
A preliminary version appears in Theory of Cryptography — TCC 2010, Lecture Notes in Computer Science,

Vol.5978, pp.288–305, Springer-Verlag, 2010.

Delayed-Key Message Authentication for

Streams

Marc Fischlin Anja Lehmann

Darmstadt University of Technology, Germany

www.minicrypt.de

Abstract. We consider message authentication codes for streams where the

key becomes known only at the end of the stream. This usually happens in

key-exchange protocols like SSL and TLS where the exchange phase concludes

by sending a MAC for the previous transcript and the newly derived key. SSL

and TLS provide tailor-made solutions for this problem (modifying HMAC

to insert the key only at the end, as in SSL, or using upstream hashing as in

TLS). Here we take a formal approach to this problem of delayed-key MACs

and provide solutions which are “as secure as schemes where the key would

be available right away” but still allow to compute the MACs online even if

the key becomes known only later.

1 Introduction

With the final step in key exchange protocols the parties usually authenticate
the previous communication. This is typically achieved by exchanging message
authentication codes Mac(K, transcript) computed over the transcript of the com-
munication. Examples include the final message in the handshake protocol of SSL
and TLS [Res01], as well as many other key exchange protocols [BPR00, Jab96,
KOY01, Gen08].

The intriguing observation here is that the key for the MAC computations
becomes only known after the transcript is provided. We call this delayed-key
authentication. For such schemes, even MACs which potentially allow to authen-
ticate streams may need to store the entire transcript before the MAC can be
derived. One well-known example is HMAC where the (inner) key is prepended
to the message before hashing, H(Kout, H(Kin,m)). In this case the key must be
available before processing the message in order to take advantage of the iterated
hash function structure.

1



For computational efficiency and, especially, for storage reasons it is often
desirable to compute the MAC iteratively, though. This has been acknowledged
by popular protocols like SSL, which uses a variant of HMAC where the key
is appended to the message instead, and TLS which first hashes the transcript
iteratively and then runs the MAC on the hash value only. Similarly, for the
key exchange protocols for machine readable travel documents (MRTD) by the
German government [BSI08] the final MAC computation omits large parts of the
transcript and only inputs the messages of the final rounds. This allows the
resource-bounded passport to free memory immediately. The protocol is under
standardization for ISO/IEC JTC1/SC17.

The SSL and TLS solution to the problem both rely on the collision resistance
of the underlying hash function for HMAC.1 For TLS collision resistance suffices to
show security (assuming HMAC is secure), but introduces another requirement on
the hash function. Recall that HMAC (resp. its theoretical counterpart NMAC)
can be shown to be secure if the compression function is pseudorandom [Bel06] or
non-malleable [Fis08]. For SSL it is still unclear how the security of the modified
HMAC relates to the security of the original HMAC. As for the MRTD protocol for
German passports, in most key exchange protocols it is recommended to include
the whole transcript (yet, we are not aware of any concrete attack if only parts of
the transcript enter the computation).

An additional constraint originates from the implementation of the MAC algo-
rithm. Key-exchange protocols are often used as building blocks in more complex
cryptographic protocols which, in turn, also use the same MAC algorithm for sub-
sequent authentication (e.g., the record protocol in TLS/SSL). To be applicable to
resource-bounded devices a delayed-key MAC should therefore draw on the same
implementation as the regular MAC. This is particularly true if the implementa-
tion has been designed to resist side-channel attacks. Hence, instead of designing
delayed-key MACs from scratch, a “lightweight” transformation given an arbitrary
MAC algorithm is preferable.

Our Results. We initiate a study of solutions for the delayed-key MAC prob-
lem. There are two reasonable scenarios, originating from the key-exchange appli-
cation: The most relevant case in practice is the one-sided case where one party is
resource-bounded while the other party is more powerful, e.g., a TLS/SSL secured
connection between a mobile device and a server, or an authentication procedure
between a smart card and a card reader. Then, ideally, the constraint device
should benefit from solutions with low storage, whereas we can still assume that
the server is able to store the entire transcript. If both parties have storage lim-
itations, e.g., two mobile devices communicating with each other, then we are

1The weaker requirement of preimage resistance does not suffice, because the transcript that
gets authenticated, is partially determined by both the sender and the receiver of the MAC.

2



interested in two-sided solutions. Since the one-sided case allows for the weaker
devices in terms of resource constraints, the necessity of storage-optimized proto-
cols in this scenario is usually higher than in the two-sided case.

Thus, we focus on the one-sided case for which we present efficient solutions
which are all based on the same seemingly obvious principle: to compute a MAC
the sending party first picks an ephemeral key L and computes the MAC for this
key and the data stream. Then, in addition to the MAC under this key, the party
also transmits an “encryption” (or a “pointer”) P allowing the other party to
recover the ephemeral key L from P and the meanwhile available long-term key
K.2 Note that since verification is usually done by re-computing a MAC the idea
also applies to the verification of the other’s party MAC, i.e., one of the parties
in a key-exchange protocol can both compute its own MAC and verify the other
party’s MAC with low storage requirements.

From an efficiency and implementation viewpoint the instantiations of this
principle should interfere as little as possible with the underlying protocol such
that we get a universal solution. Note that this general approach already allows
to obtain a delayed-key solution starting from a regular MAC, such that both
variants can be used conveniently even on severely constraint devices. In terms of
security we require the solution to be as secure as the original scheme. The latter
condition at foremost demands that the instantiation inherits the unforgeability
property of the original MAC. But since the long-term key K is subsequently used
in protocols (like encryption with the derived keys from the master secret in SSL
and TLS), unforgeability alone is not sufficient.

We also demand that the modified scheme only leaks “as much about the key
K as the original scheme would” and call this notion leakage-invariance. The idea
behind this notion is that, in the original key-exchange protocol, the MAC for K
leaks some information about the key itself, and that the subsequent usage of the
key (derivation, direct encryption etc.) should be still be secure. Following the
idea of semantically secure encryption [GM84] we require that a solution for the
delayed-key problem allows to compute at most the information about K that one
could derive from a Mac(K, ⋅) oracle (used in the original protocol).

We discuss four solutions which are secure according to our notion (and which
come with different efficiency/security trade-offs). Roughly, these are:

Encrypt-then-MAC: We assume that the underlying (deterministic) MAC is a
pseudorandom function (which is a widely used assumption about HMAC)
and then compute the MAC � ← Mac(L,m, ℓ) for the ephemeral key and

2This approach is more general than it may seem at first glance: One can think of the MAC
computation for key L as a (probabilistic) processing of the message and the final computation
of the pointer (from K, L and the value from the first stage) as an “enveloping” transformation
involving the key. It comprises for example the SSL/TLS solutions (with empty L). We finally
remark that sending L in clear usually violates the secure deployment of such MACs in key
agreement protocols.

3



then encrypt L under K and MAC this data, P = (c, t) = (Mac(K, 0∣∣ℓ) ⊕
L,Mac(K, 1∣∣ℓ∣∣c)) for a label ℓ which can either be the server or client con-
stant as in SSL or a random session identifier. The receiver can then recover
L from the encryption and verify the MAC �.

Pseudorandom Permutation: We again assume that the MAC is a pseudoran-
dom function and use a four-round Feistel structure to build a pseudorandom
permutation �(K, ⋅) out of it. Then � ← Mac(L,m) and P = �−1(K, L) such
that the receiver can re-obtain L = �(K,P) and verify the MAC �. The
communication overhead here is smaller than in the previous case but the
construction requires more MAC computations.

Encrypt-only: For the pseudorandom MAC we simply let P = (ℓ,Mac(K, ℓ)⊕L)
for random label ℓ. In this case the security condition is that an adversary
attacking this modified scheme can only make a limited number of verifi-
cation requests (which corresponds to the common case that in two-party
key-exchange protocols for each exchanged key K the server and the client
compute and verify only one MAC each). Also, we can only show that the
adversary is unable to recover the entire key K from the modified scheme (in
contrast to any information about the key, as in the previous cases). This is
sufficient to provide security if the key is afterwards hashed (assuming that
the hash functions is a good randomness extractor or even behaves like a
random oracle).

XOR: In the most simple case we let P = K⊕ L be the one-time pad encryption
of L under K. Assuming that MAC remains pseudorandom under related-
key attacks [BK03] this is again an unforgeable, leakage-invariant MAC (if
the adversary task is to recover the whole key K). The leakage-invariance
also relies on the assumption that the adversary can only make a limited
number of verification queries, and gets to see at most one MAC. The latter
is justified in schemes where only one of the party sends a MAC or where
one party immediately aborts without sending its MAC if the received MAC
is invalid.

As mentioned before all proposed solutions above support the one-sided case
where one of the parties can store the message easily. In contrast, the TLS/SSL
solutions also work in the two-sided case of two resource-constraint parties, but
both rely on the collision-resistance of the underlying hash function whereas our
solutions can in principle be implemented based on one-way functions. We there-
fore address the question whether or not collision-resistance is necessary for the
two-sided case or not, and show that one-way functions suffice. However, as our
solution make use of digital signatures it is mainly a proof of concept and it re-
mains an interesting open problem to find more efficient constructions for this
case.

