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Abstract—Support Vector Machines (SVMs) and Hidden
Markov Models (HMMs) have been in use for numerous classifi-
cation tasks in pattern recognition. HMMs can be considered as
a de-facto standard in speaker recognition. For accelerometer-
based biometric gait recognition these methods have also shown
good classification results, which are, however, not comparable as
different data sets and features have been used. The contribution
of this paper is a comprehensive benchmarking of the stated
methods on a single database composed using a standard cell
phone. In total, more than 19 hours of accelerometer data from
36 subjects were collected during two sessions. We analyze the
influence of time on the recognition rates and state the results
for normal and fast walk. In addition, we compare the results
obtained when different amounts of training data are used. We
show that SVMs are slightly superior to HMMs yielding an Equal
Error Rate (EER) of around 10%.

Keywords-biometrics; gait recognition; accelerometers; support
vector machines; hidden markov models

I. INTRODUCTION

Although studies show that phone theft is widespread [8],
most people do not sufficiently secure their devices [4], [20].
Often no authentication is required when using the phone
after a stand-by phase. Therefore, each person who acquires
physical access to the device can directly access all available
data. By combining information from private and business
emails, contacts and social networks an attacker can easily
impersonate the victim. While the number of available features
like high-quality cameras, GPS sensors and Internet access, is
steadily increasing, most phones only offer one authentication
method, namely PIN authentication. The problems with PINs
are that they have to be memorized and entered for each
authentication. Hence, this method is not very user-friendly.

The memorization problem can be solved by applying
biometrics. There have been a few phones with fingerprint
scanners, but these never really entered mass market. The
primary reason lies probably in the rather high costs for
the extra sensor that is not needed by the average end-user.
Other modalities like face, voice or gait do not have this
problem as the required sensors are already included in most
modern smartphones. Compared to the mentioned modalities,
gait recognition has one unique advantage: It does not require
explicit user interaction during the verification process as the

phone does it literally on-the-go. When the owner is on the
move, he is continuously authenticated by the device, thus an
explicit user authentication is less often needed.

Research on accelerometer-based gait recognition started
in 2005 by Ailisto et al. [1] and was further developed by
Gafurov [13]. In the beginning dedicated accelerometers were
used which were attached to different body parts like the arm,
hip or ankle. Only recently researchers started to use mobile
phones as sensors [10], [12], [15]. Research can be divided
in two main groups. Either so-called gait cycles are extracted
from the sensor data or the data are divided into segments from
which features are extracted. Gait cycles correspond to two
steps and can be compared using distances like Dynamic Time
Warping (DTW) [19] or Cyclic Rotation Metric (CRM) [9].
For comparison of feature vectors the prominent approach is
to use machine learning algorithms that are well established in
other pattern recognition domains such as speaker recognition.
These promising approaches include neural networks [15],
HMMs [18] and SVMs [17]. The reported total error rates are
20.71% for HMMs and 30.0% for SVMs. Our results obtained
in this evaluation are around 4% worse for HMMs but about
10% better for the SVMs. This gives an impression of the
good level of our obtained results, although a fair comparison
is not possible due to the different data bases.

Here, for the very first time a benchmarking of SVMs
and HMMs for the purpose of classifying accelerometer-based
continuous gait signals is presented. The methods are applied
on one database, which was composed using a commercial of-
the-shelf cell phone. In order to bring the technique quickly to
an application level, a fair benchmark of different promising
methods as presented in this paper is compulsory.

The remaining part of the paper is structured as follows.
The next chapter describes the used database. In section
III we explain the extracted features and afterwards give a
short description of the used classifiers SVMs and HMMs in
section IV. After describing the evaluation and initial results
in section V, we explain the voting mechanism we applied to
further reduce the error rates in section VI. Section VII gives
conclusions and describes future work.
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Fig. 1. MFCC and BFCC feature creation

II. DATA COLLECTION

We collected data of 36 subjects on two different days.
These two sessions were on average 24 days apart (min =
1, max = 125, median = 10.5). At each session the subjects
had to walk up and down a straight hallway for about 37
meters on flat carpet. The data collected between starting to
walk and stopping at the other end of the hall is called walk.
We collected 12 normal walks, 16 fast walks, and again 12
normal walks of each subject in each session. This resulted in
around 32 minutes of walking data for each subject.

The subjects carried a standard cell phone (Motorola Mile-
stone using the Android operating system) in a pouch attached
to the right hip. The phone contains a built-in accelerometer
which measures accelerations in three directions (x-, y- and z-
acceleration). An Android application was developed to access
the accelerometer data and write it to text files.

