds for ISD over Fq, thereby anticipating future software and hardware improvements.
Our results allow to calculate conservative parameters for cryptographic applications.

Key words: Information Set Decoding, lower bounds, codes, post quantum, cryptography.

Introduction

Error-correcting codes have been applied in cryptography for at least three decades since R.
McEliece published his paper in 1978. It has received much attention as it is a promising can-
didate for post-quantum cryptography. McEliece used the class of binary Goppa codes for his
construction, and most other schemes published since then have also been using binary codes.
However, in recent years, many new proposals use codes over larger fields Fq, mostly in an attempt
to reduce the size of the public and private keys. Two examples that received a lot of attention
are quasi-cyclic codes [2] by Berger at al., and quasi-dyadic codes [10] (Misoczki-Barreto). The
security, however, is not as well understand for q-ary codes than for binary ones: Faugère et al. [6]
published an attack which broke these two cryptosystems for several sets of parameters. This
makes it important to analyze the complexity of attacks against code-based cryptosystems over
larger fields Fq.

The two most important types of attacks against code-based cryptosystems are structural attacks
and decoding attacks. Structural attacks exploit structural weaknesses in the construction, and
often they attempt to recover the private key. Decoding attacks are used to decode a given cipher
text. In this paper, we will not consider structural attacks, since they are restricted to certain
constructions or classes of codes.

Information Set Decoding (ISD) is one of the most important generic decoding attacks, and it
is the most efficient against many schemes. Over the years, there have been many improvements
and generalizations of this attack, e.g. Lee-Brickell [8], Stern [13], Canteaut-Chabaud [5], Bern-
stein et al. [4], Finiasz-Sendrier [7], and Peters [11].

2 PRELIMINARY

Our contribution

The publications of Finiasz-Sendrier and Peters on ISD are the most important for our paper:
Finiasz and Sendrier provided lower bounds for binary ISD; Peters described how to generalize
Stern’s and Lee-Brickell’s algorithm to Fq. We make the next step and provides lower bounds for
ISD over Fq. We prove these bounds, and also show how to use the structure of Fq to increase the
algorithm efficiency. We compare our lower bounds with the most recent ISD algorithm by Peters,
and explain how the runtime difference is a result of our conservative assumptions.

Organization of the paper

In Section 1, we start with a review on coding theory and cryptography over Fq. The subsequent
Section 2 presents the Information Set Decoding algorithm and states the lower bounds result. In
Section 3, we apply these lower bounds to concrete parameters and compare the results with the
most recent algorithm. We conclude in Section 4.

1 Review

1.1 Coding theory over Fq

In general, a linear code C is a k-dimensional subspace of an n-dimensional vector space over
a finite field Fq, where k and n are positive integers with k ≤ n, and q is a prime power. The
error-correcting capability of such a code is the maximum number t of errors for which an efficient
decoding algorithm is known. In short, linear codes with these parameters are denoted (n, k, t)-
codes.
Another common notation is the co-dimension r of a code where r = n− k.

Definition 1 (Hamming weight). The (Hamming) weight wt(x) of a vector x is the number
of non-zero entries.

Definition 2 (Minimum distance). The (Hamming) distance d(x, y) between two codewords
x, y ∈ C is defined as the (Hamming) weight of x−y. The minimum weight d of a code C is defined
as the minimum distance between any two different codewords, or equivalently as the minimum
weight over all non-zero codewords:

d := min
x,y∈C
x 6=y

d(x, y) = min
c∈C
c6=0

wt(c).

A linear code of length n, dimension k and minimum distance d is called an [n, k, d]-code.

Definition 3 (Generator and Parity Check Matrix). Let C be a linear code over Fq. A gen-
erator matrix G of C is a matrix whose rows form a basis of C:

C = {xG : x ∈ Fk
q}.

Two generator matrices generate equivalent codes if one is obtained from the other by a linear
transformation. Therefore, we can write any generator matrix G in systematic form G = [Ik|R],
which allows a more compact representation.