4



Related Results. To the best of our knowledge the delayed-key problem has
not undergone a comprehensive formal treatment so far. The solution in TLS can
be shown to be secure according to our model, but relies on collision-resistance.
As attacks have shown, however, this appears to be a stronger assumption than
pseudorandomness, especially in light of the deployed hash functions MD5 and
SHA-1 in TLS (see also the discussion in [Bel06]). We note that relaxing the
requirement of collision-resistance is also a goal in other areas like hash-and-sign
schemes [HK06].

Closest to our setting here comes the scenario of broadcast authentication of
streams via the TESLA protocol [PCST02]. There, the two parties share a one-way
chain of keys and authenticate each packet in time t with the t-th key of the chain.
Hence, TESLA also deals with authentication of streams and supports limited
buffering, but in contrast to our setting TESLA covers immediate authentication
of packets, requiring synchronization between the parties, and assumes shared
keys right away (whereas our key is delayed).

Analogously to TESLA, all other works on stream authentication refer to im-
mediate verification of each packet, e.g. [GR97].

In a recent work, Garay et al. [GKM09] also address the problem of MAC pre-
computations. However, they consider MACs in the context of hardware security
and show how to perform most of a MAC computation offline, before the message
is available.

2 Preliminaries

In this section we introduce the basic notions for message authentication codes.
In the key exchange application the two parties at the end usually compute the
MAC for the same message m but include their identity in the message. For
instance, SSL includes the server and client constant in the computation of the
finished message. Alternatively, the label can also be a random value chosen by
the party computing the MAC. In any case we assume that the label is known
at the outset of the MAC computation. We thus introduce labels in the model
such that each message m is escorted by a label ℓ ∈ {0, 1}n and the authentication
code covers both parts. We note that, for regular MACs, this is rather a syntactic
modification and becomes important only for the case of delayed-key MACs.

Definition 2.1 A message authentication code scheme MAC = (KGen,Mac,Vf)
(with labels) is a triple of efficient algorithms where

Key Generation. KGen(1n) gets as input the security parameter 1n and returns
a key k.

Authentication. The authentication algorithm � ← Mac(k,m, ℓ) takes as input
the key k, a message m from a space ℳn and a label ℓ ∈ {0, 1}n and returns

5



a tag � in a range ℛn.

Verification. Vf(k,m, ℓ, �) returns a bit.

It is assumed that the scheme is complete, i.e., for all k ← KGen(1n), any (m, ℓ) ∈
ℳn, and any � ← Mac(k,m, ℓ) we have Vf(k,m, ℓ, �) = 1.

A MAC is called deterministic if algorithm Mac is deterministic. Unforgeability
of MACs demands that it is infeasible to produce a valid tag for a new message:

Definition 2.2 A message authentication code MAC = (KGen,Mac,Vf) (with la-
bels) is called unforgeable under chosen message attacks if for any efficient algo-
rithm A the probability that the experiment ForgeMAC

A evaluates to 1 is negligible
(as a function of n), where

Experiment ForgeMAC
A (n)

k ← KGen(1n)

(m∗, ℓ∗, �∗)← AMAC(k,⋅,⋅),Vf(k,⋅,⋅,⋅)(1n)
Return 1 iff

Vf(k,m∗, ℓ∗, �∗) = 1 and A has never queried Mac(k, ⋅, ⋅) about (m∗, ℓ∗).

Note that for deterministic MACs where, in addition, the verification algo-
rithm recomputes the tag and compares it to the given tag, the verification oracle
Vf(k, ⋅, ⋅, ⋅) can be omitted [BGM04] while decreasing the adversary’s success prob-
ability by at most the number of verification queries. This particularly holds for
HMAC.

For some of our security proofs it is necessary to assume that the MAC is a
pseudorandom function. We note again that HMAC (or, to be precise, NMAC)
has this property as long as the underlying compression function is pseudorandom
[Bel06].

Definition 2.3 A message authentication code MAC is a pseudorandom function
if for any efficient distinguisher D the advantage∣∣∣Prob

[
DMac(k,⋅)(1n) = 1

]
− Prob

[
Df(⋅)(1n) = 1

]∣∣∣
is negligible, where the probability in the first case is over D’s coin tosses and
the choice of k ← KGen(1n), and in the second case over D’s coin tosses and the
choice of the random function f :ℳn → ℛn.

3 Defining Delayed-Key MACs for Streams

As explained in the introduction in the setting of MACs for streams where the key
K is only available at the end of the communication, we augment the MAC by a

6



function Point which maps the ephemeral key L (used to derive the MAC for the
stream) via K to a pointer P, and such that the verifier can recover the ephemeral
key from this pointer and K by the “inverse” Point−1. We let Point also depend on
the MAC � computed with the ephemeral key to capture general solutions as in
TLS and since this information is available when computing the pointer (see also
the remark after the definition). If Point does not depend on � we usually omit it
from the algorithm’s input.

Definition 3.1 A delayed-key message authentication code scheme DKMAC =
(KGen, (Mac,Point),Vf) (with labels) is a tuple of efficient algorithms where

Key Generation. KGen(1n) gets as input the security parameter 1n and returns
a secret key K.

Authentication. Algorithm Mac on input an ephemeral key L, a message m and
a label ℓ returns a tag �, and algorithm Point for input two keys K and L
and the label ℓ returns a pointer P. An augmented tag for key K and (m, ℓ)
then consists of the pair (�,P)← (Mac(L,m, ℓ),Point(K, L, ℓ, �)) for random

L
$← KGen(1n).

Verification. Vf(K,P,m, ℓ, �) returns a bit.

It is assumed that the scheme is complete, i.e., for any K ← KGen(1n), any
(m, ℓ) ∈ℳn×{0, 1}n, and any augmented tag (�,P)← (Mac(L,m, ℓ),Point(K, L, ℓ))
for L← KGen(1n) we have Vf(K,P,m, ℓ, �) = 1.

Both the SSL as well as the TLS solution can be mapped trivially to the
definition above. Namely, in both cases the ephemeral key L is the empty string
and the “MAC” � is merely the hash value of the message. The pointer P is then
the result of the actual MAC computations for K (i.e., HMAC with appended key
in SSL and HMAC for the hash value in TLS).

We remark that in key exchange protocols usually both parties send a MAC
of the transcript, possibly adding some distinct public identifiers. Our notion of
delayed-key MACs can be easily used to model the one-sided case with a bounded
client and a powerful server such that the client can compute its own MAC and
verify the server’s MAC with limited storage only (assuming that the underlying
MAC implements verification by recomputing the MAC and comparing the out-
come to the given tag): Namely, the client uses an ephemeral key L to compute
its own MAC, and another ephemeral key L′ to start computing the server’s MAC
for verification. At the end, the client transmits the pointers P and P′ for the
two MACs and the server derives L, L′ through K and verifies the client MAC and
computes and sends its own MAC. The client then only needs to verify that this
received MAC matches the previously computed value.

7



3.1 Security of Delayed-Key MACs

We adapt the security requirement of unforgeable MACs to our scenario of delayed-
key MACs, i.e., we grant the adversary access to an oracle OMAC(K, ⋅) that is ini-
tialized with a secret key K and mimics the authentication process, returning aug-
mented tags. Thus, for every query the oracle first chooses a fresh ephemeral key Li
and then returns the augmented tag (�i,Pi)← (Mac(Li,mi, ℓi),Point(K, Li, ℓi, �i, )).
After learning several tags the adversary eventually halts and outputs a tuple
(P∗,m∗, ℓ∗, �∗). The adversary is successful if the output verifies as true under
key K and the oracle has never been invoked on (m∗, ℓ∗).

Definition 3.2 A delayed-key message authentication code DKMAC = (KGen,
(Mac,Point),Vf) (with labels) is called unforgeable under chosen message attacks
if for any efficient algorithm A the probability that the experiment ForgeDKMAC

A
evaluates to 1 is negligible (as a function of n), where

Experiment ForgeDKMAC
A (n)

K← KGen(1n)

(P∗,m∗, ℓ∗, �∗)← AOMAC(K,⋅)(1n)
where OMAC(K, ⋅) for every query (mi, ℓi) samples a random key
Li ← KGen(1n) and returns (�i,Pi)← (Mac(Li,mi, ℓi, �i),Point(K, Li, ℓi))

Return 1 iff
Vf(K,P∗,m∗, ℓ∗, �∗) = 1
and A has never queried OMAC(K, ⋅) about (m∗, ℓ∗).

When a MAC is used in a stand-alone fashion the security guarantee of unforge-
ability usually suffices. However, when applied as a building block in protocols
like TLS or SSL the MAC is computed for a key which is subsequently used to
derive further keys or to encrypt data. Besides the regular unforgeability require-
ment it is thus also necessary to ensure that any delayed-key MAC is “as secure as
applying the original MAC”. That is, the delayed-key MAC should leak at most
the information about the key K as the deployment of the original MAC does.

