Group-Based Attestation: Enhancing Privacy
and Management in Remote Attestation

Sami Alsouri, Ozgiir Dagdelen, and Stefan Katzenbeisser

Technische Universitat Darmstadt
Center for Advanced Security Research Darmstadt - CASED
Mornewegstrafle 32, 64293 Darmstadt, Germany
{sami.alsouri,oezguer.dagdelen}@cased.de,
katzenbeisser@seceng.informatik.tu-darmstadt.de

Abstract. One of the central aims of Trusted Computing is to provide
the ability to attest that a remote platform is in a certain trustworthy
state. While in principle this functionality can be achieved by the remote
attestation process as standardized by the Trusted Computing Group,
privacy and scalability problems make it difficult to realize in practice:
In particular, the use of the SHA-1 hash to measure system components
requires maintenance of a large set of hashes of presumably trustworthy
software; furthermore, during attestation, the full configuration of the
platform is revealed. In this paper we show how chameleon hashes allow
to mitigate of these two problems. By using a prototypical implementa-
tion we furthermore show that the approach is feasible in practice.

1 Introduction

One of the main functionalities of the Trusted Platform Module (TPM), as spec-
ified by the Trusted Computing Group (TCG), is the ability to attest a remote
system, i.e., to verify whether the system is in a well-defined (trustworthy) state.
The TCG specified a measurement process that uses the TPM as a root of trust
and employs a measure-then-load approach: Whenever control is passed to a spe-
cific system component, its executable code is hashed and the hash is added to
a tamper-resistant storage (the Platform Configuration Registers, PCRs) within
the TPM in the form of a hash chain: the hash value of the program to be exe-
cuted is concatenated with the current values in the PCR register, the resulting
string is hashed and stored in the PCR. The content of the PCR registers there-
fore can be considered to reflect the current state of the system. In the process of
remote attestation, this state is signed and transferred to a remote entity (called
challenger), who can subsequently compare the provided measurements with a
list of trusted measurements (Reference Measurement List, RML) and decide
about the trustworthiness of the remote platform.

Research has identified several problems with the remote attestation process
as specified by the TCG. These problems include privacy [I] and scalability is-
sues [2L[3], problems with the sealing functionality [4] and high communication

A. Acquisti, S.W. Smith, and A.-R. Sadeghi (Eds.): TRUST 2010, LNCS 6101, pp. 6377 2010.
© Springer-Verlag Berlin Heidelberg 2010

64 S. Alsouri, 0. Dagdelen, and S. Katzenbeisser

and management efforts [3]. In this paper we deal with these aforementioned
problems. Remote attestation discloses full information about the software run-
ning on the attested platform, including details on the operating system and
third-party software. This may be an unwanted privacy leak, as it allows for
product discrimination (e.g., in a DRM context a party can force the use of a
specific commercial software product before certain data is released, thereby lim-
iting freedom of choice) or targeted attacks (e.g., if a party knows that someone
runs a specifically vulnerable version of an operating system, dedicated attacks
are possible). Thus, attestation methods are required that do not reveal the full
configuration of the attested platform but nevertheless allow a challenger to gain
confidence on its trustworthiness. The second major problem of TCG attestation
is the scalability of Reference Measurement Lists [2]. The large number of soft-
ware products and versions of operating systems makes maintenance of the lists
cumbersome. For instance, [5] notes that a typical Windows installation loads
about 200 drivers from a known set of more than 4 million, which is increasing
continuously by more than 400 drivers a day. The large number of third-party
applications aggravates the problem further. Scalability of the remote attestation
process is sometimes seen as a major limiting factor for the success of Trusted
Computing [3].

In this paper, we propose novel attestation and integrity measurement tech-
niques which use chameleon hashes in addition to SHA-1 hash values or group
signatures in the integrity measurement and attestation process. Even though
this increases the computational complexity of the attestation process, we show
that the presented mechanisms increase the scalability of remote attestation,
while providing a fine-grained mechanism to protect privacy of the attested plat-
form. One construction uses chameleon hashing [6], which allows grouping sets
of software and hardware versions, representing them through one hash value.
For instance, all products of a trusted software vendor or versions of the same
software can be represented by one hash value. On the one hand, this reduces the
management effort of maintaining RMLs, and on the other hand increases pri-
vacy, as the challenger is not able to see any more the exact configuration of the
attested platform, but only the installed software groups. At the same time, the
challenger system can be assured that all running software comes from trusted
software groups. We show that the proposed system can easily be integrated into
an architecture similar to the TCG, with only minor modifications. We have im-
plemented the attestation process in a prototypical fashion and show that the
approach is feasible in practice. Finally, we show that a very similar attestation
technique can be implemented by group signatures instead of chameleon hashes
as well.