III. FEATURE EXTRACTION

Due to the Android API it is not possible to get accelerom-
eter values at a fixed rate. Only when the event on sensor
changed is triggered by the system we obtain new acceleration
values (in x-, y- and z-direction) and the corresponding time
stamp. It is not possible for our application to trigger this
event itself. Running background services which need a high
proportion of the CPU’s capacity do increase the time between
two of these events. Therefore, the first preprocessing step is
to linearly interpolate the data in order to get a fixed sampling
rate. The mean sampling rate of our database is 127.46 data
values per second (min = 109.19, max =128.88). We used
interpolation rates of 50, 100 and 200 data values per second.
The reason for upsampling the data was to not to loose too
many data values. Peaks might get lost if their original time
stamp is between two time values used for interpolation.

After interpolation, the data s were centered around zero
by subtracting the mean µ: s̄a(t) = sa(t)− µa, a ∈ {x, y, z}.
This is done because the phones are not well calibrated and the
gravity has to be removed from the vertical acceleration (x).
Afterwards, the data were partitioned into segments of size
3000, 5000 and 7500ms with an overlap of 50%. In normal
walking pace one gait cycle takes around one second, hence
the segments include between three and seven gait cycles.
As the correct detection of the cycle starts is a complex and
error-prone process we decided to use the fixed-size segments
without considering the course of the signal.

A. Statistical Features

For each of the segments several statistical features were
extracted for the accelerations in x-, y- and z-direction as well
as for the magnitude vector sm =

√
s̄2
x + s̄2

y + s̄2
z . These were

the minimum (Min), maximum (Max), mean value (Mean),
standard deviation (Std) and the following ones:

Bin Relative histogram distribution in linear spaced bins
between the minimum and the maximum acceleration
in the segment. Five and ten bins were used.

RMS Square root of the mean of the squares of the
acceleration values of the segment:

rms =

√
s̄2a(1)+s̄2a(2)+···+s̄2a(n)

n , where n is the num-
ber of data points in the segment, a ∈ {x, y, z,m}.

Cross Number of sign changes in the segment.

B. Cepstral Coefficients

As they already had great success in speaker recognition, we
also extracted Mel-frequency cepstral coefficients (MFCCs)
and Bark-frequency cepstral coefficients (BFCCs) from the
segments for each axis. The general work flow for each
segment is shown in Fig. 1. More details about MFCCs can be
found in [21]; we used the implementation by Dan Ellis [11].
The only difference between MFCCs and BFCCs is that for
BFCCs the Bark-scale is applied instead of the Mel-scale (see
[26]). In case of BFCCs we tested two different configurations.
Window length and the distance between consecutive windows
(hop time) are larger for BFCC2. In addition the data is
mapped to a higher frequency range. The configurations have
been determined to perform best in a previous study. This
results in the following additional features:
MFCC Mel-frequency cepstral coefficients [window size =

1.44s, window hop time = 0.048s, max freq.= 10Hz]
BFCC1 Bark-frequency cepstral coefficients [window size =

1.12s, window hop time = 0.032s, max freq.= 7.5Hz]
BFCC2 Bark-frequency cepstral coefficients [window size =

1.92s, window hop time = 0.048s, max freq.= 8.75Hz]

IV. CLASSIFIERS

For the purpose of pattern classification the SVM was
introduced by Vapnik in 1982 [23] as a supervised learning
method based on the theory of structural risk minimization.
A SVM is a classifier which is inherently a solution for two
class problems. The basic idea of the SVM is to construct a
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hyperplane as the decision plane, which separates the patterns
of the two classes with the largest margin.

For the experiments conducted we used the SVM implemen-
tation LIBSVM [6]. The Radial Basis Function (RBF) kernel
was chosen and a parameter selection (grid search [14]) was
done as part of the optimization process.

HMMs are commonly used for biometric authentication
tasks, e.g. in speaker [16] or writer recognition [22]. They
were introduced during the mid-60’s by Baum et al. [2].

We use the world model approach, which was first in-
troduced by Carey et al. in 1991 [5] and has become the
predominate approach in speaker verification systems [3]. In
this approach two HMMs are considered in each test iteration.
One is the genuine model λgm, which has been trained with
data of the genuine user, and the other is the world model
λwm. This world model (also called general model or universal
background model) is trained using data from a large amount
of different subjects. Using the Viterbi algorithm [24], we
obtain for each model the probability that the given probe
data is represented by the model. Classification is based on
the difference of these two probabilities. The differences are
compared with a threshold to compute the error rates. The
equal error rate (EER) can be determined by varying the
threshold.

