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Summary. We show that grammar forms, introduced by S. Ginsburg, can be
treated with the help of grammar homomorphisms, introduced by G. Hotz. This
gives us the possibility to generalize the notion of grammar forms in such a way that
we can prove closure properties of the associated language family using some simple
axioms by diagram chasing. Moreover we demonstrate a principle of duality in dealing
with this theory.

Introduction

There has been an extensive study of families of languages and automata.
In contrast to this fact, there is no appropriate theory of grammar families.
Recently, Ginsburg et al. [3], introduced a theory of grammar families using
grammarforms. By this approach grammar families are generated via inter-
pretations of a given grammar, called grammarform, which reflects the structural
properties of the productions of the interpreted grammar.

The aim of this paper is to demonstrate how this approach can be embedded
in the theory of grammar homomorphisms, introduced by G. Hotz [5, 6, 8].

We'll show that the mechanism of grammar forms can be generalized in a
natural way such that closure properties of the generated language family can
be derived by diagram chasing. Moreover this generalization demonstrates a
principle of duality.

1. Grammars and X-Categories

We give some basic definitions and a short review of the construction of X-
categories ([5, 8]).

A semi-Thue-system is a pair S=(4 (S), P (S)) such that 4 (S) is an alphabet
and P(S) is a finite subset of A (S)* XA (S)* where A (S)* is the free monoid
over A (S).

Free X-categories are precise definitions of ‘‘derivations’ associated with
semi-Thue-systems.

Let w,veA (S)*: w is derivable into v(w +—v) (with respect to S), if there
exists a sequence.

w=ugpodo, UoGoVo="1P1%, --r Uy 1,1V, =U,D,V,, U,d,V,=V

where » =0, u;, v;, p;, ;€A (S)* (0=i=r) and (p,, ¢,)€P(S) (0<i<r).
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This sequence is called a derivation. The set of all derivations defines a free
X-category F(S). Informally F(S) can be described as follows:

the objects are the elements of 4 (S)*,
the morphisms are the ““derivations”’,
if f=(w ) is a derivation, then
df=w is the domain of f and
cf=v is the codomain,
the empty derivations (»=0) are the identities 1,
the operation ““o” is the concatenation of derivations illustrated by the
diagram
(w e lf-z) =gof

the monoidal operation ““ X" is illustrated by the diagram

w o
vy =Fxe

Note, that in a natural way P(S) can be embedded into the set of morphisms
of F(S), such that d(p, g)=p and c(p, 9)=g.

A functor between X-categories is a covariant functor, which is a monoid-
homomorphism with respect to the monoidal operation. A functor between F (S)
and another X-category & is now uniquely determined by exhibiting a monoid-
homomorphism ¢, between the objects and a mapping ¢ from P(S) into the
morphism-set of Z, such that

¢, d(Pu (7)) =¢olc, 4(r))
for all e P (S).

We adopt some further notations.
If f is a morphism of F (S), we write f€F (S). Now, consider two subsets L,
and L, of 4 (S)*, then

(Ly, Ly)s={f€F (S)|dfeL &cfeLy}.
If feF(S) then f can be represented in the form
f=1, X713 X1y) 0+ 0 (14, X7 X 1y,)
(s=0, w;, v,€A(S)*, 7,€ P(S) 1=1=5s).

This representation is called a sequential representation of f. The number s
is independent a special representation of f. It is called the length |f| of f.

Obviously,
i) |f|=0 </ is an identity,
i) |fogl =Ifl+lel.
iti) |f xe|=If]+lel-
For further details the reader is referred to [8]. A grammar G is a 4-tuple

G=(4(G), P(G), T(G), s(G))
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where
i) (4 (G), P(G)) is a semi-Thue-system,
i) P(G)=Z(G)*xA(G)* where
Z(G)=A(G)\T(G) and Z(G)*=Z(G)*\{s},
i) T(G)us(G) =4 (G) &s(G)=Z(G).
As usual, A4 (G) is the alphabet, T (G) the set of terminals, Z (G) the set of vari-
ables, s(G) the set of axioms and P(G) the set of productions of G. With respect

to X-categories we transfer our notation from semi-Thue-systems to grammars.
Then

D (G)=(s(G), T(G)*)¢
is the set of derivations of G, and
Z(G)=c(D(G))

is the generated language.
We assume that the reader is familiar with standard notions of the language
theory [2].