This paper is organized as follows. In Section 2 we briefly review the mecha-
nism provided by the TCG standards to measure system integrity and to perform
remote attestation. In addition, we give background material about chameleon
hashes and discuss its security. Furthermore, we discuss the problems with re-
mote attestation and outline solutions proposed in related work. In Section 3
we outline our Chameleon Attestation approach to integrity measurement and

Group-Based Attestation: Enhancing Privacy and Management 65

remote attestation and also propose an alternative using group signatures.
Section 4 provides details on our implementation, and Section 5 discusses the ad-
vantages of Chameleon Attestation and details our experimental results. Finally,
we conclude the paper in Section 6.

2 Background and Related Work

2.1 Integrity Measurement and Remote Attestation

One of the main goals of Trusted Computing is to assure the integrity of a plat-
form. This is done by measuring every entity (such as BIOS, OS kernel and
application software) using the SHA-1 hash before its execution. All measure-
ments are securely stored by extending values in a particular PCR register by a
hash chain. To allow the challenger to recompute the hash values, information
on the measured entities is stored in form of a Measurement Log (ML). To pre-
vent malicious software behavior, the TPM chip only allows to extend the PCR
registers, so that PCRs can not be reset as long as the system is running (the
only way to reset the registers is to reboot).

A practical attestation framework called IMA, an extension of the Linux ker-
nel, was developed by IBM research [2]. IMA measures user-level executables,
dynamically loaded libraries, kernel modules and shell scripts. The individual
measurements are collected in a Measurement List (ML) that represents the
integrity history of the platform. Measurements are initiated by so-called Mea-
surement Agents, which induce a measurement of a file, store the measurement
in an ordered list into ML, and report the extension of ML to the TPM. Any
measurement taken is also aggregated into the TPM PCR number 10. Thus, any
measured software can not repudiate its existence.

Signed measurements can be released to third parties during the process of
“remote attestation”. For this purpose, the challenger creates a 160-bit nonce
and sends it to the attested platform. The attestation service running on that
host forwards the received nonce and the PCR number requested by the chal-
lenger to the TPM chip, which signs the data using the TPM_Quote function.
After signing, the results are sent back to the attestation service. To protect
identity privacy, only the Attestation Identity Keys (AIKs) can be used for the
signing operation. The attestation service sends the signed data together with
the ML back to the challenger. Using the corresponding public key AIKpys, the
challenger verifies the signature and the nonce, and re-computes the hash chain
using the ML. If the re-computed hash value equals the signed PCR. value, then
ML is untampered. Finally, the challenger determines whether all measurements
in ML can be found in the trusted Reference Measurement List (RML); in this
case the attested platform is considered as trusted.

2.2 Chameleon Hashing

Chameleon hashing was introduced by Krawczyk and Rabin [6]. Unlike stan-
dard hash functions, chameleon hashes utilize a pair of public and private keys.

66 S. Alsouri, 0. Dagdelen, and S. Katzenbeisser

Every party who knows the public key is able to compute the hash value on a
given message. The possession of the private key enables collisions to be created.
However, chameleon hash functions still provide collision-resistance against users
who have no knowledge of the private key.

A chameleon hash function is defined by a set of efficient (polynomial time)
algorithms [7]:

Key Generation. The probabilistic key generation algorithm Kg : 1* — (pk,
sk) takes as input a security parameter k in unary form and outputs a pair
of a public key pk and a private key (trapdoor) sk.

Hash. The deterministic hash algorithm CH : (pk,m,r) — h € {0,1}" takes
as input a public key pk, a message m and an auxiliary random value r and
outputs a hash h of length 7.

Forge. The deterministic forge algorithm Forge : (sk,m,r) — (m’,r’) takes as
input the trapdoor sk corresponding to the public key pk, a message m and
auxiliary parameter r. Forge computes a message m’ and auxiliary param-
eter v’ such that (m,r) # (m/,r’) and CH(pk, m,r) = h = CH(pk, m’,7’).

In contrast to standard hash functions, chameleon hashes are provided with the
Forge algorithm. By this algorithm only the owner of the trapdoor (sk) can
generate a different input message such that both inputs map to the same hash
value. In some chameleon hashes the owner of the private information can even
choose himself a new message m’ and compute the auxiliary parameter 7’ to find
a collision CH(pk, m,r) = h = CH(pk, m/,). This is a powerful feature since
anyone who knows the private information can map arbitrary messages to the
same hash value.

We desire the following security properties to be fulfilled by a chameleon hash
function (besides the standard property of collision resistance):

Semantic Security. For all message pairs m, m’, the hash values CH(pk, m,)
and CH(pk,m/, r) are indistinguishable, i.e., CH(pk, m,) hides any infor-
mation on m.