Different numbers of states as well as different numbers
of mixtures per state were tested. Creating a 3-state HMM
with one mixture per state yielded the best results. For
our experiments we used the Hidden Markov Model Toolkit
(HTK) [25].

V. EVALUATION AND RESULTS

The evaluation consisted of several consecutive steps. First
the discrimination properties of single features were analyzed,
afterwards the best performing features were combined and
the influence of the different axes evaluated. The feature sets
of these tests identified to be the best ones, were used for
further evaluation.

A. Single Features

To analyze the discrimination capabilities of the single
features, we tested them separately. We used the first 12

Axes FMR FNMR TER
x 1.30% 48.80% 50.10%
y 2.70% 63.71% 66.41%
z 1.83% 63.52% 65.35%
m 1.34% 53.74% 55.08%
x, m 0.84% 43.73% 44.57%
x, y, z, m 0.13% 59.77% 59.90%

TABLE III
SVM RESULTS WHEN COMBINING ALL FEATURES (M = MAGNITUDE

VECTOR).

normal walks which were collected on the first day for training
and the first 12 normal walks of the second day for testing.
We tested different interpolation rates (50, 100, 200) for each
segment length (3000, 5000 and 7500). For HMMs varying
the interpolation rate and segment size did not significantly
change the error rates. The SVMs showed best results when
using a segment length of 5000 and a low interpolation rate
of 50. Therefore we state the results for interpolation rate 50
and segment length 5000 for both classifiers in Table I. These
settings are chosen for all remaining results stated in this paper.

Feature cross did not contain enough information to train the
HMMs (indicated by ’–’ in the table). In case of SVMs we can
only give the obtained false non-match rate (FNMR) and false
match rate (FMR), not the EER. For a better comparison of
the two approaches we also state the Total Error Rate (TER),
which is the sum of FMR and FNMR.

B. Combined Features

Because the results show that single statistical features alone
do not contain enough information we combined the features.
To evaluate the performance of the different axes and the
magnitude vector, one feature set was created for each axis (for
simplicity the magnitude vector, denoted with m, is referred to
as axis as well). The x-axis and the magnitude vector yielded
best results, therefore these were combined in one feature
vector. In addition one feature vector containing all features
for all axes was created. The results obtained using SVMs are
given in Table III, applying HMMs yielded similar results.

Because using only the x-axis and combining x and m
yielded the best results, we used only these axes for the

SVMs HMMs
Feature Type Feature Length FMR FNMR TER EER TER
Max 4 5.43% 82.04% 87.47% 32.61% 65.22%
Min 4 3.00% 79.95% 82.95% 30.58% 61.16%
Mean 4 0.91% 90.90% 91.81% 31.48% 62.96%
Diff 4 0.19% 99.18% 99.37% 46.23% 92.46%
Std 4 4.30% 70.36% 74.66% 32.30% 64.60%
RMS 4 3.96% 73.77% 77.73% 32.30% 64.60%
Cross 4 1.44% 91.16% 92.60% – –
Bin5 20 3.25% 68.41% 71.66% 31.37% 62.74%
Bin10 40 2.45% 66.75% 69.20% 32.33% 64.66%
MFCC 52 0.36% 50.18% 50.54% 17.06% 34.12%
BFCC1 52 0.43% 49.45% 49.88% 19.80% 39.60%
BFCC2 52 0.64% 47.90% 48.54% 18.06% 36.12%

TABLE I
CROSS-DAY RESULTS FOR SINGLE FEATURES WHEN USING INTERPOLATION RATE 50 AND SEGMENT SIZE 5000 (AS THESE PERFORMED BEST).
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Algorithm Feature Vector Feature Length FMR FNMR EER TER
SVM BFCC2 xm 26 1.15% 39.37% – 40.52%
HMM BFCC2MFCC xyzm 104 – – 17.30% 34.60%
HMM MFCC xyzm 52 – – 17.06% 34.12%

TABLE II
CROSS-DAY RESULTS FOR BEST PERFORMING FEATURES USING SVMS AND HMMS (NORMAL WALK).

cepstral coefficients. In addition we evaluated all different
combinations of the features based on cepstral coefficients
(using all axes). All these tests showed that for SVMs the
feature set containing the BFCC2 from x-axis and magnitude
vector (BFCC2 xm) performs best. For HMMs the best com-
bination is BFCC2MFCC xyzm, but using only MFCC still
results in slightly better error rates (see Table II). Because a
shorter feature vector requires less computational power, we
select MFCC xyzm as the best feature vector for HMMs and
use it in all following evaluations for this classifier.

