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that is hard to break, in average.

Keywords: Identification scheme, lattice-based cryptography, SIS prob-
lem, threshold ring signature, zero-knowledge

3 Supported by The State of Sdo Paulo Research Foundation under grant 2008,/07949-
8.



1 Introduction

The concept of allowing a member of a group to anonymously sign documents
on behalf of the entire group was created by Chaum and van Heyst [13]. In
the original scheme, however, there is an entity called group manager that can
reveal the identity of the actual signer. A variation of this concept, proposed by
Rivest, Shamir and Tauman [27], and called Ring Signature, prevents anonymity
from being revoked. It was further extended by Bresson, Stern and Szydlo into
a Threshold Ring Signature Scheme, which consists of a protocol that enables a
group composed of ¢t people belonging to a larger group of size N to jointly and
anonymously sign a given document [9]. The minimum size ¢ of the subgroup
required to generate a valid signature is a parameter enforced by the protocol.
Aguilar, Cayrel, Gaborit and Laguillaumie [2] made a construction of a TRSS
scheme, achieving signature sizes and time complexities that are linear in N and
independent of ¢. Besides, it is existentially unforgeable under chosen message
attack in the random oracle model. Let us call their construction TRSS-C (short
for Threshold Ring Signature Scheme using Codes).

It is based on error-correcting codes, and is the best known threshold ring
signature scheme, from time complexity perspective. Differently from its number-
theoretic predecessors, which exhibited a complexity of O(t.N) (where N is the
size the group of users, and ¢ is the size of the sub-group willing to sign a
message), TRSS-C has a complexity given by O(N), clearly independent of the
number of users that want to jointly sign a message. However, as seen in [19],
signature schemes derived from identification schemes with high soundness error
tend to be inefficient in terms of signature size. The same happens to TRSS-C.

1.1 Owur Contribution

Our work consists of a lattice-based threshold ring signature scheme, combining
Aguilar’s [2] and Cayrel’s [11] results, and is based on an identification scheme
that has lower soundness error. This enables a performance gain due to the
smaller number of rounds of execution, as well as an achievement of shorter
signatures. The security of our scheme is based on the hardness of the lattice
SIS problem. Provided that a suitable set of parameters is used, a reduction
from worst-case in Gap-SVP to average-case in SIS is preserved. Such reduction,
typical of lattice-based cryptosystems, gives confidence that the construction is
safe, even for randomly chosen parameters. Aiming an easier notation, along
the text our scheme will be referred to as TRSS-L (Threshold Ring Signature
Scheme Based on Lattices).

1.2 Related work

Code-Based Threshold Ring Signature Schemes

The TRSS-C scheme relies on the hardness of the minimum distance (MD) prob-
lem and the existence of collision resistant hash functions as security assumptions
[2]. It generalizes the identification scheme designed by Stern [29] and inherits



its same limits as far as signature sizes are regarded, when applying the Fiat-
Shamir heuristics: a high number of rounds in order to read a specified security
level.

The group of signers is composed of ¢ entities out of a group of N. One of
the signers is chosen as leader, and executes ¢ — 1 simultaneous Stern’s protocols
with the other signers. Such leader applies the Fiat-Shamir heuristic over the
generalized Stern’s scheme in order to generate signatures. He also generates
master commitments, hiding the identity of the signers by means of a product
of permutations.

Dallot and Verganaud [15] have also proposed a code-based threshold ring
signature scheme. It is not derived from an identification, differently from TRSS-
C. Rather, it bears similarly with the CFS signature scheme [14] in the sense
of requiring a number of decoding operations that grows with the factorial of
the number of errors that its underlying Goppa code can correct. Therefore,
though the signatures are short, a considerable computational effort is necessary
to generate them. Plus, as opposed to our construction, Dallot’s uses trapdoors.

Lattice-Based Signature Schemes

To the best of our knowledge, our threshold ring signature scheme is the first
lattice-based. Recently, Brakerski and Kalai [8] presented a generic framework
for constructing signature schemes, including ring and identity types, in the
standard model. They presented an example based on SIS. Their work does not
include threshold constructions, though.

1.3 Organization of the document

This paper is divided as follows. In Section 2, we give general definitions re-
garding lattices, identification and ring signature schemes. Then, we describe
our lattice-based Threshold Ring Signature Scheme in Section 3. Subsequently,
we provide demonstrations of security of our scheme in Section 4. Afterwards, a
discussion of performance aspects of the scheme follows in Section 5. Lastly, an
appreciation of the scheme and future lines of work are given in Section 6.