Key Exposure Freeness. Key Exposure Freeness indicates that there exists
no efficient algorithm able to retrieve the trapdoor from a given collision,
even if it has access to a Forge oracle and is allowed polynomially many
queries on inputs (m;,r;) of his choice.

Any chameleon hash function fulfilling the above definitions and security re-

quirements can be used in our approach; our particular choice of a chameleon
hash is detailed in [7].

2.3 Group Signatures

Group signatures were introduced by Chaum and van Heyst [§] and allow a
member of a group to anonymously sign a message on behalf of the group. A
group has a single group manager and can have several group members. Unlike
standard digital signatures, signers of a group are issued individual signing keys

Group-Based Attestation: Enhancing Privacy and Management 67

gsk]i], while all members share a common group public key gpk such that
their signatures can be verified without revealing which member of the group
created the signature. This provides anonymity. However, the group manager
is assigned with a group manager secret key gmsk and is able to discover the
signer (traceability).

Basically, a group signature scheme GS = (GKg, GSig, GV{, Open) is de-
fined by a set of efficient algorithms (for more details, we refer to [8] and [9]):

Group Key Generation. The probabilistic group key generation algorithm
GKg : (1*7,1™) — (gpk, gmsk, gsk) takes as input the security parame-
ter k and the group size parameter n in unary form and outputs a tuple
(gpk, gmsk, gsk), where gpk is the group public key, gmsk is the group
manager’s secret key, and gsk is an vector of n secret signing keys. The
group member i € {1,...,n} is assigned the secret signing key gsk[i].

Group Signing. The probabilistic signing algorithm GSig : (gsk[i],m) —
o;(m) takes as input a secret signing key gsk[i] and a message m and outputs
a signature o;(m) of m under gsk][i].

Group Signature Verification. The deterministic group signature verifica-
tion algorithm GVTf : (gpk, m,o) — {0,1} takes as input the group public
key gpk, a message m and a signature ¢ and outputs 1 if and only if the sig-
nature o is valid and was created by one of the group members. Otherwise,
the algorithm returns 0.

Opening. The deterministic opening algorithm Open : (gmsk, m,o) — {i, L},
which takes as input a group manager secret key gmsk, a message m and a
signature o of m. It outputs an identity ¢ € {1,...,n} or the symbol L for
failure.

Join. A two-party protocol Join between the group manager and a user let
the user become a new group member. The user’s output is a membership
certificate cert; and a membership secret gsk|[i]. After an successful execution
of Join the signing secret gsk[i] is added to the vector of secret keys gsk.

In order to allow revocation of users, we require an additional property:

Revocability. A signature produced using GSig by a revoked member must
be rejected using GV{. Still, a signature produced by a valid group member
must be accepted by the verification algorithm.

2.4 Attestation Problems and Related Work

Integrity measurement according to the TCG specification seems to be a promis-
ing way to check the trustworthiness of systems. However, the suggested remote
attestation process has several shortcomings:

— Privacy. We can distinguish between identity privacy (IP) and configuration
privacy (CP). IP focuses on providing anonymity for the attested platform.
This problem can be solved by Direct Anonymous Attestation (DAA) [1L[10,
11]. On the other hand, CP is concerned with keeping configuration details of an

68 S. Alsouri, 0. Dagdelen, and S. Katzenbeisser

attested platform secret, since disclosure may lead to privacy violations. Still,
the challenger system must be assured that the attested platform indeed is in
a trustworthy state. In this paper we focus on providing CP. (However, since
CP and IP are orthogonal problems, our solution can be used in conjunction
with mechanisms that guarantee IP).

— Discrimination and targeted attacks. By using remote attestation, product
discrimination may be possible. For example, in the context of DRM envi-
ronments, large operating system vendors and content providers could col-
laborate and force usage of specific proprietary software, which restricts the
freedom of choice. Furthermore, an adversary could leverage the precise con-
figuration of the attested platform and perform a specific targeted attack [12].

— Scalability. A further drawback lies in the scalability of Reference Measure-
ment Lists [2]. The TCG attestation requires the challenger to maintain a
Reference Measurement List, which contains hashes of all trustworthy soft-
ware, to validate the received measurements. Consequently, software up-
dates or patches require distribution of new hash values. For this reason,
the management overhead increases to a point where attestation becomes
impractical. Consequently, keeping these RML lists up-to-date involves high
management and communication efforts.

— Sealing. Besides remote attestation, TCG offers the ability to seal data to
the configuration of a specific platform. Again, any software update or con-
figuration change can lead to a completely new platform configuration state
and consequently hinder unsealing [4].