So far all given results are cross-day results, meaning that
training and testing data are collected on two different days.
This is a realistic scenario, as one would not train the models
each day. To see the influence of the variation of gait over
time we also computed the same-day results. For SVMs we
get as low as 16.60% TER for the BFCC2 xm feature set
and for HMMs we achieve an EER of 5.86% when using
MFCC xyzm. These large differences show the importance of
using a testing database containing data of different days.

As stated in section II, we also collected fast walks of the
subjects on each day. We tested the same features sets based
on the cepstral coefficients as for normal walk. As before,
for SVMs the feature set BFCC2 xm gave best results. This
time, for HMMs the feature set BFCC1 xm performed best.
The results when using 12 walks for training and testing are
given in Table IV. One can see that the results outperform the
results of the normal walk, indicating that fast walk has better
discriminative properties.

C. Varying the Amount of Training Data

So far we only used the first 12 normal or fast walks for
training. In this evaluation we analyze the influence of the
amount of training data. We examine two different settings.
In the first setting we use all available data of the respective
speed from the first day for training. Hence, we increase the
number of training walks to 24 in case of normal walk and to
16 in case of fast walk. For the second setting we use data of
different speeds for training (12 normal and 12 fast walks) and
either fast or normal walks from the second day for testing.
The results for SVMs are given in Table V, the results for
HMMs are given as Detection Error Trade-Off curves in Fig. 2.
For an easier comparison we also give the initial results using
only 12 normal or fast walks for training. All stated SVM
results are for the best feature set BFCC2 xm. For HMMS,
the best feature set depends on the walking pace of the testing
data. When only normal walks are used for testing, feature set
MFCC xyzm performs best. When the testing data consists of
fast walk, feature set BFCC1 xm outperforms the others.

Alg. Feature Vector FMR FNMR TER
SVM BFCC2 xm 1.87% 29.00% 30.87%
HMM BFCC1 xm – – 29.04%

TABLE IV
CROSS-DAY RESULTS FOR BEST PERFORMING FEATURES USING SVMS

AND HMMS (FAST WALK).

Training Testing FMR FNMR TER
12N 12N 1.15% 39.37% 40.52%
24N 12N 2.64% 26.56% 29.20%
12N + 12F 12N 1.30% 35.96% 37.26%
12F 12F 1.87% 29.00% 30.87%
16F 12F 1.28% 32.47% 34.82%
12N + 12F 12F 1.17% 35.50% 36.67%

TABLE V
SVM RESULTS AFTER INCREASING THE NUMBER OF TRAINING DATA, E.G.
BY USING MIXED DATA OF DIFFERENT SPEEDS (N = NORMAL, F = FAST).

For both classifiers the influence of the amount of training
data is visible for the normal walk. When using only 12 normal
walks for training of the HMMs (corresponding to about 240
seconds of walking data), we get an EER of 17.06% (12N-
12N). This can be decreased to 15.77% when using all 24
available walks (24N-12N). When 12 fast walks are added to
the training data (12N12F-12N), the EER increases slightly
to 18.38%. In case of SVMs one can see a higher decrease
of FNMR for normal speed when increasing the amount of
walks for training. When the fast walks are also added to the
training set the results are worse than when using the same
number of normal walks (24N-12N). Still, due to the higher
amount of training data the results are better than when only

Fig. 2. HMM results after increasing the amount of training data, e.g. by
using mixed data of different speeds (N = normal, F = fast).
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using 12 normal walks for training.
An analysis of the fast walk, gives following results for

HMMs: Increasing the number of training walks from 12 to
16 does not significantly influence the EER. Adding the 12
normal walks to the training data (12N12F-12F) increases
the EER from 14.52% to 17.81%. For this setting a similar
result is obtained for SVMs. Here, the TER is increased
from 30.87% to 36.67%. This can be explained by the better
discriminative properties of fast walks (see subsection V-B)
which are decreased when fast and normal walks are mixed.
When using 16 instead of 12 fast walks for training of the
SVM, the error rates get worse. One reason for this might
be that the subjects had been exhausted during the last fast
walks and this influenced their walk in such a way that the
SVM classification is degraded. We confirm this assumption
by using the last twelve fast walks from the first day for
training and using the first 12 fast walks of the second day for
testing. We obtain an EER of 35.19%, which is worse than the
corresponding 12F-12F scenario in Table V. This shows that
the discriminative properties of the last fast walks is worse
than that of the first fast walks.

From the normal walk results one can see that for both
classifiers a higher amount of training data does improve the
results, but only slightly for HMMs. Using four minutes of
walking data for training seems to be sufficient in this case. On
the other hand, for SVMs the TER for normal walk could be
decreased by 25% when using the double amount of training
data. Using mixed speed data for training for both classifiers
decreases the biometric performance.