This section presented an overview of lattice-based signatures systems and
how our proposal relates to them. The next one lists the definitions of some
concepts that we use along the text in order to detail the design of our signature
scheme. It dedicates special attention to the aspects related to performance and
security.

2 Preliminaries

In this part of the article, we give the definition of the hard lattice problem
connected with the security of our signature scheme. Furthermore, we detail the
code-based construction from which our design derives.



The advent of quantum computers poses a serious threat to Cryptography,
due to an algorithm devised by Shor [28] which is able to calculate in polynomial-
time prime factorization and discrete logarithms. Post-Quantum Cryptography
is a denomination given to the sub-areas that are known to be still resilient to
quantum computers. Systems built upon lattice hard problems are included on
them.

2.1 Lattices

Besides resilience to known quantum attacks, strong security proofs are an im-
portant feature of lattice-based constructions. Here, we show the basic definitions
applied in the design of our threshold ring signature scheme.

Definition 1. A lattice is a discrete subgroup of R™ with dimension n < m.
In general, for cryptographic applications, it is restricted to Z™. It can be repre-
sented by a basis comprising n linear independent vectors of R™.

We define below the hard problems in the lattice domain that serve as security
assumptions in the schemes described in this article. The definitions make use
of the max-norm or f.

Definition 2. (Shortest Vector Problem - SVP) Given a lattice basis B €
Z™*™, find a non-zero lattice vector Bx such that |Bx|| < |By]|| for any other

y € Z"\{0}.

Definition 3. (Closest Vector Problem - CVP) Given a lattice basis B €
Z™ "™ and a target vector t € 2™, find x € Z" such that |Bx — t|| is minimum.

These two problems also admit approximate formulation, as stated below for
a factor .

Definition 4. (Approximate SVP,) Given a lattice basis B € Z™*", find a
non-zero lattice vector Bx such that ||Bx|| < v-||Byl|| for any othery € Z"\{0}.

Definition 5. (Approximate CVP,) Given a lattice basis B € Z™*" and a
target vector t € Z™, find x € Z™ such that |Bx —t|| < v - ||By — t|| for any
othery € Z™.

In addition to the exact and approximate formulations, one can also state
these problems as promises, as outlined below.

Definition 6. (GapSVP,) It is a promise problem for which the YES and NO
instances are defined as:

— YES: pairs (B,r) where B € Z™*™ is a lattice basis and r € Q is a rational
number such that |Bz|| < r for some z € Z"\{0}.

— NO: pairs (B,r) where B € Z™*" is a lattice basis and r € Q is a rational
number such that ||Bz|| > v -r for all z € Z"\{0}.



Definition 7. (GapCVP,) It is a promise problem for which the YES and
NO instances are defined as:

— YES: triplets (B, t,r) where B € Z™*™ is a lattice basis, t € Z™ is a vector,
and r € Q is a rational number such that |Bz — t|| < r for some z € Z™.

— NO: triplets (B, t,r) where B € Z™*™ is a lattice basis, t € Z™ is a vector,
and r € Q is a rational number such that |Bz —t|| > v -r for allz € Z.

A thorough discussion on the hardness of these problems can be found in
[23].

Definition 8. (Short Integer Solution - SIS) Given A € Z"*™ and a prime
number q, find a vector v in the lattice /1ql ={xe€Z™ : Ax=0mod q} with
length limited by ||v|| < L.

From the perspective of cryptography, one of the most interesting results
involving lattices consists in showing that breaking a randomly chosen instance
in some schemes is at least as hard as finding solutions for worst-case instances
of hard lattice problems. In [3] and [4], for example, Ajtai uses computationally
intractable approximations of lattice problems as building blocks of cryptosys-
tems.

As far as saving space to represent lattice basis is regarded, Micciancio showed
through cyclic lattices that it is possible to reach storage that grows linearly with
the lattice dimension [22]. His one-way compression functions also achieved the
collision resistance property with the use of ideal lattices, as seen in [20]. Such
work also specified the conditions that should be satisfied in order to assure the
existence of average-case/worst-case connection.

Lattice applications to identification purposes have also provided good re-
sults. For instance, in Lyubashevsky’s identification scheme, provably secure
against active attacks [18], the hardness assumption is the difficulty in approx-
imating the shortest vector in all lattices to within a factor of O(n?), where n
is a security parameter corresponding to the lattice rank over which the hard
problem is defined. The parameters seen there, however, are somewhat big to be
considered practical.

By using weaker security assumptions, on the other hand, one can achieve
parameters that are small enough to be used in practice, as seen in the identifi-
cation scheme proposed by Kawachi et al. in [16]. In this later work, the authors
suggest to use approximate Gap-SVP or SVP within O(n) factors. Similar ap-
proach to improve efficiency was used in CLRS [11], which is one of the pillars
of our signature scheme.