A parity check matrix H of C is defined by

C = {x ∈ Fn
q : HxT = 0}

and generates the dual space of C. If C is generated by G = [Ik|R], then a parity check matrix for
C is H = [−RT |In−k] (sometimes H can be transformed so that the identity submatrix is on the
left hand side).
For a given parity check matrix H and any vector e, we call s the syndrome of e with sT = HeT .

PRELIMINARY 3

The problems which cryptographic applications rely upon can have different numbers of solutions.
For example, public key encryption schemes usually have exactly one solution, while digital sig-
natures often have more than one possible solution. The uniqueness of solutions can be expressed
by the Gilbert-Varshamov (GV) bound:

Definition 4 (q-ary Gilbert-Varshamov bound). Let C be an (n, k, t) code over Fq, and let
r := n− k. The q-ary GV bound is the smallest integer t0 such that

t0∑
i=0

(
n

i

)
(q − 1)i ≥ qr.

For large values of n, the last term dominates the sum, so the condition is often approximated by(
n

t0

)
(q − 1)t0 ≥ qr.

If the number of errors that have to be corrected is smaller than the GV bound, then there is at
most one solution. Otherwise, there can be several solutions.

1.2 The syndrome decoding problem and the McEliece PKC

Problem 1. Given a matrix H and a vector s, both over Fq, and a non-negative integer t; find a
vector x ∈ Fq of weight t such that HxT = sT .

This problem was proved to be NP-complete in 1978 [3], but only for binary codes. In 1994, A.
Barg proved that this result holds for codes over all finite fields [1, in russian]. See Appendix A
for a translation of his proposition.

Many code-based cryptographic schemes are based on the hardness of syndrome decoding. Among
these are the McEliece cryptosystem and the CFS signature scheme. The latter, however, is unsuit-
able for q-ary codes, since it requires codes with a high density (ratio of the number of codewords
to the cipher space size), and the density rapidly decreases with increasing field size q. We will
therefore briefly describe the McEliece cryptosystem and show how it can be attacked by solving
the syndrome decoding problem.

Example: The McEliece PKC The McEliece public-key encryption scheme was presented by
R. McEliece in 1978 ([9]). The original scheme uses binary Goppa codes, for which it remains
unbroken, but the scheme can be used with any class of codes for which an efficient decoding
algorithm is known.

Let G be a generator matrix for a linear (n, k, t)-code over Fq, DG a corresponding decoding al-
gorithm. Let P be a random permutation matrix and S an invertible matrix over Fq. These form

the private key, while (Ĝ, t) is made public, where Ĝ = SPG.

Encryption: Represent the plaintext as a vector m of length k over Fq, choose a q-ary random
error vector e of weight at most t, and compute the ciphertext

c = mĜ+ e.

Decryption: Compute
ĉ = cP−1 = mSG+ eP−1.

As P is a permutation matrix, eP−1 has the same weight as e. Therefore, DG corrects these errors:

mSG = DG(ĉ)

Let J ⊆ {1, . . . , n} be a set such that G·J is invertible, then we can compute the plaintext

m = mSG ·G−1·J · S
−1.

4 PRELIMINARY

Attacking the McEliece PKC Attacking the scheme can be achieved by solving the problem
of finding close codewords. Information Set Decoding algorithms typically solve a different prob-
lem, they find codewords with small Hamming weight. However, this can be used to find close
codewords with only a minor inefficiency [5, page 368] (the dimension of the code is increased by
1). The main idea is the following:

Let C be an [n, k, d] code over Fq, t an integer with t < d, and x ∈ Fq. Finding a codeword c ∈ C with
d(c, x) = t is equivalent to finding a codeword of weight t in the code C′ = C+{0, x}: If d(c, x) = t,
then (x− c) ∈ C′ and wt(x− c) = t. Conversely, any codeword y ∈ C′ of weight wt(y) = t cannot
be in C + {0}, so it must be in C + {x}, and y = x− c.