2. Grammar Homomorphisms

We discuss algebraic concepts related to the use of X-categories.
A more extensive study can be found in [1] and [11]. Consider two grammars
G, and G,.
A homomorphism ¢: G, — G, is a functor ¢: F(G;) > F (G,) with
i) ¢(T(G)) = T (Go)*,
ii) ¢(s(Gy) =s(Ga)s
iii) @(Z(Gy)) SZ(Gy)-

Remark. If ¢: G, -G, is a homomorphism, then ¢ (D (G,)) =D (G,) and
therefore ¢ (£ (Gy)) = Z (G,).

We now briefly discuss various constructions, which can serve as examples
for special classes of homomorphisms.

Consider triples (Z, T, s) of alphabets such that ZNnT=¢ and s=Z.
A monoidhomomorphism

bt (ZOT)* > (Z,UT)*

is called admissible if
i) h(T) = T,
ii) A(s,) s, and
iii) 4(Z,)) = 2Z,.

If G is a grammar,

h: (Z(G), T(G),s(G) = (Z, T, s)
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is admissible, then a grammar G, and a homomorphism ¢,: G — G,, are defined by
i) ZG) =2, sG)=s, TG)=T,
ii) P(G)={(r(#). 2(@)| (6, 9 €P(GC)},

iii) ¢, is on objects equal to %, and

& (6, @) =(1(p), 1(9) (B, 9) €P(G))-
Fact. ¢,(P(G))=P(Gy).
This observation leads to the following definition.
Definition 2.1. ¢: G; - G, a homomorphism.
i) ¢ is a fine homomorphism iff ¢ (P (G,)) = P(G,),
ii) ¢ is a very fine homomorphism iff ¢ (T (G,)) = T (G,) & ¢ is fine.
We can prove more.

Lemma 2.1. If % is an admissible e-free monoidhomomorphism then ¢, (D (G))
=D (G,) and therefore & (&£ (G)) = £ (G,), if h is injective on variables and 47 (s (Gy))
=s(G).

* Proof. We consider the set
ﬁ(G):{feF(G)| IF1=1, dfes(G) cfe A (G)*}
and the corresponding set D(G)).

If we can show that ¢, (D (G))=D (G,) we get the desired result.

We therefore show by induction on |f’|, that to any f'€D(G,) there exists
€D (G) with ¢, (f)=f". “|f'|=1""
In this case

f'=(0,9)eP(G,) with ges(Gy).
Since ¢, (P(G))=P(G,) we find (¢’, ¢') € P(G) with ¢,((o", ¢')) =(0, 9)-
Moreover ¢’ €47 (0) < b7 (s(Gy)) =5 (G).
[|=F =|f |=~+1": ,
We consider a decomposition f'=(1,,X7'X1,)of; with # €P(G,) and f, eb (Gy).
By the induction hypothesis there exists ]‘Ieﬁ(G) with
h=¢u(h), c(h)=upv and h(w)=w', h(v)=0"
On the other hand there exists a production r=(p’, ¢') with ¢, (»)=7".
Now we know

“«

h(p)=a(r')=h(").

Since % is injective on variables we get p=p’; but then ¢ ((1,X7x1,)of))=f,
which proves our lemma.

Definition 2.2. Let be ¢: G; > G, a homomorphism.

i) ¢ is epic iff ¢ (P(G,)=P(Gy),
ii) ¢ is closed iff ¢ (D (Gy))=D(G,).

A modification of the proof of Lemma 2.1 yields
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Lemma 2.2. If ¢: G, -G, is a fine homomorphism, with ¢ injective on
variables, then ¢ is closed, if ¢ (s(G,)) =s(G,).
Consider in contrast to the above construction the following situation. Let G

a grammar and
h:(Z,T,s)—>(Z(G), T(G),s(G))

admissible. We assume, % to be e-free, then we can define a grammar G* by

i) Z(GM =z, T(GH=T, s(G")=s,

i) P(G")={(p,q)| (h(p), h(g)) € P (G)}.