Sadeghi and Stiible [4] approached the above mentioned problems by the intro-
duction of Property-based Attestation (PBA). By applying PBA, the attested
platform proves that it fulfills certain semantic security requirements, called
“properties”. This way, the concrete configuration of a platform does not need
to be disclosed. However, PBA requires an extension of TPM or alternatively a
Trusted Third Party along with a Trusted Attestation Service, which is respon-
sible for translations between properties and software. Semantic attestation [13]
verifies that the behavior of a platform fulfills given particular high-level proper-
ties. WS-Attestation proposed by Yoshihama et al. [T4] employs PCR obfuscation
to hide software versions; however, scalability remains a problem [I5].

3 Group-Based Attestation

In this section we propose three novel attestation techniques, which are based
on either chameleon hashes or group signatures. The first and second technique
allow balancing configuration privacy with the control precision of the attestation
process and substantially decrease the overhead for maintaining RMLs, while
the third one provides more flexibility for the challenger in control precision but
offers no privacy advantage when compared with the TCG attestation.

Group-Based Attestation: Enhancing Privacy and Management 69

3.1 Chameleon Attestation I

In this section we describe a novel remote attestation approach, which makes
it possible for the challenger to decide on the trustworthiness of the attested
platform, without knowing its detailed configuration. The assumptions listed
in [2] about the attacker model are also the basis of our approach. In particular
we assume that once a measurement is stored in an RML, the corresponding
software is considered trusted; additional security mechanisms must be in place
to secure the integrity of the RML (this is out of scope of this work).

To reduce the management overhead, we propose the concept of software
groups; according to the precise scenario, these groups may e.g. contain all soft-
ware products of the same vendor, compatible software products or all versions
of one specific software. We design the attestation process in such a way that
we assign the same hash value to all members of a software group. To achieve
this, we make use of a chameleon hash function. As mentioned in Section 2.2
any party who knows the public key pk is able to compute the hash value for a
given message. In contrast, only the trusted instance holding the private key sk
can create collisions. Based on the idea of software groups sharing the same hash
value, we describe in the following a novel remote attestation we call Chameleon
Attestation I

Setup phase: For each group, a trusted instance (such as a software vendor)
runs the key generation algorithm Kg to obtain a public/private key pair
(pk, sk). When establishing a new software group, the software vendor picks
for the first product contained in the new software group a random r and
makes it available to the attested platform by delivering it with the software.
Furthermore, he hashes the code m of the software with the chameleon hash
to obtain h = CH(pk, m, r); for performance reasons the SHA-1 hash value
of the software is taken as m. The obtained chameleon hash is made public in
a trusted RML. Subsequently, to add a new software m’ to the same software
group, he uses the algorithm Forge to find a new 1’ so that CH(pk, m/, ") =
h and distributes the new ' alongside the software. Step 1 in Figure [l (a)
shows the parameters distributed to the attested platform by a software
vendor.

Integrity measurement: On the attested platform, the operation proceeds in
a similar way as in the original integrity measurement process, see Figure Il
(a). In particular, the software is first hashed using SHA-1 (step 2). Subse-
quently, the attested platform computes in step 3 the chameleon hash value
h of the software using the public key pk and the random value r distributed
alongside the software. Since the PCRs in the TPM accept only a 160-bit
message to be extended to a particular register, the chameleon hash value
is hashed again using SHA-1 in step 4 and the corresponding information is
stored in the ML in step 5. The resulting value is finally extended to a PCR
register (step 6).

Remote attestation: The attestation process of Chameleon Attestation I is
very similar to the standard TCG attestation process. In step 1 in Figure[I]
(b) the challenger sends a nonce and the PCR numbers whose content has

70 S. Alsouri, 0. Dagdelen, and S. Katzenbeisser

to be signed by the TPM. In step 2 the Attestation Service forwards the
request to the TPM, and in step 3 the TPM signs the desired PCRs values
and the nonce, and sends them back to the Attestation Service. In step 4,
the attested platform sends the ML containing the chameleon hash values
instead of SHA-1 values. In steps 5-7 the challenger verifies the signature,
validates the PCRs values against ML, and checks the trustworthiness of
the sent measurements. Only if ML contains trustworthy measurements the
attested platform is considered trusted.

Software Vendor Challenger (C) Attested Platform (AP)
(1] nonce, PCR |
" .
S 2 Y © Check sig & nonce =
z|lg . 28
HIES 58
S| B O Validate PCR against ML O 5ig{PCR, nonce}, ML 28)
it £8
ML (after updating) ML (before updating e §
Attested Platform (AP) : Name | CH Name | cH 8
— = BIOS | TGH BIOS | TGH =X 3
(oo] |8 os oo | [Coo [amn | () I
\\0 2 sw1 WG sw1 we ! N 3
A
sw2 KKL sw2 KKL T
ML 2
(5) s‘;’u a indivi :
L/ 8 Compare individual &,
Engi et o measurements with
R\ 3
oY o g
o, Engine = __ RML
| — T Name [e
TPM
J o] 9 BIOS | TGH v
Engine = swi1 WG
v | S | S o [I
LI o S | Ut [

a) Integrity Measurement Using

Chameleon Hashes b) Chameleon Attestation Process

Fig. 1. Chameleon Integrity and Attestation

Chameleon Attestation I is flexible in the sense that the granularity of the soft-
ware groups can easily be chosen to balance privacy and control precision: If
more privacy is desired, then larger software groups may be formed; on the
other hand, if distinction between different software versions is an issue, smaller
groups can be maintained. Note that the decision of how granular a group is, can
be made only by the software vendor. Without modifying the TPM, Chameleon
Attestation I supports only the static chain of trust, since the TPM itself does
not provide functionalities to calculate chameleon hashes.