2 Lower bounds for Information Set Decoding over Fq

The algorithm we describe here recovers a q-ary error vector. It is a generalization of [7] to codes
over Fq. We first describe how to modify the algorithm to work over Fq, then we show how to use
the field structure to increase efficiency by a factor of

√
q − 1.

In each step, we randomly re-arrange the columns of the parity check matrix H and transform it
into the form

H =

(
In−k−l H1

0 H2

)
, (1)

where In−k−l is the identity matrix of size (n− k− l). Usually, the columns are chosen adaptively
to guarantee the success of this step. Although this approach could bias the following steps, it has
not shown any influence in practice. The variables l and p (see next step) are algorithm parameters
optimized for each attack.

The error vector we are looking for has p errors in the column set corresponding to H1 and H2,
and the remaining (t− p) errors in the first (n− k − l) columns. We first check all possible error
patterns of p errors in the last k + l columns such that the sum S of those p columns equals the
syndrome s in the last l rows. We do this by searching for collisions between the two sets L1 and
L2, where

L1 = {H2e
T : e ∈W1} (2)

L2 = {s−H2e
T : e ∈W2}, (3)

where W1 ⊆ Wk+l;bp/2c;q and W2 ⊆ Wk+l;dp/2e;q are given to the algorithm, and Wk+l;p;q is the
set of all q-ary words of length k + l and weight p. Writing e = [e′|e1 + e2] and s = [s1|s2] with
s2 of length l, this means we search for vectors e1 and e2 of weight bp/2c and dp/2e, respectively,
such that

H2 · [e1 + e2]T = sT2 .

If this succeeds, we compute the difference S − s; if this does not have weight t− p, the algorithm
restarts. Otherwise, the non-zero entries correspond to the remaining t− p errors:

HeT =

(
In−k−l H1

0 H2

)(
e′

e1 + e2

)
=

(
In−k−l · e′T +H1 · (e1 + e2)T

H2 · (e1 + e2)T

)
=

(
In−k−l · e′T

0

)
+ S

!
=

(
sT1
sT2

)

PRELIMINARY 5

Therefore, we have
In−k−l · e′T = sT1 −H1 · (e1 + e2)T ,

revealing the remaining columns of e.

Using the field structure We can use the field structure of Fq to increase the algorithm effi-
ciency. Note that for all vectors e such that HeT = sT , there are q− 1 pairwise different vectors e′

such that He′T = asT for some a ∈ Fq\{0}, namely e′ = ae. Clearly, if we find such an e′, we can
calculate e which solves the syndrome decoding problem. We can modify the algorithm to allow it
to find these vectors e′ as well, thereby increasing the fraction of error vectors that are (implicitly)
tested in each iteration by a factor of q − 1 (see the Appendix for a detailed description).
Since this fraction is calculated using |W1| · |W2|, we can also keep the fraction constant and
decrease the size of the sets Wi by a factor of

√
q − 1 each. As the work factor in each iteration

of the algorithm is linear in |W1|+|W2|, this increases the algorithm efficiency by a factor of
√
q − 1.

A simple way to decrease the size of the sets Wi is to redefine them as follows. For any vector a
over Fq, let us denote its first non-zero entry by a(0) ∈ Fq\{0}, and let

W ′1 ⊆ {e ∈ Wk+l;bp/2c;q : e(0) = 1} (4)

L′1 =
{

(H2e
T)((H2e

T)(0))−1 : e ∈W ′1
}

(5)

L′2 =
{

(s−H2e
T)((s−H2e

T)(0))−1 : e ∈W2

}
. (6)

The algorithm thus works as follows:

Algorithm 1 Information Set Decoding over Fq

Parameters:

– Code parameters: Integers n, r = n− k and t, and a finite field Fq

– Algorithm parameters: Two integers p > 0 and l > 0, and two sets W1 ⊆ {e ∈ Wk+l;bp/2c;q : e(0) =
1} and W2 ⊆ Wk+l;dp/2e;q

Remark: The function hl(x) returns the last l bits of the vector x ∈ Fn
q .