Note, that in this case (G*),=G; therefore, there is a fine homomorphism
" G* >G.

The homomorphisms ¢* are special cases of another type of closed homo-
morphisms, introduced by G. Hotz [7], [6].

Definition 2.3. Let be ¢: G; — G, a homomorphism.

i) ¢ is mormal if and only if
(6,9 €P(G), $'ed(Gy*
¢ (p)=¢ (p') implies (p', 9) € P(Gy),
ii) ¢ is conormal if and only if
(#,9)€P(G), ¢'€A(G)*,
¢(9)=¢(¢') implies (p, ¢') € P (Gy).

Fact. ¢, is both normal and conormal and epic.

Lemma 2.3. If ¢: G; — G, is epic and normal, then ¢ is closed, if

&7 (s (Ga))=5(Gy)-
Proof. Without loss of generality we can assume ¢ to be epic. We show by

induction on the length of derivations, that to any /' €D (G,) there exists fe D (&)
with ¢ (f)=¢ (f).
If | |=1, there is nothing to prove.
Now assume
f'=(1u’><r,><1v’)°f],.-

Then there exists a derivation fleﬁ(Gl) with ¢ (f,)=f;. Since ¢ is epic there
exists 7€ P(G,) with ¢ (r)=7". We know

ch=upv

p)=u', ¢@)=2, ¢@B)=¢d(r)=d(r).

Since ¢ is normal, we get (p, ¢(r)) € P(G,).
Moreover

with

¢ (B, c()=(d(8), d(c()=¢(r)=7".
¢ (1 X (B, ¢ () X1) 0 ) =F".

In the case of conormal homomorphisms we can show more

By this we get
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Lemma 2.4. If ¢: G, — G, is conormal and epic, then ¢ is closed and ¢ (£ (G,))
=Z(Gy) if 7 (s(Ga)) =5 (G- '

Proof. We show:

To any we 4 (G,)* such that there exists a derivation f' €D (G,) with cf’'=¢ (»),

there exists a derivation feD(G,) with ¢ (f)=f" and cf=w. Again we apply
induction on the length of f'.

If | |=1, then (¢’, ¢ (»)) € P(G,) with ¢’ €s(G,). But then there exists (o, w,) €
P (G,) with ¢ (0)=0" and ¢ (w,)=¢ (w). Since ¢ is conormal (o, w) € P(G,).

If |f'|>1, we consider a decomposition

f,=(1u'x<p,' ql) X1v')°/]'.'

We know w=ugqgv with ¢ (¥)=u', ¢ (¢)=¢' and ¢ (v)=v". Then there is a produc-
tion (, §) with ¢ (p)=¢' and ¢ ) =7'.

Since ¢ is conormal we get r=(p, g) € P(G,) and ¢ (r)=(p", ¢').

Now consider the word d upo; then ¢ (upv)=4d(f;). By the induction hypothesis

there is a derivation f,€ D (G,) with ¢ (f)=/i and c(f,)=wupv. But then we can
build

f=uX(, 9) x1)oh
which gives the desired result.
Examples of very fine homomorphisms ¢ with

i) ¢ is surjective on objects,

ii) ¢ is epic,
iii) ¢ is not a closed homomorphism

are given by the classical intersection theorem.