We therefore introduce the notion of leakage-invariance, basically saying that
MACs may leak information about the key, but this information does not de-
pend on the specific key value. In our setting this means that the leakage of the
ephemeral keys and of the long-term key for each MAC computation are identical
(yet, since we augment the tag by the pointer we still need to ensure that this ex-
tra information does not violate security). More formally, we compare the success
probability of an adversary A predicting some information f(K) about key K after
learning several tuples (Pi,mi, ℓi, �i) with the success probability of an adversary
ℬ given only access to the plain underlying authentication algorithm Mac(K, ⋅, ⋅).
For a leakage-invariant delayed-key MAC these probabilities should be close.

8



Definition 3.3 A delayed-key DKMAC = (KGen, (Mac,Point),Vf) (with labels) is
called leakage-invariant if for any probabilistic polynomial-time algorithm A there
exists a probabilistic polynomial-time algorithm ℬ such that for any (probabilistic)
function f the difference

Prob
[
Expleak-inv

A,DKMAC(n) = 1
]
− Prob

[
Expleak-inv

ℬ,DKMAC(n) = 1
]

is negligible, where:

Experiment Expleak-inv
A,DKMAC(n)

K← KGen(1n)

a← AOMAC(K,⋅),Vf(K,⋅⋅⋅ )(1n)
where OMAC(K,mi) samples a key
Li ← KGen(1n) and returns (�i,Pi)
← (Mac(Li,mi, ℓi),Point(K, Li, ℓi, �i))

output 1 if and only if
a = f(K)

Experiment Expleak-inv
ℬ,DKMAC(n)

K← KGen(1n)

a← ℬMac(K,⋅,⋅),Vf(K,⋅,⋅)(1n)

output 1 if and only if
a = f(K)

If the function f is from a set ℱ of functions and A makes at most qMac queries
to oracle OMAC and at most qVf queries to oracle Vf, then we say that the MAC is
(qMac, qVf ,ℱ)-leakage-invariant. The scheme is called leakage-invariant for distinct
labels if A only submits queries with distinct labels to oracle OMAC(K, ⋅, ⋅). It is
called leakage-invariant for random labels if the labels are chosen at random by
oracle OMAC (instead of being picked by the adversary).

We can even strengthen our definition by bounding the adversary ℬ to the
number ofA’s queries, i.e., ifA can derive some information f(K) in q = (qMac, qVf)
queries, then ℬ should be able to deduce f(K) in at most q queries as well. We call
such schemes strongly leakage-invariant. We do not impose such a restriction per
se, since there can be leakage-invariant solutions where ℬ can safely make more
queries (e.g., if MACs are pseudorandom, except that they always leak the first
three bits of the key).

Above we do not put any restriction on the function f , i.e., it could even be
not efficiently computable. For our more efficient solution we weaken the notion
above and demand that the adversary computes the identity function f(K) = K,
i.e., predicts the entire key. Formally, we then let ℱ = {ID}. If, as done in most
key exchange protocols, the key is subsequently piped through a hash function
modeled as a random oracle, then the adversary needs to query the random oracle
about the entire key (and thus needs to predict it). Else the adversary is completely
oblivious about the random hash value and the derived key. In other words, in
this scenario considering the identity function suffices.

We remark that we refrain from using Canetti’s universal composition (UC)
model [Can01] although we are interested in how the key is subsequently used. The

9



second experiment with adversary ℬ of our notion of leakage-invariance already
resembles the notion of an ideal functionality and the ideal-world scenario, and
the actual attack on the concrete scheme mimics the real-world setting. However,
the UC model introduces additional complications like session IDs and seems to
provide more than what is often needed in the applications we have in mind (i.e.,
one typically asks for more than that the adversary cannot recover the entire key,
even though this may be sufficient).

We finally note that the “TLS solution” to first compute H(m) and then
Mac(K, H(m), ℓ) is clearly strongly leakage-invariant if H is collision-resistant (es-
sentially because the ephemeral key L is empty, �i = H(mi) is publicly known and
the pointer P is the MAC for �i). In addition, it is also unforgeable, providing a
secure solution under the stronger assumption.

4 Leakage-Invariance vs. Unforgeability

In this section we show that, in general, the notions of leakage-invariance and
unforgeability are somewhat incomparable. We first show that there is a leakage-
invariant DKMACl-i scheme which is easily forgeable for any underlying MAC
scheme. In our second example we show that also the contrary can be true.
Note that the second separation only holds if the function f ∕= ID, i.e., the pre-
dicted information is not the entire key itself. Otherwise an adversary against
unforgeability follows trivially.

Separating Example 1. In the first example, we construct a delayed-key MAC
scheme that is leakage-invariant but insecure with respect to unforgeability. Let
DKMACl-i be the delayed-key variant (with empty labels) for some arbitrary mac
scheme MAC1. Further, let Pointl-i(K, L) = L, i.e., for any input message m, the
authentication algorithm (Mac,Point)l-i returns the augmented tag (L,Mac(L,m))
for some random L.

Obviously, DKMACl-i is not unforgeable, as an adversary can simply choose
the ephemeral key L and corresponding tag itself. However, as the secret key K is
never used by the authentication algorithm of the delayed-key MAC, an adversary
cannot have an advantage in predicting some information f(K) over an adversary
that has oracle access to Mac(K, ⋅). Thus, according to our notion of leakage-
invariance DKMACl-i would be secure.

Separating Example 2. For the second separating example we construct a
scheme DKMAC′unf which leaks the first part of the secret key, but does not use
this key part in the authentication process. Let MAC = (KGen,Mac,Vf) be a
pseudorandom MAC (with empty labels) that uses keys of n/2 bits for security

10



parameter n. Then let MAC′ = (KGen,Mac′,Vf)′ the following modification of
MAC (with n-bit keys):

∙ KGen remains unchanged.

∙ Mac′(K,m) parses the key as K0∣∣K1 with ∣K0∣ = ∣K1∣ = n/2 and outputs
�′ ← Mac(K1,m).

∙ Vf ′(K,m) parses the key as K0∣∣K1 and outputs Vf(K1,m).

Now let DKMACunf = (KGenunf, (Mac,Point)unf,Vfunf) be an unforgeable and
leakage-invariant delayed-key scheme based on MAC′. We derive another scheme
DKMAC′unf = (KGenunf, (Macunf,Point

′
unf),Vfunf) that only differs in the pointer

algorithm.

∙ Point′(K, L) parses the first key as K0∣∣K1 and outputs P′ = P∣∣K0 where
P ← Point(0n/2∣∣K1, L). The inverse algorithm (Point′)−1(K,P′) parses its
input as K0∣∣K1 and P∣∣K0 and returns Point−1(0n/2∣∣K1,P).

Our new scheme DKMAC′unf now leaks the first half K0 of the secret key as
part of the new pointer P′. However, as K0 is not incorporated in computing the
”real” pointer P, the unforgeability follows from DKMACunf.

For leakage-invariance we can now construct an adversary A that predicts with
probability 1 the first halve of the secret key which is not simulatable when A only
corresponds with the underlying Mac that totally ignores that part of the secret
key.

5 One-Sided Delayed-Key MACs: The Unbounded Case

In this section we present two constructions of delayed-key MACs, both using
a pseudorandom MAC as building block. We show that both approaches are
unforgeable and leakage-invariant if the underlying MAC is a pseudorandom func-
tion. This is independent of any bound on the number of MAC or verification
queries and of any assumption about the function f .

5.1 Encrypt-Then-MAC

The idea of the encrypt-then-MAC construction DKMACEtM is to use the pseudo-
random MAC to construct a CCA-secure encryption scheme:

Construction 5.1 Let MAC = (KGen,Mac,Vf) be a (deterministic) message au-
thentication code. Define the delayed-key DKMACEtM = (KGenEtM, (Mac,Point)EtM,
VfEtM) as follows:

11



Key Generation KGenEtM. The key generation algorithm gets a security pa-
rameter 1n and outputs a key K← KGen(1n).

Authentication (Mac,Point)EtM. The authentication procedure takes as input a
secret key K, a message m and a label ℓ. It first samples a fresh ephemeral
key L ← KGen(1n) by running the key generation of the underlying MAC
scheme. For key L and input message m it computes the tag � ← Mac(L,m)
and the pointer P← Point(K, L, ℓ), where Point computes

P = (c, t) = (Mac(K, 0∣∣ℓ)⊕ L,Mac(K, 1∣∣ℓ∣∣c)).

The output of (Mac,Point)EtM is the pair (�,P).

Verification VfEtM. Upon input a secret key K, a pointer P = (c, t), a mes-
sage m with label ℓ and a tag �, it first derives the ephemeral key L =
Point−1(K,P) = Mac(K, 0∣∣ℓ) ⊕ c and outputs 1 if and only if Vf(L,m, ℓ, �)
and Vf(K, 1∣∣ℓ∣∣c).

Correctness of this MAC follows easily from the correctness of the underlying
MAC.

Lemma 5.2 If MAC = (KGen,Mac,Vf) is a pseudorandom message authentica-
tion code then the delayed-key MAC scheme DKMACEtM in Construction 5.1 is
unforgeable against chosen message attacks (for random or distinct labels).