Input: Matrix H0 ∈ Fr×n
q and a vector s0 ∈ Fr

q

Repeat (MAIN LOOP)
P ← random n× n permutation matrix
(H,U)← PGElim(H0P) //partial Gauss elimination as in (1)
s← s0U

T

for all e1 ∈W1

i← hl(HeT1 /y) (ISD 1)
write(e1, i) //store e in some data structure at index i

for all e2 ∈W2

i← hl((s
T −HeT2)/z) (ISD 2)

S ← read(i) //extract the elements stored at index i
for all e1 ∈ S

if wt(sT −H(e1 + e2)T) = t− p (ISD 3)
return (P, e1z/y + e2), (SUCCESS)

where y := (HeT1)(0) and z := (s−HeT2)(0) are notational shortcuts.

Proposition 1. If
(
n
t

)
(q−1)t < qr (single solution), or if

(
n
t

)
(q−1)t ≥ qr (multiple solutions) and(

r
t−p
)(

k
p

)
(q − 1)t � qr, a lower bound for the expected cost (in binary operations) of the algorithm

is

6 PRELIMINARY

WFqISD(n, r, t, p, q) = min
p

1√
q − 1

·
2lmin

((
n
t

)
(q − 1)t, qr

)
λq
(
r−l
t−p
)(

k+l
p

)
(q − 1)t

·

√(
k + l

p

)
(q − 1)p

with l = logq

(
Kqλq

√(
k
p

)
(q − 1)p−1 · ln(q)/2

)
and λq = 1− exp(−1) ≈ 0.63.

An exception is p = 0 where we cannot gain a factor of
√
q − 1, hence

WFqISD(n, r, t, 0, q) =

(
n
t

)(
r
t

)
If
(
n
t

)
(q − 1)t ≥ qr and

(
r

t−p
)(

k
p

)
(q − 1)t ≥ qr, the expected cost is

WFqISD ≈ min
p

2lqr/2√(
r−l
t−p
)
(q − 1)t−p

with l ≈ logq

(
Kt−p

qr/2√
(r
t−p)(q−1)t−p

· ln(q)/2

)
.

Remark 1. A realistic value for Kq is Kq = 2t. This will be used for the parameters in Section 3.

Remark 2. In the algorithm described above, all computations are done over Fq, so the complexity
also depends on the implementation of q-ary arithmetic. A näıve implementation yields an addi-
tional factor of log2(q) for addition and log2

2(q) for multiplication. There are several techniques
to improve this, e.g. by lifting to Z[x] (for large q) or by precomputing exp and log tables (for
small q). Especially for small q, this allows to make q-ary arithmetic nearly as fast as binary, so
in order to gain conservative estimates, we will neglect this factor.

Remark 3. The total work factor is the product of the number of iterations by the work factor
per iterations. In practice, the latter is essentially the sum of a matrix multiplication (with the
permutation matrix), the Gaussian elimination, and the search for collisions between L′1 and L′2.
Compared with the binary case, the Gaussian elimination is slower in the q-ary case, because
every row has to be divided by the pivot entry. However, since the matrix multiplication and the
Gaussian elimination are much faster than the collision search, we do not allocate any cost to
them.

3 Results

In [11], the author shows how to extend Lee-Brickell’s and Stern’s algorithms to codes over Fq.
The website [12] lists the work factor of this algorithm against several parameters. We use the
same parameters and compare these results with our lower bound.