Theorem 2.1. If G is a grammar, R < T (G)* a regular set, then there exist
a grammar Gy and a very fine homomorphism ¢g: Gg =G with
i) pz(P(Gr))=2P(G),
ii) ¢ is surjective on objects,
iii) ¢ is the identity on terminals,
iv) Z(Gg)=<2(G)nR.
Proof. We use a slightly modified version of the classical construction of
Gy [2]. Consider a finite state acceptor a=(Q, X, 6, F, q,) with T (a)=R.
Now define Gy by
1) Z(Gg)=0xZ(G) X0,
T(Gr=T(G),
={go} Xs(G) XF.
2) P(Gyg) is constituted by the following productions. Let #;...n- —£,&;...§,¢,€
P(G) with
§s>0, r=0, n€Z(G)(1=1=s), ¢&,;€Z(G),
(17, LEeTG)* 0=7=7).
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Then
(Pl! 7]1’ pi) L (Pn 775’ P;) = to(?p El! q;) tl (97: 51: Q:) t,GP(Gl)
where 7 =0, ;, p:, ¢:» :€Q and
G1=0(t, $1) & §;421=0(t;, ¢:) 1 S <7) & p,=6(¢,, ¢))
if =0 and
?s=5(to’f’1)
if r=0.

The homomorphism ¢, is then given by the admissible monoidhomomorphism
h: (Z(Gg), T(G), s(Gg)) > (Z(G), T(G), s(G)) defined by

h((®, €, 9))=£((p, &, 9)€Z(Gr))

h(t)=t (teT(Gy)).

and

Condition iii) gives rise to another definition. Consider a homomorphism ¢: G, -G,
and a subset 4 < 4 (G;). We call ¢ an A-morphism iff ¢ (£)=§, if £¢ 4. Of special
interest are Z-morphisms (4=Z(G,)!) and T-morphisms (4= T (Gy)!).

We call ¢ an isomorphism if ¢ is both on objects and morphisms bijective,
(Gl% G, or G, =G,).

Note that an isomorphism is always very fine and closed.

We are now dealing with *‘subgrammars”. Consider two grammars G, and G.

G, is a subgrammar of G (G, =G) if

i) Z(G) €Z(G), s(G)cs(G), T(G)=T(G) and P(G,) < P(G),

ii) Z(Gy) ns(G)=s(Gy).

If G, and G, are subgrammars, then the “union” G,uUG, and the “inter-
section”” G; NG, are defined in a natural way. More difficult to deal with is the
concept of image and coimage.

If ¢: G, - G, is a homomorphism. G; G, and G, =G, then

$(G)=N{G:SGo| p (A (G)* A (G)¥e) = (4 (G)*, 4 (G2}
is the smage of G, under ¢ and
¢ (Ga)=U{GL =G| ¢ (4 (G)*, A (G)*)) = (4 (Ga)*, 4 (G2)¥)g)

is the cotmage of Gy under ¢.

Consider a fine homomorphism ¢: G, —G,. Then an admissible monoid-
homomorphism %, is defined by 4, (£)=¢&(£€4 (Gy)). We get G, ¢ S G, and a
factorizationdiagram

s
G, %"‘*G’“

N

G,

6 Acta Informatica, Vol. 7
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In the case h¢ is e-free, we get

and a factorizationdiagram

Related to the concept of subgrammars is the concept of direct sums. [12]

Consider two grammars G, and G,.
If G nGy= (¢, ¢, P, ¢), we define G,DG,=G,UG,. With the inclusions
v, (1=1, 2) we get a sum-diagram

G,—2— G, @ Cy<——G,.

Observe that »; are very fine ¢-morphisms for ¢ =1.2.

Another interesting sum-diagram is obtained in the case G; nG,=(T, ¢, T, ¢),
where T is a fixed alphabet. We define G,+G,=G,UG,. With the inclusions
v, (¢=1, 2) we get a sum-diagram relative to Z-morphisms.

Gy — G s

Observe that »; are very fine ¢-morphisms.
Remark.
i) Z(Gi+G)=Z(G) v Z(Gy),
ii) Z(G,@Gy)=Z(G) VL (Gy)-

Consider the following situation.
G, ——G,0G, 22— G,

L 2

G -G a6~ G,

then there is a unique homomorphism
6D ¢:: G,OG, > G DGy
with
(1@ ¢a) vi=vwi0¢;  (i=1,2)

Observe that properties of ¢, transfer to ¢, @ ¢,, for example if ¢; are closed,
then ¢, @ ¢, is closed.