2.2 Ideal Lattices

In spite of the good security properties that can be achieved through lattice
constructions, one issue has historically been presented as obstacle for their
adoption: the huge key sizes. Through ideal lattices, this subject was sucessfully
addressed in [20] and [18].



Definition 9. (Ideal Lattice) Given a lattice L, such that L C Z", a polyno-
mial f(X) = fo+ ...+ fao1 X"+ X" and a mapping ¢¢ (vo,..., 1) —>
vo+ X + ...+ v, 1 X" 4 f(X)Z[X]. L is considered an ideal lattice, if
¢f(L) ts an ideal in Ry = Z[X] / (f (X)). Likewise, if I is an ideal in Ry, then
its image L under qSJ?l(I) is an ideal sublattice of Z™.

Not only does this kind of lattice allow compact basis representation, but
also enables efficient use of FF'T to carry out operations over its elements. The
signature scheme that we propose in this article can profit from these features,
when implemented over this kind of lattice.

2.3 Threshold Ring Signatures

We depict here a threshold ring signature scheme, listing its basic operations
and main features.

Definition 10. (Threshold Ring Signature) Given an input security param-
eter A, an integer n representing the number of users, and an integert represent-
ing the minimum number of users required to jointly generate a valid signature,
threshold ring signature scheme is a set of four algorithms described as below

— Setup: generates the public parameters corresponding to the security param-
eter.

— Key Generation: creates pairs of keys (s,p) (one for each user that composes
the ring), secret and public respectively, related by a hard problem.

— Signature Generation: on input a message m, a set of public keys {p1,...,pn}
and a sub-set of t secret keys, it issues a ring signature o.

— Signature Verification: on input a message m, its ring signature o and a set
of public keys {p1,...,pn}, it outputs 1 in case the signature is valid, and 0
otherwise.

Definition 11. (Ezistentially Unforgeable) A threshold ring signature with
parameters (A, n,t) is considered e-existentially unforgeable, if no probabilistic
polynomial time adversary A can generate a valid signature for any message m
with probability higher than e, under the conditions below :

— A knows all n public keys;
— A knows up to t — 1 private keys;
— A has access to pairs message-signature (m’, o) with m #m’.

Definition 12. (Unconditionally Source-Hiding) A threshold ring signa-
ture with parameters (\,n,t) is considered to have the anonymity property of
unconditionally source-hiding if, for any message m, it is possible to generate
the same signature with two different sub-sets of signers having cardinality t.

The TRSS-C satisfies these two properties, as proved in [2]. So does our
scheme, which is built with a very similar structure.



2.4 CLRS Identification Scheme

Our TRSS-L derives its organization from TRSS-C. Both are built on top of
identification schemes via standard Fiat-Shamir transformations. We describe
here the one used by our scheme. It is called CLRS, and was delineated by
Cayrel et al. in [12]. It is lattice-based and aims to deal the soundness error
matter that was seen to impact the TRSS-C performance.

As previously mentioned, the TRSS-C employs the code-based predecessor
proposed by Stern [29] as one of its pillars. Its security is based on the hardness
of the syndrome decoding problem. An improvement over this scheme, exploring
dual constructions, was conceived by Véron [30], achieving better communication
costs and better efficiency. As the basic Stern’s structure, however, its soundness
error is still 2/3.

By modifying the way the commitments are calculated, incorporating a value
chosen at random by the verifier, Cayrel and Véron [12] were able to bound the
cheating probability within a given round to 1/2, achieving thus better commu-
nication costs. The approach followed is similar to that shown in Figure 2, which
corresponds to the CLRS design, that uses the SIS problem as security basis.
Both schemes have a soundness error of 1/2.

The CLRS employs a 5-pass structure, and corresponds to a zero-knowledge
interactive proof that an entity, designated by prover P, knows a solution to
a hard instance of the inhomogeneous SIS problem. The exact proof for the
properties of completeness, soundness and zero-knowledge can be found on [12].
The arguments used in its construction and those used for GCLRS in Subsection
4.1 are alike, regarding the completeness and zero-knowledge properties. The
soundness property can be proved by absurd, using the fact that a cheating
prover able to correctly answer strictly more than 1/2 of the possible questions
posed by the verifier (in the form of a x b, with a € Z} and b € F) will have to
answer to, given a fixed pair of commitments ¢y and ¢; occurring in two different
rounds, both possible values of b. Provided that the commitment function used
is collision resistant, this would imply that the cheating prover is able to solve
the SIS, that is known to be hard.