PRELIMINARY 7

Table from C. Peters [12], containing parameters for quasi-cyclic [2] and quasi-dyadic [10] codes:

Code parameters Claimed log2(#bit ops) Lower bound
q n k w security level (from [12]) log2(#bit ops)

256 459 255 50 80 81.93 65.05
256 510 306 50 90 89.43 72.93
256 612 408 50 100 102.41 86.49
256 765 510 50 120 101.58 85.14

1024 450 225 56 80 83.89 62.81
1024 558 279 63 90 91.10 69.81
1024 744 372 54 110 81.01 58.39

4 2560 1536 128 128 181.86 173.23
16 1408 896 128 128 210.61 201.60

256 640 512 64 102 184.20 171.88
256 768 512 128 136 255.43 243.00
256 1024 512 256 168 331.25 318.61

2 2304 1281 64 80 83.38 76.86
2 3584 1536 128 112 112.17 105.34
2 4096 2048 128 128 136.47 129.05
2 7168 3073 256 192 215.91 206.91
2 8192 4096 256 256 265.01 254.16

For the algorithm from [11] as well as for our lower bound algorithm, the expected number of
binary operations is the product of the number of iterations by the number of binary operations
in each iteration. While the former factor is the same for both algorithms or even a little higher
for our algorithm, the lower bound for the number of operations per iteration is much smaller,
which results in the difference between these algorithms.

3.1 Difference in the number of operations per iteration

The number of operations per iteration for the first algorithm is the sum of three steps:

1. Reusing parts of information sets and perform precomputations
2. Compute sums of p rows to calculate HeT

3. For each collision (e1, e2), check if wt(sT −H(e1 + e2)T) = t− p

To compare the cost of these steps with that used for our lower bound, we calculate all values for
the (450, 225, 56) parameter set over F1024. For this set, using p = 1, l = 2, m = 1, c = 40 and
r = 1 (the last three are parameters specific for the first algorithm), we calculate a total cost of
the first algorithm of 276.6, which consists of 252 iterations of 224.6 operations each.

Precomputations The cost of the first step is given in [11] as

(n− 1)

(
(k − 1)

(
1− 1

qr

)
+ (qr − r)

)
c

r
,

where c and r are algorithm parameters (i.e. r is not the co-dimension of the code). For these
parameters, this amounts to 224.4 operations, so it is the most expensive step.
Our algorithm does not use precomputation, so we allocate no cost.

Compute sums of p rows to calculate HeT The cost of this step for the first algorithm is((
k

2
− p+ 1

)
+ 2

(
k/2

p

)
(q − 1)p

)
l.

8 PRELIMINARY

For the parameters given above, this step adds 218.8 operations.

Our algorithm allocates to this step a cost of

l|W ′1|+ l|W2| = 2l

√(
k + l

p

)
(q − 1)p−1.

We make this optimistic assumption3 for the cost of a matrix-vector multiplication to anticipate
further software and hardware improvements for this operation. The result is 26 operations in this
case.

Check collisions The first algorithm allocates a cost of

q

q − 1
(w − 2p)2p

(
1 +

q − 2

q − 1

) (k/2
p

)2
(q − 1)2p

ql

to this step. For our set of parameters, this equals 221.4 operations.

In our algorithm, we expect the number of collisions to be

λq|W ′1| · |W2|
ql

=
λq
(
k+l
p

)
(q − 1)p−1

ql
.

The cost Kq to check each collision is taken to be Kq = 2t. Since the expected number of collisions
per iteration is very small, the expected cost per iteration is < 1.

Some of the assumptions above may seem fairly optimistic. However, we find that necessary since
we want to establish conservative lower bounds.

4 Conclusion and Outlook

In this paper, we have presented and proved lower bounds for Information Set Decoding algorithms
over Fq. Part of the result is a modification of the algorithms from [7] which allows to increase the
efficiency of the algorithm by a factor of

√
q − 1.

It can be seen from the table in Section 3 that over F2 the efficiency of concrete algorithms is
not far from the lower bound, while over larger fields the gap is wider. We propose to further
investigate improvements over Fq to decrease the size of this gap.