VI. VOTING

The results stated so far for SVMs are highly unbalanced
between FMR and FNMR. While the FMR is very low, the
FNMR is still on an unacceptable level. To improve this situ-
ation we apply a voting mechanism that reduces the number
of false non-matches by using multiple classifications for one
recognition decision while incorporating a different confidence
in the classification correctness.

More specifically the decision is based on #V classi-
fications, not only on one. An imaginable straightforward
approach is to combine the #V classification results using
majority voting, but it is not likely to perform well for SVMs
as the two error cases are so unevenly distributed. Therefore a
quorum voting for a genuine is implemented, which is inspired
by a petition quorum.

This quorum requires that out of the #V classifications at
least #GV positive classification results are needed for an
accept, otherwise the probe signal is rejected (see also [7]).
Of course, while the FNMR is decreased by this approach,
the number of false matches and thus the FMR increases. We
conducted a series of experiments with the intention to find a
balanced setting where both error rates are in the same range.

A. Voting Results

For each classifier we get one classification result per
segment. Only normal walk is used in this evaluation. The

Fig. 3. Voting results for SVMs.

Fig. 4. Best voting results for HMMs, basing decision on one of 50 walks.

classifiers are trained using all 24 normal walks of the first
session. 12 normal walks of the second day are used for
testing. We varied the number of votes (#V ) from 10 to the
maximal possible number 70 and the number of required votes
for genuine #GV from 1 to 5. The results for SVMs are
given in figure 3. The resulting TER are between 20.01% and
25.79%. The best result was obtained when using #V = 70
and #GV = 3. At that point we got nearly balanced error
rates. The FMR is 10.01% and the FNMR equals 10.00%.
Because one segment is of length 5000 seconds and the
segments overlap by 50%, the 70 votes correspond to 3
minutes of walking.

Using HMMs, the best results were obtained when using
#GV = 1 and basing the decision on 50 votes, corresponding
to around 2 minutes of walking. The corresponding DET-curve
as well as the one without voting is given in Fig. 4. One can
see that voting decreases the EER, but the effect is only minor
(12.63% instead of 15.77%).

VII. CONCLUSION AND FUTURE WORK

In the previous sections we comprehensively benchmarked
the performance of HMMs and SVMs for accelerometer-
based biometric gait recognition. Our database contains a large
amount of data for each of the 36 subjects, which allows
for a good training of the stated classifiers. The data were
partitioned into fixed-length time segments. Best performing
length was 5000ms. We used different feature sets through
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our evaluation and determined the best for each classifier.
For SVMs this is a combination of the BFCC2 of x-axis
acceleration and the magnitude vector. For HMMs the best
feature set is obtained by using MFCC of all axes when the test
data consists of normal walk. When testing with fast walks,
using BFCC1 of x-axis acceleration and the magnitude vector
yields the best error rates. In general, one can say that the
cepstral coefficients are outperforming the statistical features.

For most tests we used around four minutes of training data
for each subject. Doubling this amount did further decrease the
error rates by 25% for SVMs, but the improvement for HMMs
was small. Having a user-friendly application in mind, we
consider four minutes of training data as a good compromise
of low enrolment time and low error rates.

Using mixed training data consisting of fast and normal
walks increases the error rates when the subjects are walking
fast or normal during authentication. Therefore, we suggest
to train multiple models for multiple speeds. During au-
thentication an activity recognition should be applied which
identifies the speed of the probe data and selects the correct
authentication model.

The best results obtained for the HMMs are an EER of
15.77% for normal walk and 14.39% for fast walk (cross-day
scenario without voting using the maximal amount of available
training data and 12 walks for testing). Without voting the
SVMs best results are a TER of 29.20% for normal walk and
30.87% for fast walk. Hence, without voting both classifiers
result in a similar biometric performance, with the SVMs
being slightly better for normal walk. Applying the quorum
voting further strengthens this difference: The TER of the
SVMs is significantly decreased to 20.01% (10.00% FMR at
10.01% FNMR) for normal walk, while the EER of HMMs is
only decreased to 12.63%.

When requiring a similar FNMR of around 10% for both
classifiers, we get a lower FMR from the SVM than from
HMMs (13.81%), resulting in higher security. This makes
SVMs more suitable for accelerometer-based gait recognition.

In this evaluation we used fixed-length time segments as
basis for our feature extraction. Future work will include the
evaluation if a cycle based segmentation can further improve
the results. In addition we will implement the classification
using SVMs on the cell phone. To see how the methods
perform in a more realistic scenario, we will apply SVMs
and HMMs to an advanced data set containing not only walks
on a straight flat floor.
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