3.2 Group Signatures Based Attestation

An alternative approach to improve the remote attestation process in terms of
privacy and scalability is possible by applying digital signatures, in particular
group signatures. This requires the following modifications to the integrity mea-
surement architecture:

Setup phase: We again use the concept of software groups. This time, we use
group signatures; each software in the software group has its own private sig-
nature key gsk[i], while all share a common verification key gpk. Whenever a

Group-Based Attestation: Enhancing Privacy and Management 71

new product or an update of software is published, the software is first hashed
with SHA1 to obtain h = SHA-1(SW), where SW is the code of the soft-
ware. Then, the hash value h is signed by the private key gsk][i], i.e. 0 =
GSig(gsk[i], h). The public verification key and the signature is distributed
alongside the software. Furthermore, the public keys of all trusted software
groups are stored in the RML.

Integrity measurement: Whenever a software is loaded, it is hashed with
SHA-1 and its signature is checked with the included public key using the
group signature verification algorithm GVf. If the signature is valid, the
attesting platform hashes the public key and extends the particular PCR
with the hash value of the public key of the verified software (instead of the
hash value of the software). Afterwards, a corresponding information item
containing the name of the software group and its public key gpk is stored
in the Measurement Log (ML). If any failure occurs, similar to the process
of IMA, the corresponding PCR is set to an invalid state.

Remote attestation: The remote attestation works exactly as described in
Section 1] up to the point where the challenger receives the answer from
the attested platform. Then, the challenger verifies the signed PCR and his
chosen nonce, validates the hash chain of the PCR against the public keys
contained in the ML and checks whether they are all listed in the trusted
RML. If all checks succeed, the system is considered trustworthy.

Using group signatures instead of chameleon hashes provides some advantages.
While in Chameleon Attestation I a revocation of chameleon hash value requires
the revocation of all group members, using group signatures allows the revocation
of specific members of the group without the need to revoke the whole group.
A second advantage lies in the ability of fitting a group signature hierarchy to
an organization structure. That is, every product realm or series could have its
own private key, while verification is performed with one single public key.

On the other hand, Chameleon Attestation I outperforms group signature
based attestation in terms of performance. While fast group signature schemes
(like [16]) need about six exponentiations for signing and verification, chameleon
hash functions require much less computations. For instance, our particular
choice of a chameleon hash detailed in [7] performs only two exponentiations.
To the best of our knowledge there exists no group signature which require less
than three exponentiations.

3.3 Chameleon Attestation II

The remote attestation proposed above can be used to mitigate the privacy
problem. However, there is a tradeoff between privacy and control precision of
the approach: as the challenger is only able to see the software groups running
on the attested system, the challenger cannot distinguish individual software
versions any more: Assume a software vendor has developed a product SW, 1
which is later updated to SW, 2 because of disclosed security vulnerabilities. By
applying the technique mentioned above, a challenger cannot distinguish plat-
forms where SW, .1 or SW, 5 is run. When using Chameleon Attestation I we

72 S. Alsouri, 0. Dagdelen, and S. Katzenbeisser

lose the possibility to efficiently revoke certain members of a software group. A
software vendor can only declare the old chameleon hash value for the group
as invalid and publish a new one. However, this requires an update to the chal-
lenger’s RML. That is, revocation in this context means revocation of the whole
software group with all of its members and not revocation of a certain member
or even a subgroup.

In this section we show how chameleon hashes can be used to reduce the man-
agement overhead of maintaining large RMLs in scenarios where configuration
privacy is not an issue. Instead of computing chameleon hashes on the attested
platform, we can move this calculation to the challenger side. As in the system
described in Section [B.] the manufacturer picks one chameleon hash for each
software group, publishes the hash value of each group in an RML, and sends
alongside the software random values r required to compute the chameleon hash.
On the attested system, the standard integrity measurement process is performed
(in which SHA-1 hashes of loaded executables are stored into PCRs), except that
the random values r required to compute the chameleon hashes and the SHA-1
hashes are both saved in the ML. The remote attestation process proceeds as in
the standard TCG attestation, i.e., the challenger receives the signed PCR val-
ues. Subsequently, the challenger verifies the signed PCR and his chosen nonce
and validates the contents of the PCR against the ML containing all SHA-1
values. Finally, for each entry in ML, the chameleon hash is computed to build
software groups and validated against the RML.