The security (in bits) associated with a given instance of CLRS is, first of
all, determined by the parameters that specify the underlying SIS problem. The
second aspect to be taken into account is the overall soundness error, which is
a function of the number of rounds of execution of the identification scheme. In
Table 2 we list the parameters used in an instantiation of our scheme.

2.5 Permutations

The use of permutations, as described below, is of the main tools used in the
proposal of Cayrel and Véron [12] to lower the soundness error in a 5-pass con-
struction. It allows the prover to send permutations of g-ary vectors build from
private information, without revealing the exact values of the individual coor-
dinates, because they are permuted as well. A similar approach was followed in
the CLRS scheme to keep private information concealed when prover and verifier



KEYGEN:
x ¢ {0,1}™, s.t. wt(x) = m/2
A Sz
y ¢— Ax mod ¢

Com & F , suitable family of commitment functions
Output (sk, pk) = (x, (y, A, Com))

Fig. 1. Key generation algorithm, parameters n, m, q are public.

Prover P Verifier V
(sk, pk) = (x, (y, A, Com)) pk=y,A,Com

u <i VAN <i S

ro o {0,1}", 11 <= {0,1}"
co +— CoM(o || Au,rg)

¢1 +— CoM(Psu || Pox,11)

— a7
B — Ps(u+ ax) -
—2— b o1}
If b=0: —)— ¢ éCOM(UHAP;lﬁ—ay,ro)
o é Sm
Else: c1 z CoM(B — aPsx || Pox,T1),

P,x € {0,1}"

Fig. 2. CLRS Identification protocol

exchange messages over the communication channel, which can be monitored by
adversaries.

Definition 13. (Constant n-block permutation) It is a permutation X that
acts on N blocks of size n, each of which is considered as a unit.

Definition 14. (n-block permutation) Given a vector v = (Vi,...,Vy) of
size nIN, a family of N permutations o; € S, and a constant n-block permutation
X, an n-block permutation is defined as the product permutation II = X oo that
acts on N blocks of size n as

H(’U) = 2(0’1(‘/1), R ,O'N(VN))

We have seen in this segment some important concepts from the lattice the-
ory that are necessary to understand the security and performance aspects of



our threshold ring signature scheme, and how it compares to its code-based
counterpart. In the sequence, we detail our design, by listing and explaining the
algorithms that constitute it.

3 Our Lattice-Based Threshold Ring Signature Scheme

We have described and defined the lattice problems and concepts that work as
basis for our scheme in the previous section. Now, we detail the algorithms that
comprise this scheme.

Taking SIS as security assumption, we modify TRSS-C [2] and obtain a
construction that is more efficient than other similar lattice-based solutions, to
the best of our knowledge. In order to do so, instead of using Stern’s identification
scheme as basis, we employ the CLRS scheme [11], which has a lower soundness
error (1/2, instead of 2/3) and enables the resulting construct to reach a security
goal in fewer rounds of execution.

Some lattice-based identification scheme (see [25], [18] and [17]) have time
complexity and public key sizes efficiently given by O(n). However, they share
an inefficiency: for each bit of challenge sent by the verifier, a response with size
O(n) has to be provided by the prover. This implies in huge signature sizes when
directly applying the Fiat-Shamir heuristic. The same drawback can be found in
TRSS-C. This means that the number of rounds executed by such scheme is given
at least by the number of bits of the hash function value (applied to commitments
concatenated to the message). Our scheme addresses the first factor by splitting
the challenge in two pieces: the messages o € Z7 and b € Fy represented in
Figure 2. This bears similarity with the identification scheme described in [19],
where the challenge-like bits are assigned to an element of a polynomial ring.
Dividing the hash bits over structures that are several bits wide (given by the
number of bits to represent « and b, in our case) has as positive effect a fewer
number of rounds to generate a signature.

The other factor that impacts the number of rounds of execution is the
soundness level required. The higher of the two such values will have to be
executed in order to achieve both security goals.

3.1 Adaptations made to the CLRS scheme

In the code-based threshold ring signature scheme proposed by Aguilar et al.
[2], they replaced the syndrome decoding problem in the underlying Stern’s
identification scheme by the minimum distance problem in order to preserve
anonymity. Instead of having Hx? = y, with check matrix H and syndrome y
public, and word x private with a known Hamming weight p, they used HxT =0,
what means that the secret keys now correspond to codewords x with Hamming
weight specified by an input parameter. Plus, when the leader is computing the
master commitments he can easily satisfy this equation by picking x = 0 for the
users that are not signing the message.
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For the same reasons, we make an adaptation of the original CLRS construc-
tion, so that it can be used in our threshold ring signature scheme. Initially,
each user had a key-pair represented by a secret key x € F5* and a private key
y € Z"™ related by the ISIS (Inhomogeneous SIS) problem Ax =y mod ¢, with
A € Z"*™ . The secret key can be chosen at random, from a set of binary words of
known Hamming weight m /2. This can be rewritten as [A; —y][x; 1] = 0 mod q.
Making A’ = [A; —y] and X’ = [x; 1], we have A’x’ = 0 mod ¢. This is analogous
to the code-based construction. It works as if every user had the same public
key value: the null vector.