Also, in some situations an attacker has partial knowledge of the error vector. For example, in
the FSB hash function it is known that the solution e (of HeT = sT) is a regular word, that
means that each block of size n/t has weight 1. It should be analyzed how partial knowledge
of the solution can increase the efficiency of attacks in order to better estimate the security of
cryptographic schemes.

Acknowledgements

References

[1] Barg, S.: Some New NP-Complete Coding Problems. In: Probl. Peredachi Inf. 30 (1994), S. 23–28.
– (in Russian)

3 From the cryptanalysts point of view.

PRELIMINARY 9

[2] Berger, T. P. ; Cayrel, P.-L. ; Gaborit, P. ; Otmani, A.: Reducing Key Length of the McEliece
Cryptosystem. In: AFRICACRYPT Bd. 5580, Springer, 2009 (Lecture Notes in Computer Science),
S. 77–97

[3] Berlekamp, E. ; McEliece, R. ; Tilborg, H. van: On the inherent intractability of certain coding
problems. In: IEEE Trans. Inform. Theory 24 (1978), Nr. 3, S. 384–386

[4] Bernstein, D. J. ; Lange, T. ; Peters, C.: Attacking and defending the McEliece cryptosystem.
In: PQCrypto ’08: Proceedings of the 2nd International Workshop on Post-Quantum Cryptography.
Berlin, Heidelberg : Springer-Verlag, 2008. – ISBN 978–3–540–88402–6, S. 31–46

[5] Canteaut, A. ; Chabaud, F.: A New Algorithm for Finding Minimum-Weight Words in a Linear
Code: Application to McEliece’s Cryptosystem and to Narrow-Sense BCH Codes of Length 511. In:
IEEE Transactions on Information Theory 44 (1998), Nr. 1, S. 367–378

[6] Faugère, J.-C. ; Otmani, A. ; Perret, L. ; Tillich, J.-P.: Algebraic Cryptanalysis of McEliece
Variants with Compact Keys. 2009. – (preprint)

[7] Finiasz, M. ; Sendrier, N.: Security Bounds for the Design of Code-based Cryptosystems. In:
Advances in Cryptology – Asiacrypt’2009, 2009. – http://eprint.iacr.org/2009/414.pdf

[8] Lee, P.J. ; Brickell, E.F.: An observation on the security of McEliece’s public-key cryptosystem.
In: EUROCRYPT ’88, Lect. Notes in CS, 1988, S. 275–280

[9] McEliece, R.J.: A Public-key cryptosystem based on algebraic coding theory. In: DNS Progress
Report (1978), S. 114–116

[10] Misoczki, R. ; Barreto, P. S. L. M.: Compact McEliece Keys from Goppa Codes. In: Selected Areas
in Cryptography, 16th Annual International Workshop, SAC 2009 Bd. 5867, Springer, 2009 (Lecture
Notes in Computer Science)

[11] Peters, C.: Information-set decoding for linear codes over Fq. Cryptology ePrint Archive, Report
2009/589, 2009. – http://eprint.iacr.org/

[12] Peters, C.: Iteration and operation count for information-set decoding over Fq. Jan 2010. –
http://www.win.tue.nl/∼cpeters/isdfq.html

[13] Stern, J.: A method for finding codewords of small weight. In: Proc. of Coding Theory and Appli-
cations, 1989, S. 106–113

A Translation of Barg’s proposition and proof

Proposition 2. The problem P1 [Coset Weights] is NP-complete over an arbitrary alphabet.

The proof reduces the 3-dimensional matching problem to the problem of Coset Weights and is
analogous to the proof for the binary case in [3].