We now turn our interest to products and factorizations.
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Lemma 2.5. If ¢: G; — G, is a fine homomorphism, then there is a commuting

/s

G———»G

such that ¢, is a fine T-morphism and ¢, is a very fine Z-morphism.

Proof. Consider the admissible monoidhomomorphism, defined by

h(E)=¢ (£€Z(Gy)),
ht)=¢() (€T (&),
Gy=G3 and ¢, =¢,.
We show
o ()= (r) >0 ()=0 ()"
Let r=(p, tymy...mtx) and #'=(p’, ton’ ...m1¢1), where ¢;, L€ T (Gy)*, n;, n;, D.p'€
Z(Gy)-
Application of ¢, yields
1=k, p=p, n=m;(1=i<k) and ¢()=¢(f) (0=i=h).
By this we get ¢ ()=¢ (7).
With the above assertion the existence of ¢, follows immediately.

Corollary. If ¢ is closed, then ¢, is closed.

Theorem 2.2. To any pair ¢;: G, >G, (:=1,2) of homomorphisms, where
¢, is fine, ¢, is very fine there exists a commuting diagram

¢1
GO

y 1;

Gz—¢4—*G3

where ¢, is fine and ¢4 is very fine.
Furthermore
i) If ¢, is epic, then ¢, is epic.
ii) If ¢, is a T-morphism, then ¢, is a T-morphism.
iii) If ¢, is epic, then ¢, is epic.
Proof. The proof is in its essence a pullback-construction ([10, 13]) in three

steps.

Step 1. Assume ““ @, is a Z-morphism” Define G4 by

1) Z(Gg)={(¢, E)EZ( |¢1(§ =¢:(&)} T(Gy) =T (Gy),
s(Gg)={(0, o) €s(G |¢1 =@, (0")}-

6%
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2) PGy ={(m.m) .- (0, 1), to (61, &) ... (€,, &) )|
s=0, r=0, LeT(G)*(0=:=7),

(MM, by .. &,8,)EP(Gy) &
(D1(m1---7s), b1 (bobr---&,2,) €da (P (Go))}-
Now consider the monoidhomomorphisms %3 and %, defined by
hy(€,8)=¢  M(£ &)=¢&,
hy(t)=t, h(t)=:1(t) (€T (Gy)-
These two monoidhomomorphisms induce in a natural way homomorphisms
¢4 and @, of the desired kind.
Step 2. Assume ‘¢, is a T-morphism”. Define G; by
1) Z(G)=Z(G)), T(G)={(t,w)|teT(Gy), weT (Gy)* ¢1(t)=0s(w)},
$(Gg)=3(Gy), ,
2) P(Gy)={(p, mo(tr, 1) ... 751 (b, @5) )|
$s=0, (t;, w)eT(Gy), n;€Z(Gy)*&
(B, Motr---Ms—1tms) EP (Gy) &
(D1(0), 1(m0) P2 (1) ... 1 (s—1) D2 () 1 (1) Ea(P(Gy))}-
Again, define monoidhomomorphisms %5 and %, by
hy(§)=§,  Mm(E)=¢:(6) (£€Z(Gy)),
hy(t, w)=t, I, w)=w (¢, w)€T(Gy)).
In a natural way homomorphisms ¢5 and ¢, of the desired kind are induced.
Step 3. We combine Step 1 and Step 2 considering the given diagram
Gl

«1

Go 4—4’2— G2
By the factorization-lemma 2.5 we get the diagram

G,

Gl
é1 0
|2
Go——0,
where y, is a Z-morphism and y, is a T-morphism.
By Step 1 we get a diagram

X2 ’
G, —2 G,

‘ p 4
'

G,
S
0 2 G

G

2
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By Step 2 we get a diagram

[}

G,
/ \
GO < 2

G,

xi

Now the statement of our theorem follows immediately.