Regarding concrete security, the advantage of any adversary ADKMAC making
qMAC queries of bit length at most l is bounded by qMAC times the advantage of
an adversary AMAC against the pseudorandomness of MAC. Here, AMAC makes
2qMAC queries of bit length at most max(2n + 1, l) and runs in roughly the same
time as ADKMAC.

Proof. The proof is by contradiction. Assume that there exists an adversary A
with oracle access to OMAC(K, ⋅, ⋅) and Vf(K, ⋅ ⋅ ⋅ ). After learning q augmented tags
(�1,P1), . . . , (�q,Pq) ← OMAC(K, ⋅, ⋅) for chosen message/label pairs (m1, ℓ1), . . . ,
(mq, ℓq) the adversary outputs with noticeable probability a forgery (P∗,m∗, ℓ∗, �∗)
such that Vf(K,P∗,m∗, ℓ∗, �∗) but the pair (m∗, ℓ∗) was never queried to the au-
thentication oracle. Then there are two exclusive cases for the forgery and a
successful adversary:

∙ The label ℓ∗ and the first part of the pointer c∗ never occurred in the same
interaction with the authentication oracle, i.e., (ℓ∗, c∗) ∕= (ℓ1, c1) . . . (ℓq, cq)
where ci = Mac(K, 0∣∣ℓi) ⊕ Li for same Li that was chosen by the oracle in
the i-th query . Denote this event by E1.

12



∙ The label and pointer occurred in the same interaction with OMAC, i.e.,
(ℓ∗, c∗) = (ℓi, ci) for some i ∈ {1, . . . , q} where OMAC(K, ⋅, ⋅) returned a
pointer (ci, ti) and tags �i for a query (mi, ℓi). In this case it must hold
that m∗ ∕= mi. Denote this event by E2.

Let Win denote the event that A wins, then we have that Prob[Win] ≤
Prob[E1] + Prob[E2], since the two cases above cover all possible success scenar-
ios. For both events we can construct an adversary against the underlying MAC
scheme.

Event E1. In the first case, A outputs with non-negligible probability a forgery
(P∗,m∗, ℓ∗, �∗) where either ℓ∗ is a fresh label, or ℓ∗ = ℓi but then c∗ ∕= ci. Given
such an adversary A we can construct an adversary AMAC with black-box access
to oracles Mac(K, ⋅) and Vf(K, ⋅) that produces with non-negligible probability a
forgery for the underlying MAC.

To this end, adversary AMAC answers any authentication query (mi, ℓi) of A by
computing �i ← Mac(Li,mi) for some random Li and using its own oracle Mac(K, ⋅)
to derive the corresponding pointer (ci, ti)← (Mac(K, 0∣∣ℓi)⊕Li,Mac(K, 1∣∣ℓi∣∣ci)).
For any of A’s verification queries (Pj ,mj , ℓj , �j) with Pj = (cj , tj), our adversary
AMAC first uses its external verification oracle to check whether Vf(K, 1∣∣ℓ∣∣cj). If
the tuple validates as false, AMAC responds ’false’, too. Otherwise, our adver-
sary queries its authentication oracle Mac(K, ⋅) about 0∣∣ℓj and reconstructs the
ephemeral key as Lj = cj ⊕Mac(K, 0∣∣ℓj). The adversary AMAC responds ’true’ if
Mac(Lj ,mj) = �j , ’false’ otherwise.

If, at the end, A stops outputting a forgery (P∗,m∗, ℓ∗, �∗) where P∗ = (c∗, t∗),
our adversary AMAC returns (1∣∣ℓ∗∣∣c∗), t∗ as its forgery. Since we have that
(ℓ∗, c∗) ∕= (ℓ1, c1), . . . , (ℓq, cq) and the other MAC queries start with bit ’0’, the
output 1∣∣ℓ∗∣∣c∗ was never sent to AMAC’s authentication oracle either. Thus
(1∣∣ℓ∗∣∣c∗), t∗ is a valid forgery for Mac(K, ⋅).

Event E2. Assume that event E2 happens with noticeable probability, i.e. A
outputs a forgery (P∗,m∗, ℓ∗, �∗) where m∗ is a fresh message but (ℓ∗, c∗) = (ℓi, ci)
for some i ∈ {1, . . . , q}. Thus, as c∗ = ci = Mac(K, 0∣∣ℓi) ⊕ Li the adversary A
has forged a tag �∗ = Mac(Li,m

∗) for a key Li that has already appeared in the
interaction with the OMAC oracle. We denote by Q the maximal number of A’s
authentication queries.

Given A we can derive an adversary AMAC that is granted oracle access to
Mac(Lq, ⋅),Vf(Lq, ⋅) and breaks the unforgeability of the underlying MAC. The
adversaryAMAC first chooses a random query q ∈ {1, . . . , Q} and samples a random
key K ← KGen(1n). For any authentication query (mi, ℓi) of A where i ∕= q, it
simulates the OMAC(K, ⋅, ⋅),Vf(K, ⋅) oracles with the knowledge of the key K and by
choosing a random ephemeral key Li. When A makes its q-th query (mq, ℓq), our

13



adversary forwards the requested message mq to its own oracle Mac(Lq, ⋅). The
answer �q as well as the pointer (cq, tq) for some randomly chosen cq are returned
to the adversary A.

By the pseudorandomness of the MAC choosing a randomly cq instead of
computing Mac(K, 0∣∣ℓq)⊕Lq cannot decrease A’s success probability significantly,
as this would lead to a successful distinguisher against the pseudorandomness.
(The formal argument would replace all MAC values by random values and then
apply a hybrid argument.) Here we use the fact that the labels are distinct,
implying that this answer is independent of any other MAC computation and that
we can replace only this value. Dropping Li hence does not change the distribution
of the adversary’s view, even if seeing the other MAC values. Since random labels
are also distinct with overwhelming probability 1 − Q2 ⋅ 2−n this holds for such
labels, too.

When A finally outputs its forgery (P∗,m∗, ℓ∗, �∗), our adversary AMAC checks
whether P∗ = (cq, tq) and, if so, it returns m∗, �∗ as its forgery; otherwise it aborts.

Overall, AMAC forges the underlying MAC with probability 1/Q ⋅Prob[E2] plus
the negligible advantage in distinguishing the pseudorandomness. □

Lemma 5.3 The delayed-key MAC scheme DKMACEtM in Construction 5.1 is
leakage-invariant.

Proof. To prove leakage-invariance we have to show that for every adversary A
with oracle access to OMAC(K, ⋅, ⋅) and Vf(K, ⋅ ⋅ ⋅ ) that predicts with noticeable
probability some information f(K) about the key K, we can derive an adversary
ℬ that only has access to Mac(K, ⋅) and Vf(K, ⋅) but predicts f(K) with the same
advantage as A.

Given a successful adversary A, we construct an adversary ℬ that uses A in a
black-box manner. For each authentication query (mi, ℓi) of A, the adversary ℬ
chooses a random Li, and computes �i ← Mac(Li,mi) locally and (ci, ti) with the
help of its external oracle Mac(K, ⋅, ⋅). Verifications queries of A are handled anal-
ogously. Thus, for any invocation of A, our adversary has to query its Mac(K, ⋅, ⋅)
or Vf(K, ⋅ ⋅ ⋅ ) oracle two times. When A stops, outputting some information a,
our adversary ℬ outputs a as his guess, too. As ℬ is able to mimic both oracles
OMAC,Vf of A perfectly, a = f(K) holds for ℬ with the same noticeable probability
as for A. □

5.2 Pseudorandom Permutation

The idea of our second construction DKMACPRP is to authenticate a message m for
a random key L and to derive the pointer P = Point(K, L) by applying the inverse of
a four-round Feistel permutation �−1(K, ⋅) on the ephemeral key L. For the Feistel
permutation we use Mac(K, ⟨i⟩2 ∣∣⋅) as round function, where ⟨i⟩2 denotes the fixed-
length binary representation of the round number i = 0, 1, 2, 3 with two bits. To

14



verify a given tuple (K,P, �,m) one first recovers L by evaluating the permutation
on P and then verifies if (L, �,m) validates as true. The pseudorandomness of the
MAC ensures that the pointer leaks no information about the secret key, nor the
ephemeral key.

The construction DKMACPRP is optimal in terms of output length (assuming
that keys are uniform bit strings and that at least ∣L∣ additional bits must be
communicated for L). Yet, it slightly increases the computational costs, as the
Mac algorithm is now also invoked four times to derive the pointer information
(but only on short strings). The construction also shows that neither randomized
encryption nor labels are necessary.

For (keyed) pseudorandom round functions f1, f2, f3, f4 and input x0∣∣y0 (of
equal length parts x0, y0), let xi+1∣∣yi+1 = yi∣∣(xi ⊕ fi(yi)) for i = 0, 1, 2, 3. This
defines a permutation � (with the round functions and keys given implicitly) map-
ping input x0∣∣y0 to output x4∣∣y4. For our solution here we assume for simplicity
that keys L are of even length, such that they can be written as L = x0∣∣y0. Instead
of using independent round functions we use quasi-independent round functions
fi = Mac(K, ⟨i⟩2 ∣∣⋅) by prepending the round number i in binary (represented with
the fixed length of two bits).