Proof. Let us construct a 3t × |U |-incidence matrix H of the set U . The columns of the matrix
correspond to triples ui ∈ U . Let ui = (ui1 , ui2 , ui3). Then the i-th column of the matrix H
contains 3t−3 zeroes, and 3 ones at positions ui1 , t+ui1 , 2t+ui3 . In order to construct a concrete
problem from P1 that corresponds to a problem of 3-dimensional matching, set y = (1, 1, . . . , 1)
ad w = t. Then, if in U there is a subset satisfying the 3-dimensional matching condition and x is
its characteristic vector, then HxT = yT . Conversely, if this equality is satisfied for some vector
x of weight ≤ t, then it is clear that wt(x) = t. This means that for each i with 0 ≤ i ≤ 3t, the

sum yi =
∑|U |

j=1 xjhij contains only one non-zero summand, say i0, and xi0 = 1, i.e. x defines a
3-dimensional matching. ut

B Proof of Proposition 1

Except for the additional factor of 1/
√
q − 1, the proof is similar to that in [7]. We will use the

same approach and focus on the differences. As above, let y(0) denote the first non-zero entry of
vector y ∈ Fn

q \{0}.

10 PRELIMINARY

B.1 Efficiency improvement using the field structure of Fq

The step of the algorithm that can be made more efficient using the field structure of Fq is the
search for a pair (e1, e2) such that e1 ∈ Wk+l;bp/2c;q, e2 ∈ Wk+l;dp/2e;q and

HeT1 = sT −HeT2 ,

where Wk+l;p;q is the set of all q-ary words of length k + l and weight p.

Let W ′1, W2, L′1 and L′2 be defined as in (4)-(6). First note that for any pair (e1, e2) and all non-zero
values y ∈ Fq, we have

HeT1 = sT −HeT2 ⇔ (HeT1)y−1 = (sT −HeT2)y−1.

Instead of sT−HeT2 , we can store (sT−HeT2)((sT−HeT2)(0))−1 in L′2 and (HeT1)(HeT1 (0))−1 in L′1.
The list L′1, however, would contain every entry exactly (q− 1) times, since for every y ∈ Fq\{0},
e1 and ye1 yield the same entry. Therefore, we can generate the first list using only vectors e1
whose first non-zero entry is 1.

To see that there is exactly one collision between L′1 and L′2 for every solution of the problem, let
(e1, e2) be a pair found by our algorithm. Let y = HeT1 (0) and z = (sT −HeT2)(0). Then we have

(HeT1)y−1 = (sT −HeT2)z−1,

and therefore (e1zy
−1, e2) is a solution to the problem.

Conversely, let (e1, e2) be a solution to the problem, i.e. HeT1 +HeT2 = sT . We want to show that
there exists a collision between L′1 and L′2 which corresponds to this solution. Let y = HeT1 (0)
and z = (sT −HeT2)(0). Since HeT1 = sT −HeT2 , we have

(HeT1)y−1 = (sT −HeT2)z−1. (7)

As we did not limit the set W2, the right hand side of equation (7) belongs to L′2.

Let x = e1(0). The first non-zero entry of e′1 = e1x
−1 is 1, so it was used to calculate one member

of L′1. As He′T1 (0) = (H(e1x
−1)T)(0) = yx−1,

(He′T1)((He′T1)(0))−1 = (H(e1x
−1)T)(yx−1)−1 = (HeT1)y−1.

Therefore, the left hand side of equation (7) belongs to L′1.
Since z = y, this collision between L′1 and L′2 corresponds to the solution (e1, e2).

Obviously, this improvement can only applied if p > 0, i.e. if there actually is a search for collisions.
If p = 0, we are simply trying to find a permutation which shifts all error positions into the first r
positions of s, so the runtime is the inverse of the probability P0 of this event with P0 =

(
r
t

)
/
(
n
t

)
.

For the rest of this section we assume p > 0.