Applying Chameleon Attestation II makes revocation of specific software
group members easier. Unlike Chameleon Attestation I and group signatures
based attestation, the challenger himself can refuse untrusted software versions
by simply validating the SHA-1 values of these members against blacklists of
revoked or untrusted group members. This leads to more flexibility for the chal-
lenger and gives him a tradeoff between scalability and control precision.

4 Implementation

In this section we describe the changes we made to the Linux system during
the implementation of both variants of Chameleon Attestation as proposed in
Sections B.I] and [3.3

In order to support a trusted boot we use the Grand Unified Bootloader
(GRUB) version 0.97 with the TrustedGrub extension 1.13. All measurements
taken are stored in the Intel iTPM. As Linux distribution, we used Fedora 10 with
the kernel version 2.6.27.38. The kernel contains the Integrity Measurement Ar-
chitecture (IMA), which measures all executables and stores the measurements
in the Measurement Log (ML). For Trusted Computing support we use the Java
based jTSS in version 0.4.1. Because jTSS supports only one measurement log,
we modified it to also support reading the measurement log created by IMA. For
the remote attestation process, we implemented a Java based server and client.
jTSS is used by the server to access the functions of the TPM such as reading
PCR registers, signing PCR content, etc. The client also uses the functionalities

Group-Based Attestation: Enhancing Privacy and Management 73

provided by jTSS to verify signatures and recompute PCR contents. In addition,
a MySQL database management system was used on the client side to store the
Reference Measurement List (RML).

Implementation of Chameleon Attestation I. For the first variant described in
Section Bl it is necessary to calculate our chosen chameleon hash function
described in [7], denoted as CH, on the attested platform. For that reason,
we extended IMA such that the CH value is calculated after measuring ev-
ery executable. We assume that the parameters required to calculate CH are
delivered with the executable and stored. We first created a special measure-
ment list M Loy which contains the chameleon hashes of measured executa-
bles. We also modified the standard ML to store the public CH parameters
J,r,e and N. In particular, in order to store these parameters we extended the
struct ima_measure_entry. Afterwards, to read these parameters again from ML,
we implemented a new function in the file /security/ima/ima_main.c, which is
called from the functions that are responsible for measuring executables, namely
ima_do_measure_file and ima_do_measure_memory. To calculate the CH value,
we created a new function in the file /ima/ima_main.c, which also stores the
resulting CH value in M Loy and the SHA-1 value in standard ML. Note that
the standard ML is used only for internal purposes, whereas the M Loy is sent
to the challenger during the attestation process. For the implementation of CH
we used a slightly changed version of the RSA patch for avr32linux.

Implementation of Chameleon Attestation II. In the second variant described
in Section [3.3] we need to calculate the chameleon hash on the platform of the
challenger. We thus modify the measurement process in a way that the parame-
ters J,r,e and N are added to ML, as in Chameleon Attestation I. Furthermore,
we extended the package iaik.tc.tss.impl.java.tcs.evenmgr of jTSS such that the
new chameleon hash parameters can be read from ML in addition to SHA-1
values. To calculate the chameleon hash on the challenger side, we modified the
server such that the SHA-1 values and the corresponding new parameters can
be delivered to the challenger. We implemented the RSA based chameleon hash
function using OpenSSL on the side of the challenger to enable it to calculate
the hash value and verify it against the RML.

5 Experimental Results

In this section we show that Chameleon Attestation significantly reduces the
number of the reference measurements required to decide the trustworthiness of
the attested system. Subsequently, we discuss the performance of our approach.

Scalability. To test the scalability of Chameleon Attestation, we first created an
RML by measuring a fresh installation of Fedora 10 (kernel version 2.4.27.5), but
neglecting the content two folders: the folder /var/ which contains variable data
that can be changed or deleted at runtime, and the folder /usr/share/ which
contains the architecture-independent data. Since it is difficult in retrospect to

74 S. Alsouri, 0. Dagdelen, and S. Katzenbeisser

Table 1. Reduction of measurements in RML

Packages Measurement |Fresh installation|Update| Total Statistics
% Fresh |% Update
installation
kernel TCG 1,820 1,816 |3,636 | 50.1 % 49.9 %
CA 1 0 1 100.0 % 0.0 %
samba-comomn TCG 18 15 33 54.5 % 455 %
CA 1 0 1 100.0 % 0.0 %
samba TCG 24 26 50 48.0 % 52.0 %
CA 1 0 1 100.0 % 0.0 %
httpd (Apache) TCG 71 72 143 49.7 % 50.3 %
CA 1 0 1 100.0 % 0.0 %
All TCG 8,268 5,448 |13,716| 60.3 % 39.7 %
CA 981 37 |1.018| 96.3 % 3.7 %
ratio 8.5:1 147:1 |13.5:1 10.7:1

group packages by manufacturer (because the package manager of Fedora does
not store information about the author/manufacturer of a package), we grouped
software products by packages and assigned each file in a package its appropriate
random r. Table [Il shows how our approach reduces the number of entries in the
RML. The table shows that we need 8,268 different entries in RML for the fresh
installation when we employ classic TCG attestation (one for each file). In the
contrast, we only need to store 981 measurements in the RML by applying our
approach (one for each package in case of grouping by packages).