In Algorithm 1, the individual matrices A; are calculated as described in
the paragraph above, so that A;x; = 0 mod ¢. In Section 4, where the security
proofs are given, we show that in order to break our system, one must obtain
x; given A;, which on its turn implies in being able to solve the SIS problem in
the worst case. Given that this latter problem is known to be hard, our system
is consequently difficult to break.

The memory size involved in storing the matrices A; can be highly optimized
by using ideal lattices. As discussed in Section 2, the space required by this kind
of lattice grows linearly with the dimension, up to a logarithmic factor.

3.2 Applying Fiat-Shamir heuristic

From the generalized identification scheme described in Algorithm 1, we obtain
a signature scheme by putting a random oracle in the place of the verifier. The
source of the random values to be used with o and b is the hash value of the
message to be signed concatenated with the commitments of the current round,
in order to make difficult to obtain successful forgery .

Using the honest-verifier zero-knowledge nature of our underlying identifi-
cation scheme and the security results stated by Pointcheval and Stern at [26]
and Abdalla et al. [1] regarding the Fiat-Shamir heuristic, we can establish the
security of our signature scheme in the random oracle model. In order to do so,
we are making the assumption that the security results associated with signature
schemes obtained from canonical identification schemes (three passes) via Fiat-
Shamir are also valid for our scheme, even though its underlying identification
scheme is not canonical (five passes). Their similarity resides in a commitment-
challenge-answer structure.

3.3 Description of our threshold ring signature scheme

Our TRSS-L is composed of four algorithms: Setup, Key Generation, Signing,
Verification. Though its structure is similar to that of the code-based scheme
described in [2], the underlying identification scheme and hardness assumptions
are considerably different, as emphasized in the discussions regarding security
and performance, developed in Sections 4 and 5, respectively.

The Setup algorithm, on input a security parameter k, issues the parameters
n, m, q that are used by the other three algorithms, and are necessary for the
definition of the lattices and their operations.
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The Key Generation algorithm, on input parameters k,n,m,q, N, gener-
ates the N pairs of public and private keys (x;, A;), with i € {0,..., N —1}. All
the private keys are binary vectors with Hamming weight m/2+1 and constitute
solutions for the SIS problem A;x; = 0 mod q. The public keys are the matrices
NS ng(m+1).

The Signing algorithm takes as input a message to be signed, the set of
N public keys, t private keys (corresponding to the users willing to sign the
message), and a hash function that computes the digest of the message concate-
nated with the commitments in a given round. This algorithm corresponds to
the application of the Fiat-Shamir heuristics to the GCLRS scheme detailed by
Algorithm 1. A group of t users, one of which is the leader L, interact in or-
der to generate a signature. The generalized scheme works as follows: each pair
(signer;,leader) executes the CLRS identification scheme, where signer; plays
as prover and leader L acts as verifier, sharing the same challenges o and b. On its
turn, the pair (leader, Verifier) runs an identification scheme as well, where the
commitments and answers are compositions involving the values received by the
leader from the other signers. As for the non-signing users, the leader generates
surrogate private keys comprised of null vectors (which are trivial solutions of
the SIS problem). The leader applies block permutations over theses individual
values in order to achieve the goal of anonymity. The signature consists of the
transcript of the interaction between the leader and the verifier.

The Verification algorithm takes as input the public keys of the N users
and the signature. Such signature constitutes a communication transcript of a
sequence of rounds of the GCLRS scheme. The verification consists in check,
depending on the value of the challenges, that the corresponding commitment is
correct for every round. The signature is accepted if the check was successful in
every round, and rejected otherwise.

The security aspects of the construction corresponding to the algorithms that
comprise our scheme will be discussed next. We also give demonstrations that
our design is safe, and relate it to the CLRS signature scheme upon which it
relies.

4 Security

The previous section described the algorithms that comprise our system. In the
sequence, we show them to be secure, with worst-case to average-case reductions
that are typical in lattice-based systems.