3. Grammar Forms

Consider a grammar G. Following Ginsburg et al. [3], we define an snier-
pretation pu of G to be a substitution u: 4 (G)* —24©)" where G’ is another
grammar such that the following conditions hold:

i) §€Z(G) =u(§) =Z(G),
i) s(G') su(s@)),
iii) §&'€Z(G) mp ) opuE)=9¢,
iv) teT(G) >u(t) = T (G')* & u(t) is finite,
v) P@)s{(#, 9)| (. 9)€P(G): p'en(p) and ¢'en(g)}-
We use the notion u: G = G’ for interpretations.

Theorem 3.1. The following statements are equivalent.
i) There exists u: G = G'.
ii) There exists a diagram

[

6.5 G

G GII
where ¢, is very fine and ¢, is an epic and fine T-morphism.

Proof. i) = ii): Consider T={(¢,#)|t cu(t), teT(G)}.
Define h: (T UZ (G')*) — 4 (G)* by

h(t, t)=t and h()=n (£€Z(GC'),Eepmn).

Obviously 4 is admissible and well-defined. Furthermore define 4, : (T UZ (G'))* —
A (G)* by
M, t)=t&m(E)=¢E (E€Z(C').
Now consider ¢, and (G*); .
By this we get the diagram

s é
G (GY, 26
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Then there exists a diagram
o O "
G+——G"—— (G"),,
ul ul
¢h_,1 (GI) =G" = G
which gives the desired diagram of ii).
ii) = i): Consider the diagram
g+t g tp
Since ¢, is very fine there:exists a length-preserving and admissible % such that
(G"

oh
ul

G ¢ - Gu

)
commutes.
Furthermore there exists an admissible 4; such that the diagram
(G")hi
Z I'ﬁhi
G’ ¢ . Gll
commutes.

Hence we have reached the following situation
G —— (G

ul ul

GH - (G”)M

N

Gl
A diagram
Py i K "
G—(G),— (@) 26
results with %;/Z ((G)*) is the identity.
Now define the interpretation u by
pm)=r*@m) 0eZ(G)

pO)=Hm10) (€T (G).

and

We are now in the position to give our definition of grammar forms.

Definition 3.1. A grammarform I is a triple I'=(G, H,, H,), where G is
grammar and H,, H, are classes of homomorphisms.
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If I' is a grammar form we associate a grammar family |I"| by defining

|| ={G, | there exists a diagram G «*— G, —*— G, with ¢,cH,, p,€ H,)
If 4 is a grammar family then

Z(9)={L|3Ge¥%: £ (G)=L}

is the associated language family.

In case ¥=|I'| we write £ (9)=2(I).

Definition 3.2. A grammarform I'= (G, H,, H,) is regular if and only if

i) ¢ isomorphism = ¢€H,nH,,

ii) ¢y, po€H, =@¢,0¢.€H,,

iii) ¢y, pp€H, S¢10 ¢y€H,,

iv) To any pair ¢;:G; -G, (i=1, 2) with ¢,€H, and ¢,€H, there exists
a commuting diagram

G G,

J J'ﬁa

'
Go 2 GZ

é3
1

with ¢3€H, and ¢ €H,.
The most significant axiom is
axiom.

X4

iv)”. Theorem 2.2 is an example for this

Lemma 3.1. If I'=(G, Hy, H,) is a regular grammar form, G'€|I’|, then
I"=(G', H,, H,) is regular and |I"| =|I|.

Proof. We have to show the inclusion. Consider a fixed diagram

Gt 6", ¢eH &dyeH,

for G’ and an arbitrary diagram
GG —"=G, $ieH, dicH,.
By axiom iv) there exists a diagram

G 2 G” ¢3 G,3

n.

1‘;4’1 ’ [ 2] R
G « G, »G,

where ¢g€H, and ¢,eH,.
Now by the axioms ii) and iii) we obtain G,€|I'|, and this proves the lemma.

Corollary. If I'=(G, H,, H,) and I"=(G', H,, H,) are regular grammar
forms then:

|I|=|I"| =G €|l &Ge|I"|.
We call a homomorphism ¢: G, —G, e-free if ¢ (w)==¢ for all weT (G,), w=e.
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Theorem 3.2, Let I'=(G, H,, H,) be a regular grammar form.