Construction 5.4 Let MAC = (KGen,Mac,Vf) be a (deterministic) message au-
thentication code. Define the delayed-key DKMACPRP = (KGenPRP, (Mac,Point)PRP,
VfPRP) as follows:

Key Generation KGenPRP. The key generation algorithm gets a security pa-
rameter 1n and outputs a key K← KGen(1n).

Authentication (Mac,Point)PRP. The authentication procedure takes as input
a secret key K, a message m and first samples a fresh ephemeral key L ←
KGen(1n) by running the key generation of the underlying MAC scheme.
For key L and input message m it computes the tag � ← Mac(L,m) and the
pointer P ← Point(K, L), where Point computes P ← �−1(K, L) for a four-
round Feistel permutation � that uses Mac(K, ⟨i⟩2 ∣∣⋅) as the round functions
for i = 0, 1, 2, 3 and L as input. The output of (Mac,Point)PRP is the pair
(�,P).

Verification VfPRP. Upon input a secret key K, a pointer P, a message m and
a tag �, it first derives the ephemeral key L = Point−1(K,P) = �(K,P) and
outputs Vf(L,m, �).

Correctness of this MAC follows easily form the correctness of the underlying
MAC.

Lemma 5.5 If MAC = (KGen,Mac,Vf) is a pseudorandom message authentica-
tion code then the delayed-key MAC scheme DKMACPRP in Construction 5.4 is
unforgeable against chosen message attacks.

15



As for concrete security, the advantage of any adversary ADKMAC making qMAC

queries of bit length at most l is bounded by qMAC times the advantage of an
adversary AMAC against the pseudorandomness of MAC that makes 4qMAC queries
of length at most max(n+ 2, l). Again, the running times of both algorithms are
comparable.

Proof. Assume towards contradiction that an adversary A making q queries
m1, . . . ,mq to the OMAC(K, ⋅) oracle outputs with non negligible probability a tu-
ple (P∗,m∗, �∗), s.t. Vf∗(K,P∗,m∗, �∗) but m∗ was never submitted to the oracle.
Then we can distinguish between two cases:

∙ P∗ ∕= P1, . . .Pq, i.e., the adversary has created a valid forgery for a fresh
pointer and thus for a fresh ephemeral key L∗ ∕= L1, . . . Lq, since the pointer
algorithm is a permutation. Denote the event by E1.

∙ P∗ = Pi for some i ∈ {1, . . . , q}, i.e., the pointer P∗ has already appeared
in one of the oracle replies. Thus, the adversary A has successfully forged a
MAC for a key L∗ after seeing at least one tag �i ← Mac(L∗,mi). We denote
this event by E2.

As one of the two cases has to occur if A is successful —which we denote as the
event Win— we have that Prob[Win] ≤ Prob[E1] + Prob[E2] (note that events
E1, E2 both require a success). We now show that in both cases we can construct
an adversary that breaks the underlying MAC scheme.

Event E1. Assume that case E1 happens with non-negligible probability. Then
we can show that this contradicts the unforgeability of the underlying MAC. Recall
that adversary A has access to an oracle OMAC(K, ⋅) that chooses a random key
Li for each query mi and then returns �i ← Mac(Li,mi) and Pi = Point(K, Li). It
can also query a verification oracle (with key K about arbitrary ephemeral keys,
messages and tags).

The function Point is a four-round Feistel permutation that uses Mac(K, ⟨i⟩2 ∣∣⋅)
as the round function. Prepending the round number ⟨i⟩2 ensures that Mac(K, ⋅)
is computed on distinct values during an evaluation of the permutation, yielding
quasi independent round functions. Thus, we can apply the Luby-Rackoff result
[LR88], stating that a four-round Feistel network instantiated with independent
pseudorandom functions yields a strong pseudorandom permutation (i.e., is indis-
tinguishable from a random permutation, even if the adversary is granted access
to the inverse function).

Hence, if MAC is a pseudorandom function, then our pointer function is a
strong pseudorandom permutation. Then we can replace each call to the functions
Point (for MAC queries) and Point−1 (for verification requests) by applying a
random permutation and its inverse, without significantly decreasing A’s success

16



probability; else this would lead to a successful distinguisher against the strong
pseudorandomness.

We can now apply a PRF/PRP switching lemma [BR06] (but for strong per-
mutations, see for example [HR03]) and conclude that for P∗ ∕= Pi for all i the
ephemeral key L∗ derived from P∗ is an unknown random key. Thus, A has to forge
a tag �∗ = Mac(L∗,m∗) for some secret and random key L∗, which contradicts the
unforgeability of the underlying MAC. (The formal argument uses a black-box
simulation of A using lazy sampling to simulate the random function to mount a
key-only attack on Mac(L∗, ⋅).)

Event E2. In the case that the adversary forges with non-negligible probability
a MAC for a key that has already appeared in the interaction with the oracle. We
can then construct an adversary AMAC against the underlying MAC given access
to oracles Mac(Lq, ⋅),Vf(Lq, ⋅). We denote by Q the maximal number of queries
that A makes to its oracle.

Our adversary AMAC picks a random query q ∈ {1, . . . , Q} and simulates the
OMAC and Vf oracles with lazy sampling (simulating a random permutation � via
lazy sampling). That is, for any query mi where i ∕= q, algorithm AMAC generates a
random key Li and computes (�i,Pi) where Pi is derived via the simulated random
permutation �−1. In the q-th query the adversary invokes its oracle Mac(Lq, ⋅) on
the requested message mq, obtaining �q and returns the tag and a random pointer
Pq. If, at the end, A stops outputting a forgery (P∗,m∗, �∗) the adversary checks
whether P∗ = Pq and, if so, outputs m∗, �∗ as its forgery; otherwise it aborts.

Note that our adversary may give an inconsistent answer if Li = Lq for some i ∕=
q (because then P∗ is an independent random value, not matching the simulated
random permutation). However, the probability of this happening is negligible by
the unforgeability of the underlying MAC (else sampling Q random keys would
yield an unknown key with sufficiently high probability, allowing to forge MACs
easily). Assuming that the choice is consistent, it follows again from the (strong)
pseudorandomness of the pointer algorithm that A’s success probability in the
simulation is negligibly close to the one in an actual attack. In this case, our
adversary AMAC wins with probability 1/Q ⋅ Prob[E2], which is non-negligible,
too. □

Lemma 5.6 The delayed-key MAC scheme DKMACPRP in Construction 5.4 is
leakage-invariant.

Proof. To prove leakage-invariance we have to show that for every adversary
A with oracle access to OMAC(K, ⋅) and Vf(K, ⋅ ⋅ ⋅ ) that predicts with noticeable
probability some information f(K) about the key K, we can derive an adversary
ℬ that only has access to Mac(K, ⋅) and Vf(K, ⋅) but predicts f(K) with the same
advantage as A.

17



Assume that A is able to derive some non-trivial information about K after
sending q queries to its OMAC and Vf oracles, which implements the authenti-
cation process of our delayed-key MAC. Then we can construct an adversary ℬ
that successfully determines f(K) when sending 4q queries to its Mac(K, ⋅) and
Vf(K, ⋅ ⋅ ⋅ ) oracles. To this end, ℬ mimics the OMAC oracle by computing the tag
�i ← Mac(Li,mi) for any query mi and some self-chosen key Li and calculating Pi

with the help of its own oracle (and analogously for verification requests). Thus,
for each of A’s queries, ℬ has to invoke Mac(K, ⋅) four times to simulate OMAC or
Vf. If A outputs some information a, ℬ forwards it as its own output. Since the
simulation is perfect from A’s point of view the success probabilities of ℬ and A
are identical. □

6 One-Sided Delayed-Key MACs: The Bounded Case

In this section we show that, by reducing the security requirements for unforge-
ability and leakage-invariance, we can construct key-delayed MACs that require
less Mac invocations than our previous constructions or are even optimal in both,
computational costs and output length. In other words, we can trade in security
for efficiency. For our first construction, we bound the adversaries against un-
forgeability and leakage-invariance to make at most O(log(n)) many verification
queries. Then we can show that the scheme is even strongly leakage-invariant
(meaning that ℬ does not make more queries than A), as long as we only demand
that A is unable to predict the entire key.

By further restricting the adversary against the leakage-invariance to make
only a single authentication query, we obtain our most efficient solution that re-
quires no additional Mac computations and has optimal output length (assuming,
that at least ∣L∣ additional bits have to be communicated). Note that the under-
lying MAC is then assumed to be secure against related-key attacks.

As already mentioned in the introduction, limiting the number of verification
queries corresponds to the common approach that in key-exchange protocols, both
server and client verify only a single MAC each. Leakage-invariance for only
ℱ = {ID} is sufficient, if the key gets afterwards hashed by a hash function that
behaves like a random oracle.

6.1 Encrypt-Only

Our third construction avoids the Feistel network and uses a “lightweight” PRF-
based encryption of the ephemeral key under the long-term key.