4.1 Honest-Verifier Zero-Knowledge Proof of Knowledge

We now prove that the Algorithm 1 (GCLRS, short for Generalized CLRS)
constitutes a zero-knowledge proof of knowledge of that a group of t-out-of-IV
users knows t different pairs (secret key, public key). The first element of the pair
is a binary vector x; of length m+1 and Hamming weight m /241 and the second
is a matrix A; € Z"* (™1 such that A;x; = 0 mod ¢, with i € {0,..., N —1}.
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Algorithm 1 Generalized CLRS Identification Scheme (GCLRS)

procedure IDENTIFICATION SCHEME
> U’ = {users} and S’ = {signers}, with S C U, || =t and [U'|= N
> Prover (pass 1): computes commitments
> Commitment: performed by signers S’, which include the leader L
for Each signer i € S’ do > Compute commitments
0; & Sm+1, u; (j Z;TJA, ro,: (i{o, 1}” and T, (i{o, 1}”
Co,i <— COM(O’»; H Aiui,ro,i) and Cl,; <— COM(O’i(ui) || O'i(XZ‘)7I‘1,i)
Send Co,i and C1,i to L
end for
For the non-signers j € U’ \ S’, L performs the same, but with x; < 0
L chooses a random constant n-block permutation on N blocks X .
L computes the master commitments Co = CoM(X || co,1 || --. || co,n,r0) and
Ch = Com(X(c1,1,--.,c0,5),r1) and sends them to V'
> Verifier (pass 2): imposes a value to be used to verify previous commitments
V sends a < Z; to L, which passes it to S’.
> Prover (pass 3):
for Each signer i € S’ do
Bi + oi(w; + ax;)
end for
For the non-signers j € U’ \ S’, L performs the same, but with x; < 0
L sends B8 = X(Bo,...,Bn-1) to V.
> Challenge:
> Verifier (pass 4): makes a challenge to leader L
V sends b+<>{0,1} to L, which propagates it to S’.
> Answer:
> Prover (pass 5): reveals private information for the current round
for Each signer i € S’ do
Reveal to L either o; or o;(x;), when b =0 or b = 1, respectively.
end for > For non-signing users, L has chosen default values at the
commitment phase.
if b is 0 then

Set o = (00,...,0N-1)
L reveals IT = X oo and II(ro,0,...,ro,n—1) to V
else

Set H(X) = E(Ul(Xl), ey O’N71(XN71))
L reveals II(x) and II(r1,0,...,v1,n-1) to V
end if
> Verification: correctness of master commitments, permutations and Hamming
weight.
if b is 0 then > A is matrix whose diagonal corresponds to the public keys A;
V checks that Co = Com(X || AIT"(8) || ro) and that IT is well formed.
else
V checks that C; = CoM(B — aII(x) || IT7*(B) || r1) and that IT(x) has
Hamming weight ¢(m/2 + 1).
end if
end procedure
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This algorithm can be seen as a composition of ¢ simultaneous executions of
the CLRS identification schemes described in Figure 2, which has already been
demonstrated to be secure by Cayrel et al. in [11] in the active attack model.
We will use this fact and discuss only the security of the composition described
in Algorithm 1.

By interacting as verifier with each of the t —1 other signers and following the
GCLRS protocol, the leader learns nothing about their secret keys, except that
they are valid. When playing the role of prover, the leader L, in his interaction
with the verifier V', does not leak any private information, either. All that V'
learns is that ¢ of the users belonging to U have participated to generate a
binary vector X of dimension N(m + 1) and Hamming weight ¢(m/2 4+ 1) such
that AX = 0 mod ¢, where A is defined as below:

Ay O 0

0 A;- 0
A= .

0 0 - An_;

Lemma 1. Under the assumption of the hardness of the SIS problem, finding
a vector v with length N(m + 1) and Hamming weight t(m/2 + 1) satisfying
(Av = O0mod q), with A defined as above, such that the N blocks of length
m + 1 that comprise v have either 0 or m/2 + 1 as Hamming weight, is also
hard.

Proof: By construction of A and v, finding a solution of Av = 0mod ¢
is at least as hard as finding a local solution v; to A;v; = 0mod g with
Hamming weight(v;) = m/2+1 , and this latter problem problem is hard under
the SIS hardness assumption. OJ

Theorem 1. The GCLRS scheme is an honest verifier zero-knowledge proof of
knowledge, with soundness error no greater than 1/2, that a group of t signers
knows a vector v of length N(m + 1) and Hamming weight t(m/2+1), such that
each of the N blocks of size m either weights m/2 + 1 or zero. The scheme is
secure in the random oracle model under the SIS problem hardness assumption.