1) If all very fine and epic Z-morphisms ¢ are in H,, then &£ (I') is closed
under intersection with regular sets.

2) If all fine and e-free and epic T-morphisms are in H,, then #Z(I') is closed
under e-free homomorphisms.

3) If all very fine and epic T-morphisms are in H, and all very fine and epic
homomorphisms are in H;, then £ (I') is closed under union if H, and H, are
closed under the operation ‘@ ’.

Proof. 1) Consider L= (G’), G'¢|I"| and R regular, then there exists a
diagram

é 4

’

G 6" G «2— Gy

where ¢, €H,, ¢p,€H, and y, €H,.

By axiom iv) we can ““fill-in"’ this diagram and get

$r1eHy ", ¢3eH; "
G &t g =B g

¢2EH11 ldueﬂz

G <yrem Gr
Now ¢, ¢s€H; and 1) is following.

2) Consider an e-free homomorphism % and G’€|I'|, then we get a diagram

b€ H, L%
G Gy.

Pld,e H,

G GII

Since ¢,€H, we get the assertion by observing ¢,¢,€H,.

3) First we observe the following fact
“If G is a grammar, T 2 T (G) an alphabet, then there exists a grammar G’
with T(G")=T, £ (G')=%(G) and a very fine and epic T-morphism ¢: G'—>G".
This fact means, we can always add unnecessary terminals. Now, consider
two arbitrary diagrams

1 Hl £ Hl
GL@{"_E_,GI &

G $1€H, Gé ¢:€H, Gz.

By our observation we can assume T (G,)=T (G,)=T. By axiom i) we can find

Gz2G G 2G, G
¢0 ¢l

G, G = G,

sy
Sk

such that T(G,)=T (G,) and
GG, GG, G®&G, G6+6G,

are defined, and ¢, (1=0, 1, 2, 3) are all very fine and epic T-morphisms.
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Moreover we can find a very fine and epic T-morphism y’: G, ®G,—G,+G,
and a very fine and epic homomorphism y: G@G—G.
Then we get the following diagram

U
G i G2 2 GZ

where @,, ¢;€ H, (axioms i) and ii)) and ¢,, Pps€ H, (axioms i) and iii)).
Now our assumption on the operation ‘@’ and the axioms ii) and iii) give

the desired result.

One of the main point of our proofs is the possibility of dualization by chang-
ing the direction of arrows. If I'=(G, H,, H,) is a grammar form, then the co-
family |I'|* is defined by

| I"|*® ={G, | There exists a diagram G .. 9 G, 2 G, where ¢, €H, and ¢, €H,}.

Analogously, ZL°(I')=2(|I"|*) is the associated language cofamily.

In dualizing we define ‘‘ coreguiar’’ be leaving axioms i), ii) and iii) unchanged,
and dualizing axiom iv) in the following way axiom iv)®: To any pair ¢, : G,—G;
(¢=1, 2) with ¢,€H, and ¢,€H, there exists a commuting diagram

Gl 3

with €3€H, and ¢,€H,.

Remark. Examples for axiom iv)® can be given by using congruence lat-
tices [10].

By dualization we get the following lemmas and theorems, where the duality
is denoted by the superscript “*".

We indicate by two proof-examples how dualization should work.

Lemma 3.1 If I'=(G, H,, H,) is a coregular grammar form, G’€|I’|®
then I'"=(G', H,, H,) is coregular and |I"|® < |I"|*.

Proof. Consider a fixed diagram

Gt ¢ with ¢ eH, & pyeH,
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and an arbitrary diagram
¢ 2<% G, with ¢, e H,, ¢,¢H,.

By axiom “iv there exists a diagram

G $1 ;GH< (2] Gl
H16¢Jl jd’i

Now by axiom ii) and iii) we get G, €| I"|*, which proves the lemma.

Corollary®®. If I'=(G, H,, H,) and I"=(G’, H,, H,) are coregular grammar
forms then

|T|°=|I"|*=G"€|['|® & Ge|I"|*.
Theorem 3.2, Let I'= (G, H,, H,) be a coregular grammar form.
1) If all very fine and epic Z-morphisms are in H,, then #*°(I') is closed under
intersection with regular sets.
2) If all fine and e-free T-morphisms are in H;, then £*(I') is closed under
&-free homomorphisms.