Construction 6.1 Let MAC = (KGen,Mac,Vf) be a message authentication code.
Define the delayed-key DKMACEo = (KGenEo, (Mac,Point) Eo,VfEo) as follows:

18



Key Generation KGenEo. The key generation algorithm gets a security param-
eter 1n and outputs a key K← KGen(1n).

Authentication (Mac,Point)Eo. The authentication procedure takes as input a
key K, a message m and first samples a fresh ephemeral key L← KGen(1n)
by running the key generation of the underlying MAC scheme. For key L
and input message m and label ℓ it computes a tag � ← Mac(L,m) and
pointer P← Point(K, L, ℓ) and returns P = (ℓ,Mac(K, ℓ)⊕ L). The output of
(Mac,Point)Eo is the tuple (P, �).

Verification VfEo. Upon input a secret key K, a pointer P, a message m and a
tag � it first computes Point−1(K,P). To this end the algorithm parses P as
(ℓ, c) and sets L = c⊕Mac(K, ℓ). Finally, the verification algorithm outputs
Vf(L,m, �).

Correctness is again easy to see.

Lemma 6.2 If MAC = (KGen,Mac,Vf) is a pseudorandom message authentica-
tion code, then the delayed-key MAC scheme DKMACEo in Construction 6.1 is
unforgeable against chosen message attacks (for random or distinct labels), if the
adversary can make at most O(log(n)) verification queries.

Regarding concrete security, the advantage of any adversary ADKMAC making
qMAC, qVf queries each of length at most l is bounded by qMAC ⋅ 2qVf times the ad-
vantage of an adversary AMAC against the pseudorandomness of MAC that makes
qMAC queries of length at most max(n, l).

Proof. The proof is by contradiction. Assume there exists an adversary A that af-
ter making q queriesm1, . . . ,mq to itsOMAC(K, ⋅) oracle and at mostO(log(n)) ver-
ification queries, outputs with non negligible probability a tuple ((ℓ∗, c∗),m∗, �∗)
such that Vf∗(K, (ℓ∗, c∗),m∗, �∗) but (ℓ∗,m∗) never occurred as query/response
pair in one of the interactions with the oracle. Then we can distinguish between
three exclusive cases.

∙ (ℓ∗, c∗) = (ℓi, ci) for some i ∈ {1, . . . , q}. Then L∗ = Mac(K, ℓi)⊕ ci, i.e., the
adversary A has forged a tag �∗ for a key Li that was used in at least one
of OMAC’s answers. Denote this event by E1.

∙ ℓ∗ ∕= ℓi for i = 1, . . . , q, i.e., the second part of the pointer c∗ encloses with
overwhelming probability the corresponding tag Mac(K, ℓ∗) for a fresh ℓ∗.
We denote the event by E2.

∙ ℓ∗ = ℓi but c∗ ∕= ci and m∗ ∕= mi. In this case, A has either forged the tag �∗

for some ”used” ephemeral key Li or totally unknown key L∗. Denote this
event by E3.

19



Let Win denote the event that A succeeds in forging a MAC, then we have that
Prob[Win] ≤ Prob[E1] + Prob[E2] + Prob[E3]. For each case we can construct
an adversary that breaks the underlying MAC scheme.

Event E1. In the first case, the adversary A outputs a valid forgery ((ℓi, ci),m
∗,

�∗) for some key Li after seeing at least one tag �i ← Mac(Li,mi) where mi ∕= m∗.
Again, let Q denote the maximum number of queries that A sends to OMAC.

This allows to construct an adversaryAMAC with black-box access to Mac(Lq, ⋅),
Vf(Lq, ⋅) that breaks the unforgeability of the underlying MAC. To this end, AMAC

picks a random q ∈ {1, . . . , Q} and samples a key K← KGen(1n).
For each authentication query mi of A where i ∕= q our adversary computes

the response locally, by choosing a random key Li ← KGen(1n) and the knowledge
of the other parameters. Only on the q-th query AMAC invokes its own oracle
Mac(Lq, ⋅) on the message mq and forwards the response �q together with a ran-
domly chosen (ℓq, cq) to A. Due to the pseudorandomness, the latter does not
harm the success probability of A (using again that the labels are distinct). Each
verification query of A is either responded using the local chosen parameters, or
for ((ℓq, cq)),mj , �j by using the external verification oracle Vf(Lq, ⋅).

When A outputs its forgery ((ℓ∗, c∗),m∗, �∗), our adversary returns m∗, �∗ iff
(ℓ∗, c∗) = (ℓq, cq); otherwise AMAC aborts. Hence, AMAC outputs a valid forgery
for Mac(Lq, ⋅) with probability 1/q ⋅ Prob[E1].

Event E2. Assume that the adversaryAmanages to create a forgery ((ℓ∗, c∗),m∗,
�∗) where the label ℓ∗ is distinct from all other labels ℓ1, . . . , ℓq that have appeared
in the replies of the OMAC(K, ⋅) oracle.

Given such an adversary A, we can construct an successful adversary AMAC

that has black-box access to Mac(K, ⋅),Vf(K, ⋅) and attacks the underlying MAC.
When A sends a query mi to its authentication oracle, AMAC computes �i ←
Mac(Li,mi) for a random key Li and queries its own oracle about a randomly
chosen ℓi, obtaining ci ← Mac(K, ℓi)⊕ Li. The tuple �i, (ℓi, ci) is send as reply to
A.

For each of the at most O(log(n)) verification queries ((ℓj , cj),mj , �j) of A,
our adversary AMAC can only guess the answer, as unwrapping the ephemeral key
would require a further query ℓj to the tagging oracle, thereby invalidating ℓj as
potential forgery. Thus, if A makes a query to its verification oracle, AMAC splits
A into two instantiations, where it answers ’true’ in the first, and ’false’ in the
second instance.

Then, in one of the at most poly(n) instantiations of A, the simulation of the
OMAC,Vf oracles by AMAC is perfect. When this instance of A outputs a forgery
((ℓ∗, c∗),m∗, �∗), our adversary uses the fresh pointer (ℓ∗, c∗) to derive its own
forgery for Mac(K, ⋅).

20



Recall, that c∗ = Mac(K, ℓ∗) ⊕ L∗ is the one-time-pad encryption of L∗ under
Mac(K, ℓ∗) and �∗ a tag for message m∗ under key L∗. Then, the ephemeral key
either already occurred in the simulation, i.e., L∗ = Li for some i ∈ {1, . . . , q} or
L∗ ∕= L1, . . . , Lq. In the latter, A has to compute a tag �∗ for some secret and
random key L∗ which contradicts the unforgeability of the underlying MAC. In
the first case, where L∗ = Li our AMAC guesses an index i ∈ {1, . . . , q} and returns
ℓ∗, (c∗ ⊕ Li).

Overall, AMAC will output a valid forgery with probability 1/(Q ⋅ poly(n)) ⋅
Prob[E2], which is non-negligible, too.

Event E3. Now consider the case that the adversary A outputs with noticeable
probability a forgery ((ℓ∗, c∗),m∗, �∗) where ℓ∗ = ℓi but c∗ ∕= ci for some i ∈
{1, . . . , q} and q denoting the number of A’s authentication queries. Then we have
c∗ = Mac(K, ℓi)⊕ Li ⊕Δ for some Δ ∈ {0, 1}n and can distinguish again between
two exclusive cases. If Li ⊕Δ ∕= L1, . . . , Lq, then A has forged �∗ = Mac(L∗,m∗)
for some secret and random L∗, contradicting the unforgeability of MAC. When
Li ⊕Δ = Lj for some j ∈ {1, . . . , q}, A succeeded in forging a tag for some fresh
message m∗ but used ephemeral Lj . In that case, we can construct an adversary
AMAC against the underlying MAC as in event E1.

□

Lemma 6.3 The delayed-key MAC scheme DKMACEo in Construction 6.1 is
(∞, O(log(n)), {ID})-leakage-invariant for random labels.

Proof. We show that for every adversaryA with oracle access toOMAC(K, ⋅),Vf(K, ⋅)
that makes at most O(log(n)) verification queries and predicts with noticeable
probability the entire key a = K, we can derive an adversary ℬ that is granted
access only to Mac(K, ⋅),Vf(K, ⋅) but predicts a = K with the same advantage as
A. Furthermore, our adversary ℬ succeeds after the same number of queries that
A required to obtain a. For each query mi that A sends to its OMAC oracle, ℬ
chooses an ephemeral key Li and label ℓi at random. It then computes �i locally
and queries its own oracle Mac(K, ⋅) on ℓi to correctly derive Pi. For any of the
at most O(log(n)) verification queries of A, our adversary ℬ halts A an then runs
two instantiations for each answer bit b = 0, 1.

When each of the at most n instantiations of A outputs its guess an, our
adversary tests for i = 1, . . . , n whether the guess is the correct key by verifying

Pi
?
= Mac(ai, ℓi)⊕ Li. If the verification holds, ℬ outputs ai.
Since, in at least one instantiation of A, the simulation of OMAC,Vf by ℬ is

perfect, ℬ has the same advantage in identifying the entire key K as A. □

21



6.2 XOR-Construction

In our most simple and efficient construction, we use the shared key K to directly
mask the ephemeral key. That is, by computing the one-time-pad encryption of
L under K, i.e., P = K ⊕ L. Thus, for any authentication query, DKMAC⊕ makes
only a single Mac computation.