Proof:

Completeness: An honest set of signers is always able to reveal to the leader
the information necessary to compute the individual commitments cg; or c; 4,
by revealing o; or o;(x;) respectively, depending on the challenge sent by the
verifier V. For each component i € {0,..., N — 1} of the group, we have either
weight(x;) = m/2 4 1, when the user is signing the message, or weight(x;) = 0
otherwise. The length of each of those vectors is m 4 1. The leader L, on his
turn, is always able to disclose either IT or ITx under the same challenge values.
The vector x is comprised of N components x; that are permutations of x;, and
hence have the same weight. Therefore, x has overal length N(m+1) and weight
t(m/2+1).
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Soundness: The soundness error is bounded away from 1, and it cannot be
higher than 1/2. The GCLRS scheme is composed of t — 1 CLRS instances
involving ¢ — 1 distinct pairs (prover, verifier). If GCLRS has a soundness error
strictly above 1/2, then a cheating prover can devise a strategy to beat the
system with a success probability also above 1/2. Given that CLRS can be
reduced to GCLRS (it suffices to make all singing instances equal, and follow
the procedure described in Subsection 3.1), we can use the cheating strategy to
beat the CLRS scheme also with probability above 1/2. However, this is absurd
under the assumption of SIS hardness and the commitment function collision
resistance, as seen in [11].

Zero-Knowledge (ZK): Let us build a simulator as described below:

1 Coin<>{0,1}
2 Prepare to answer a challenge that is equal to C'oin as follows:

e For Coin = 0, pick x; satisfying y; = A;x;, but with high weight, for the
t elements of the signing set. According to the way that the parameters
were chosen, such solution exists with high probability and is not hard
to find. Regarding the other NV — ¢ components, just set x; = 0.

e For Coin = 1, pick x; with weight exactly m/2 + 1 for the ¢ elements,
but without satisfying y; = A;x;. The remaining components will be set
as null vector.

3 b<{0,1}

4 If Coin and b have the same value, register the current round as part of the
signature. Otherwise, go back to step 1.

5 Repeat loop until the signature is complete.

The signature generated as above does not involve the actual values of the
individual private keys. Besides, the uniformly random choices that are made
and registered as signature follow the same distribution of a real one. Hence,
looking at the real signature we learn nothing more than what we could have
learnt from a simulated one. Therefore, with the simulator constructed as above,
we conclude that the zero-knowledge property is observed.

O

Theorem 1 implies that the TRSS scheme is existentially unforgeable under
chosen message attack in the random oracle model, assuming the hardness of
the SIS problem and the existence of a collision resistant commitment function.
Given the zero-knowledge property of the scheme, no information is learnt about
the private keys, given access to previous signatures of different messages. Be-
sides, even if an adversary is given ¢ — 1 private keys, he will not be able to
generate a valid signature, unless he is able solve SIS in order to obtain an extra
private key, different from those that he already possesses.

Theorem 2. Our lattice-based threshold ring signature scheme is uncondition-
ally source hiding.

Proof: Our algorithm is structurally similar to TRSS-C [2]. In both, the entity
playing the role of leader creates a secret vector which blockwise corresponds
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to either permutations of individual private keys or null vectors. Besides, all
the individual private keys are binary vectors with exactly the same Hamming
weight, and the commitments correspond to one-time pad of the secrets. Hence,
the distribution of the commitments associated with a given signer are indistigu-
ishable from a random one, and also from the distribution related to a different
user. Therefore, any subset of ¢ users can produce a given signature with equal
probability. [J

After having discussed security aspects of our threshold ring signature scheme
and related it with the hardness of average instances of the SIS problem (to
which are proven to exist reductions from worst-case instances of the GapSVP
problem), we next show that the design decisions taken allow gains in efficiency
as well.

5 Performance

The previous section gave evidences and proofs that our system is safe. We now
show that the our design choices result in a construction that is also efficient.

Our scheme can outperform TRSS-C both in terms of signature size and
speed of signature generation. These two variables are linked and their reduc-
tion represents the combined effect of three different factors discussed below:
smaller soundness error, wider challenge values, and use of FFT for performing
multiplications.