B.2 Cost of the algorithm

In most cases, the value of t will be smaller than the GV bound, and we expect the algorithm
to require many iterations. In that case, in one iteration of our Main Loop, we expect to test a
fraction λq(z) = 1− exp(zq) of vectors in Wk+l;p;q, where

zq =
|W ′1| · |W2|(

k+l
p

)
(q − 1)p−1

. (8)

PRELIMINARY 11

The success probability of each pair (e1, e2) is the number of pairs matching the syndrome in the
last l rows, divided by the total number of possible values of He with e ∈ Wk+l;p;q. Depending on
the code parameters, the latter is either given by the number of error patterns or by the number
of syndromes:

Pq =
λq(zq)

(
r−l
t−p
)
(q − 1)t−p

min
((

n
t

)
(q − 1)t, qr

)
The success probability in one iteration of Main Loop is hence:

Pp;q(l) = 1− (1− Pq)(
k+l
p)(q−1)p

≈ 1− exp(−Pq ·
(
k + l

p

)
(q − 1)p)

= 1− exp

(
− λq(zq)

Np;q(l)

)
,

where

Np;q(l) =
min

((
n
t

)
(q − 1)t, qr

)(
r−l
t−p
)(

k+l
p

)
(q − 1)t

.

For small Pp;q(l), the cost of the algorithm can be calculated approximately as

Np;q(l)

λq(zq)
·

(
l|W ′1|+ l|W2|+Kq

λq(zq)
(
k+l
p

)
(q − 1)p−1

ql

)
,

which is the approximate number of iterations times the number of operations per iteration. Kq is
the expected cost to perform the check wt(sT −H(e1 + e2)T) = t− p.

It is easy to see that we minimize this formula by choosing |W ′1| = |W2|,

Np;q(l) ·

(
2l
|W ′1|
λq(zq)

+Kq

(
k+l
p

)
(q − 1)p−1

ql

)

Using (8), we get

Np;q(l) ·

(
2l

√
zq

λq(zq)

√(
k + l

p

)
(q − 1)p−1 +Kq

(
k+l
p

)
(q − 1)p−1

ql

)

Analytically, the optimal value for zq is z ≈ 1.25, but zq = 1 is very close to optimal. Hence we
choose zq = 1, set λq = λq(1) = 1− e−1 and use (8),

Np;q(l)

√(
k + l

p

)
(q − 1)p−1

2

λq
·

l +
Kqλq

2
·

√(
k+l
p

)
(q − 1)p−1

ql

 .

The optimal value for l can be approximated by l = logq

(
Kqλq

√(
k+l
p

)
(q − 1)p−1 · ln(q)/2

)
. In

practice, we use l ≈ logq

(
Kqλq

√(
k
p

)
(q − 1)p−1 · ln(q)/2

)
. For small values of q, the factor (ln(q)/2)

can be neglected. Hence the cost is

1√
q − 1

·
2lmin

((
n
t

)
(q − 1)t, qr

)
λq
(
r−l
t−p
)(

k+l
p

)
(q − 1)t

·

√(
k + l

p

)
(q − 1)p

Minimizing over p gives the result.

12 PRELIMINARY

Now consider the case where
(

r
t−p
)(

k
p

)
(q− 1)t ≥ qr. Then the Main Loop is likely to succeed after

a single iteration. This corresponds to the birthday algorithm described in [7], which states

WFBA ≈
2√
P
·
(
l +

K0

2
√
P2l

)
.

In the q-ary case this formula becomes

WFqBA ≈
2√
P
·
(
l +

K0

2
√
Pql

)
.

Easy analysis shows that the optimal value for l is

l = logq

(
ln(q)K0

2
√
P

)
.

Applying this in our case with Kt−p instead of K0 (since K0 is the cost of the third step in the
algorithm of [7], which is Kt−p when applied in the case of ISD), using

P = Pq ≈
(
r−l
t−p
)
(q − 1)t−p

qr
,

and minimizing over p yields the lower bound result:

WFqISD ≈
2lqr/2√(

r−l
t−p
)
(q − 1)t−p

with l ≈ logq

(
Kt−p

qr/2√
(r−l
t−p)(q−1)t−p

· ln(q)/2

)
.