Definition 6.4 Let MAC = (KGen,Mac,Vf) be a message authentication code.
Define the delayed-key DKMAC⊕ = (KGen⊕, (Mac,Point)⊕,Vf⊕) as follows

Key Generation KGen⊕. The key generation algorithm gets a security parame-
ter 1n and outputs a key K← KGen(1n).

Authentication (Mac,Point)⊕. The authentication procedure takes as input a
shared secret key K, a message m and outputs � ← Mac(L,m) and pointer
P = K⊕ L for a randomly chosen L← KGen(1n).

Verification Vf⊕. Upon input a secret key K, a pointer P, a message m and a
tag � it outputs Vf(P⊕ K,m, �).

Correctness of DKMAC⊕ follows from the correctness of the underlying MAC.

In order to prove the unforgeability of our DKMAC⊕ construction, we require a
stronger assumption on the underlying MAC, namely that it is a related-key secure
pseudorandom function. The first formal security model for related key attacks
was introduced by Bellare and Kohno in [BK03]. Inter alia, they have shown that
PRFs that are provably secure against those attacks can be achieved when the set
of relations is restricted to some non-trivial class of key transformation functions,
denoted by Φ. The notion for Φ-related-key security then extends the notion of
standard PRF’s and grants the adversary access to a related-key oracle that is
either MacRK(⋅,k)(⋅) or fRK(⋅,k)(⋅). In both cases a key k is chosen at random and
in the random world, also a function f gets chosen randomly. Each query of the
adversary then consists of a key transformation function � : K → K and an input
value m. The query is answered by Mac(�(k),m) and f(�(k),m) respectively.

Definition 6.5 Let Φ be a set of key transformation functions, and D an adver-
sary with access to related-key oracles that is allowed to send queries (�,m) ←
Φ ×ℳ. A pseudorandom Mac is called secure against related-key attacks if for
any efficient algorithm D the advantage∣∣∣Prob

[
DMacRK(⋅,k)(⋅)(1n) = 1

]
− Prob

[
DfRK(⋅,k)(⋅)(1n) = 1

]∣∣∣
is negligible, where the probability in the first case is over D’s coin tosses and the
choice of k ← KGen(1n), and in the second case over D’s coin tosses, the choice
of the random function f : Kn ×ℳn → ℛn and random k ← Kn.

22



Note that related-key secure pseudorandom MACs are unforgeable with respect
to related-key attacks, too.

For our construction we need related-key security only for one class of transfor-
mations, that is the function that adds a given value Δ ∈ {0, 1}n to the hidden key
K. Sticking to the notation of [BK03] we denote this function by XORΔ : K → K
and the resulting class of functions by Φ⊕n = {XORΔ : Δ ∈ {0, 1}n}. Construc-
tions for Φ⊕n -related-key secure pseudorandom functions were proposed in [Luc04].

Lemma 6.6 If MAC = (KGen,Mac,Vf) is a pseudorandom message authentica-
tion code secure against related-key attacks for the relation Φ⊕n , then the delayed-
key MAC scheme DKMAC⊕ in Construction 6.4 is unforgeable against chosen
message attacks, if the adversary makes at most O(log(n)) verification queries.

A closer look at the concrete security reveals that the advantage of any ad-
versary ADKMAC making qMAC, qVf queries each of length at most l, is bounded by
2qVf times the advantage of an adversary AMAC against the related-key pseudoran-
domness of MAC that makes qMAC queries of length at most l.

Proof. Assume towards contradiction that an adversary A after learning several
tags (�1,P1), . . . , (�,Pq) from its oracle OMAC(K, ⋅) is able to compute a forgery
(P∗,m∗, �∗) with m∗ ∕= m1 . . .mq. Then we can construct an adversary AMAC

breaking the related-key unforgeability of the underlying MAC.
Our adversary AMAC has black-box access to a related-key oracle MacRK(⋅,L)(⋅)

and uses A to produce a forgery (Δ∗,m∗, �∗) for some key L⊕Δ∗. For the sake of
readability it is assumed, that the real key transformation XOR is already included
in the oracle and the adversary has only to provide some value Δ ∈ {0, 1}n.

When A sends the first authentication query m1, AMAC invokes its own oracle
on (0n,m1) receiving �1 = Mac(L,m1) which he passes together with a randomly
chosen P back to A. The value P can also be seen as L ⊕ K for some unknown
K. Due to the pseudorandomness of Mac, the tag �1 does not leak any infor-
mation about the applied key L. Thus, from A’s point of view the value P is
indistinguishable from a real one-time-pad encryption of some secret key K. For
any further authentication query mi of A, our adversary chooses a random Δi

and sends (Δi,mi) to its own oracle. The adversary AMAC then responds with the
answer �i and a pointer Pi = P⊕Δi.

When A wants to query its verification oracle, our adversary AMAC has to guess
the answer bit, otherwise it might send the message of the potential forgery to his
tagging oracle, thereby nullifying the message for its own output. Thus, whenever
A makes a verification query, AMAC halts A and then runs two instantiations for
the answer bit b = 0, resp. b = 1. Hence, for efficiency reasons we allow A to
make at most O(log(n)) queries to the verification oracle.

23



If, at the end, each of the at most n instantiations of A holds with a forgery
(P∗j ,m

∗
j , �
∗
j ), our adversary AMAC guesses an index j ∈ {1, . . . , n}. It then com-

putes Δ∗ = P∗j ⊕ P and outputs (Δ∗,m∗j , �
∗
j ) as its own forgery. Overall, AMAC

succeeds with probability 1/poly(n) times the success probability of A, which
contradicts the assumption that MAC is related-key unforgeable. □

Lemma 6.7 The delayed-key MAC scheme DKMAC⊕ in Construction 6.4 is (1,
O(log(n)), {ID})-leakage invariant.

Proof. If there exists an adversary A that outputs with non-negligible probability
the complete secret key K after it received a tag (�,P) ← ⟨Mac(L,m),K⊕ L⟩ for
some random L and chosen m, we can derive an adversary ℬ that is able to extract
K only from � ← Mac(K,m) for some chosen m as well.

The idea is that by determining K, also the key L can be obtained unambigu-
ously. Thus, when we construct the adversary ℬ that uses A, its target key K
actually plays the role of L in the game of A. Thus, when ℬ receives the authenti-
cation query m from A it triggers its oracle Mac(K, ⋅) on m and passes the answer
� together with a randomly chosen pointer P back to A. The pointer value then
corresponds to the one-time-pad encryption of K with some random, secret key L.

For any verification query (Pi,mi, �i) ofA, the adversary ℬ first checks whether
Pi = P. If so, it forwards the query to its Vf(K, ⋅) oracle, otherwise it has to ”guess”
the answer bit. To this end, ℬ runs two instantiations of A, for each b = 0, 1. Since
we allow A to make only at most O(log(n)) verification queries, ℬ starts at most
n instantiations.

Finally, each instantiation of A stops, outputting its guess aj that corresponds
to some Lj in ℬ’s game. To determine the right key, adversary ℬ computes for
each j = 1, 2, . . . , n the potential counterpart Kj = P⊕ Lj and outputs Kj where
� = Mac(Kj ,m).

Due to the limitation of a single authentication query, our adversary ℬ is able
to simulate the oracle OMAC of A perfectly, such that ℬ succeeds with the same
probability as A. □

7 Two-Sided Delayed-Key MACs: A Feasibility Re-
sult

In this section we discuss that two-sided delayed-key MACs are realizable with-
out relying on collision-resistance. The idea —explained in the setting of key
exchange— is to use a signature scheme to authenticate each transmitted mes-
sage immediately (such that both parties basically only have to store keys for the
MAC), and to finally MAC the public key of the signature scheme.

Note that the existence of one-way functions is shown to be necessary and
sufficient for the existence of secure signature schemes in [Rom90]. As we, in

24



addition, only require unforgeability from the underlying MAC, the security of our
construction formally relies only on one-way functions. Yet, applying a signature
scheme for each message is very expensive, of course. Hence, this construction
should be seen as a feasibility result only. We leave it as an interesting open
problem to find an efficient construction for this scenario.

Note that in order to turn the idea above into a formal solution we need
to change the notion of unforgeability and leakage-invariant slightly. Namely,
we assume that the adversary A in both cases now can pass another parame-
ter keep or pointer (besides mi, ℓi) to oracle OMAC. For parameter keep the
oracle returns tags �i for the previously selected ephemeral key L and only if
queried for pointer it returns the pointer P and generates a new ephemeral key.
An adversary A against the unforgeability is then deemed successful if it out-
puts a tuple (P∗, m̄∗, ℓ̄∗, �∗) with Vf(K,P∗, m̄∗, ℓ̄∗, �∗) = 1 and A has never issued
(m̄∗, ℓ̄∗) = ((m1

∗, ℓ1
∗), . . . , (mn

∗, ℓn
∗)) between two pointer queries toOMAC(K, ⋅).