Let us suppose that TRSS-C has a round communication payload of PLq,
whereas the corresponding value for our scheme is PLs. The soundness error for
the two schemes are SE; = 2/3 and SE2 = 1/2, respectively. In order to reach a
given security level L (representing the probability of successful impersonation
or forgery, as specified in ISO/TEC 9798-5, for instance), the two schemes have

to be repeated several times, as follows N; = ’710g2/3 L—‘ and Ny = [logl/z L—‘.
Therefore, considering the fist factor (soundness error), the ratio between the
two total payloads for reaching the security goal is given by

TPLl N1 X PL1 PLl

- — logs 2
TPL, N, x PL, ®3°" PL,

As for the second factor represented by wider challenge values, we can have
the combined effect of o € Z, and b € F5 to play the role of challenges. Provided
that the overall soundness requirement is also satisfied (by having a minimum
number of rounds executed), this avoids the necessity of executing one round
per hash bit. Table 1 shows a numeric comparison between the two schemes. In
order to construct this table, the following choices were made. We considered
a security level close to 100 bits as constraint. For the hash function, we use
the parameters from Table 2, page 90 of [5], which lists the state-of-art values.
According to it, a hash length with length 224 bits will provide a level of security
of 111, which is close to the value we chose. Regarding the choice of parameters
for TRSS-C, we used the results listed in Section 7 of [6], and picked the code
length as 2480, with which one can reach a security level of 107 bits.
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The third point to consider is the application of ideal lattices in our scheme.
This can speed up the most costly operations associated with multiplications
between matrices and vectors, and have them executed in time O(nlogn) instead

of O(n?).

Scheme Signature Size (Mbytes) Number of Rounds Hash Length (bits)

TRSS-C 47 190 224
TRSS-L 45 111 224

Table 1. Comparing TRSS Schemes for N=100, and security=111 bits

Bit-security n = m q Commitment Length (bits)
111 64 2048 257 224

Table 2. Concrete Parameters

5.1 Parameters

Similarly as shown in [16], in order to guarantee with overwhelming probability
that there are other solutions to Ax = 0 mod ¢, besides the private key possessed
by each user (which is pivotal in the demonstration of security against concurrent
attack), one can make ¢ and m satisfy the relation below

" < card{x € ZJ'"" s weight(x) = m/2 + 1}. (1)

Besides, ¢ has its value bounded from the following theorem by Micciancio,
proved in [24].

Theorem 3. For any polynomially bounded functions B(n), m(n), q(n) = n®W,
with q(n) > 4y/m(n)n**B(n) and v(n) = l4m\/nB(n), there is a probabilistic
polynomial time reduction from solving GapCVP, in the worst-case to solving
S1Sq.my on the average with non-negligible probability. In particular, for any
m = O(nlogn), there exists q(n) = O(n*®logn) and v = O(n\/logn), such that
solving S1S4.m on the average is at least as hard as solving GapSVP, in the
worst case.

The parameters that we chose to use with our TRSS, shown in Table 2 are
derived from those applied by the SWIFFT lattice-based hash proposed in [21].
The comparison exhibited in Table 1 is based in such choice. The soundness
requirement alone makes TRSS-C run 190 rounds. Our scheme, on the other
hand, which has lower soundness error, reaches the same goal with 111 rounds.
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This section discussed about the efficiency gains that resulted from our design
choices, such as the underlying identification scheme with smaller soundness
error and the possibility of using ideal lattices. It is important to notice that
such choices do not compromise security. In the next section we make an overall
appreciation of our construction and present further lines of research associated
with it.

6 Conclusions and Further Work

In this work we have shown standard applications of the Fiat-Shamir heuris-
tics to lattice-based identification schemes in order to derive signature schemes
with proven security. By means of such construction, we were able to adapt a
threshold ring signature scheme from a code-based paradigm, obtaining a con-
struction that is more efficient and has stronger security evidences. Instead of
using the syndrome decoding hardness assumption as security basis, we used
the SIS problem, with a suitable set of parameters. Such approach enables the
application of reductions from worst-case GapSVP to average-case SIS, giving
stronger security evidences for the resulting scheme.

In addition, we replaced the Stern’s identification construction by the CLRS
[11]. Such substitution has two positive effects on the efficiency of the threshold
ring signature scheme. It reduces the soundness error from 2/3 to 1/2, allowing
a specified security level to be reached with a fewer number of interactions. The
reduced number of rounds implies in shorter signatures as well.

Our construction can also use ideal lattices. This results in more efficient
multiplications of vectors by matrices by means of FFT. Such operations take
time O(n).

As shown in [19], when compared to zero-knowledge constructions, such as
Kawachi’s [16] or CLRS [11], Lyubashevky’s identification scheme provides bet-
ter results in terms of size, if used in conjunction with Fiat-Shamir heuristics
to derive a signature scheme. This is due to its extremely low soundness error.
Therefore, a threshold ring signature scheme can make use of this fact to achieve
shorter signatures than those shown in the present article. However, some struc-
tural changes are necessary in order to obtain the anonymity property possessed
by our scheme. It requires a more involved approach than the direct application
of TRSS-C construction [2].
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