3) If all very fine and epic T-morphisms are in H, and all very fine and epic
homomorphisms are in H;, then #*(I') is closed under union provided H, and
H, are closed under the operation ‘@’.

Proof. 1) Follows immediately by axiom iii).
2) Consider a diagram

G '$:

G és) G (& G,

with ¢,€H,, ¢,€H,, ¢, fine and e-free T-morphism. Since ¢,€H; we get by
axiom ®iv) a diagram

G [ :G” € $2 Gl

’
G « o7 G,

where ¢o€H;, ¢3€'H,. Now by axiom ii) we get G, €| I"|*.
3) Dualize part 3) of the proof of Theorem 3.2, where the sum-diagram is
considered to be self-dual.

Notation. 1f I'= (G, H,, H,), then I'°= (G, H,, H,).
Lemma 3.2. If I'is regular then
|Ie|*ec|I).
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1 HI ] Hl . .
Proof. Consider a diagram G Bk, g B G’, then by axiom iv) we can

fill in this diagram by

$3eH, "
G——G

¢1532j [dueﬂz

" ’
G em G

But this proves G'€|I'|.
Dualizing yields

Lemma 3.2°, If I'is coregular, then
|| | 7|
Corollary. If I' is regular and I"® coregular, then
| I'|=|I[*.
Proof. Observe
| T|=[ ()| < [T

We now turn our interest to grammar indices which have been introduced by
A. Salomaa [9].

Consider a grammar G and a derivation f. Let 4 (f) be the set of all sequential
representations of f. To any de4 (f),

0= (1, X7 X1,) 00 (1,, X7 X1,,)
we assign
# (0)=Max {|u,d(r;) v;|z| 1 Si =<5}

where |w|; is the number of variables in w.
Then we can assign to f a number

# (f)=Min {# (0) | 0€4 (f)}
and define the index of G to be
index (G)=Sup {#(f) | /€D (G)}
We study the behaviour of the index function under homomorphisms.

Lemma 3.3. i) G, € G, =>index (G,) <index (G,).
ii) If ¢: G, —G, is fine, then index (G,) <index (G,).
Proof. i) and ii) is trivial:
ii) We have to show:
index (¢ (f)) =index (7).

Since ¢ is on variables length preserving the above assertion follows from the
fact, that ¢ induces a surjective mapping from 4 (f) onto 4 (¢ (f)).
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But this is true, since all sequential representations of f can be generated by
applying successively the following rules to a fixed sequential representation

“ (114 Xr X'lv,c(/)v,) o (1ud(f) v,Xr, X 10.)5 (1m:(r) v, xr’ X 111,) ° (1u XrX 1u,d(f') v.)
and (1u,c(r’) u.xy X 10) ° (1u, X” X 1u,d(1) v)E (1u; XY' X 1u,l:(r) v) ° (1u,d(v’) Uy Xr X 10) ”

and these rules are transformed into the corresponding rules via ¢.
Now we can prove a generalization of a theorem of [3].

Theorem 3.3. Consider a grammarform I'=(G, H,, H,) where
i) ¢eH, =¢ is fine,

i) ¢€H,=¢ is closed and fine,

iii) index (G) < o0,

then £ (I') is contained in the class of nonexpansive languages [4].

Proof. By Lemma 3.3 we know
G'€|I"| = index (G') <index (G) < co.

Now a theorem of A. Salomaa [9] states:
If G, is a grammar

SupInf{#(f) | d(f)es(Gi&c()=w}<oo weZL(G)

then Z(G,) is nonexpansive.

But this proves our theorem.
Again we have a dual version of the theorem.

Theorem 3.3%°, Consider a grammar form I'= (G, H,, H,) where

i) ¢€H, =>¢ is closed and fine,
il) peH, = ¢ is fine,
iii) index (G) < oo,

then £ (I') is contained in the class of nonexpansive languages.
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