Sender S Receiver ℛ

a) before long-term key K is known:

(sk, pk)← SKGen(1n)

s1 ← SSign(sk, (1,m1))
m1, s1, pk−−−−−−−−−−−−−−→ SVf(pk, (1,m1), s1)

?
= true

keep public key pk of S
s2 ← SSign(sk, (2,m2))

m2, s2−−−−−−−−−−−−−−→ SVf(pk, (2,m2), s2)
?
= true

...
...

...

sn ← SSign(sk, (n,mn))
mn, sn−−−−−−−−−−−−−−→ SVf(pk, (n,mn), sn)

?
= true

b) common K is established :

� ← Mac(K, pk, n)
�−−−−−−−−−−−−−−→ Vf(K, (pk, n), �)

?
= true

output true iff all s1, . . . , sn
and � verified as true.

Figure 1: DKMACtwo: Two-sided Delayed-Key MAC

The DKMACtwo Construction. Recall the notion of signature schemes: a signa-
ture scheme consists of three efficient algorithms (SKGen, SSign,SVf) where SKGen
on input 1n returns a key pair (sk, pk); algorithm SSign on input sk and a message
m ∈ {0, 1}∗ returns a signature s; and algorithm SVf for input pk,m, s returns a
decision bit. We assume completeness in the sense that any signature generated
via SSign is also accepted by SVf. Unforgeability of signature schemes is defined
analogously to unforgeability of MACs, but now the adversary gets as input the

25



public key pk instead of the security parameter 1n and has access to a signing
oracle SSign(sk, ⋅).

Our construction DKMACtwo (incorporated into a key exchange protocol) is
given in Figure 1. Note that the sender only needs to store the key pair (sk, pk)
and the receiver merely stores pk and a bit indicating any error in the verifications
so far. Formally, we can let Mac(L,m, ℓ) be the algorithm which for L = (sk, pk)←
SKGen(1n) outputs � = (pk, SSign(sk,m, ℓ)). The point algorithm Point(K, L, ℓ)
returns a MAC value P of pk under key K for an unforgeable MAC. Then an
adversary against the key exchange protocol can be easily cast in our extended
unforgeability and leakage-invariance model. This adversary calls OMAC several
times with (i,mi, ℓi) for parameter keep and subsequently eventually calls the
oracle about parameter pointer to retrieve the MAC of the public key under K.

Unforgeability and Leakage-Invariance of DKMACtwo. The DKMACtwo con-
struction is unforgeable if the underlying signatures scheme is unforgeable against
chosen-message attacks and the underlying MAC is unforgeable as well. The un-
forgeability of the MAC and the fact that collisions among independently gener-
ated keys are unlikely implies that the adversary can only use a previously chosen
public key by OMAC (or else forges a MAC under K for a new key pk∗). But then
the adversary must forge a signature for a tuple (i∗,m∗, ℓ∗) which has not been
signed before under this public key. By the unforgeability of the signature scheme
this cannot happen with more than negligible probability.

Obviously, the scheme DKMACtwo is strongly leakage-invariant, as it uses the
secret long-term key K only for a single computation of the underlying MAC.

Online Verification with Immediate Abort. In the context of online veri-
fication it might be desirable that the verifier can abort the authentication pro-
cess as soon as he receives the first invalid tag. To this end, we augment the
usual verification algorithm Vf of DKMAC’s such that it allows online processing:
Vf ′(K,P,m, ℓ, �, st) now also expects some state information st which can either
be keep or pointer. On input keep the algorithm Vf’ returns Vf(m, ℓ, �) and
for pointer it outputs Vf(K,P,m, ℓ, �). Thus, as long as the long-term key K is
unknown, the verifier runs Vf ′(⊥,⊥,mi, ℓi, �i, keep) and aborts when it receives
0, indicating an invalid tag. Obviously, our construction DKMACtwo allows for
online verification with immediate abort as the verifier can check, while being in
keep-mode, if SVf(pk, (i,mi), si) = true and abort the authentication as soon as
the first verification fails.

26



Acknowledgments

We thank Yevgeniy Dodis, Stefan Lucks and the anonymous reviewers for valuable
comments. Both authors are supported by the Emmy Noether Program Fi 940/2-1
of the German Research Foundation (DFG).

References

[Bel06] Mihir Bellare. New Proofs for NMAC and HMAC: Security with-
out Collision-Resistance. Advances in Cryptology — Crypto 2006,
Volume 4117 of Lecture Notes in Computer Science, pages 602–619.
Springer-Verlag, 2006.

[BGM04] Mihir Bellare, Oded Goldreich, and Anton Mityagin. The Power
of Verification Queries in Message Authentication and Authenti-
cated Encryption. Number 2004/309 in Cryptology eprint archive.
eprint.iacr.org, 2004.

[BK03] Mihir Bellare and Tadayoshi Kohno. A Theoretical Treatment of
Related-Key Attacks: RKA-PRPs, RKA-PRFs, and Applications.
Advances in Cryptology — Eurocrypt 2003, Volume 2656 of Lecture
Notes in Computer Science, pages 491–506. Springer-Verlag, 2003.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated
Key Exchange Secure against Dictionary Attacks. Advances in Cryp-
tology — Eurocrypt 2000, Volume 1807 of Lecture Notes in Computer
Science, pages 139–155. Springer-Verlag, 2000.

[BR06] Mihir Bellare and Phillip Rogaway. The Security of Triple Encryption
and a Framework for Code-Based Game-Playing Proofs. Advances
in Cryptology — Eurocrypt 2006, Volume 4004 of Lecture Notes in
Computer Science, pages 409–426. Springer-Verlag, 2006.

[BSI08] Advanced Security Mechanism for Machine Readable Travel Docu-
ments Extended Access Control (EAC). Technical Report (BSI-TR-
03110) Version 2.0 Release Candidate, Bundesamt fuer Sicherheit in
der Informationstechnik (BSI), 2008.

[Can01] Ran Canetti. Universally Composable Security: A new Paradigm for
Cryptographic Protocols. Proceedings of the Annual Symposium on
Foundations of Computer Science (FOCS) 2001. IEEE Computer So-
ciety Press, for an updated version see eprint.iacr.org, 2001.

27



[Fis08] Marc Fischlin. Security of NMAC and HMAC Based on Non-
malleability. Topics in Cryptology — Cryptographer’s Track, RSA
Conference (CT-RSA) 2008, Volume 4964 of Lecture Notes in Com-
puter Science, pages 138–154. Springer-Verlag, 2008.

[Gen08] Rosario Gennaro. Faster and Shorter Password-Authenticated Key
Exchange. Theory of Cryptography Conference (TCC) 2008, Volume
4948 of Lecture Notes in Computer Science, pages 589–606. Springer-
Verlag, 2008.

[GKM09] Juan A. Garay, Vladimir Kolesnikov, and Rae McLellan. MAC Pre-
computation with Applications to Secure Memory. Information Secu-
rity Conference (ISC) 2009, Volume 5735 of Lecture Notes in Com-
puter Science. Springer-Verlag, 2009.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic Encryption. Journal
of Computer and System Science, 28(2):270–299, 1984.

[GR97] Rosario Gennaro and Pankaj Rohatgi. How to Sign Digital Streams.
Advances in Cryptology — Crypto 1997, Volume 1294 of Lecture
Notes in Computer Science, pages 180–197. Springer-Verlag, 1997.

[HK06] Shai Halevi and Hugo Krawczyk. Strengthening Digital Signatures
Via Randomized Hashing. Advances in Cryptology — Crypto 2006,
Volume 4117, pages 41–59. Springer-Verlag, 2006.

[HR03] Shai Halevi and Phillip Rogaway. A Tweakable Enciphering Mode.
Advances in Cryptology — Crypto 2003, Volume 2729, pages 482–
499. Springer-Verlag, 2003.

[Jab96] David Jablon. Strong password-only authenticated key exchange. ACM
Computer Communications Review, 26(5):5–26, 1996.

[KOY01] Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Efficient Password-
Authenticated Key Exchange Using Human-Memorable Passwords.
Advances in Cryptology — Eurocrypt 2001, Volume 2045 of Lecture
Notes in Computer Science. Springer-Verlag, 2001.

[LR88] Michael Luby and Charles Rackoff. How to Construct Pseudoran-
dom Permutations from Pseudorandom Functions. SIAM Journal on
Computing, 17(2):373–386, 1988.

[Luc04] Stefan Lucks. Ciphers Secure against Related-Key Attacks. Fast Soft-
ware Encryption (FSE) 2004, Volume 3017 of Lecture Notes in Com-
puter Science, pages 359–370. Springer-Verlag, 2004.

28



[PCST02] A. Perrig, R. Canetti, D. Song, and D. Tygar. The TESLA Broadcast
Authentication Protocol. CryptoBytes, Volume 5, pages 2–13. RSA
Security, 2002.

[Res01] Eric Rescorla. SSL and TLS: designing and building secure systems.
Addison-Wesley, 2001.

[Rom90] John Rompel. One-Way Functions are Necessary and Sufficient for
Secure Signatures. Proceedings of the Annual Symposium on the The-
ory of Computing (STOC) 1990, pages 387–394. ACM Press, 1990.

29