To test the management overhead when updating packages, we performed
another experiment by updating the Linux distribution and its installed packages
to newer versions. For instance, the kernel is updated from version 2.6.27.5 to
2.6.27.41, the package samba-common from 3.2.4 to 3.2.15, the package samba
from 3.2.4 to 3.2.15, and the package httpd from 2.2.10 to 2.2.14. Table [shows
that in case of using the classic TCG attestation 1,816 new SHA-1 measurements
(49.9 % of the total measurements for the kernel) have to be distributed and
published in RMLs. Conversely, by employing Chameleon Attestation no new
measurements have to be distributed or published. For the overall distribution
and its installed packages, we only need to update 37 chameleon hashes rather
than 5,448. These hashes mainly account for newly added packages. Thus, the
management and communication effort is significantly reduced.

Privacy. The configuration privacy of the attested platform is substantially en-
hanced by the use of Chameleon Attestation I: the challenger can decide on the
trustworthiness of the attested platform without knowing the exact details of the
configuration. Since there is a tradeoff between privacy and control precision,
the scheme can be applied on different granularities: depending on the choice of
the manufacturer, software groups may encompass different versions of individ-
ual files, packages, software systems or even software of a specific vendor (see

Group-Based Attestation: Enhancing Privacy and Management 75

Software
Manufacturer

Software

Fig. 2. Levels of privacy and control precision

Figure[2]). The higher the level, the more privacy can be protected; on the down-
side, less information on the platform is available, i.e., the control precision is
lower. Our approach can be easily combined with other identity privacy ap-
proaches, such as a Privacy CA and DAA.

Sealing. In a similar manner, the sealing problem can be avoided, since different
versions of the same software will have the same chameleon hash value; con-
sequently, data can be bound to this value without risking data unavailability
when updating to the next version.

Performance evaluation. To evaluate the performance of Chameleon Attestation,
we measure the timing difference compared to the standard TCG measurement
process. Our experiments were performed on a Lenovo W500 with the following
main components: Intel CPU Core 2 2.8 Ghz, 1066 Mhz FSB, a HD of 250 GB
SATA 7200 rpm, 4 GB SDRAM, Fedora 10, and kernel version 2.6.27.41.

The calculation of CH in Chameleon Attestation I (see Section B) is per-
formed in the kernel space and requires 4,674 pus, while the calculation of CH in
Chameleon Attestation II (see SectionB.3]) is done in the user space and requires
896 us, i.e., the fifth of the time needed for the first variant. The calculation of
collisions takes 899 us in the user space. All measurements were taken using the
function gettimeofday in both the kernel space and the user space. Note that
all measurements we present in this section aim at giving a gross overview on
the overhead of applying public-key schemes in the attestation process. We ex-
pect that significant performance improvements can be obtained using highly
optimized code also in kernel space.

We used bootchartl] to determine the boot time of a standard kernel, a kernel
with IMA, and a kernel with CH. While a standard kernel takes 30s to finish
booting, a kernel with IMA takes 33s and a kernel with CH takes 44s.

The times required to measure individual files give more insight into the per-
formance. Table[illustrates the performance of CH in the measurement process.
Obviously, the size of the measured files influences the required time significantly.
For instance, the calculation of SHA-1 of a 1 KB file takes approx. 20.1 us, while

! http://www.bootchart.org

76 S. Alsouri, 0. Dagdelen, and S. Katzenbeisser

Table 2. Performance of CH depending on SHA-1 and different file sizes

Measurement method 2 byte 1 KB 1 MB

SHA-1 2 us 20 ps 18,312 us
SHA-1 + CH 4,677 pus 4,694 pus 22,986 us
CH fraction 998 % 99.6 % 203 %
SHA-1 + extend 9,972 pus 9,989 us 28,281 us
SHA-1 + CH + extend 14,646 us 14,663 us 32,955 us
CH fraction 319% 319% 142 %

measuring a 1 MB file takes 18,312.3 us ~ 18.3 ms. Note that the time required
to compute CH is constant, as it is only applied to a SHA-1 value. Table 2 also
gives timing measurements for the whole process of computing the SHA-1 and
chameleon hashes and extending the PCR register with the newly created hashes.
The measurements show that for a file of 1 MB 14.2% of the total time required
to extend a particular PCR is taken for computing the CH value. This percent-
age falls further when larger files are executed. Thus, we believe that Chameleon
Attestation can be implemented in current Trusted Computing platforms with
reasonable overhead.

6 Conclusion

In this paper we have considered the problem of privacy and scalability in remote
attestation, as standardized by the Trusted Computing Group. In particular,
the use of SHA-1 hashes to measure the integrity of programs and system com-
ponents creates a large management overhead; in addition, remote attestation
causes privacy problems, as the full state of the system is disclosed. To miti-
gate these problems we proposed Chameleon Attestation, where we can assign a
single hash value to sets of trusted software. By a prototypical implementation
we show that the performance overhead of using public-key operations in the
attestation process is acceptable.

Acknowledgments. The authors would like to thank Carsten Biittner who helped
in the implementation of our approaches. A special thank goes to Bertram Po-
ettering who had early access to this paper and made valuable comments. The
feedback and comments from all members of the SECENG group were much
appreciated.

References

1. Brickell, E., Camenisch, J., Chen, L.: Direct Anonymous Attestation. In: Proceed-
ings of the 11th ACM Conference on Computer and Communications Security,
Washington DC, USA, pp. 132-145. ACM, New York (2004)

2. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation of a
TCG-based integrity measurement architecture. In: 13th USENIX Security Sym-
posium, San Diego, CA, USA, August 2004, USENIX Association (2004)

10.

11.

12.

13.

14.

15.

16.

Group-Based Attestation: Enhancing Privacy and Management 7

Lyle, J., Martin, A.: On the feasibility of remote attestation for web services. In:
2009 International Conference on Computational Science and Engineering, Van-
couver, BC, Canada, pp. 283-288 (2009)

Sadeghi, A., Stiible, C.: Property-based attestation for computing platforms: caring
about properties, not mechanisms. In: Proceedings of the 2004 Workshop on New
Security Paradigms, Nova Scotia, Canada, pp. 67-77. ACM, New York (2004)
England, P.: Practical techniques for operating system attestation. In: Lipp, P.,
Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS, vol. 4968, pp. 1-13. Springer,
Heidelberg (2008)

Krawczyk, H., Rabin, T.: Chameleon hashing and signatures. In: Proceedings of the
Network and Distributed System Security Symposium, pp. 143-154. The Internet
Society, San Diego (2000)

Ateniese, G., de Medeiros, B.: On the key exposure problem in chameleon hashes.
In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 165-179.
Springer, Heidelberg (2005)

Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257-265. Springer, Heidelberg (1991)

Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, p. 644. Springer,
Heidelberg (2003)

Brickell, E., Li, J.: Enhanced privacy ID: a direct anonymous attestation scheme
with enhanced revocation capabilities. In: Proceedings of the 2007 ACM Workshop
on Privacy in Electronic Society, Alexandria, Virginia, USA, pp. 21-30. ACM, New
York (2007)

Chen, X., Feng, D.: A new direct anonymous attestation scheme from bilinear
maps. In: International Conference for Young Computer Scientists, pp. 2308-2313.
IEEE Computer Society, Los Alamitos (2008)

Kiihn, U., Selhorst, M., Stiible, C.: Realizing property-based attestation and sealing
with commonly available hard- and software. In: STC 2007: Proceedings of the
2007 ACM Workshop on Scalable Trusted Computing, pp. 50-57. ACM, New York
(2007)

Haldar, V., Chandra, D., Franz, M.: Semantic remote attestation: a virtual machine
directed approach to trusted computing. In: Proceedings of the 3rd Conference on
Virtual Machine Research And Technology Symposium, San Jose, California, vol. 3,
p. 3. USENIX Association (2004)

Yoshihama, S., Ebringer, T., Nakamura, M., Munetoh, S., Maruyama, H.: WS-
Attestation: efficient and Fine-Grained remote attestation on web services. In:
Proceedings of the IEEE International Conference on Web Services, pp. 743-750.
IEEE Computer Society, Los Alamitos (2005)

Alam, M., Nauman, M., Zhang, X., Ali, T., Hung, P.C.: Behavioral attestation
for business processes. In: IEEE International Conference on Web Services, pp.
343-350. IEEE Computer Society, Los Alamitos (2009)

Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41-55. Springer, Heidelberg (2004)

	Group-Based Attestation: Enhancing Privacy and Management in Remote Attestation
	Introduction
	Background and Related Work
	Integrity Measurement and Remote Attestation
	Chameleon Hashing
	Group Signatures
	Attestation Problems and Related Work

	Group-Based Attestation
	Chameleon Attestation I
	Group Signatures Based Attestation
	Chameleon Attestation II

	Implementation
	Experimental Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

